EP2697058A1 - Vitrage chauffant - Google Patents

Vitrage chauffant

Info

Publication number
EP2697058A1
EP2697058A1 EP12713161.3A EP12713161A EP2697058A1 EP 2697058 A1 EP2697058 A1 EP 2697058A1 EP 12713161 A EP12713161 A EP 12713161A EP 2697058 A1 EP2697058 A1 EP 2697058A1
Authority
EP
European Patent Office
Prior art keywords
layers
silver
glazing
layer
glazing according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12713161.3A
Other languages
German (de)
English (en)
Inventor
Dominique Coster
Jean-Michel Depauw
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Glass Europe SA
Original Assignee
AGC Glass Europe SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Glass Europe SA filed Critical AGC Glass Europe SA
Publication of EP2697058A1 publication Critical patent/EP2697058A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/002Windows; Windscreens; Accessories therefor with means for clear vision, e.g. anti-frost or defog panes, rain shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • B32B17/10229Metallic layers sandwiched by dielectric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10339Specific parts of the laminated safety glass or glazing being colored or tinted
    • B32B17/10348Specific parts of the laminated safety glass or glazing being colored or tinted comprising an obscuration band
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3681Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating being used in glazing, e.g. windows or windscreens
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • H05B3/86Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields the heating conductors being embedded in the transparent or reflecting material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the present invention relates to heated "automobile” glazings. More specifically, the invention relates to glazings comprising a heating assembly consisting of thin conductive layers and dielectric layers applied to the glass substrate. Heating "automotive" glazings comprising a set of thin conductive layers, are well known. Glazing of this type is especially proposed for implementation in windshields. In these applications the conductive layers are mainly used as an infrared filter to prevent heating of vehicles exposed to solar radiation. The layer systems used must meet the optical requirements specific to these uses. For windshields, a light transmission of at least 70% is required. The presence of these layer systems should not lead to undesirable colorations especially in reflection and this regardless of the angle at which the glazing is observed.
  • the layer systems in question traditionally include one or more thin metal layers that develop their power by joule effect.
  • the strength of the layers depends on their thickness.
  • the voltage applicable in vehicles is regulated. It does not normally exceed 14v. Under these conditions it goes without saying that the power is limited by the intensity that can pass in these layers. Intensity is itself a function of resistance. Consequently, the tendency is to increase the thickness of the conductive metal layers, but this thickness is limited by the need to maintain a regulatory light transmission.
  • the inventors have tried to find glazing structures having a set of properties satisfying all these conditions.
  • the inventors have thus made laminated windshields whose glass thicknesses do not exceed 3.8 mm and preferably are less than 3.5 mm and may even be smaller than 3.2 mm.
  • Such windshields are advantageously obtained by the combination of glass sheets of different thicknesses.
  • the thicker leaves are normally facing outwards. This arrangement improves in particular the mechanical resistance to "gravel".
  • the thinnest leaves In practice the implementation of the sheets requires that the thinnest leaves remain conveniently manipulated, whether manually or by mechanical means robots.
  • the thinnest leaves should also lend themselves without undue difficulty to the treatments leading to the products according to the invention. This is particularly the case of treatments that cause an increase in their temperature. This is for example the formation of functional layer systems. Deposits Even if the temperatures remain relatively low, they can lead to deformations leading to unevenness of the layers.
  • the shaping operations of the sheets and their subsequent assembly also require a minimum of initial stiffness, especially for the conveying and the good positioning of the sheets.
  • the thickness of the thinnest sheets used is not less than 0.8 mm, and preferably not less than 1.0 mm.
  • the glazings according to the invention comprise at least one glass sheet whose thickness is not greater than 1, 6 mm and advantageously is not greater than 1.4 mm.
  • the leaves associated with the thinnest sheets have a thickness which is not greater than 2.5 mm, and is preferably less than 2.1 mm. and may be equal to or less than 1.9mm.
  • the assembly is made by means of a thermoplastic sheet of material traditionally used for these laminated assemblies. These are mainly polyvinyl butyral (PVB) sheets, but also ethylene vinyl acetate (EVA) or polyurethane (PU). This material has a much lower density than glass. A change in the thickness of the intermediate sheet to lighten the glazing does not offer significant improvement especially as this thickness must provide resistance against the ejection of sufficient passengers.
  • the traditional thicknesses of the PVB sheets used in automotive glazings are at least 0.38 mm and most often 0.76 mm for single interlayers. Separate products are sometimes offered to integrate additional functions.
  • HUD head up display
  • the spacers usually have a variable thickness in the height of the windshield.
  • the production of thin laminated glazing also has some singularities as regards the techniques used for their forming.
  • the lightening of the sheets does not facilitate their handling due in particular to reduced rigidity.
  • the use of sheets of different thicknesses leads to the need to adapt the techniques that are dependent on the thermal properties of the sheets. These do not absorb the energy used to drive them in the state of softening proper to their shaping.
  • the inventors have further progressed in the properties of the heating layer systems, reaching even lower strengths.
  • the inventors have reached layer systems whose resistance may be less than ⁇ / D and may even be equal to or less than 0.8 ⁇ /
  • the glazings having these properties also retain a satisfactory light transmission, are not or very slightly colored in reflection whatever the angle of observation, and withstand without altering the heat treatment shaping.
  • the heating layer system is in contact with the spacer, that is to say in position 2 or 3 according to the usual designation, the position 1 corresponding to the face of the glazing facing the outside of the vehicle.
  • the presence of the heating layer system in position 3 promotes the warming of the face of the window facing the passenger compartment.
  • the function of eliminating the fog, or even frost formed by extremely low temperatures is substantially improved. It is all the more so since the glass sheet turned inwardly is advantageously the thinnest, and as a result the thermal conduction is increased towards the passenger compartment.
  • the arrangement of the layer system in position 2 leads to the superposition on the same side of the glass sheet of this layer system and the enameled edges used to conceal the gluing of the layers. glazing.
  • This superposition of an enamel and the layer system requires very controlled conditions of preparation of these glazings to avoid defects that may result from the contact of these two kinds of materials. It is also necessary to add in the superposition, the conductive elements ("busbar") supplying the layer system.
  • the masking enamels are usually "fired" during the windshield shaping step to perform a single heat treatment operation.
  • the cooking operation operated in the at the same time that the formatting is only feasible if the functional layers are not on the face carrying the enamel.
  • the layer system must be in position 3. If the layer system is placed in position 2, the enamel must be baked before the deposition of the functional layer system. But even in this case it must be ensured that the heating layer system has a good electrical continuity between the part applied to the enamelled strips and that which extends over the part of the glazing which is not coated with enamel.
  • the power supply is provided by conductors "busbar" resistance as low as possible not to lead to the development of a Joule effect sensitive and therefore a lowering of the voltage available for conductive layer systems.
  • the busbars are arranged on two opposite edges of the glazing corresponding to the smallest distance. In the most common windscreen configurations, this smallest distance corresponds to their height. This height tends to increase, the disposition of the busbars on the sides of the windshields can become equal or even lower. In this case the busbars will be arranged on the sides.
  • the busbars used according to the invention are of traditional materials for this use. It is very thin metal ribbons, including copper ribbons. It is even more frequently conductive enamel bands, including silver-based. Whatever the nature or the position of the busbars on the windshield, these conductors are masked towards the outside of the vehicle by the enamelled strips which also hide the traces of bonding. It is also traditional to ensure that the layer systems do not extend to the edge of the glazing to avoid alteration in contact with atmospheric moisture. So that the limit of these functional layers is not perceptible it is located preferably behind these masking enamels, which, at least in places, can be made in the manner of a gradient of dots from a completely coated area of the enamel at the edge of the glazing, until the part perfectly devoid of this enamel.
  • the total amount of silver per unit area remains limited in particular to not excessively reduce the light transmission. But the total allowable quantity is a function of the quality of the composition of the system as a whole.
  • the total amount of silver is not less than 300mg / m 2 and preferably is not less than 320mg / m 2 and most preferably is greater than 350mg / m 2 .
  • the total amount of silver per unit area can reach 400mg / m 2 or even 450mg / m 2 .
  • each of the silver layers comprises a minimum of 100 mg / m 2 , and advantageously greater than 110 mg / m 2 .
  • each silver layer comprises at most 160mg / m 2 , and preferably at most 150mg / m 2 .
  • Transparent dielectric layers are well known in the applications under consideration. Adequate materials are numerous and it is not useful to list them here. These are generally oxides, oxy-nitrides or metal nitrides. Among the most common, there may be mentioned as examples SiO 2 , TiO 2 , SnO 2 , ZnO, ZnAlOx, Si 3 N 4 , AlN, Al 2 O 3 , ZrO 2 , Nb 2 O 5 , YO x TiZrYOx, TiNbOx , HfOx, MgOx, TaOx, CrOx and Bi 2 O 3 , and mixtures thereof.
  • AZO refers to a zinc oxide doped with aluminum or to a mixed oxide of zinc and aluminum, preferably obtained from a ceramic cathode formed by the oxide to be deposited in an atmosphere neutral or slightly oxidizing.
  • ZTO or GZO refer respectively to mixed oxides of titanium and zinc or zinc and gallium, obtained from ceramic cathodes in a neutral atmosphere or slightly oxidizing.
  • TXO refers to titanium oxide obtained from a titanium oxide ceramic cathode.
  • ZSO refers to a zinc-tin mixed oxide obtained either from a metal cathode of the alloy deposited under an oxidizing atmosphere or from a ceramic cathode of the corresponding oxide in a neutral or slightly oxidizing atmosphere.
  • TZO, TNO, TZSO, TZAO or TZAYO refer respectively to mixed titanium-zirconium, titanium-niobium, titanium-zirconium-silicon, titanium-zirconium-aluminum or titanium-zirconium-aluminum-yttrium oxides, obtained from ceramic cathodes, either in neutral or slightly oxidizing atmosphere.
  • the materials for entering the composition of the systems used according to the invention are chosen according to multiple criteria. They must be sufficiently transparent to the thicknesses that their refractive index commands.
  • At least one of the dielectric layers is based on a zinc-tin mixed oxide containing at least 20%, and preferably at least 40% by weight of tin, for example about 50% to form Zn 2 SnO 4 .
  • This oxide is very useful as a dielectric coating in a stack capable of undergoing heat treatment.
  • the lower dielectric coating disposed between the glassy material sheet and the first silver reflective layer comprises at least one zinc-tin mixed oxide containing at least 20% by weight of tin, and the outer dielectric coating also comprises at least one zinc-tin mixed oxide containing at least 20% by weight of tin.
  • the dielectric layer disposed under one or under each silver reflecting layer is a layer based on a zinc oxide, optionally doped for example with aluminum, magnesium or gallium. This layer is in direct contact with the layer (s) of silver.
  • the zinc oxide-based layers can have a particularly favorable effect on the stability and corrosion resistance of the functional layer. They are also favorable to the improvement of the conductivity.
