WO2020119779A1 - 一种半导体晶片光电化学机械抛光加工装置及加工方法 - Google Patents

一种半导体晶片光电化学机械抛光加工装置及加工方法 Download PDF

Info

Publication number
WO2020119779A1
WO2020119779A1 PCT/CN2019/125072 CN2019125072W WO2020119779A1 WO 2020119779 A1 WO2020119779 A1 WO 2020119779A1 CN 2019125072 W CN2019125072 W CN 2019125072W WO 2020119779 A1 WO2020119779 A1 WO 2020119779A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
wafer
disc
holes
photoelectrochemical
Prior art date
Application number
PCT/CN2019/125072
Other languages
English (en)
French (fr)
Inventor
董志刚
时康
康仁科
欧李苇
朱祥龙
高尚
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811537196.2A external-priority patent/CN109465739B/zh
Priority claimed from CN201811537195.8A external-priority patent/CN109648463B/zh
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to JP2021533602A priority Critical patent/JP7281226B2/ja
Priority to US17/413,939 priority patent/US20220088740A1/en
Publication of WO2020119779A1 publication Critical patent/WO2020119779A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/20Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground
    • B24B7/22Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain
    • B24B7/228Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor characterised by a special design with respect to properties of the material of non-metallic articles to be ground for grinding inorganic material, e.g. stone, ceramics, porcelain for grinding thin, brittle parts, e.g. semiconductors, wafers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the invention relates to the technical field of polishing processing, and more particularly to a photoelectrochemical mechanical polishing processing device and processing method for semiconductor wafers.
  • Representative materials of third-generation semiconductors represented by gallium nitride (GaN), silicon carbide (SiC), and diamond, due to high thermal conductivity, high breakdown electric field, high electron saturation rate, and high radiation resistance Performance, more suitable for the production of high-temperature, high-frequency, high-power, radiation-resistant high-power devices than the previous generation of semiconductor materials.
  • GaN and SiC crystal materials When GaN and SiC crystal materials are used as devices, the materials are required to have high surface quality without scratches, microcracks, low dislocations, residual stress and other surface/subsurface damage.
  • GaN and SiC crystal materials have large bond energy, strong chemical inertness, and almost no chemical reaction with any acid-base reagent at room temperature. They are typical hard and brittle materials that are difficult to process. In the processing of these two types of materials, they are usually used Diamond abrasive grains are ground and ground to achieve better surface quality and higher flatness. However, due to the high hardness of diamond abrasive grains, it is inevitable to cause surface/subsurface damage to the wafer.
  • the photoelectrochemical mechanical polishing method in the present invention refers to On the basis of some chemical mechanical polishing, ultraviolet radiation is directly irradiated to the polished semiconductor workpiece, and under the action of an external electric field, it cooperates with ultraviolet to produce photoelectrochemical oxidation, and then the oxidation modification layer of the semiconductor wafer is removed by mechanical polishing. .
  • the present invention provides a photoelectrochemical mechanical polishing processing method for semiconductor wafers: a photoelectrochemical mechanical polishing processing method for semiconductor wafers, which performs mechanical polishing on the wafer; mechanical polishing of polishing members with through holes; during polishing, ultraviolet light passes through the The wafer is irradiated with through holes; during the polishing process, the polishing liquid drops on the surface of the wafer through the through holes, and the polishing liquid includes abrasive particles; during the polishing process, the wafer acts as an anode, and the photoelectrochemical oxidation modification occurs under an external electric field .
  • the polishing member includes a polishing disc and a polishing pad, and the layout of the through holes of the polishing disc and the through holes of the polishing pad is consistent; the method uses the polishing disc as a cathode.
  • the method includes the following steps:
  • the wafer is fixed to the polishing head by conductive adhesive, and the wafer rotates axially with the polishing head after being driven; the polishing head is a conductor; the polishing pad is bonded to the polishing disk, and the polishing pad is in contact with the surface of the wafer after being driven, and Produce relative motion;
  • ultraviolet light sequentially irradiates the wafer through the through holes of the polishing disc and the polishing pad; the polishing liquid impregnates the contact area of the wafer and the polishing pad through the through holes of the polishing disc and the polishing pad.
  • the polishing member includes a polishing disc and a polishing pad.
  • the method adds a counter electrode disc with a through hole between the polishing disc and the polishing pad as a cathode; the polishing disc, the counter electrode disc, and the polishing pad.
  • the via layout is consistent.
  • the method includes the following steps:
  • the wafer is fixed to the polishing head by conductive glue, and the wafer rotates axially with the polishing head after being driven; the polishing head is a conductor; the polishing pad is adhered to the counter electrode disc (the counter electrode disc of the present invention refers to the disc)
  • the counter electrode disk On the counter electrode material), the counter electrode disk is fixed to the polishing disk, and the counter electrode disk is provided with a through hole. After driving, the polishing pad contacts the surface of the wafer and generates relative motion;
  • the ultraviolet light sequentially irradiates the wafer through the through holes of the polishing disk, counter electrode disk and polishing pad; the polishing liquid sequentially impregnates the wafer and the polishing pad through the through holes of the polishing disk, counter electrode disk and polishing pad Contact zone.
  • the method connects the chip to the positive electrode of the external power supply and the cathode to the negative electrode of the external power supply; the external power supply, the chip, and the cathode constitute a closed loop.
  • the area ratio of photoelectrochemistry to mechanical action of the method is 1:12 to 1:1.
  • the polishing disk and the polishing pad are located above the semiconductor wafer, and the ultraviolet light source is located above the polishing disk.
  • the abrasive particles are cerium oxide or silicon oxide; preferably, the particle diameter of the abrasive particles is 6nm-100nm; preferably, the concentration of the abrasive particles is 0.05-10wt%; the supply of the polishing liquid The flow rate is 50 mL/min to 100 mL/min; the wafer rotation speed is 100-250 rpm, the polishing disk rotation speed is 60-150 rpm, the polishing pressure is 4-6.5 psi, and the ultraviolet light intensity is 50-175 mW ⁇ cm -2 .
  • the semiconductor wafer is a gallium nitride wafer.
  • the ultraviolet light source is one or more of a low-pressure mercury lamp, a high-pressure mercury lamp, an LED mercury lamp, a deuterium lamp, and a xenon lamp, and the wavelength is ⁇ 400 nm.
  • the area ratio of photoelectrochemistry to mechanical action in the present invention refers to: according to the diameter and number of the through holes of the polishing pad and the polishing disk, the area of the through hole in contact with the wafer is calculated, that is, the area on the surface of the wafer exposed by the through hole.
  • the ratio of the photoelectrochemical oxidation on the wafer surface irradiated by ultraviolet light) to the area on the wafer surface covered by the polishing pad (the part is mechanically polished by the polishing pad) is recorded as the area ratio of photoelectrochemical to mechanical action.
  • a photoelectrochemical mechanical polishing processing device is researched and designed. Using this method in combination with a processing device can achieve a processing effect with a faster removal rate.
  • the technical scheme of the semiconductor wafer photoelectrochemical mechanical polishing device of the present invention is that the semiconductor wafer photoelectrochemical mechanical polishing processing device includes: a polishing pad with a through hole; a polishing disc with a through hole for driving the polishing pad to mechanically polish the surface of the wafer ; Polishing liquid source, used to supply polishing liquid, the polishing liquid drops on the surface of the wafer through the through holes of the polishing disk and polishing pad; UV light source, used to supply ultraviolet light, the ultraviolet light radiates through the through holes of the polishing disk and polishing pad Wafer; and external power supply; the positive electrode of the wafer is connected to the external power supply, and the negative electrode of the polishing disk is connected to the external power supply; the external power supply, the wafer, and the polishing disk form a closed loop.
  • Another type of photoelectrochemical mechanical polishing processing device for semiconductor wafers includes: a polishing pad with through holes; a polishing disk with through holes for driving the polishing pad to mechanically polish the surface of the wafer; a counter electrode disk with through holes, which is located in the polishing pad Between the disc and the polishing pad; the polishing liquid source is used to supply the polishing liquid, and the polishing liquid is dropped on the surface of the wafer through the through holes of the polishing disk and the polishing pad; the ultraviolet light source is used to supply ultraviolet light, and the ultraviolet light passes through the polishing disk and The through hole of the polishing pad radiates the wafer; and the external power supply; the positive electrode of the wafer is connected to the external power supply, and the negative electrode of the counter electrode disk is connected to the external power supply; the external power supply, the wafer, and the counter electrode disk form a closed loop.
  • the polishing liquid is a chemical polishing liquid
  • the chemical polishing liquid includes abrasive particles.
  • the polishing disk and the polishing pad are located above the wafer, and the ultraviolet light source is located above the polishing disk and the polishing pad.
  • the polishing liquid source is a polishing liquid spray head, and the polishing liquid spray head is located above the polishing disc.
  • the through-holes of the polishing disc are arranged radially from the center to the outer periphery; preferably, the through-holes are periodically distributed in the radial direction of the polishing disc;
  • the outer peripheral portion of the optical disc is provided with a through hole at a position in contact with the wafer.
  • the layout of the through holes of the polishing disk, the counter electrode disk, and the through holes of the polishing pad are consistent.
  • the power supply provided by the external electric field is one or more of a DC power supply, a potentiostat, an electrochemical workstation, and a dry battery.
  • the area of the polishing pad is greater than the area of the wafer; preferably the radius of the polishing pad is greater than the diameter of the wafer; preferably the radius of the polishing disc is greater than the diameter of the wafer; preferably the through holes of the polishing pad are provided At the part in contact with the wafer.
  • the area ratio of photoelectrochemical to mechanical action of the device is 1:12 to 1:1.
  • the through hole is only processed on a circle of the ring in the area where the polishing pad contacts the wafer, and the width of the circle is the diameter of the wafer.
  • the distribution of the through holes on the polishing pad may be distributed radially from the center of the polishing pad on the circumference of different diameters, or may be uniformly distributed in a certain amount on the circumferences of different diameters not according to the radial shape.
  • the device further includes a polishing liquid collecting tank, and the polishing head and the polishing disc are disposed in the polishing liquid collecting tank.