  • the mixed oxides of zinc and tin offer the required stability during heat treatments, it has appeared more advantageous for the conductivity of the silver layers to be formed on a zinc oxide layer with essentially no other constituent than those present possibly in the state of impurities.
  • the proportion by weight of these elements present in the zinc oxide remains in all cases less than 5% by weight and is advantageously less than 3%, and particularly preferably less than 1%.
  • zinc oxide has different crystalline growths depending on whether one operates with a mixed oxide or an almost pure oxide. Mixed oxides would be less sensitive to changes at high temperature, the structure being less crystalline, or if we want more amorphous. This is what X-ray crystallographic analyzes seem to show. The traditional peaks of zinc crystals are less intense.
  • the promoting effect of the layer of silver related to the presence of the substantially pure zinc oxide layer and the thermal stability of this layer can be simultaneously provided as long as the layer of question is not too thick.
  • the zinc oxide layer on which the silver layer is deposited is not of a thickness greater than 110 ° and preferably not greater than 90 °.
  • This layer to improve the properties of the silver layer must nevertheless have a certain thickness that achieves the desired crystallinity.
  • the substantially pure zinc oxide layer has a thickness of at least 40 °, and preferably at least 50 °.
  • these layers are thin metal layers optionally partially oxidized, whose role is to prevent oxidation of the underlying layer by oxidizing themselves. These layers should be sufficiently thin and of as transparent material as possible so as not to significantly diminish the light transmission of the whole. To achieve the best possible transmission these layers are preferably completely oxidized in the heat treatment operations.
  • the metals most commonly used to form these barrier layers include Ti, Zn, Al, Nb and NiCr alloys.
  • the thicknesses of the barrier layers are not usually greater than 8 nm, and most often are less than or equal to 6 nm.
  • the thickness is preferably less than 4 nm.
  • FIG. 1 is a schematic representation of a section of a glazing according to the invention.
  • FIG. 2 is a representation of a glazing according to the invention having another structure
  • FIG. 3 shows in section a layer system used in the composition of a glazing according to the invention
  • FIG. 4 is a graph showing the evolution of a deicing operation as a function of time, for a glazing unit according to the invention, according to the position of the heating system;
  • FIG. 5 is a graph illustrating the power developed as a function of the resistance / square of the layer system, and the distance between the busbars;
  • FIG. 6 is a graph showing the influence of the thickness of the ZnO layer on the quality of the silver layers;
  • FIG. 7 illustrates the stability of the neutrality in reflection of coated glass sheets, by varying the angle of observation relative to the normal.
  • the glazings both comprise a set of two glass sheets 1, 2, joined by a thermoplastic interlayer sheet 3.
  • the glass sheets are of different thickness. If this structure is advantageous, it is not exclusive of structures in which the sheets have identical thicknesses. The choice of different thicknesses answers questions of optimization of the total thickness, taking into account the respective distinct roles of each of these sheets.
  • the glazings according to the invention thus preferably comprise the thickest sheet facing the outside of the vehicle.
  • the thickest sheet is sheet 1.
  • a system of heating layers and infrared filtering is shown generally at 4.
  • the layer system is in position 3, between sheet 2 and tab 3.
  • Busbars are schematized in 5.
  • Busbars are located on both sides of the glazing. Their position and dimensions are chosen to establish a current in the layer system, over the entire surface of the glazing extending between these busbars. As mentioned before, the busbars are arranged in the smallest dimension of the glazing to maintain the highest power. high possible given the available voltage applied, and the resistance of the layer system.
  • the busbars 5 are chosen to provide as little electrical resistance as possible in order to have the highest voltage for feeding the layer system 4.
  • glazings such as windshields are glued to the bodywork on their side facing the cockpit, ie in position 4.
  • strips dark enamel 6 are arranged opposite the locations of the dashes of glue.
  • the busbars 5 being located at the periphery of the glazing so as not to obscure the viewing zone of the glazing, they are located as shown in the areas also covered by the enamelled strips 6, and are simultaneously masked by these enamelled strips 6.
  • the enamelled strips 6 are arranged in position 2 on the sheet 1.
  • the layer system 4 is applied in position 3 on the sheet 2.
  • the separation of enamels and functional layers facilitates the shaping possibly simultaneous of the two leaves in bending or tempering treatment. Even if the positions 2 and 3 of the sheets are face to face during this treatment, it is possible without too restrictive precautions to avoid alterations caused by the contact of the enamel 6 and the layer system 4, and / or that busbars. For this various measures are possible.
  • enamelled areas can be "precooked” to remove all the solvents initially contained in the pasta applied. This precooking also solidifies the enamelled strips that are no longer "sticky” to the superposition of the glass sheets during the bending heat treatment.
  • enamelled strips 6 can be interpose a powder nonstick which is removed after the thermal shaping of the glass sheets.
  • Figure 2 shows another structure.
  • the enamelled strips 6 and the heating layer system 4 with the busbars 5, are all on the face 2 of the outer sheet 1.
  • the layer system 4 is applied to the sheet 1 after the enamelled strips 6 were precooked.
  • the busbars as before are applied to the previously constituted layer system.
  • FIG. 3 is an example of a heating layer system that can be used according to the invention.
  • the system is presented applied on a glass sheet as for example in the structure of FIG.
  • the illustrated system comprises three layers 7, 8, 9, infrared reflecting conductors. It is most often metal layers based on silver.
  • the silver is pure, but it may be doped with a few percent of palladium, aluminum or copper, for example from 0.1 to 10 at%, preferably from 0.3 to 3.0%.
  • the silver layers are three in number to achieve a resistance / square as low as possible without compromising the optical properties, including the reflection and neutrality of the color in reflection regardless of the angle of observation.
  • Dielectric layers complete the system between the glass substrate 2 and the first silver layer 7, between the silver layers 7 and 8 on the one hand and 8 and 9 on the other hand, finally above the layer of silver. money 9.
  • the silver layers are covered with a barrier layer (10, 11, 12) composed of a metal that may be partially oxidized.
  • the barrier layers are very thin and protect the silver against oxidation by oxidizing themselves in the successive reactive deposits of the superimposed dielectric layers, and in thermal shaping treatments.
  • the barrier layers are advantageously titanium, because of the good transparency of the titanium oxide layers, but other metals are also possible which are traditionally used for these layers.
  • these layers contribute significantly to the quality and structure of the silver layers.
  • These layers are based on zinc oxide.
  • the layers in question may optionally be composed of a mixed oxide of zinc and tin with a limited proportion of tin to stabilize the structure of the layer, and prevent its modification especially during heat treatments.
  • substantially pure zinc oxide layers that is to say an oxide whose foreign components are not greater than 5%, preferably not more than 3% and more particularly not more than 1% by weight.
  • the presence of these layers of zinc oxide when they are of well-defined thicknesses, leads to layers of silver offering the best conductivity.
  • the systems also comprise at least one dielectric layer supplementing the "dereflective" system between the glass sheet (16) and the first layer of silver, between the silver layers (17, 18), and above the third layer of silver (19).
  • the preferred additional layer is a zinc-tin mixed oxide layer, the proportions of which are advantageously of the order of 50% by weight of each of the constituent oxides.
  • the system still often comprises a protective surface layer (20) advantageously still an oxide of good mechanical strength such as titanium oxide. This surface layer is relatively thin to limit its influence in the interferential system.
  • the infrared reflecting layers, but also the dielectric layers associated with them must satisfy defined ratios to constitute the most effective interference systems.
  • the reports in question are detailed in particular in the BE2010 / 0311 application, filed on May 25, 2010 by the applicant, which application is incorporated by reference, in particular for the most advantageous conditions as regards the thickness ratios of the different layers.
  • a first example of a particularly preferred reflective system is constituted in the following manner in which the thicknesses are expressed in angstroms: glass / Zn 2 SnC> 4 / ZnO / Ag / Ti / Zr ⁇ SnCyZnO / Ag / Ti / Zr ⁇ SnCyZnO / Ag / Ti / Zn 2 SnC> 4 / Ti0 2 ep. 310 70 141 20 660 80 144 30 630 80 131 20 293 54 ex.l
  • the system is applied to a standard 1.25mm thick "float" glass sheet.
  • the sheet is subjected to heat treatment at 650 ° C for 8 minutes.
  • the optical properties are measured on the glass side (face 1 of the glazing) before assembly in the laminated glazing.
  • the illuminant is D65, under 10 ° for normal incidence.
  • the light transmission (measured as the other optical quantities according to the EN410 standard) TL is 78.6%
  • the reflection RL is 6.3%
  • the colorimetric data (expressed in the CIELAB 1976 system) are L * 91, l , a * 0.0, b * 2.6.
  • the resistance measurements made on the glazing lead to a value of 0.85 ⁇ / ⁇ .
  • the available power is then about 410w / m 2 .
  • the resistances of these layer assemblies are respectively 0.85 ⁇ / ⁇ and 0.9 ⁇ / D.
  • the reflection color variation was established according to the angle of observation. This property is sensitive for automotive glazing especially for windshields. These are in effect both very inclined and bulging. It is highly desirable that the appearance of these windows is as neutral as possible regardless of the position of the observer and that this appearance is evenly uniform for the entire glazing although it is seen from different angles simultaneously according to the part observed.
  • the colorimetric coordinates L *, a * and b * as well as the variation AC * (which is the square root of the squares of the variations of a * and b *) are expressed as a function of the angle of observation. The angle is indicated as normal to the glazing.
  • Another layer system according to the invention is the following, the thicknesses as previously being expressed in angstrom: glass / AlN / AZO / Ag / ZnAl / AZO / Ag / ZnAl / AZO / Ag / ZnAl / AZO / A1N
  • AZO denotes the ZnAlOx layer with 5 atomic% of aluminum relative to the ZnAl set; ZnAl barriers are a 12 atomic% Al alloy.
  • the formation of the frost layer is conducted in a refrigerated chamber at -18 ° C.
  • the amount of water applied to the surface of the sample is 0.5 kg / m 2 .
  • the percentage of de-iced surface, the sample being maintained in the refrigerated chamber, is measured as a function of the application time of the power adjusted to 410w / m 2 'by adjusting the voltage to the dimensions of the sample.
  • the results are shown in FIG. 4.
  • the curves correspond to positions 2 and 3 of the heating layer system. It can be seen that the defrost takes place more quickly in the case of the heating layer system placed in position 2.
  • the gain is of the order of one minute in obtaining the complete defrosting. This difference obviously comes from mode of conduction of heat in the glazing.
  • the proximity of the heat source favors the heating of the face to defrost.
  • FIG. 5 schematically illustrates the incidence of available power as a function of the resistance of the layer system for three values thereof, and the distance between the busbars on the glazing. If with a resistance of 0.85 / ⁇ , as in the previous case, the distance can be greater than 75cm to have a power of the order of 400w / m 2 , we see that this distance decreases very quickly when the resistance rises. Thus for a resistance of 1.5 ⁇ / ⁇ this distance, in other words the height of the effectively defrosted windshield is only about 60 cm.
  • Figure 6 shows the influence of the thickness of the zinc oxide layer on the performance of the silver layers in the system described above by simultaneously varying the three layers of zinc oxide present.
  • the graph represents the change in quality of silver, which is defined as the product of the square resistance expressed in ohm, by the amount of silver per unit area expressed in milligrams per square meter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

La présente invention concerne un vitrage automobile feuilleté dont la transmission lumineuse n'est pas inférieure à 70%, comprenant deux feuilles de verre assemblées au moyen d'une feuille intercalaire thermoplastique, le vitrage comportant en plus un système de couches minces fonctionnelles conductrices de l'électricité appliqué sur une face d'une des feuilles de verre, et disposé entre cette feuille et la feuille intercalaire, le système de couches conductrices étant alimenté au moyen de bandes conductrices disposées sur ces couches et de part et d'autre du vitrage, dans lequel l'épaisseur totale des feuilles de verre du vitrage est au plus égale à 3,8mm.

Description

Vitrage chauffant
La présente invention concerne les vitrages « automobile » chauffants. De manière plus précise l'invention concerne les vitrages comportant un ensemble chauffant constitué par des couches minces conductrices et des couches diélectriques appliquées sur le substrat verrier. Les vitrages « automobile » chauffants comportant un ensemble de couches minces conductrices, sont bien connus. Des vitrages de ce type sont notamment proposés pour une mise en œuvre dans des pare-brise. Dans ces applications les couches conductrices sont principalement utilisées comme filtre infrarouge pour prévenir réchauffement des véhicules exposés au rayonnement solaire. Les systèmes de couches utilisés doivent satisfaire aux exigences optiques spécifiques à ces utilisations. Pour les pare-brise, une transmission lumineuse d'au moins 70% est exigée. La présence de ces systèmes de couches ne doit pas conduire à des colorations indésirables notamment en réflexion et ceci quel que soit l'angle sous lequel le vitrage est observé.
Pour répondre à la demande des constructeurs les pare-brise traditionnels, pour parvenir au désembuage ou dégivrage dans des conditions de temps acceptables, doivent développer une puissance estimée à environ 400w/m2, et plus si possible. Une difficulté reconnue est de parvenir à une telle puissance avec les couches conductrices réalisables et qui permettent de satisfaire aux conditions rappelées ci-dessus. Les systèmes de couches dont il est question comportent traditionnellement une ou plusieurs couches métalliques minces qui développent leur puissance par effet joule. La résistance des couches dépend de leur épaisseur. La tension applicable dans les véhicules est réglementée. Elle ne dépasse pas normalement 14v. Dans ces conditions il va de soi que la puissance est limitée par l'intensité qui peut passer dans ces couches. L'intensité est elle-même fonction de la résistance. En conséquence la tendance est à l'accroissement de l'épaisseur des couches métalliques conductrices, mais cette épaisseur reste limitée par la nécessité de maintenir une transmission lumineuse réglementaire.
Pour répondre à ces diverses contraintes les efforts ont porté principalement sur l'optimisation des systèmes de couches de manière à parvenir à une résistance aussi faible que possible. La qualité de la ou des couches conductrices est nécessairement considérée. L'optimisation de l'ensemble des couches du système, y compris les couches diélectriques qui limitent les réflexions, et améliorent la transmission, permettent de jouer un peu sur l'épaisseur de la couche métallique conductrice en conservant la transmission lumineuse requise. Néanmoins, les améliorations sont également restreintes.
Les systèmes de couches même optimisés, comme il vient d'être indiqué, ne permettent pas habituellement de parvenir aux puissances requises faute de disposer de couches suffisamment peu résistantes. Dans les meilleures conditions rapportées les résistances sont de l'ordre de 1,2Ω/π. Mais compte tenu des dimensions des pare -brise modernes (de l'ordre de 70 à 100cm ou plus), la puissance obtenue dans les meilleures conditions ne dépasse pas habituellement des valeurs de l'ordre de 350w/m2.
Des puissances de cet ordre ne sont pas en principe suffisantes pour dégivrer rapidement les pare-brise. Pour cette raison, en dépit de l'intérêt manifesté par les constructeurs, ces fonctions n'ont pas trouvé de débouché dans les applications industrielles.
Les efforts qui sont développés par ailleurs pour conduire à l' allégement des véhicules afin de réduire leur consommation, visent indifféremment tous les éléments susceptibles d'aboutir sans pour autant altérer les fonctionnalités de ces éléments. Dans ce but il a été proposé et limiter le poids des vitrages. Cette limitation concerne tous les vitrages installés sur les véhicules et en particulier les pare-brise qui constituent habituellement le plus grand d'entre eux. Dans la pratique la plus commune, les pare-brise sont constitués de deux feuilles de verre, chacune d'épaisseur de l'ordre de 2mm assemblées au moyen d'une feuille intercalaire thermoplastique traditionnellement de 0,76mm. Les éléments déterminants le choix des épaisseurs sont multiples. La résistance mécanique fait partie de ces éléments. Les propriétés visant à l'insonorisation sont aussi un facteur significatif dans ma mesure où la masse intervient pour une part importante dans l'amortissement des vibrations acoustiques.
En dépit des réserves évoquées ci-dessus, les inventeurs se sont essayés à trouver des structures de vitrages présentant un ensemble de propriétés satisfaisant à toutes ces conditions. Les inventeurs ont ainsi réalisé des pare-brise feuilletés dont les épaisseurs de verre ne dépassent pas 3,8mm et de préférence sont inférieures à 3,5mm et peuvent être même inférieures à 3,2mm.
De tels pare-brise sont avantageusement obtenus par la combinaison de feuilles de verre d'épaisseurs différentes. Les feuilles les plus épaisses sont normalement tournées vers l'extérieur. Cette disposition améliore notamment la résistance mécanique au « gravillonage ».
En pratique la mise en œuvre des feuilles nécessite que les feuilles les plus minces restent commodément manipulables, que ce soit manuellement ou par des moyens mécaniques de type robots. Les feuilles les plus minces doivent aussi se prêter sans difficultés excessives aux traitements conduisant aux produits selon l'invention. C'est les cas notamment des traitements qui occasionnent une élévation de leur température. Il s'agit par exemple de la formation des systèmes de couches fonctionnelles. Les dépôts réalisés, même si les températures restent relativement peu élevées, peuvent conduire à des déformations conduisant à des défauts d'uniformité des couches. Les opérations de mise en forme des feuilles et leur assemblage ultérieur nécessitent aussi un minimum de rigidité initial, notamment pour le convoyage et le bon positionnement des feuilles.
En pratique l'épaisseur des feuilles les plus minces mises en œuvre, n'est pas inférieure à 0,8mm, et de préférence pas inférieure à 1,0mm. De manière avantageuse, les vitrages selon l'invention comportent au moins une feuille de verre dont l'épaisseur n'est pas supérieure à 1 ,6mm et avantageusement n'est pas supérieure à 1,4mm.
Pour atteindre à des vitrages allégés dont les épaisseurs totales correspondent aux valeurs indiquées précédemment, les feuilles associées aux feuilles les plus minces ont une épaisseur qui n'est pas supérieure à 2,5mm, et est de préférence inférieure à 2,1mm. et peut être égale ou inférieure à 1,9mm.
L'assemblage est réalisé au moyen d'une feuille thermoplastique de matériau traditionnellement utilisé pour ces ensembles feuilletés. Il s'agit principalement de feuilles de polyvinylbutyral (PVB), mais aussi d'éthylène vinyl-acétate (EVA) ou de polyuréthane (PU). Ce matériau est de masse volumique bien moindre que le verre. Une modification de l'épaisseur de la feuille intercalaire en vue d'alléger le vitrage n'offre pas d'amélioration significative d'autant que cette épaisseur doit offrir une résistance contre l'éjection des passagers suffisante. Les épaisseurs traditionnelles des feuilles de PVB utilisées dans les vitrages automobiles sont d'au moins 0,38mm et le plus souvent de 0,76mm pour les feuilles intercalaires simples. Des produits distincts sont parfois proposés pour intégrer des fonctions additionnelles. C'est le cas par exemple des intercalaires utilisés pour les pare-brise dits « tête haute» ou HUD (head up display) dans lesquels les intercalaires présentent habituellement une épaisseur variable dans la hauteur du pare -brise. La production de vitrages feuilletés minces présente aussi quelques singularités en ce qui concerne les techniques utilisées pour leur formage. L'allégement des feuilles ne facilite pas leur manipulation en raison notamment d'une rigidité amoindrie. De même l'utilisation de feuilles d'épaisseurs différentes conduit à la nécessité d'adapter les techniques qui sont tributaires des propriétés thermiques des feuilles. Celles-ci n'absorbent pas de manière identique l'énergie mise en œuvre pour les conduire dans l'état de ramollissement propre à leur mise en forme.
Toutes ces raisons sont autant de réserves en ce qui concerne l'utilisation de ces pare-brise moins épais.
Passant outre ces contraintes, les inventeurs ont montré l'intérêt procuré en ce qui concerne l'application de systèmes de couches chauffantes sur des pare-brise d'épaisseur réduite. Si la formation de ces systèmes de couches sur des feuilles de verre minces nécessite des précautions accrues pour éviter la formation de défauts spécifiques de ces feuilles, il est apparu que les vitrages ainsi constitués offraient des possibilités améliorées pour ce qui concerne le chauffage.
Par ailleurs les inventeurs ont encore progressé dans les propriétés des systèmes de couches chauffantes, atteignant des résistances encore plus réduites. Ainsi les inventeurs sont parvenus à des systèmes de couches dont la résistance peut être inférieure à ΙΩ/D et peut même être égale ou inférieure à 0,8Ω/ Les vitrages présentant ces propriétés, conservent par ailleurs une transmission lumineuse satisfaisante, ne sont pas ou très peu colorés en réflexion quel que soit l'angle d'observation, et supportent sans altération les traitements thermiques de mise en forme.