  • the polishing pad is one of a polyurethane polishing pad, a non-woven cloth polishing pad, and a fleece polishing pad.
  • the photoelectrochemical mechanical polishing method and the polishing device according to the present invention have the following advantages:
  • the invention adopts the method that ultraviolet light is irradiated to the surface of the wafer through the through hole, and the wafer and the counter electrode disc are respectively applied with potentials (the wafer is an anode and the counter electrode disc is a cathode) to combine photoelectrochemical action, which can efficiently oxidize and modify the wafer. Then, the oxidation modification layer is mechanically removed by the polishing pad and abrasive grains. During the processing, the wafer and the polishing disc rotate relative to each other, and at the same time, the irradiation of ultraviolet rays, the potential difference between the wafer and the counter electrode and the feeding of the polishing liquid make the photoelectrochemical modification and mechanical polishing alternate. Chemical mechanical processing. The photoelectrochemical modification and mechanical polishing are alternately performed. This method uses a combination of photoelectrochemical modification and mechanical polishing, which can achieve the advantages of fast polishing removal rate and low wafer roughness after polishing.
  • the diameter of the through holes on the polishing disk and the bottom polishing pad, the number of through holes and the arrangement of the through holes on the polishing disk can be artificially optimized to make the photoelectrochemical modification and mechanical function of the wafer in the process of photoelectrochemical mechanical polishing
  • the polishing action ratio (that is, the area ratio of photoelectrochemistry to mechanical action) can be arbitrarily adjusted and optimized.
  • the electron-hole pairs excited by ultraviolet light can be separated by the potential that can be applied by an external electric field. There is no need to add an oxidizing agent to the polishing solution to capture the photo-generated electrons and promote the separation of electrons and holes.
  • the processing device is simple, and the processing method is easy to implement
  • the processing parameters in this processing device such as: polishing pressure, wafer speed, polishing pad speed, solution type and concentration, ultraviolet light source intensity, photoelectrochemical and mechanical interaction area ratio, the potential difference between the wafer and the counter electrode can be based on the actual workpiece Type adjustment to achieve better processing effect.
  • FIG. 1 is a schematic diagram of a photoelectrochemical mechanical polishing method of a semiconductor wafer of the present invention.
  • FIG. 2 is a schematic diagram of the through holes in the counter electrode disk, the polishing disk, and the polishing pad in the photoelectrochemical mechanical polishing method of the semiconductor wafer of the present invention.
  • FIG. 3 is a schematic diagram of the photoelectrochemical mechanical polishing device of the semiconductor wafer of the present invention.
  • the components identified in FIG. 3 are: leveling screw 13, right-angle fixing plate 14, adapter plate 15, L-shaped support plate 16a, flange 17, spherical bearing 18, conductive slip ring 2, right-angle motor 19, On the motor holder 20, the elastic coupling 21, the cross roller bearing 22a, the step shaft I 23, the polishing head 3, the polishing pad 5, the step shaft II 24, the conductive slip ring 11, the wafer 4, the counter electrode disc 6, the polishing disc 7. Polishing liquid pool 1, ultraviolet light source 10, elastic coupling 25, motor bracket 26, motor 27, adapter plate 28, module panel 29, spring 30, guide rail 31, slider 32, module bottom plate 33, The standing plates 34a, 34b, the right-angle support plate 35, and the bottom plate 36.
  • FIG. 4 is a plan view of the photoelectrochemical mechanical polishing processing device of the semiconductor wafer of the present invention.
  • FIG. 5 is an axial view of a photoelectrochemical mechanical polishing processing device of a semiconductor wafer of the present invention.
  • Figure 6 shows the original morphology of the GaN wafer surface, with a surface roughness value of Ra of 1.16nm.
  • Example 7 is a morphology diagram of the surface of a GaN wafer after photoelectrochemical mechanical polishing processing under the processing conditions of Example 1, and the wafer surface roughness value Ra is 0.48 nm;
  • Example 8 is a morphology diagram of the surface of a GaN wafer after photoelectrochemical mechanical polishing processing under the processing conditions of Example 2, and the wafer surface roughness value Ra is 0.1 nm (field of view of an atomic force microscope is 5 ⁇ 5 ⁇ m 2 );
  • the wafer is fixed on the polishing head, and the wafer rotates axially with the polishing head after being driven; the wafer is connected by conductive adhesive and the metal part of the polishing head, and the polishing head is connected to the conductive wire of the inner ring of the conductive slip ring, and then conductive The outer ring of the slip ring is connected to form a passage;
  • the polishing pad is adhered to the counter electrode disc.
  • the counter electrode disc is fixed on the polishing disc. After being driven, the polishing pad contacts the surface of the wafer and produces relative motion.
  • the counter electrode disc can be connected to the inner ring wire of the conductive slip ring Connect, and then connect with the outer ring wire to form a path;
  • Through holes are processed on the electrode disk and the polishing disk, and the polishing pad (preferably pasted on the bottom of the counter electrode disk) is also correspondingly processed with through holes; ultraviolet light is located above the polishing disk during the polishing process, and ultraviolet light can pass through the polishing disk
  • the through holes of the counter electrode disc and the polishing pad are directly irradiated on the surface of the wafer; the polishing liquid impregnates the surface of the wafer through the through holes of the polishing disc and the counter electrode disc and the polishing pad.
  • the applied negative potential can be sequentially passed through the outer ring lead of the conductive slip ring above the counter electrode disk to the inner ring lead and then connected to the counter electrode disc.
  • the applied positive potential can be sequentially passed through the outer ring lead of the conductive slip ring under the wafer to the inside The coil leads are then connected to the wafer.
  • the negative and positive potentials applied to the electrode disk and the wafer can form a potential difference between the two during processing.
  • the semiconductor wafer is preferably a gallium nitride wafer.
  • the photoelectrochemical mechanical polishing method described in the present invention means that on the basis of the existing chemical mechanical polishing, ultraviolet rays can be directly irradiated through the through holes on the polishing disk to be polished semiconductor workpieces, and an external electric field can be applied to the polishing process.
  • Semiconductor workpiece and counter electrode disk, semiconductor workpiece undergoes photoelectrochemical oxidation modification under the action of ultraviolet radiation and applied electric field, and then a modification of the modification layer is mechanically polished and removed by the polishing pad.
  • the photoelectrochemical mechanical polishing device includes:
  • the polishing head is used to fix the wafer, and the wafer and the external circuit can be connected through the conductive adhesive between the polishing head and the wafer;
  • the polishing pad is bonded to the counter electrode disk through its own back adhesive layer;
  • the counter electrode disk is fixed on the polishing disk by screws, and the counter electrode disk is processed with the same through hole as the polishing disk;
  • the polishing disk is connected to the counter electrode disk to pressurize the wafer during the polishing process, and the polishing disk is provided with a through hole;
  • a polishing liquid spray head located above the polishing disc, is used to spray polishing liquid; the supplied polishing liquid can enter the polishing area through the through hole.
  • the first drive transmission part is connected to the polishing disc and is used to drive the polishing disc to rotate on a fixed axis;
  • the second driving transmission part is connected to the polishing head and is used to drive the polishing head and then rotate the fixed axis of the wafer;
  • the applied negative potential is sequentially connected to the counter electrode disk through the outer ring lead of the conductive slip ring on the counter electrode disk and then connected to the counter electrode disk.
  • the applied positive potential can be sequentially connected to the inner ring lead through the conductive slip ring outer ring lead below the wafer To the wafer.
  • a polishing pad is provided on the surface of the counter electrode disc in contact with the wafer surface, the polishing pad is provided with a through hole, preferably the polishing pad is pasted on the bottom of the counter electrode disc, and the counter electrode disc and the polishing disc are correspondingly processed with a through hole .
  • the polishing disc, the electrode disc and the polishing pad attached to the bottom are all processed with through holes.
  • the ultraviolet rays located above the polishing disc can reach the surface of the wafer through the through hole during the polishing process, assisted by the application of external electric field
  • the wafer is subjected to light spot chemical oxidation, so that the workpiece irradiated with ultraviolet rays is modified.
  • the polishing disc is connected to the driving motor through the connecting shaft in turn, and the driving motor can drive the polishing shaft to rotate around the fixed axis.
  • the device further includes a polishing liquid collecting tank, and the polishing head and the polishing disk are disposed in the polishing liquid collecting tank.
  • the polishing pressure can be loaded through the polishing disc.
  • the two can produce a relative speed.
  • the device also includes a linear module.
  • the linear module includes a module panel, a guide rail, a guide rail slider, a module bottom plate, the guide rail is fixed on the module bottom plate, and the slider is fixed on the module panel and can slide linearly on the guide rail.
  • the self-weight of the motor and the adapter plate and the linear module can be used as the source of processing pressure for photoelectrochemical mechanical polishing.
  • the spring can be adjusted quantitatively by replacing springs with different stiffness coefficients. When the weight of the entire part does not meet the polishing pressure, additional weight can be added to achieve Loading with larger polishing pressure.
  • the polishing disk can be optimized for the position and size of the through holes on the electrode disk and polishing pad;
  • the polishing pad can optimize the design of the size and distribution of the through holes on the electrode disk and the polishing disk, and changing the size and position of the through holes can make the wafer irradiated with ultraviolet light and mechanically polished during the processing process
  • the proportion of time can be adjusted.
  • through-holes are evenly distributed on concentric circles of different diameters on the polishing disc.
  • the concentric circle radius (D 1 or D n ) corresponding to each circle of through-holes can be optimized.
  • the distance between the concentric circles where the holes are located can also be optimized for design.
  • the diameter (d 1 ) of each through hole and the number of through holes can be optimized.
  • the wafer and the polishing pad are driven by their driving motors, respectively, and the two generate relative motion.
  • the weight of the polishing disc and its driving device provides the processing pressure.
  • Ultraviolet rays can be irradiated to the wafer surface through the through hole, and the electric field potential is applied It can be applied to the wafer and the counter electrode separately.