Le système de couches chauffant est au contact de l'intercalaire, c'est-à-dire en position 2 ou 3 selon la désignation habituelle, la position 1 correspondant à la face du vitrage tournée vers l'extérieur du véhicule. Ces deux positions font que le système de couches est protégé contre les altérations notamment mécaniques. Mais les inventeurs ont montré l'intérêt de préférence de disposer ce système de couches en position 2. Ils ont montré en effet que l'élimination du givre qui constitue la fonction la plus exigeante en termes de puissance nécessaire, est alors plus rapide. La raison de cet effet est probablement lié au fait que la feuille thermoplastique est moins conductrice que le verre. L'interposition de cette feuille entre la face recouverte de givre et la couche chauffante réduit la part de la puissance qui parvient à la surface du verre.
A l'inverse, la présence du système de couches chauffant en position 3 favorise le réchauffement de la face du vitrage tournée vers l'habitacle. Dans cette position la fonction d'élimination de la buée, ou même de givre formé par des températures extrêmement basses, est sensiblement améliorée. Elle l'est d'autant plus que la feuille de verre tournée vers l'intérieur est avantageusement la moins épaisse, et qu'en conséquence la conduction thermique est accrue en direction de l'habitacle.
Si elle peut être préférée pour la raison indiquée ci-dessus, la disposition du système de couches en position 2 conduit à la superposition sur la même face de la feuille de verre de ce système de couches et des bords émaillés utilisés pour dissimuler le collage des vitrages. Cette superposition d'un émail et du système de couches nécessite des conditions très maîtrisées de préparation de ces vitrages pour éviter les défauts qui peuvent résulter du contact de ces deux sortes de matériaux. Il faut en outre ajouter dans la superposition, les éléments conducteurs (« busbar ») alimentant le système de couches.
Lorsque le vitrage feuilleté ne comporte pas de couches fonctionnelles réfléchissant les infrarouges, les émaux de masquage sont ordinairement «cuits» au cours de l'étape de mise en forme du pare-brise pour réaliser une seule opération de traitement thermique. En présence d'un système de couches réfléchissantes, l'opération de cuisson opérée dans le même temps que la mise en forme n'est réalisable que si les couches fonctionnelles ne sont pas sur la face portant l'émail. Autrement dit l'émail étant en position 2, le système de couches doit se situer en position 3. Si le système de couches est disposé en position 2, l'émail doit être cuit avant le dépôt du système de couches fonctionnelles. Mais même dans ce cas il faut s'assurer que le système de couches chauffant présente une bonne continuité électrique entre la partie appliquée sur les bandes émaillées et celle qui s'étend sur la partie du vitrage qui n'est pas revêtue d'émail.
Dans les vitrages chauffants selon l'invention l'alimentation électrique est assurée par des conducteurs « busbar » de résistance aussi faible que possible pour ne pas conduire au développement d'un effet joule sensible et par suite à un abaissement de la tension disponible pour les systèmes de couches conductrices.
Pour minimiser la résistance du système de couches du vitrage les busbars sont disposés sur deux bords opposés du vitrage correspondant à la distance la plus petite. Dans les configurations des pare -brise les plus usuels cette distance la plus petite correspond à leur hauteur. Cette hauteur tendant à s'accroître, la disposition des busbars sur les côtés des pare-brise peut devenir égale ou même inférieure. Dans ce cas les busbars seront disposés sur les côtés.
Les busbars utilisés selon l' invention sont de matériaux traditionnels pour cet usage. Il s'agit de rubans métalliques très peu épais, notamment de rubans de cuivre. Il s'agit encore plus fréquemment de bandes d'émail conducteur, notamment à base d'argent. Quelle que soit la nature ou la position des busbars sur le pare- brise, ces conducteurs sont masqués vers l'extérieur du véhicule par les bandes émaillées qui cachent également les traces de collage. Il est aussi traditionnel de faire en sorte que les systèmes de couches ne s'étendent pas jusqu'au bord des vitrages pour éviter une altération au contact de l'humidité atmosphérique. Pour que la limite de ces couches fonctionnelles ne soit pas perceptible elle est située de préférence derrière ces émaux de masquage, qui, au moins par endroits, peuvent être réalisés à la manière d'un dégradé de pointillés depuis une zone complètement revêtue de l'émail au bord du vitrage, jusqu'à la partie parfaitement dépourvue de cet émail.
Le choix des systèmes de couches fonctionnelles est déterminant pour atteindre les performances thermiques souhaitées, tout en conservant une transmission adéquate avec des colorations, notamment en réflexion, satisfaisantes.
L'art antérieur relatif à des systèmes analogues a conduit au choix de systèmes dont les couches réfléchissantes sont à base d'argent métallique. Pour obtenir la plus faible résistance il est nécessaire de disposer de couches présentant une certaine épaisseur d'argent, mais la structure de la couche intervient aussi. Il est bien connu que les filtres IR déposés sur les feuilles de verre doivent être constitués en un ensemble bien déterminé de couches métalliques réfléchissantes et de couches diélectriques qui limitent les réflexions des longueurs d'onde du visible. Ces filtres pour être aussi sélectifs que possible, et éviter les colorations désagréables en réflexion quel que soit l'angle d'observation, conduisent à utiliser non pas une couche métallique mais plusieurs couches métalliques séparées par des couches diélectriques présentant à la fois une bonne transmission et des indices de réfraction bien choisis.
Compte tenu des multiples exigences, les meilleurs compromis sont obtenus avec des systèmes comportant trois couches à base d'argent comme couche réfléchissant les infrarouges. La quantité totale d'argent par unité de surface reste limitée notamment pour ne pas réduire de manière excessive la transmission lumineuse. Mais la quantité totale admissible est fonction de la qualité de la composition du système dans son ensemble. La quantité totale d'argent n'est pas inférieure à 300mg/m2 et avantageusement n'est pas inférieure à 320mg/m2 et de façon préférée est supérieure à 350mg/m2. Pour les systèmes les plus performants la quantité totale d'argent par unité de surface peut atteindre 400mg/m2 ou même 450mg/m2.
Pour une même quantité totale d'argent par unité de surface, la résistance est d'autant meilleure que cette quantité se répartit sur un nombre plus limité de couches. Les interfaces entre les couches conductrices et diélectriques n'étant pas parfaites, leur multiplication conduit à un ensemble dont la résistance tend à augmenter. Le choix de réaliser le système avec trois couches d'argent permet en contrepartie, comme indiqué précédemment, d'obtenir une bonne sélectivité du filtre infrarouge et par suite, d'optimiser la quantité d'argent. Le choix de trois couches résulte du meilleur compromis, chacune des couches offrant une conductivité, qui sans être la meilleure possible, atteint des valeurs peu différentes de celle de couches plus épaisses.
En pratique chacune des couches d'argent comprend un minimum de 100mg/m2, et avantageusement supérieure à 110mg/m2. De même chaque couche d'argent comprend au plus 160mg/m2, et de préférence au plus 150mg/m2.
Les couches diélectriques transparentes sont bien connues dans les applications considérées. Les matières adéquates sont nombreuses et il n'est pas utile d'en faire la liste complète ici. Ce sont en général des oxydes, oxy-nitrures ou nitrures métalliques. Parmi les plus courantes, on peut citer à titre d'exemple SiO2, TiO2, SnO2, ZnO, ZnAlOx, Si3N4, AIN, Al2O3, ZrO2, Nb2O5, YOx TiZrYOx, TiNbOx, HfOx, MgOx, TaOx, CrOx et Bi2O3, et leurs mélanges. On peut également citer les matériaux suivants : AZO, ZTO, GZO, NiCrOx, TXO, ZSO, TZO, TNO, TZSO, TZAO et TZAYO. L'expression « AZO » se rapporte à un oxyde de zinc dopé avec de l'aluminium ou à un oxyde mixte de zinc et d'aluminium, obtenu de préférence à partir d'une cathode céramique formée par l'oxyde à déposer en atmosphère neutre ou légèrement oxydante. De même, les expressions ZTO ou GZO se rapportent respectivement à des oxydes mixtes de titane et de zinc ou de zinc et de gallium, obtenus à partir de cathodes céramiques en atmosphère neutre ou légèrement oxydante. L'expression TXO se rapporte à de l'oxyde de titane obtenu à partir d'une cathode céramique d'oxyde de titane. L'expression ZSO se rapporte à un oxyde mixte zinc-étain obtenu soit à partir d'une cathode métallique de l'alliage déposé sous atmosphère oxydante ou à partir d'une cathode céramique de l'oxyde correspondant en atmosphère neutre ou légèrement oxydante. Les expressions TZO, TNO, TZSO, TZAO ou TZAYO se rapportent respectivement à des oxydes mixtes titane-zirconium, titane- niobium, titane-zirconium-silicium, titane-zirconium-aluminium ou titane- zirconium-aluminium-yttrium, obtenus à partir de cathodes céramiques, soit en atmosphère neutre ou légèrement oxydante.
Les matériaux pour entrer dans la composition des systèmes utilisés selon l'invention sont choisis en fonction de critères multiples. Ils doivent être suffisamment transparents aux épaisseurs que leur indice de réfraction commande.
De préférence, au moins une des couches diélectriques est à base d'un oxyde mixte zinc-étain contenant au moins 20%, et de préférence d'au moins 40% en poids d'étain, par exemple environ 50% pour former Zn2SnO4. Cet oxyde est très utile en tant que revêtement diélectrique dans un empilage apte à subir un traitement thermique.
De préférence, le revêtement diélectrique inférieur disposé entre la feuille de matière vitreuse et la première couche réfléchissante d'argent comprend au moins un oxyde mixte zinc-étain contenant au moins 20%, en poids d'étain, et le revêtement diélectrique externe comprend également au moins un oxyde mixte zinc-étain contenant au moins 20% en poids d'étain. Cette disposition est très favorable pour protéger les couches réfléchissantes aussi bien vis-à-vis de l'oxydation provenant de l'extérieur que de l'oxygène provenant de la matière vitreuse dans les traitements imposant une élévation de la température, en particulier lors du bombage. De préférence, la couche diélectrique disposée sous une ou sous chaque couche réfléchissante d'argent est une couche à base d'un oxyde de zinc, éventuellement dopé par exemple à l'aluminium, au magnésium ou au gallium. Cette couche est en contact direct avec la ou les couches d'argent. Les couches à base d'oxyde de zinc peuvent avoir un effet particulièrement favorable sur la stabilité et la résistance à la corrosion de la couche fonctionnelle. Elles sont également favorables à l'amélioration de la conductibilité.
Antérieurement il a été proposé de constituer les couches d'argent directement sur une couche diélectrique à base d'un oxyde mixte zinc-étain n'ayant pas plus d'environ 20% en poids d'étain et au moins environ 80% en poids de zinc, de préférence pas plus d'environ 10% d'étain et au moins environ 90% de zinc. Cet oxyde mixte à haute teneur en oxyde de zinc sous, et en contact direct avec la couche à base d'argent, est avantageux pour la conductibilité de la couche d'argent qui lui est superposée. L'association de cet oxyde mixte à haute teneur en zinc sous la couche fonctionnelle avec un oxyde mixte zinc-étain contenant au moins 20% en poids d'étain dans les diélectriques inférieur et externe, constitue la structure la plus avantageuse pour la bonne tenue de l'empilage lors d'un traitement thermique à haute température.
Si les oxydes mixtes de zinc et d'étain offrent la stabilité requise lors des traitements thermiques, il est apparu plus avantageux pour la conductivité des couches d'argent qu'elles soient formées sur une couche d'oxyde de zinc pratiquement sans autre constituant que ceux présents éventuellement à l'état d'impuretés. La proportion pondérale de ces éléments présents dans l'oxyde de zinc reste dans tous les cas inférieure à 5% en poids et est avantageusement inférieure à 3%, et de façon particulièrement préférée inférieure à 1%. Sans être lié par cette analyse, il semble que l'oxyde de zinc connaît des croissances cristallines différentes selon que l'on opère avec un oxyde mixte ou un oxyde quasiment pur. Les oxydes mixtes seraient moins sensibles aux évolutions à température élevée la structure étant moins cristalline, ou si l'on veut plus amorphe. C'est ce que semblent montrer les analyses cristallographiques par diffraction X. Les pics traditionnels des cristaux de zinc y sont moins intenses. A l'inverse la présence d'une couche d'oxyde de zinc dont la cristallinité n'est pas modifiée par des ajouts étrangers est apparemment un facteur qui promeut une cristallisation des couches d'argent favorable à leur conductivité. L'étude cristallographique par diffraction X des couches d'argent des deux sortes montre clairement des différences de structure.
Selon l'invention on peut simultanément bénéficier de l'effet de promotion de la couche de d'argent lié à la présence de la couche d'oxyde de zinc pratiquement pur, et de la stabilité thermique de cette couche pour autant que la couche en question ne soit pas trop épaisse. En pratique il est avantageux que la couche d'oxyde de zinc sur laquelle la couche d'argent est déposée ne soit pas d'une épaisseur supérieure à 110Â et de préférence pas supérieure à 90Â. Cette couche pour améliorer les propriétés de la couche d'argent doit néanmoins présenter une certaine épaisseur qui permet d'atteindre la cristallinité recherchée. En pratique la couche d'oxyde de zinc pratiquement pur présente une épaisseur d'au moins 40Â, et de préférence a au moins 50Â.
En plus des diélectriques dont il est question précédemment il est aussi traditionnel, notamment pour les systèmes devant subir des traitements thermiques du type bombage trempe, de disposer des couches dites « barrière» ou « sacrificielle» au-dessus des couches à base d'argent. Ces couches sont de minces couches métalliques éventuellement partiellement oxydées, dont le rôle est de prévenir l'oxydation de la couche sous-jacente en s'oxydant elles mêmes. Ces couches doivent être suffisamment minces et de matériau aussi transparent que possible pour ne pas amoindrir significativement la transmission lumineuse de l'ensemble. Pour atteindre la meilleure transmission possible ces couches sont de préférence complètement oxydées dans les opérations de traitement thermique.
Les métaux les plus habituellement utilisés pour constituer ces couches barrière, sont notamment le Ti, le Zn, l'Ai, le Nb et les alliages NiCr.
Les épaisseurs des couches barrière ne sont pas ordinairement supérieures à 8nm, et le plus souvent, sont inférieures ou égales à 6nm. Pour les alliages NiCr particulièrement résistants à l'oxydation l'épaisseur est de préférence inférieure à 4nm. L'invention est décrite en détail dans la suite en faisant référence aux planches de dessins dans lesquelles :
- la figure 1 est une représentation schématique d'une coupe d'un vitrage selon l'invention ;
- la figure 2 est une représentation d'un vitrage selon l'invention présentant une autre structure ;
- la figure 3 présente en coupe un système de couches entrant dans la composition d'un vitrage selon l'invention ;
- la figure 4 est un graphique affichant l'évolution d'une opération de dégivrage en fonction du temps, pour un vitrage selon l'invention, selon la position du système chauffant ;
- la figure 5 est un graphique illustrant la puissance développée en fonction de la résistance/carré du système de couches, et de la distance entre les busbars ;
- la figure 6 est un graphique montrant l'influence de l'épaisseur de la couche de ZnO sur la qualité des couches d'argent ; - la figure 7illustre la stabilité de la neutralité en réflexion de feuilles de verre revêtues, en faisant varier l'angle d'observation par rapport à la normale.
Aux figures 1 et 2 deux types de structures de vitrages feuilletés sont présentés. Les dimensions ne reflètent pas celles des produits, ni en valeur absolue ni dans leurs rapports respectifs.
Les vitrages comprennent tous les deux un ensemble de deux feuilles de verre 1, 2, réunies par une feuille intercalaire thermoplastique 3. Dans la représentation les feuilles de verre sont d'épaisseur différente. Si cette structure est avantageuse, elle n'est pas exclusive de structures dans lesquelles les feuilles présentent des épaisseurs identiques. Le choix d'épaisseurs différentes répond à des questions d'optimisation de l'épaisseur totale, en tenant compte des rôles respectifs distincts de chacune de ces feuilles.
Comme indiqué précédemment la feuille tournée vers l'extérieur est potentiellement celle la plus exposée aux aléas mécaniques, notamment aux risques de casse par projection de « gravillons ». Pour ne pas perdre en qualité mécanique, les vitrages selon l'invention comportent ainsi de préférence la feuille la plus épaisse tournée vers l'extérieur du véhicule. Aux figures 1 et 2, la feuille la plus épaisse est la feuille 1. Sur ces deux figures un système de couches chauffantes et filtrant les infrarouges est représenté globalement en 4. A la figure 1, le système de couches est en position 3, entre la feuille 2 et l'intercalaire 3.
Pour alimenter le système chauffant, deux busbars sont schématisés en 5. Les busbars sont situés de part et d'autre du vitrage. Leur position et leurs dimensions sont choisies pour établir un courant dans le système de couches, sur toute la surface du vitrage s'étendant entre ces busbars. Comme indiqué précédemment les busbars sont disposés dans la dimension la moins grande du vitrage pour maintenir la puissance la plus élevée possible compte tenu de la tension disponible appliquée, et de la résistance du système de couches.
Les busbars 5 sont choisis pour offrir une résistance électrique aussi faible que possible afin de disposer de la tension la plus élevée pour l'alimentation du système de couches 4.
Traditionnellement les vitrages comme les pare-brise sont collés sur la carrosserie sur leur face tournée vers l'habitacle, c'est à dire en position 4. Pour masquer la présence des marques de collage à l'observation depuis l'extérieur, des bandes d'émail sombre 6 sont disposées en regard des emplacements des traits de colle. Les busbars 5 étant situés à la périphérie du vitrage pour ne pas occulter la zone de vision du vitrage, ils se situent comme représenté dans les zones couvertes également par les bandes émaillées 6, et se trouvent simultanément masqués par ces bandes émaillées 6.
A la figure 1 les bandes émaillées 6 sont disposées en position 2 sur la feuilles 1. Le système de couches 4 est appliqué en position 3 sur la feuille 2. La séparation des émaux et des couches fonctionnelles facilite la mise en forme éventuellement simultanée des deux feuilles dans le traitement de bombage ou de trempe. Même si les positions 2 et 3 des feuilles se trouvent face à face durant ce traitement, il est possible sans précautions trop contraignantes d'éviter des altérations occasionnées par le contact de l'émail 6 et du système de couches 4, et/ou celui des busbars. Pour cela diverses mesures sont possibles.
D'une part les zones émaillées peuvent être « précuites » pour en éliminer tous les solvants contenus initialement dans les pâtes appliquées. Cette pré-cuisson solidifie aussi les bandes émaillées qui ne sont plus « collantes » à la superposition des feuilles de verre lors du traitement thermique de bombage. D'autre part pour éviter le contact des bandes émaillées 6 avec le système de couches il est usuel d'interposer une poudre antiadhésive qui est éliminée après la mise en forme thermique des feuilles de verre.
La figure 2 présente une autre structure. Dans celle-ci les bandes émaillées 6 et le système de couches chauffantes 4 avec les busbars 5, sont tous sur la face 2 de la feuille externe 1. Dans cette disposition, le système de couches 4 est appliqué sur la feuille 1 après que les bandes émaillées 6 ont été précuites. Les busbars comme précédemment sont appliqués sur le système de couches préalablement constitué.
Dans les deux cas les feuilles 1 et 2 sont ensuite assemblées de manière traditionnelle avec une feuille intercalaire 3 dans un passage en étuve.
La figure 3 est un exemple de système de couches chauffantes utilisable selon l'invention. Le système est présenté appliqué sur une feuille de verre comme par exemple dans la structure de la figure 1.