  • the photoelectrochemical oxidation modification and the mechanical polishing function continuously alternately polish the wafer.
  • Fig. 1 Polishing liquid tank 1, conductive slip ring 2, polishing head 3, wafer 4, polishing pad 5, counter electrode disc 6, polishing disc 7, through hole 8, polishing liquid spray head 9, ultraviolet lamp 10, conductive slip ring 11. External power supply 12.
  • the wafer 4 is fixed on the polishing head 3 by conductive adhesive, and the inner ring wire of the conductive slip ring 2 can be connected to the wafer 4 and connected to the outer ring wire of the conductive slip ring 2 to be connected to the positive electrode of the external power source 12, the conductive slip ring 2
  • the inner ring is fixed on the axis of the polishing head and can rotate together.
  • the polishing head 3 can be driven by the motor to carry the wafer in rotary motion; the polishing pad 5 is pasted on the bottom of the counter electrode disk 6 through its own back adhesive layer.
  • the electrode disk 6 is fixed to the polishing disk 7 by screws, and the counter electrode disk 6 is connected to the inner ring wire of the conductive slip ring 11, and then connected to the outer ring wire of the conductive slip ring 11, and the outer ring wire of the conductive slip ring 11 is connected to the external power supply
  • the negative pole of 12, the inner ring of the conductive slip ring 11 is tightly fixed on the stepped shaft of the polishing disc and can rotate together with it.
  • the polishing pad 5, the electrode disk 6 and the polishing disk 7 are processed with through holes 8; the ultraviolet light emitted by the ultraviolet light source 10 can be irradiated to the surface of the wafer 4 through the through holes 8, and the polishing liquid sprayed by the polishing liquid nozzle 9 is also
  • the contact area between the wafer 4 and the polishing pad 5 can be entered through the through hole 8, the wafer 4 is connected to the positive electrode of the external power source 12, and the negative electrode plate 6 is connected to the negative electrode of the external power source 12, and a conductive medium such as sulfuric acid or potassium sulfate is added to the polishing liquid as a supporting electrolyte 4 and the counter electrode disc 6 can be conducted by the polishing liquid, and the wafer 4 and the counter electrode disc 6 can be supplied by an external power source 12 to generate a potential difference during processing.
  • the process of the photoelectrochemical mechanical polishing method is as follows: the wafer 4 is fixed to the polishing head 8 by conductive adhesive, and is rotated by the motor along with the polishing head 8, the wafer 4 passes through the conductive adhesive, the polishing head 3, and the conductive slip ring 2 in turn Loop wire, the outer ring wire of the conductive slip ring 2 is connected to the positive pole of the external power source 12.
  • the ultraviolet light emitted by the ultraviolet light source 10 can be irradiated to the surface of the wafer 4 through the polishing pad 5, the through holes in the counter electrode disc 6 and the polishing disc 7, the counter electrode disc 6 sequentially passes through the inner ring wire of the conductive slip ring 11, and the outer side of the conductive slip ring 11
  • the loop wire is connected to the negative electrode of the external power source 12, and the polishing liquid sprayed by the polishing liquid nozzle 9 enters the contact area of the wafer 4 and the polishing pad 5.
  • the conductive medium in the polishing liquid such as sulfuric acid and potassium sulfate can be used as the supporting electrolyte to flood the wafer 4 and Between the counter electrode 6, the counter electrode disk 6 and the wafer 4 are conducted, and the potential difference between the wafer 4 and the counter electrode disk 6 is provided by the external power source 12.
  • the ultraviolet light emitted by the ultraviolet light source 10 is irradiated to the surface of the wafer 4 by passing, and the ultraviolet irradiation plus the effect of an external electric field can produce a photoelectrochemical oxidation modification effect on the wafer 4.
  • the polishing pad 5 is pasted on the bottom of the counter electrode disc 6, the counter electrode disc 6 is connected to the bottom of the polishing disc 7 by screws, and then the motor drives the polishing disc to rotate, so that the rotation of the polishing pad 5 and the wafer 4 produce relative motion.
  • the polishing pressure F can be applied to the contact area of the wafer 4 and the polishing pad 7 through the polishing disk 7. After the pressure is applied, the relative movement of the wafer 4 and the polishing pad 5 can perform mechanical polishing on the wafer 4 to remove the oxidation-modified layer formed on the wafer 4 by the photoelectrochemical effect.
  • the photoelectrochemical mechanical polishing process can be performed on the wafer 4 by alternately performing photoelectrochemical and mechanical polishing.
  • four leveling screws 13 support the bottom plate 36, and the right-angle fixing plate 14 is installed on the bottom plate 36 by screws to support the polishing head 3 and its driving transmission part.
  • the adapter plate 15 is fixed on the right-angle support plate 14 by screws, the right-angle motor 19 is installed on the motor bracket 20, and the motor bracket 20 is mounted on the adapter plate 15 by screws.
  • the wafer 4 is bonded to the polishing head 3 by conductive glue, and the polishing head 3 is then mounted on the stepped shaft 23 by screws.
  • the part of the polishing head 3 in contact with the conductive glue is a metal that can conduct electricity.
  • the metal part of the polishing head 3 is connected to the conductive wire of the inner ring of the conductive slip ring 2.
  • the inner ring of the conductive slip ring 2 is fixed on the step shaft 23 by screws.
  • the ring wires can rotate synchronously with the step shaft 23, the outer ring wire of the conductive slip ring 2 communicates with the inner ring wire and then the wafer 4 communicates.
  • One shoulder of the stepped shaft 23 rests on the inner ring of the spherical bearing 18.
  • the spherical bearing 18 can carry a certain amount of axial load and has a proper self-aligning effect.
  • the outer spherical bearing 18 is fixed to the flange 17 by screws, and the flange 17 is mounted to the inner ring of the cross roller bearing 22a by screws, and the outer ring of the cross roller bearing 22a is fixed to the L-shaped support plate 16a by screws Then, the L-shaped support plate 16a is fixed to the adapter plate 15 by screws.
  • the shoulder of the stepped shaft 23 is placed on the bearing inner ring of the spherical bearing 18, and passes through the flange 17 (the shaft diameter is smaller than the flange hole diameter), the cross roller bearing 23a (the shaft diameter is smaller than the bearing inner ring hole diameter), and the L shape.
  • the support plate 16a (the shaft diameter is smaller than the hole diameter of the L-shaped support plate) is connected to the motor shaft of the right-angle motor 19 through the elastic coupling 21, and the stepped shaft 23 functions to transmit driving torque and support the polishing head 3.
  • the polishing pad 5 is adhered to the counter electrode disc 6 by its own back adhesive layer.
  • the counter electrode disc 6 is mounted on the polishing disc 7 by screws, and the counter electrode disc 6 and the polishing disc 7 are processed with through holes at the same position to facilitate
  • the ultraviolet light and the polishing liquid emitted by the ultraviolet light source 10 enter the contact area of the wafer 4 and the polishing pad (which can be seen from the top view 4), and the polishing liquid pool 1 collects and collectively discharges the polishing liquid waste liquid.
  • the inner ring of the conductive slip ring 11 is fixed on the step shaft II 24, and rotates synchronously with the inner ring, the inner ring wire is connected to the counter electrode disk 6, and the potential on the counter electrode disk 6 can sequentially pass through the inner ring wire of the conductive slip ring 11,
  • the outer ring wire is connected to the negative pole of the external power supply.
  • the polishing disc 7 is fixed on the stepped shaft II, the shoulder of the stepped shaft II is pressed against the inner ring of the cross roller bearing 22b, and the stepped shaft II is connected to the elastic coupling 25 through the L-shaped support plate 16b.
  • the other end of the coupling 25 is connected to the motor shaft of the motor 27.
  • the motor 27 is mounted on the motor bracket 26, and the motor bracket 26 is fixed on the adapter plate 28 by screws.
  • the adapter plate 28 is mounted on the module panel 29 by screws.
  • the module panel 29 is connected to a plurality of sliders 32. 32 can move linearly on the guide rail 31, and the guide rail 31 is installed on the module bottom plate 33.
  • a spring 30 is connected in series between the module panel 29 and the module base 33. Polishing pad 5, counter electrode disc 6, polishing disc 7, step shaft II 24, conductive slip ring 11, cross roller bearing 22b, elastic coupling 25, motor bracket 26, motor 27, adapter plate 28, module panel 29.
  • the weight of the spring 30 and the slider 32 can be used as the source of the polishing pressure during the photoelectrochemical mechanical polishing process.
  • the module bottom plate 33 is fixed on the vertical support plate 34a, the vertical support plate 34a is fixed on the vertical support plate 34b, the vertical support plate 34b is fixed on the right-angle support plate 35 by screws, and the right-angle support plate 35 is installed and fixed on the bottom plate 36.
  • the GaN wafer used in this example is a GaN self-supporting wafer grown by the HVPE method.
  • the wafer diameter is 1 inch (25.4 mm) and the wafer thickness is about 350 ⁇ m.
  • the surface morphology is measured using an atomic force microscope The initial morphology of the wafer is shown in Figure 6.
  • the surface roughness Ra value is 1.16 nm, and a large number of scratches caused by diamond polishing can be seen on the surface.
  • the wafer removal rate is converted by using a precision balance to weigh the quality before and after processing and calculating the quality difference before and after processing. Before weighing, use acetone, alcohol, hydrofluoric acid, and deionized water to clean the GaN wafer in order to remove the errors caused by the adhesion of dust and other adherents on the wafer surface to the wafer quality weighing.
  • the GaN wafer is bonded to the wafer fixture with conductive adhesive, and the conductive slip ring inner ring wire is connected to the fixture, the wafer fixture is installed on the step shaft, the conductive slip ring inner ring is fixed on the step shaft, and polished
  • the pad is SUBA 800;
  • the ultraviolet light source is located directly above the polishing disc. After the light source is turned on, the ultraviolet light can illuminate the wafer surface;
  • the polishing liquid nozzle sends the polishing liquid into the contact area of the wafer and the polishing pad through the through hole, the supply flow rate of the polishing liquid is 80mL/min, the mass concentration of SiO 2 abrasive particles (10wt.%), the mass particle size of SiO 2 abrasive particles is 25nm
  • the specific composition of the polishing liquid is shown in Table 1;
  • the rotation speed of GaN wafer is 250 rpm
  • the rotation speed of the polishing disk is 150 rpm
  • the polishing pressure is 6.5 psi
  • the ultraviolet light intensity is 175 mW ⁇ cm -2
  • the polishing time is 1 hour.
  • Table 1 Different processing conditions in Table 1 correspond to different removal rates for wafer photoelectrochemical mechanical polishing. Taking the processed wafers of Example 1 and Example 2, the surface quality is measured, and the measurement results are shown in FIG. 7 and FIG. 8 respectively. Comparing the original wafer morphology in Figure 6, it was found that the wafer surface improved significantly. The surface roughness can be reduced by 0.48nm. In FIG. 7, the wafer surface is relatively flat, and clear atomic steps can be seen, and the surface roughness Ra value in FIG. 8 can reach 0.1 nm. The scratch damage caused by diamond grinding on the surface of the original wafer was removed by polishing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

一种半导体晶片光电化学机械抛光加工装置及其加工方法,晶片(4)通过导电胶粘接固定在抛光头(3)上,晶片(4)在其下方通过导电滑环(2)内外圈的导线连接外电源(12)正极。抛光垫(5)粘贴在对电极盘底部,对电极盘(6)固定在抛光盘(7)底部且与抛光盘(7)对应位置加工有通孔(8),对电极盘(6)通过其上方的导电滑环(11)内外圈导线连接外电源(12)负极。紫外光源(10)发出的紫外光可以透过通孔(8)照射到晶片(4)表面,抛光液也可以喷射入通孔(8)进入晶片(4)与抛光垫(5)的接触区。该光电化学机械抛光加工装置可较好地实现光电化学机械抛光加工,加工装置具有操作简单,实现容易,工艺参数可灵活调节的优点,加工氮化镓晶片的实际加工中可取得去除速率快,加工后表面质量好的效果。

Description

一种半导体晶片光电化学机械抛光加工装置及加工方法 技术领域
本发明涉及抛光加工技术领域,更具体地说是一种半导体晶片的光电化学机械抛光加工装置及加工方法。
背景技术
以氮化镓(GaN)、碳化硅(SiC)、金刚石为代表的第三代半导体代表材料,因具有高的热导率,高的击穿电场,高的电子饱和速率和高的抗辐射优异性能,比上一代半导体材料更为适合制作高温、高频、高功率、抗辐射大功率器件。
当GaN、SiC晶体材料作为器件时,要求材料具有较高的表面质量,无划痕、微裂纹、较低的位错,残余应力等表面/亚表面损伤。然而,GaN、SiC晶体材料键能大,化学惰性强,常温下几乎不与任何酸碱试剂发生化学反应,属于典型的硬脆难加工材料,在该两类材料的加工过程中,通常会采用金刚石磨粒对其进行磨削、研磨加工以达到较好的表面质量和较高平整度。但是由于金刚石磨粒硬度大,不可避免地会对晶片造成表面/亚表面损伤。Hideo Aida等学者(Applied Surface Science 292(2014)531–536)通过降低GaN研磨加工中的金刚石粒径使得GaN晶片的损伤深度不断降低,将金刚石磨粒粒径分别降低到500nm和50nm时,GaN晶片所对应的亚表面损伤深度也达到了1.6μm和0.26μm。为了完全去除500nm和50nm金刚石研磨加工后亚表面损伤,后续采用SiO 2磨粒进行的化学机械抛光(CMP)加工分别花费了150h和35h。
由此可见,在传统CMP去除亚表面损伤的加工过程中,材料极高的化学惰性使得抛光加工去除率极低,进而导致加工时间长,成本居高不下等一系列问题。
发明内容
本发明针对以上背景技术问题的提出而研究设计出一种半导体晶片的光电化学机械抛光加工方法并针对该方法设计出一套加工装置,本发明所述的光电化学机械抛光方法,是指在现有的化学机械抛光基础之上,引入紫外线直接辐照被抛光半导体工件,并在外加电场的作用下协同紫外线产生光电化学氧化,进而半导体晶片的氧化改性层被机械抛光去除的一种加工方式。
一方面本发明提供一种半导体晶片光电化学机械抛光加工方法:半导体晶片光电化学机械抛光加工方法,对晶片进行机械抛光;机械抛光具有通孔的抛光件;抛光过程中,紫外光透过所述通孔辐照所述晶片;抛光过程中,抛光液透过所述通孔滴在晶片表面,所述抛光液中包括磨粒;抛光过程中,晶片作为阳极,在外加电场下发生光电化学氧化改性。
作为优选的技术方案,所述抛光件包括抛光盘和抛光垫,抛光盘的通孔与抛光垫的通孔的布局一致;所述方法以抛光盘作为阴极。
作为优选的技术方案,所述方法包括以下步骤:
(1)晶片通过导电胶固定于抛光头,经驱动,晶片随抛光头轴向旋转;所述抛光头为导电体;抛光垫粘接于抛光盘,经驱动,抛光垫与晶片表面接触,并产生相对运动;
(2)对晶片施加正电位,对抛光盘施加负电位;
(3)抛光过程中,紫外光依次透过抛光盘和抛光垫的通孔辐照所述晶片;抛光液经抛光盘和抛光垫的通孔浸渍晶片与抛光垫的接触区。
作为优选的技术方案,所述抛光件包括抛光盘和抛光垫,所述方法在抛光盘和抛光垫之间增设具有通孔的对电极盘作为阴极;所述抛光盘、对电极盘、抛光垫的通孔布局一致。
作为优选的技术方案,所述方法包括以下步骤:
(1)晶片通过导电胶固定于抛光头,经驱动,晶片随抛光头轴向旋转;所述抛光头为导电体;将抛光垫粘接在对电极盘(本发明的对电极盘是指盘状的对电极材料)上,对电极盘固定于抛光盘,对电极盘设有通孔,经驱动,抛光垫与晶片表面接触,并产生相对运动;
(2)对晶片施加正电位,对电极盘施加负电位;
(3)抛光过程中,紫外光依次透过抛光盘、对电极盘和抛光垫的通孔辐照所述晶片;抛光液依次经抛光盘、对电极盘和抛光垫的通孔浸渍晶片与抛光垫的接触区。
作为优选的技术方案,所述方法将晶片接通外电源的正极、将阴极接通外接电源的负极;所述外接电源、晶片、阴极构成闭合回路。
作为优选的技术方案,所述方法的光电化学与机械作用的面积比为1:12~1:1。
作为优选的技术方案,所述抛光盘和抛光垫位于半导体晶片的上方,紫外光源位于抛光盘的上方。
作为优选的技术方案,所述的磨粒为氧化铈或氧化硅;优选所述磨粒的粒径为6nm-100nm;优选所述磨粒的浓度为0.05-10wt%;所述抛光液的供给流量为50mL/min~100mL/min;所述晶片转速100-250rpm,抛光盘转速60-150rpm,抛光压力4-6.5psi,紫外光强50~175mW·cm -2
作为优选的技术方案,所述的半导体晶片为氮化镓晶片。
作为优选的技术方案,所述紫外光源为低压汞灯、高压汞灯,LED汞灯,氘灯,氙灯中的一种或几种,波长<400nm。
本发明所述的光电化学与机械作用的面积比是指:根据抛光垫和抛光盘的通孔直径和数量,计算与晶片接触的通孔面积,即晶片表面上被通孔暴露的面积(被紫外光照射部分的晶片表面发生光电化学氧化作用)与晶片表面上剩余的被抛光垫遮盖的面积(该部分被抛光垫进行机械抛光作用)的比值记为光电化学与机械作用的面积比。
为了实现上述的光电化学机械抛光加工方法,本发明另一方面,研究设计出光电化学机械抛光加工装置。使用该方法并结合加工装置可取得去除率更快的加工效果。
本发明半导体晶片光电化学机械抛光装置的技术方案为,半导体晶片光电化学机械抛光加工装置,包括:具有通孔的抛光垫;具有通孔的抛光盘,用于带动抛光垫对晶片表面进行机械抛光;抛光液源,用于供给抛光液,抛光液透过抛光盘和抛光垫的通孔滴于晶片表面;紫外光源,用于供给紫外光,紫外光透过抛光盘和抛光垫的通孔辐射晶片;和外电源;晶片接通外电源的正极、抛光盘接通外接电源的负极;所述外接电源、晶片、抛光盘构成闭合回路。
另一种半导体晶片光电化学机械抛光加工装置,包括:具有通孔的抛光垫;具有通孔的抛光盘,用于带动抛光垫对晶片表面进行机械抛光;具有通孔的对电极盘,位于抛光盘与抛光垫之间;抛光液源,用于供给抛光液,抛光液透过抛光盘和抛光垫的通孔滴于晶片表面;紫外光源,用于供给紫外光,紫外光透过抛光盘和抛光垫的通孔辐射晶片;和外电源;晶片接通外电源的正极、对电极盘接通外接电源的负极;所述外接电源、晶片、对电极盘构成闭合回路。
作为优选的技术方案,所述抛光液为化学抛光液,化学抛光液中包括磨粒。
作为优选的技术方案,所述抛光盘和抛光垫位于晶片的上方,紫外光 源位于抛光盘和抛光垫的上方。
作为优选的技术方案,所述抛光液源为抛光液喷头,抛光液喷头位于所述抛光盘上方。
作为优选的技术方案,所述抛光盘的通孔呈从中心向外周的放射状布局;优选通孔在抛光盘的径向上呈周期性分布;优选抛光盘的中心部不设通孔,仅于抛光盘的外周部的与晶片接触的位置设通孔。
作为优选的技术方案,所述抛光盘的通孔、对电极盘、抛光垫的通孔的布局一致。
作为优选的技术方案,所述外加电场的提供电源是直流电源,恒电位仪,电化学工作站,干电池中的一种或几种。
作为优选的技术方案,所述抛光垫的面积大于晶片的面积;优选所述抛光垫的半径大于晶片的直径;优选所述抛光盘的半径大于晶片的直径;优选所述抛光垫的通孔设置于与晶片接触的部位。
作为优选的技术方案,所述装置的光电化学与机械作用的面积比为1:12~1:1。