Sur la feuille de verre 2 le système illustré comporte trois couches 7, 8, 9, conductrices réfléchissant les infrarouges. Il s'agit le plus souvent de couches métalliques à base d'argent. Avantageusement, l'argent est pur, mais il peut être dopé avec quelques pourcents de palladium, d'aluminium ou du cuivre, à raison par exemple de 0,1 à 10% atomique de préférence de 0,3 à 3,0%.
Les couches d'argent sont au nombre de trois pour atteindre une résistance/carré aussi faible que possible sans compromettre les propriétés optiques, notamment la réflexion et la neutralité de la couleur en réflexion quelle que soit l'angle d'observation.
Des couches diélectriques complètent le système entre le substrat verrier 2 et la première couche d'argent 7, entre les couches d'argent 7 et 8 d'une part et 8 et 9 d'autre part, enfin au dessus de la couche d'argent 9.
Avantageusement les couches d'argent sont recouvertes d'une couche barrière (10, 11, 12) composée d'un métal éventuellement partiellement oxydé. Les couches barrières sont très peu épaisses et protègent l'argent contre l'oxydation en s 'oxydant elles mêmes dans les dépôts réactifs successifs des couches diélectriques superposées, et dans les traitements thermiques de mise en forme. Les couches barrière sont avantageusement de titane, en raison de la bonne transparence des couches d'oxyde de titane, mais d'autres métaux sont également possibles qui sont traditionnellement utilisés pour ces couches.
Dans les couches diélectriques intermédiaires, celles sur lesquelles reposent les couches d'argent contribuent de façon significative à la qualité et à la structure des couches d'argent. Ces couches (13, 14, 15) sont à base d'oxyde de zinc. Les couches en question peuvent le cas échéant être constituées d'un oxyde mixte de zinc et d'étain avec une proportion limitée d'étain pour faire en sorte de stabiliser la structure de la couche, et éviter sa modification notamment lors des traitements thermiques. Mais selon l'invention il est préféré d'utiliser des couches d'oxyde de zinc pratiquement pur, c'est-à-dire un oxyde dont les composants étrangers ne soient pas supérieurs à 5%, de préférence pas supérieurs à 3% et plus particulièrement pas supérieurs à 1% en poids. La présence de ces couches d'oxyde de zinc, lorsqu'elles sont d'épaisseurs bien délimitées, conduit à des couches d'argent offrant la meilleure conductivité.
En dehors des couches précédemment nommées les systèmes comportent encore au moins une couche diélectrique complétant le système « déréfléchissant » entre la feuille de verre (16) et la première couche d'argent, entre les couches d'argent ( 17, 18) , et au dessus de la troisième couche d'argent (19). La couche supplémentaire préférée est une couche à base d'oxyde mixte de zinc et d'étain dont les proportions sont avantageusement de l'ordre de 50% en poids de chacun des oxydes constitutifs. Le système comporte encore souvent une couche superficielle protectrice (20) avantageusement encore d'un oxyde de bonne résistance mécanique comme l'oxyde de titane. Cette couche superficielle est relativement mince pour limiter son influence dans le système interférentiel. Les couches réfléchissant les infrarouges, mais aussi les couches diélectriques qui leur sont associées doivent satisfaire à des rapports définis pour constituer les systèmes interférentiels les plus performants. Les rapports en question sont détaillés notamment dans la demande BE2010/0311 , déposée le 25 mai 2010 par la demanderesse, demande qui est incorporée par référence, notamment pour les conditions les plus avantageuses en ce qui concerne les rapports des épaisseurs des différentes couches.
Un premier exemple de système réfléchissant particulièrement préféré est constitué de la manière suivante dans lequel les épaisseurs sont exprimées en angstrôm : verre/Zn2SnC>4/ZnO/ Ag / Ti /Zr^SnCyZnO/ Ag / Ti /Zr^SnCyZnO/ Ag / Ti / Zn2SnC>4/Ti02 ép. 310 70 141 20 660 80 144 30 630 80 131 20 293 54 ex.l
Le système est appliqué sur une feuille de verre « float » ordinaire de 1,25mm d'épaisseur. La feuille est soumise à un traitement thermique à 650°C pendant 8mn. Les propriétés optiques sont mesurées côté verre (face 1 du vitrage) avant assemblage dans le vitrage feuilleté.
L'illuminant est D65, sous 10° pour une incidence normale. La transmission lumineuse (mesurée comme les autres grandeurs optiques selon la norme EN410) TL est de 78,6%, la réflexion RL est de 6,3%, les données colorimétriques (exprimées dans le système CIELAB 1976) sont L*91 ,l , a*0,0, b*2,6.
Les mesures de résistance effectuées sur le vitrage conduisent à une valeur de 0,85Ω/π . Pour une tension de 14v et une distance entre busbars de 0,75m correspondant à un pare-brise de bonnes dimensions, la puissance disponible est alors d'environ 410w/m2.
Sur le même système de couches qu'à l'exemple précédent deux autres exemples sont produits en faisant varier les épaisseurs respectives de certaines couches de manière limitée. Deux exemples 2 et 3 sont proposés. verre/Zn2SnC>4/ZnO/ Ag / Ti /Zr^SnCyZnO/ Ag / Ti /Zr^SnCyZnO/ Ag / Ti / Zn2SnC>4/Ti02 ép. 310 70 140 20 660 80 140 30 630 80 120 20 290 60 ex.2
310 70 130 20 660 80 130 30 630 80 110 20 290 60 ex.3
Les résistances de ces assemblages de couches s'établissent respectivement à 0,85Ω/π et 0,9 Ω/D.
Pour l'ensemble de ces trois exemples une fois les feuilles revêtues assemblées avec une feuille de verre « float » ordinaire de 1 ,9mm d'épaisseur, et un intercalaire de PVB incolore de 0,76mm, les valeurs des propriétés optiques, transmission (TL), transmission énergétique (TE), réflexion lumineuse vers l'extérieur (RL) , réflexion lumineuse vers l'intérieur (Rint) , réflexion énergétique vers l'extérieur (REext) et vers l' intérieur (REint) s'établissent comme suit :
Ces trois vitrages présentent des caractéristiques satisfaisantes pour un pare-brise tant du point de vue de la transmission lumineuse que des caractéristiques énergétiques.
Pour les trois exemples précédents la variation de couleur en réflexion a été établie suivant l'angle d'observation. Cette propriété est sensible pour les vitrages automobile en particulier pour les pare -brise. Ceux-ci sont en effet à la fois très inclinés et bombés. Il est hautement souhaitable que l'apparence de ces vitrages soit aussi neutre que possible quelque soit la position de l'observateur et qu'en outre cette apparence soit bien uniforme pour la totalité du vitrage bien que celui-ci soit vu sous différents angles simultanément selon la partie observée.
Les trois exemples précédents montrent une grand stabilité de réflexion sous ces différents angles comme l'indique le tableau suivant dont les éléments sont reproduits sur le graphique de la figure 7.
Les coordonnées colorimétriques L*, a* et b* ainsi que la variation AC* (qui est la racine carré des carrés des variations de a* et b*) sont exprimées en fonction de l'angle d'observation. L'angle est indiqué par rpport à la normale au vitrage.
8,5° 15° 25° 35° 45° 55° 65°
Ex.l L* 38,2 38,3 37,7 38,6 40,2 44,4 52,6 a* 0,5 0,1 -0,4 0,0 1,4 2,3 1,3 b* -2,8 -2,1 -0,2 1,2 2,7 3,8 3,8
C* 0,8 1,9 1,5 2,0 1,4 1,0
Ex.2 L* 39,1 39,0 38,8 39,3 41,1 45,7 55,0 a* -2,2 -2,6 -3,2 -3,3 -2,6 -2,0 -2,4 b* 1,1 1,4 1,9 2,2 2,3 2,8 3,5
C* 0,5 0,8 0,3 0,7 0,7 0,8
Ex.3 L* 37,6 37,5 37,6 38,0 39,9 44,2 53,0 a* -2,9 -3,3 -3,7 -3,2 -1,8 -0,4 -0,3 b* 2,0 2,4 3,2 3,9 4,4 4,8 4,4
C* 0,5 0,9 0,9 1,5 1,4 0,4 Les trois exemples montrent non seulement une très bonne neutralité en réflexion, mais encore peu de variation selon l' angle d'observation.
Un autre système de couches selon l'invention est le suivant, les épaisseurs comme précédemment étant exprimées en angstrôm : verre/AlN/AZO/ Ag / ZnAl /AZO/ Ag / ZnAl/AZO/ Ag / ZnAl/ AZO/A1N
ép. 160 220 140 20 790 140 20 750 130 20 260 100
Dans cet empilage : AZO désigne la couche ZnAlOx avec 5% atomique d'aluminium par rapport à l'ensemble ZnAl ; les barrières ZnAl sont un alliage à 12% atomique de Al.
Des essais de « dégivrage» sont réalisés sur des échantillons préparés avec le premier système de couches. Les échantillons sont constitués de carrés de 30x30cm. Dans cet essai les feuilles de verre sont respectivement de 2,1 et 1,6mm d'épaisseur, l'intercalaire de PVB 0,76mm. Le système de couches est appliqué en position 2 ou en position 3.
La formation de la couche de givre est conduite en chambre réfrigérée à -18°C. La quantité d'eau appliquée sur la surface de l'échantillon est de 0,5 kg/m2.
Le pourcentage de surface dégivrée , l'échantillon étant maintenu dans la chambre réfrigérée, est mesuré en fonction du temps d'application de la puissance ajustée à 410w/m2' par adaptation de la tension aux dimensions de l'échantillon.
Les résultats sont représentés à la figure 4. Les courbes correspondent aux positions 2 et 3 du système de couches chauffant. On constate que le dégivrage s'opère plus vite dans le cas du système de couches chauffant disposé en position 2. Le gain est de l'ordre d'une minute dans l'obtention du dégivrage complet. Cette différence tient bien évidemment au mode de conduction de la chaleur dans le vitrage. La proximité de la source de chaleur favorise le chauffage de la face à dégivrer.
Inversement le système de couches chauffant en position 3 favoriserait le désembuage rapide de la face tournée vers l'habitacle. La figure 5 illustre de manière schématique l'incidence de la puissance disponible en fonction de la résistance du système de couches pour trois valeurs de celles-ci, et de la distance séparant les busbars sur le vitrage. Si avec une résistance de 0,85/Ωπ, comme dans le cas précédent, la distance peut être supérieure à 75cm pour disposer d'une puissance de l'ordre de 400w/m2, on voit que cette distance décroît très vite lorsque la résistance s'élève. Ainsi pour une résistance de 1,5Ω/π cette distance, autrement dit la hauteur du pare-brise dégivrée efficacement n'est plus que d'environ 60cm.
La figure 6 montre l'influence de l'épaisseur de la couche d'oxyde de zinc sur les performances des couches d'argent dans le système décrit ci-dessus en faisant varier simultanément les trois couches d'oxyde de zinc présentes.
Le graphique représente la variation de qualité de l'argent, lequel est défini comme le produit de la résistance par carré exprimée en ohm, par la quantité d'argent par unité de surface exprimée en milligramme par mètre carré.