优选仅在抛光垫与晶片接触区域的一圈圆环上加工通孔,优选该圆环宽度即为晶片直径大小。
优选通孔在抛光垫上的分布可以是从抛光垫圆心向外放射状分布在不同直径的圆周上,也可以不按照放射状而是在不同直径的圆周上一定数量地均匀分布。
作为优选的技术方案,所述装置还包括抛光液收集槽,所述抛光头和抛光盘设置于抛光液收集槽内。
作为优选的技术方案,所述抛光垫的为聚氨酯抛光垫、无纺布抛光垫、绒布抛光垫中的一种。
与现有技术相比:本发明涉及的光电化学机械抛光方法及其抛光装置具有以下优点:
(1)抛光去除效率高
本发明采用了紫外光通过通孔照射到晶片表面,晶片和对电极盘分别施加电位的方式(晶片为阳极,对电极盘为阴极)将光电化学作用进行结合,可以高效地氧化改性晶片,再通过抛光垫和磨粒机械性地去除氧化改性层。加工过程中,晶片与抛光盘各自旋转产生相对运动,同时紫外线的照射,晶片与对电极之间的电势差和抛光液的送入使得光电化学改性作用 和机械抛光作用交替进行,对晶片进行光电化学机械加工。光电化学改性作用与机械抛光作用交替进行,该方法采用光电化学改性与机械抛光结合的方式,可以取得抛光去除速率快,抛光加工后晶片粗糙度低的优点。
(2)光电化学改性作用和机械抛光作用比例可调节
抛光盘及底部抛光垫上的通孔直径,通孔数量以及通孔在抛光盘上的排布均可以人为地进行优化布局,使得晶片在光电化学机械抛光加工过程中的光电化学改性作用与机械抛光作用比例(即光电化学与机械作用的面积比)可以任意调节优化。
(3)抛光过程中不需要加入氧化剂
晶片在抛光加工过程中,紫外光所激发的电子-空穴对可由外部电场施加的电位分离,不需要额外在抛光液中加入氧化剂夺取光生电子而促使电子-空穴的分离。
(4)加工装置简单,加工方法实现容易
本加工装置中的加工参数如:抛光压力、晶片转速、抛光垫转速、溶液种类和浓度,紫外光源强度,光电化学与机械作用的面积比,晶片与对电极的电位差均可以根据实际的工件类型调节以达到较好的加工效果。
附图说明
图1是本发明半导体晶片的光电化学机械抛光方法示意图。
图2是本发明半导体晶片的光电化学机械抛光方法中对电极盘,抛光盘,抛光垫上通孔的示意图。
图3是本发明半导体晶片的光电化学机械抛光装置示意图。
图3中的各个标识的部件是:调平螺钉13,直角固定板14,转接板15,L形支撑板16a,法兰盘17,外球面轴承18,导电滑环2,直角电机19,电机支架20上,弹性联轴器21,交叉滚子轴承22a,台阶轴I 23,抛光头3,抛光垫5,台阶轴II 24,导电滑环11,晶片4,对电极盘6,抛光盘7,抛光液池1,紫外光源10,弹性联轴器25,电机支架26,电机27,转接板28,模组面板29,弹簧30,导轨31,滑块32,模组底板33上,立支板34a,34b,直角支撑板35上,底板36上。
图4是本发明半导体晶片的光电化学机械抛光加工装置俯视图;
图5是本发明半导体晶片的光电化学机械抛光加工装置轴视图。
图6是GaN晶片表面原始形貌,表面粗糙度值为Ra为1.16nm。
图7是实施例1加工条件下,光电化学机械抛光加工后的GaN晶片表面形貌图,晶片表面粗糙度值Ra为0.48nm;
图8是实施例2加工条件下,光电化学机械抛光加工后的GaN晶片表面形貌图,晶片表面粗糙度值Ra为0.1nm(原子力显微镜视场为5×5μm 2);
具体实施方式
下面结合附图对本发明作进一步地说明。
(1)将晶片固定抛光头上,经驱动,晶片随抛光头轴向旋转;晶片通过导电胶和抛光头金属部分粘接而导通,抛光头和导电滑环内圈导线连接,再和导电滑环外圈连接形成通路;
(2)将抛光垫粘接在对电极盘上,对电极盘在固定在抛光盘上,经驱动,抛光垫与晶片表面接触,并产生相对运动,对电极盘可以和导电滑环内圈导线连接,进而和外圈导线连接形成通路;
(3)对电极盘和抛光盘上加工有通孔,抛光垫(优选粘贴在对电极盘底部)也对应地加工有通孔;抛光过程中紫外线位于抛光盘上方,紫外光可透过抛光盘和对电极盘以及抛光垫的通孔直接照射在所述晶片表面;抛光液经抛光盘和对电极盘以及抛光垫的通孔浸渍晶片表面。
(4)外加的负电位可以依次通过对电极盘上方的导电滑环外圈引线到内圈引线再接到对电极盘,外加的正电位可以依次通过晶片下的导电滑环外圈引线到内圈引线再接到晶片。对电极盘和晶片被分别施加的负,正电位可以形成两者在加工中的电势差。
所述半导体晶片优选为氮化镓晶片。
本发明所述的光电化学机械抛光方法,是指在现有的化学机械抛光基础之上,紫外线可以通过抛光盘上的通孔直接辐照被抛光半导体工件,外加电场可以在抛光过程中施加到半导体工件和对电极盘,半导体工件在紫外线的照射以及外加电场的作用下发生光电化学氧化改性,紧接着改性层被抛光垫机械性地抛光去除的一种加工方式。
光电化学机械抛光装置包括:
抛光头,用于固定晶片,并可以通过抛光头与晶片之间的导电胶将晶片与外电路接通;
抛光垫通过自身背面胶层粘接在对电极盘上;
对电极盘通过螺钉固定在抛光盘上,对电极盘加工有与抛光盘一样的通孔;
抛光盘连接对电极盘,在抛光过程中对晶片进行加压,所述抛光盘设有通孔;
抛光液喷头,位于所述抛光盘上方,用于喷射抛光液;供给的抛光液可以通过通孔进入到抛光区域。
第一驱动传动部,连接抛光盘,用于带动抛光盘定轴回转;
第二驱动传动部,连接抛光头,用于带动抛光头进而带动晶片定轴回转;
和支撑部,用于支撑和固定所述第一驱动传动部、第二驱动传动部、抛光头、抛光盘、抛光液喷头;
外加的负电位依次通过对电极盘上方的导电滑环外圈引线到内圈引线再接到对电极盘,外加的正电位可以依次通过晶片下方的导电滑环外圈引线到内圈引线再接到晶片。
所述对电极盘与晶片表面接触的一面设有抛光垫,所述抛光垫设有通孔,优选所述抛光垫粘贴于对电极盘底部,且对电极盘和抛光盘对应地加工有通孔。
抛光盘,对电极盘和底部粘贴的抛光垫上都加工有通孔,晶片在加工的过程中,位于抛光盘上方的紫外线可以在抛光过程中,通过通孔到达晶片表面,在加外电场作用协助下对晶片进行光点化学氧化作用,使得被紫外线照射部分的工件发生改性。
优选地,抛光盘依次通过连接轴,弹性联轴器与驱动电机连接,驱动电机可以驱动抛光轴绕定轴回转。
所述装置还包括抛光液收集槽,所述抛光头和抛光盘设置于抛光液收集槽内。
抛光过程中抛光压力可通过抛光盘进行加载。
抛光垫与晶片各自回转时二者可产生相对速度。
所述装置还包括线性模组,线性模组包括模组面板,导轨,导轨滑块,模组底板,导轨固定在模组底板上,滑块与模组面板固定,可在导轨上直线滑动。电机和转接板以及线性模组部分的自重可作为光电化学机械抛光 的加工压力来源。
模组面板与模组底板之间设有弹簧,可通过更换不同劲度系数的弹簧来定量调整抛光过程中的加工压力,当整个部分的自重都不满足抛光压力时,可额外增加配重实现较大抛光压力的加载。
抛光盘,对电极盘与抛光垫上通孔的位置与大小均可进行优化设计;
进一步地,抛光垫,对电极盘和抛光盘上的通孔的大小和分布位置可以进行优化设计,改变通孔的大小和位置可以使得在加工过程中,晶片被紫外光辐照部分和机械抛光部分时间比例可调节。如图2所示,抛光盘上的不同直径同心圆上,均匀地分布着通孔,每一圈通孔所对应的同心圆半径(D 1或D n)可以进行优化设计,每一圈通孔所在的同心圆之间的距离也可以优化设计,同时每一个通孔的直径大小(d 1),通孔的个数均可以进行优化设计。
光电化学机械抛光加工时,晶片和抛光垫分别由其驱动电机驱动,二者产生相对运动,抛光盘及其驱动装置的自重提供加工压力,紫外线可通过通孔照射到晶片表面,外加电场的电位可以分别施加到晶片和对电极上,光电化学机械抛光加工中,光电化学氧化改性作用与机械抛光作用不断交替进行对晶片进行抛光加工。
参照图1:抛光液槽1,导电滑环2,抛光头3,晶片4,抛光垫5,对电极盘6,抛光盘7,通孔8,抛光液喷头9,紫外灯10,导电滑环11,外接电源12。所述晶片4通过导电胶粘接固定在抛光头3上,导电滑环2内圈导线可以连接晶片4,并与导电滑环2外圈导线接通进而连接外电源12的正极,导电滑环2内圈紧定在抛光头的轴上可随之一起旋转,抛光头3可被电机驱动带着晶片做旋转运动;所述抛光垫5通过自身背面胶层粘贴在对电极盘6底部,对电极盘6再通过螺钉固定在抛光盘7上,对电极盘6连接在导电滑环11的内圈导线上,进而与导电滑环11外圈导线连接,导电滑环11外圈导线连接外电源12的负极,导电滑环11内圈紧定在抛光盘的台阶轴上可随之一起旋转。抛光垫5,对电极盘6和抛光盘7都加工有通孔8;所述紫外光源10发出的紫外光线可以通过通孔8照射到晶片4表面,同时抛光液喷头9喷出的抛光液也可以通过通孔8进入晶片4与抛光垫5的接触区域,晶片4接外电源12正极,对电极盘6接外电源12负极,抛光液中加入导电介质如硫酸,硫酸钾作为支撑电解质,晶片4和对 电极盘6可由抛光液导通,晶片4和对电极盘6可以在加工过程中由外电源12提供产生电势差。
光电化学机械抛光加工方法的过程如下:晶片4通过导电胶粘接固定到抛光头8上,随抛光头8一起由电机驱动旋转,晶片4依次通过导电胶,抛光头3,导电滑环2内圈导线,导电滑环2外圈导线连接外电源12正极。紫外光源10发出的紫外线可通过抛光垫5,对电极盘6和抛光盘7上的通孔,照射到晶片4表面,对电极盘6依次通过导电滑环11内圈导线,导电滑环11外圈导线,接到外电源12的负极,抛光液喷头9喷出的抛光液进入晶片4与抛光垫5接触区,抛光液中的导电介质如硫酸,硫酸钾可以作为支撑电解质充斥在晶片4和对电极6之间,导通对电极盘6和晶片4,晶片4和对电极盘6之间的电势差由外电源12提供。紫外光源10发出的紫外线通过通过照射到晶片4表面,紫外辐照加上外加电场作用可对晶片4产生光电化学氧化改性作用。抛光垫5粘贴在对电极盘6底部,对电极盘6通过螺钉连接在抛光盘7底部,再由电机驱动抛光盘旋转,使得抛光垫5的旋转与晶片4的旋转产生相对运动。抛光压力F可以通过抛光盘7加载到晶片4与抛光垫7的接触区。加载压力后,晶片4与抛光垫5的相对运动可以对晶片4进行机械抛光作用,去除光电化学作用对晶片4形成的氧化改性层,氧化改性层被机械去除后,暴露出新的表面再被光电化学改性,如此循环,光电化学作用和机械抛光作用的交替进行可以对晶片4进行光电化学机械抛光加工。
现结合具体实施例对为实现该加工方法而研究设计的加工装置进行详细说明:
参见图3、图4、图5,4个调平螺钉13,支撑起底板36,直角固定板14,通过螺钉安装在底板36上,支撑抛光头3及其驱动传动部分。转接板15通过螺钉固定在直角支撑板14上,直角电机19安装在电机支架20上,电机支架20通过螺钉安装在转接板15上。晶片4通过导电胶粘接在抛光头3上,抛光头3再通过螺钉安装在台阶轴23上。抛光头3与导电胶接触部分为能导电的金属,抛光头3上金属部分接到导电滑环2内圈导线上,导电滑环2的内圈通过螺钉紧定在台阶轴23上,该内圈导线可以随着台阶轴23同步回转,导电滑环2的外圈导线连通内圈导线进而将晶片4连通。台阶轴23的一个轴肩顶在外球面轴承18的轴承内圈上,外 球面轴承18可承载一定量的轴向载荷,且具有适当的调心作用,能够让晶片4与抛光垫5接触时,由于安装误差或晶片4与抛光头3面型误差较小时,通过外球面轴承18适当地调心作用使得晶片4与抛光垫5可以较好平行贴合接触。外球面轴承18通过螺钉固定在法兰盘17上,法兰盘17通过螺钉安装在交叉滚子轴承22a的内圈上,交叉滚子轴承22a的外圈通过螺钉固定在L形支撑板16a上,L形支撑板16a再通过螺钉固定在转接板15上。台阶轴23轴肩顶在外球面轴承18的轴承内圈上,依次穿过法兰盘17(轴径小于法兰盘孔径),交叉滚子轴承23a(轴径小于轴承内圈孔径)和L形支撑板16a(轴径小于L形支撑板孔径)通过弹性联轴器21与直角电机19的电机轴连接,台阶轴23起到传递驱动扭矩和支撑抛光头3的作用。抛光垫5通过自身的背面胶层粘接在对电极盘6上,对电极盘6在通过螺钉安装在抛光盘7上,对电极盘6和抛光盘7在同样的位置上加工有通孔以便紫外光源10发出的紫外线和抛光液进入晶片4与抛光垫接触区域(可以从俯视图4中看出),抛光液池1收集并集中排出抛光液废液。导电滑环11的内圈紧定在台阶轴II 24上,随内圈同步回转,内圈导线与对电极盘6连接,对电极盘6上的电位可以依次通过导电滑环11内圈导线,外圈导线与外电源负极连接。抛光盘7固定在台阶轴II 24上,台阶轴II 24的轴肩顶在交叉滚子轴承22b的内圈上,台阶轴II 24穿过L形支撑板16b与弹性联轴器25连接,弹性联轴器25的另一端连接电机27的电机轴。电机27安装在电机支架26上,电机支架26通过螺钉固定在转接板28上,转接板28通过螺钉安装在模组面板29上,模组面板29与多个滑块32连接,滑块32可在导轨31上直线运动,导轨31安装在模组底板33上。模组面板29和模组底板33之间串接有一个弹簧30。抛光垫5,对电极盘6,抛光盘7,台阶轴II 24,导电滑环11,交叉滚子轴承22b,弹性联轴器25,电机支架26,电机27,转接板28,模组面板29,弹簧30,滑块32这些零件自重可以做为光电化学机械抛光加工时的抛光压力来源,如果需要改变抛光压力,可以通过改变弹簧30的劲度系数来实现。模组底板33固定在立支板34a上,立支板34a固定在立支板34b上,立支板34b通过螺钉固定在直角支撑板35上,直角支撑板35安装固定在底板36上。
下面以一个使用本发明的加工装置来实现该加工方法的具体实施例来 对本发明的技术效果进行说明。
本实施例中采用的GaN晶片为由HVPE方法生长的GaN自支撑晶片,晶片直径为1英寸(25.4mm),晶片厚度约为350μm,初始晶片经过金刚石研磨后,表面形貌采用原子力显微镜进行测量,晶片初始形貌如图6所示。图6中,原始晶片表面经过金刚石超硬磨粒的研磨后,表面粗糙度Ra值为1.16nm,表面可见到金刚石研磨后造成的大量的划痕。
晶片去除率采用精密天平称量加工前后的质量,计算加工前后质量差的方式进行折算。称量前,依次采用丙酮,酒精,氢氟酸,去离子水清洗GaN晶片,去除晶片表面上附着的尘埃等粘附物对晶片质量称量造成的误差。
(1)将GaN晶片用导电胶粘接接晶片夹具上,用导电滑环内圈导线与夹具接通,将晶片夹具安装在台阶轴上,导电滑环内圈紧定在台阶轴上,抛光垫为SUBA 800;
(2)紫外光源位于抛光盘正上方,开启光源后,紫外光线可以照射到晶片表面;
(3)外电源负极接同对电极盘,外电源正极接通工件;
(4)抛光液喷头将抛光液通过通孔送入晶片与抛光垫接触区,抛光液供给流量为80mL/min,SiO 2磨粒质量浓度(10wt.%),SiO 2磨粒质量粒径25nm,抛光液具体成分如表1所示;
(5)GaN晶片转速250rpm,抛光盘转速150rpm,抛光压力6.5psi,紫外光强175mW·cm -2,抛光时长1h。
(5)加热融化导电胶,取下晶片依次采用丙酮,酒精,2wt%氢氟酸,去离子水清洗后用氮气吹干晶片,称量质量,测量抛光后的表面粗糙度。
表1.实施例条件及光电化学机械抛光效果列表
Figure PCTCN2019125072-appb-000001
Figure PCTCN2019125072-appb-000002
表1中不同加工条件对应下晶片光电化学机械抛光加工对应了不同的去除速率。取实施例1,实施例2加工后的晶片,对其表面质量进行测量,测量结果分别如图7、图8所示。对比图6中原始晶片形貌,发现晶片表面改善明显。采用表面粗糙度可分别降低0.48nm。图7中,晶片表面较为平整,可以见到清晰的原子级台阶,图8中表面粗糙度Ra值可达0.1nm。原始晶片表面由金刚石研磨引起的划痕损伤均被抛光去除。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (20)