Claims

REVENDICATIONS
1. Vitrage automobile feuilleté dont la transmission lumineuse n'est pas inférieure à 70%, comprenant deux feuilles de verre assemblées au moyen d'une feuille intercalaire thermoplastique, le vitrage comportant en plus un système de couches minces fonctionnelles conductrices de l'électricité appliqué sur une face d'une des feuilles de verre, et disposé entre cette feuille et la feuille intercalaire, le système de couches conductrices étant alimenté au moyen de bandes conductrices disposées sur ces couches et de part et d'autre du vitrage, dans lequel l'épaisseur totale des feuilles de verre du vitrage est au plus égale à 3,8mm.
2. Vitrage selon la revendication 1 dans lequel l'épaisseur totale des feuilles de verre est au plus égale à 3,5mm.
3. Vitrage selon la revendication 1 dans lequel l'épaisseur totale des feuilles de verre est au plus égale à 3,2mm.
4. Vitrage selon l'une des revendications précédentes comprenant au moins une feuille de verre dont l'épaisseur n'est pas supérieure à 1,6mm et de préférence pas supérieure à 1,4mm.
5. Vitrage selon l'une quelconque des revendications précédentes dans lequel les feuilles de verre sont d'épaisseurs différentes, la feuille la plus épaisse étant celle tournée vers l'extérieur du véhicule.
6. Vitrage selon l'une des revendications précédentes dans lequel le système de couches chauffant comprend un ensemble de couches métalliques conductrices à base d'argent et des couches diélectriques protégeant les couches conductrices et réglant les propriétés optiques de l'ensemble, les couches conductrices à base d'argent étant au nombre de trois.
7. Vitrage selon la revendication 6 dans lequel ensemble les couches à base d'argent du système chauffant, comprennent une quantité d'argent qui n'est pas inférieure à 300mg/m2, et de préférence pas inférieure à 320mg/m2.
8. Vitrage selon la revendication 7 dans lequel la quantité totale d'argent n'est pas inférieure à 350mg/m2, et de préférence pas inférieure à 400mg/m2.
9. Vitrage selon l'une des revendications 6 à 8 dans lequel chacune des couches à base d'argent comprend au moins 100mg/m2, et de préférence au moins 110mg/m2 d'argent.
10. Vitrage selon l'une des revendications 6 à 9 dans lequel chaque couche à base d'argent comprend au plus 160mg/m2, et de préférence au plus 150mg/m2.
11. Vitrage selon l'une des revendications 6 à 10, dans lequel les couches conductrices à base d'argent reposent sur une couche à base d'oxyde de zinc dont la teneur en poids d'oxyde de zinc est au moins de 80% et de préférence d'au moins 90%.
12. Vitrage selon la revendication 11 dans lequel, les couches conductrices à base d'argent reposent sur une couche d'oxyde de zinc dont la teneur pondérale en composants étrangers est inférieure à 5% et de préférence inférieure à 1%.
13. Vitrage selon la revendication 12 dans lequel les couches d'oxyde de zinc ont une épaisseur qui n'est pas supérieure à 110Â, et de préférence pas supérieure à 90Â.
14. Vitrage selon la revendication 12 ou la revendication 13 dans lequel les couches d'oxyde de zinc ont une épaisseur d'au moins 40Â, et de préférence d'au moins 50Â.
15. Vitrage selon l'une des revendications 11 à 14 dans lequel les couches à base d'oxyde de zinc sur lesquelles reposent les couches à base d'argent, reposent elles-mêmes sur des couches d'oxyde mixte de zinc et d'étain dans lesquelles le pourcentage en poids d'étain est d'au moins 20% et de préférence d'au moins 40%.
EP12713161.3A 2011-04-12 2012-04-12 Vitrage chauffant Withdrawn EP2697058A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BE2011/0218A BE1019905A3 (fr) 2011-04-12 2011-04-12 Vitrage chauffant.
PCT/EP2012/056599 WO2012140098A1 (fr) 2011-04-12 2012-04-12 Vitrage chauffant