  1. 半导体晶片光电化学机械抛光加工装置,
    包括:
    具有通孔的抛光垫;
    具有通孔的抛光盘,用于带动抛光垫对晶片表面进行机械抛光;
    抛光液源,用于供给抛光液,抛光液透过抛光盘和抛光垫的通孔滴于晶片表面;
    紫外光源,用于供给紫外光,紫外光透过抛光盘和抛光垫的通孔辐射晶片;
    和外电源;
    晶片接通外电源的正极、抛光盘接通外接电源的负极;所述外接电源、晶片、抛光盘构成闭合回路。
  2. 半导体晶片光电化学机械抛光加工装置,
    包括:
    具有通孔的抛光垫;
    具有通孔的抛光盘,用于带动抛光垫对晶片表面进行机械抛光;
    具有通孔的对电极盘,位于抛光盘与抛光垫之间;
    抛光液源,用于供给抛光液,抛光液透过抛光盘和抛光垫的通孔滴于晶片表面;
    紫外光源,用于供给紫外光,紫外光透过抛光盘和抛光垫的通孔辐射晶片;
    和外电源;
    晶片接通外电源的正极、对电极盘接通外接电源的负极;所述外接电源、晶片、对电极盘构成闭合回路。
  3. 根据权利要求1或2所述的半导体晶片光电化学机械抛光加工装置,其特征在于,所述抛光液为化学抛光液,化学抛光液中包括磨粒。
  4. 根据权利要求1或2所述的半导体晶片光电化学机械抛光加工装置,其特征在于,所述抛光盘和抛光垫位于晶片的上方,紫外光源位于抛光盘和抛光垫的上方。
  5. 根据权利要求1或2所述的半导体晶片光电化学机械抛光加工装置,其特征在于,所述抛光液源为抛光液喷头,抛光液喷头位于所述抛光盘上方。
  6. 根据权利要求1或2所述的半导体晶片光电化学机械抛光加工装置,其特征在于,所述抛光盘的通孔呈从中心向外周的放射状布局;优选通孔在抛光盘的径向上呈周期性分布;优选抛光盘的中心部不设通孔,仅于抛光盘的外周部的与晶片接触的位置设通孔。
  7. 根据权利要求1或2所述的半导体晶片光电化学机械抛光加工装置,其特征在于,所述抛光盘的通孔、对电极盘、抛光垫的通孔的布局一致。
  8. 根据权利要求1或2所述的半导体晶片光电化学机械抛光加工装置,其特征在于,所述外加电场的提供电源是直流电源,恒电位仪,电化学工作站,干电池中的一种或几种。
  9. 根据权利要求1或2所述的半导体晶片光电化学机械抛光加工装置,其特征在于,所述抛光垫的面积大于晶片的面积;优选所述抛光垫的半径大于晶片的直径;优选所述抛光盘的半径大于晶片的直径;优选所述抛光垫的通孔设置于与晶片接触的部位。
  10. 根据权利要求1或2所述的半导体晶片光电化学机械抛光加工装置,其特征在于,所述装置的光电光电化学化学与机械作用的面积比为1:12~1:1。
  11. 半导体晶片光电化学机械抛光加工方法,
    对晶片进行机械抛光;机械抛光具有通孔的抛光件;
    抛光过程中,紫外光透过所述通孔辐照所述晶片;
    抛光过程中,抛光液透过所述通孔滴在晶片表面,所述抛光液中包括磨粒;
    抛光过程中,晶片作为阳极,在外加电场下发生光电化学氧化改性。
  12. 根据权利要求11所述的方法,其特征在于,所述抛光件包括抛光盘和抛光垫,抛光盘的通孔与抛光垫的通孔的布局一致;所述方法以抛光盘作为阴极。
  13. 根据权利要求12所述的方法,其特征在于,所述方法包括以下步骤:
    (1)晶片通过导电胶固定于抛光头,经驱动,晶片随抛光头轴向旋转;所述抛光头为导电体;抛光垫粘接于抛光盘,经驱动,抛光垫与晶片表面接触,并产生相对运动;
    (2)对晶片施加正电位,对抛光盘施加负电位;
    (3)抛光过程中,紫外光依次透过抛光盘和抛光垫的通孔辐照所述晶片;抛光液经抛光盘和抛光垫的通孔浸渍晶片与抛光垫的接触区。
  14. 根据权利要求11所述的方法,其特征在于,所述抛光件包括抛光盘和抛光垫,所述方法在抛光盘和抛光垫之间增设具有通孔的对电极盘作为阴极;所述抛光盘、对电极盘、抛光垫的通孔布局一致。
  15. 根据权利要求14所述的方法,其特征在于,所述方法包括以下步骤:
    (1)晶片通过导电胶固定于抛光头,经驱动,晶片随抛光头轴向旋转;所述抛光头为导电体;将抛光垫粘接在对电极盘上,对电极盘固定于抛光盘,对电极盘设有通孔,经驱动,抛光垫与晶片表面接触,并产生相对运动;
    (2)对晶片施加正电位,对盘状对电极施加负电位;
    (3)抛光过程中,紫外光依次透过抛光盘、对电极盘和抛光垫的通孔辐照所述晶片;抛光液依次经抛光盘、对电极盘和抛光垫的通孔浸渍晶片与抛光垫的接触区。
  16. 根据权利要求12或14所述的方法,其特征在于,所述方法将晶片接通外电源的正极、将阴极接通外接电源的负极;所述外接电源、晶片、阴极构成闭合回路。
  17. 根据权利要求11所述的方法,其特征在于,所述方法的光电化学与机械作用的面积比为1:12~1:1。
  18. 根据权利要求11所述的方法,其特征在于,所述抛光盘和抛光垫位于半导体晶片的上方,紫外光源位于抛光盘的上方。
  19. 根据权利要求11所述的方法,其特征在于,所述的磨粒为氧化铈或氧化硅;优选所述磨粒的粒径为6nm-100nm;优选所述磨粒的浓度为0.05-10wt%;所述抛光液的供给流量为50mL/min~100mL/min;所述晶片转速100-250rpm,抛光盘转速60-150rpm,抛光压力4-6.5psi,紫外光强50~175mW·cm -2
  20. 根据权利要求11所述的方法,其特征在于,所述的半导体晶片为氮化镓晶片。
PCT/CN2019/125072 2018-12-14 2019-12-13 一种半导体晶片光电化学机械抛光加工装置及加工方法 WO2020119779A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021533602A JP7281226B2 (ja) 2018-12-14 2019-12-13 半導体ウェーハの光電気化学機械研磨加工装置及び加工方法
US17/413,939 US20220088740A1 (en) 2018-12-14 2019-12-13 Semiconductor wafer photoelectrochemical mechanical polishing processing device and processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811537196.2 2018-12-14
CN201811537196.2A CN109465739B (zh) 2018-12-14 2018-12-14 一种半导体晶片光电化学机械抛光加工装置
CN201811537195.8 2018-12-14
CN201811537195.8A CN109648463B (zh) 2018-12-14 2018-12-14 一种半导体晶片光电化学机械抛光加工方法

Publications (1)

Publication Number Publication Date
WO2020119779A1 true WO2020119779A1 (zh) 2020-06-18

Family

ID=71076243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125072 WO2020119779A1 (zh) 2018-12-14 2019-12-13 一种半导体晶片光电化学机械抛光加工装置及加工方法

Country Status (3)

Country Link
US (1) US20220088740A1 (zh)
JP (1) JP7281226B2 (zh)
WO (1) WO2020119779A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558478A (zh) * 2022-03-23 2022-05-31 金盟科技(深圳)有限公司 基于镁合金三合一处理剂的复配物制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102673183B1 (ko) * 2022-10-25 2024-06-07 유한회사 씨티씨 반도체 기판 연마장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010008801A1 (en) * 1998-03-23 2001-07-19 Kohei Toyama Method and apparatus for lapping or polishing semiconductor silicon single crystal wafer
CN101673668A (zh) * 2009-10-19 2010-03-17 中国电子科技集团公司第四十六研究所 一种氮化镓晶体抛光的方法
CN103114323A (zh) * 2013-02-06 2013-05-22 中国科学院上海微系统与信息技术研究所 一种用于GaN单晶衬底的表面抛光方法
CN104894634A (zh) * 2014-03-03 2015-09-09 盛美半导体设备(上海)有限公司 新型电化学抛光装置
CN106141900A (zh) * 2015-04-16 2016-11-23 东莞市中镓半导体科技有限公司 一种高效率研磨抛光GaN晶片的方法
CN107641835A (zh) * 2017-10-23 2018-01-30 大连理工大学 一种半导体晶片光电化学机械抛光的方法
CN107877352A (zh) * 2017-10-23 2018-04-06 大连理工大学 半导体晶片光电化学机械抛光装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2895757B2 (ja) * 1994-08-05 1999-05-24 日本ミクロコーティング株式会社 研磨装置
JP3688449B2 (ja) * 1997-09-24 2005-08-31 株式会社ニデック 眼鏡レンズ研削装置及び眼鏡レンズ研削方法
JP2002025959A (ja) * 2000-07-06 2002-01-25 Canon Inc 半導体基板の研磨装置
JP2006024910A (ja) * 2004-06-08 2006-01-26 Matsushita Electric Ind Co Ltd 表面処理方法及び表面処理装置
US20050269577A1 (en) * 2004-06-08 2005-12-08 Matsushita Electric Industrial Co., Ltd. Surface treatment method and surface treatment device
TW200613092A (en) * 2004-08-27 2006-05-01 Ebara Corp Polishing apparatus and polishing method
US20070034526A1 (en) * 2005-08-12 2007-02-15 Natsuki Makino Electrolytic processing apparatus and method
US20070135024A1 (en) * 2005-12-08 2007-06-14 Itsuki Kobata Polishing pad and polishing apparatus
TW200736001A (en) * 2006-03-27 2007-10-01 Toshiba Kk Polishing pad, method of polishing and polishing apparatus
US20090107851A1 (en) * 2007-10-10 2009-04-30 Akira Kodera Electrolytic polishing method of substrate
JP5378971B2 (ja) * 2009-12-14 2013-12-25 株式会社ディスコ 研磨装置
KR101692574B1 (ko) * 2009-12-15 2017-01-03 고꾸리쯔 다이가꾸 호우징 오사까 다이가꾸 연마 방법 및 연마 장치
JP5403359B2 (ja) * 2009-12-15 2014-01-29 国立大学法人大阪大学 研磨具及び研磨装置
JP6454326B2 (ja) * 2014-04-18 2019-01-16 株式会社荏原製作所 基板処理装置、基板処理システム、および基板処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010008801A1 (en) * 1998-03-23 2001-07-19 Kohei Toyama Method and apparatus for lapping or polishing semiconductor silicon single crystal wafer
CN101673668A (zh) * 2009-10-19 2010-03-17 中国电子科技集团公司第四十六研究所 一种氮化镓晶体抛光的方法
CN103114323A (zh) * 2013-02-06 2013-05-22 中国科学院上海微系统与信息技术研究所 一种用于GaN单晶衬底的表面抛光方法
CN104894634A (zh) * 2014-03-03 2015-09-09 盛美半导体设备(上海)有限公司 新型电化学抛光装置
CN106141900A (zh) * 2015-04-16 2016-11-23 东莞市中镓半导体科技有限公司 一种高效率研磨抛光GaN晶片的方法
CN107641835A (zh) * 2017-10-23 2018-01-30 大连理工大学 一种半导体晶片光电化学机械抛光的方法
CN107877352A (zh) * 2017-10-23 2018-04-06 大连理工大学 半导体晶片光电化学机械抛光装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114558478A (zh) * 2022-03-23 2022-05-31 金盟科技(深圳)有限公司 基于镁合金三合一处理剂的复配物制备方法

Also Published As

Publication number Publication date
US20220088740A1 (en) 2022-03-24
JP2022512421A (ja) 2022-02-03
JP7281226B2 (ja) 2023-05-25

Similar Documents

Publication Publication Date Title
CN109648463B (zh) 一种半导体晶片光电化学机械抛光加工方法
CN109465739B (zh) 一种半导体晶片光电化学机械抛光加工装置
KR101692574B1 (ko) 연마 방법 및 연마 장치
WO2020119779A1 (zh) 一种半导体晶片光电化学机械抛光加工装置及加工方法
CN109866084A (zh) 一种uv光催化辅助化学机械抛光装置及抛光方法
CN111421391A (zh) 一种单晶金刚石晶片的双面化学机械抛光方法
CN110197789B (zh) SiC单晶片的超声辅助电化学机械抛光加工装置及方法
CN113134784B (zh) 一种半导体晶圆无线光电化学机械抛光的方法及装置
JP2005210038A (ja) 半導体集積回路装置の製造方法
WO2021078237A1 (zh) 一种大尺寸单晶金刚石的抛光方法
CN113831845B (zh) 一种可见光辅助金刚石化学机械抛光液及抛光方法
CN115648054B (zh) 一种多工位宽禁带半导体晶片光电化学机械抛光装置及方法
Liu et al. ELID grinding of silicon wafers: a literature review
US20230339064A1 (en) Intergrated machining device for grinding and polishing diamond and method thereof
KR20110052455A (ko) 반도체 웨이퍼를 연마하는 방법
CN117020926A (zh) 一种碳化硅晶圆电化学机械抛光装置
WO2015163256A1 (ja) 炭化ケイ素基板の研磨方法
CN113903827B (zh) 一种太阳能电池切割面抛光钝化方法和装置
CN108555773B (zh) 一种超薄零件研磨抛光夹具
JP2012171042A (ja) ガラス基板の研磨方法
JP2024112311A (ja) 大口径半導体ウェハの電気化学的機械的薄化加工方法及び装置
CN109848840A (zh) 一种光化学与机械抛光相结合的半导体晶片加工装置
CN109616412A (zh) 一种光化学与机械抛光相结合的半导体晶片加工方法
CN116079580A (zh) 一种电化学机械抛光装置
JP5919592B1 (ja) 研磨装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897179

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533602

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19897179

Country of ref document: EP

Kind code of ref document: A1