Publications (1)

Publication Number Publication Date
EP2697058A1 true EP2697058A1 (fr) 2014-02-19

Family

ID=44546389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12713161.3A Withdrawn EP2697058A1 (fr) 2011-04-12 2012-04-12 Vitrage chauffant

Country Status (6)

Country Link
US (1) US20140017472A1 (fr)
EP (1) EP2697058A1 (fr)
CN (1) CN103476584A (fr)
BE (1) BE1019905A3 (fr)
EA (1) EA028252B1 (fr)
WO (1) WO2012140098A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2931673B1 (fr) * 2012-12-17 2020-05-27 Saint-Gobain Glass France Vitre transparente dotée d'un revêtement électrique à pouvoir conducteur
US9279910B2 (en) * 2013-03-13 2016-03-08 Intermolecular, Inc. Color shift of high LSG low emissivity coating after heat treatment
US9499899B2 (en) * 2013-03-13 2016-11-22 Intermolecular, Inc. Systems, methods, and apparatus for production coatings of low-emissivity glass including a ternary alloy
US9410359B2 (en) * 2013-03-14 2016-08-09 Intermolecular, Inc. Low-e panels and methods for forming the same
US9790127B2 (en) * 2013-03-14 2017-10-17 Intermolecular, Inc. Method to generate high LSG low-emissivity coating with same color after heat treatment
FR3005048B1 (fr) * 2013-04-30 2020-09-25 Saint Gobain Substrat muni d'un empilement a proprietes thermiques
EP2977202A1 (fr) * 2014-07-25 2016-01-27 AGC Glass Europe Vitrage chauffant
JP6664377B2 (ja) * 2014-07-25 2020-03-13 エージーシー グラス ユーロップAgc Glass Europe 装飾用ガラスパネル
CN104267499B (zh) 2014-10-14 2016-08-17 福耀玻璃工业集团股份有限公司 一种抬头显示系统
KR20180082548A (ko) * 2015-12-16 2018-07-18 쌩-고벵 글래스 프랑스 얇은 내부 판유리 및 얇은 외부 판유리를 포함하는 가열가능한 라미네이팅된 유리
CN106957154B (zh) * 2016-01-08 2023-05-02 四川南玻节能玻璃有限公司 一种高透三银低辐射节能玻璃
ES2912341T3 (es) * 2016-05-17 2022-05-25 Saint Gobain Sistema de visualización frontal
WO2017198362A1 (fr) 2016-05-17 2017-11-23 Saint-Gobain Glass France Vitre transparente
WO2018015312A1 (fr) * 2016-07-19 2018-01-25 Agc Glass Europe Verre pour voiture autonome
EA036101B1 (ru) * 2016-11-25 2020-09-29 Агк Гласс Юроп Стекло для автономного автомобиля
WO2018178278A1 (fr) * 2017-03-30 2018-10-04 Agc Glass Europe Verre pour voiture autonome
JP7281412B2 (ja) * 2017-03-30 2023-05-25 エージーシー グラス ユーロップ 自動運転車のためのガラス
GB201711553D0 (en) * 2017-07-18 2017-08-30 Pilkington Group Ltd Laminated glazing
US10788667B2 (en) 2017-08-31 2020-09-29 Vitro Flat Glass Llc Heads-up display and coating therefor
US20200359467A1 (en) * 2018-01-16 2020-11-12 Central Glass Company, Limited Coating deletion for electrical connection on vehicle window
SE543408C2 (en) 2018-10-22 2021-01-05 Mimsi Mat Ab Glazing and method of its production
JP2022013966A (ja) * 2018-11-12 2022-01-19 セントラル硝子株式会社 通電加熱可能なグレージング
FR3101345B1 (fr) * 2019-09-30 2021-09-24 Saint Gobain Procédé d’obtention d’un vitrage bombé feuilleté
GB201915907D0 (en) * 2019-11-01 2019-12-18 Pilkington Group Ltd Glazing having a conductive coating and a printed layer, a method for producing the same and use of the same
WO2021099246A1 (fr) * 2019-11-18 2021-05-27 Agc Glass Europe Vitrage feuilleté
US20230070792A1 (en) * 2019-12-20 2023-03-09 Agc Glass Europe Enameled glazing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098354A1 (en) * 2006-02-14 2009-04-16 Ashley Carl Torr Glazing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6733872B2 (en) * 2001-03-01 2004-05-11 Asahi Glass Company, Limited Laminated glass
BE1013994A3 (fr) * 2001-03-06 2003-01-14 Glaverbel Vitrage pour vehicule.
US7335421B2 (en) * 2005-07-20 2008-02-26 Ppg Industries Ohio, Inc. Heatable windshield
FR2945765B1 (fr) * 2009-05-19 2011-06-24 Saint Gobain Procede de selection d'un intercalaire pour un amortisseur vibro-acoustique, intercalaire pour un amortisseur vibro-acoustique et vitrage comprenant un tel intercalaire.
FR2949226B1 (fr) * 2009-08-21 2011-09-09 Saint Gobain Substrat muni d'un empilement a proprietes thermiques, en particulier pour realiser un vitrage chauffant.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090098354A1 (en) * 2006-02-14 2009-04-16 Ashley Carl Torr Glazing

Also Published As

Publication number Publication date
EA028252B1 (ru) 2017-10-31
EA201391506A1 (ru) 2014-03-31
CN103476584A (zh) 2013-12-25
BE1019905A3 (fr) 2013-02-05
US20140017472A1 (en) 2014-01-16
WO2012140098A1 (fr) 2012-10-18

Similar Documents

Publication Publication Date Title
BE1019905A3 (fr) Vitrage chauffant.
EP3310574B1 (fr) Vitrage feuillete
EP2577368B1 (fr) Vitrage de contrôle solaire à faible facteur solaire
EP2956422B1 (fr) Vitrage antisolaire
EP1993965B1 (fr) Substrat muni d'un empilement a proprietes thermiques
EP1828074B1 (fr) Vitrage
CA2578126C (fr) Vitrage feuillete muni d'un empilement de couches minces reflechissant les infrarouges et/ou le rayonnement solaire et d'un moyen de chauffage
EP1993829B1 (fr) Substrat muni d'un empilement de couches minces, empilement a proprietes thermiques
EP2969990B1 (fr) Vitrage comportant une couche de contrôle solaire
EP3172047B1 (fr) Vitrage chauffant
WO2009122090A2 (fr) Substrat muni d'un empilement a proprietes thermiques
EP3494420B1 (fr) Substrat muni d'un empilement a proprietes thermiques comportant au moins une couche comprenant du nitrure de silicium-zirconium enrichi en zirconium, son utilisation et sa fabrication
WO2010103224A1 (fr) Substrat muni d'un empilement a proprietes thermiques comportant des couches a haut indice de refraction.
EP2956421A1 (fr) Vitrage de contrôle solaire
EP2585411B1 (fr) Vitrage isolant
EP3463870A1 (fr) Vitrage feuillete a couche fonctionnelle demargee
CA1337172C (fr) Vitrage feuillete a couche electro-conductrice
WO2023247871A1 (fr) Article verrier transparent pour compartiment froid et vitrage multiple incorporant ledit article

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGC GLASS EUROPE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170816

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210715

P01 Opt-out of the competence of the unified patent court (upc) registered

Free format text: CASE NUMBER: APP_37357/2024

Effective date: 20240622