WO2020119408A1 - 一种电源电路及包含该电源电路的光伏发电系统 - Google Patents

一种电源电路及包含该电源电路的光伏发电系统 Download PDF

Info

Publication number
WO2020119408A1
WO2020119408A1 PCT/CN2019/119639 CN2019119639W WO2020119408A1 WO 2020119408 A1 WO2020119408 A1 WO 2020119408A1 CN 2019119639 W CN2019119639 W CN 2019119639W WO 2020119408 A1 WO2020119408 A1 WO 2020119408A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
ccfl
circuit
capacitor
output
Prior art date
Application number
PCT/CN2019/119639
Other languages
English (en)
French (fr)
Inventor
王保均
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Priority to DE112019004775.2T priority Critical patent/DE112019004775T5/de
Priority to US17/285,100 priority patent/US11362598B2/en
Priority to JP2021531733A priority patent/JP7213354B2/ja
Publication of WO2020119408A1 publication Critical patent/WO2020119408A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/538Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a push-pull configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3376Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/338Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement
    • H02M3/3382Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in a self-oscillating arrangement in a push-pull circuit arrangement
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention relates to a power supply circuit used in a photovoltaic power generation system, in particular to a power supply circuit that activates an aging photovoltaic string.
  • the modules work at high voltage for a long time, between the cover glass, the packaging material, and the frame There is a leakage current, and a large amount of charge accumulates on the surface of the battery chip, which deteriorates the passivation effect on the surface of the battery chip, resulting in a reduction in fill factor (FF), short circuit current (Isc), and open circuit voltage (Voc), making the performance of the component lower than the design standard.
  • FF fill factor
  • Isc short circuit current
  • Voc open circuit voltage
  • PID refers to the fact that when a solar module and ground form a high-intensity negative voltage, the resulting potential difference will cause damage to the solar cell or module, as well as the problem of attenuation of power generation efficiency.
  • PID can affect the power generation capacity and total output power of the entire system. In serious cases, it will directly reduce the return on investment of photovoltaic power plants. In recent years, it has become one of the pain points for international buyers to complain about the quality of domestic components.
  • SunPower proposes that the components of the N-type front surface solar cell adopt positive grounding and the components of the P-type front surface battery adopt negative grounding.
  • packaging materials with better stability can be used, no metal frame is used, the body resistance of the battery is increased, the thickness and characteristics of the passivation film are improved, and a barrier layer is added to the device.
  • the Chinese invention patent application with publication number CN107086601A discloses a photovoltaic power generation system and a voltage compensation method.
  • the patent application uses the pulse voltage output by the voltage compensation device to perform voltage compensation on the photovoltaic string to restore the PID effect.
  • Adverse effects but because the voltage compensation device does not have a specific implementation, it is only proposed that its function is to output pulse voltage.
  • the pulse voltage given in the specific implementation includes three forms of square wave, triangle wave and trapezoidal wave, CN107086601A
  • the essence of 5A is the same as that of FIG. 5C. This is because in FIG. 5A, t1 and t2 are the rising and falling edges, respectively, and it is impossible to be idealized.
  • the technical problem to be solved by the present invention is to provide a power supply circuit and a photovoltaic power generation system including the power supply circuit, the change in the output voltage of the power supply circuit ⁇ U/ ⁇ t is small, so that the photovoltaic power generation system using the power supply circuit is environmentally friendly The pollution is small.
  • a power circuit used in photovoltaic power generation systems is a power circuit used in photovoltaic power generation systems
  • switch K1 is the positive input terminal of the power supply circuit
  • the other end of switch K1 is connected to one end of the current limiting device, and the other end of the current limiting device is simultaneously connected
  • One end of the capacitor C1 and one end of the switch K2 is the other end of the capacitor C1 is the negative input end of the power supply circuit
  • the positive input end of the CCFL conversion circuit is connected to the other end of the switch K2
  • the negative input end of the CCFL conversion circuit is connected to the negative input of the power supply circuit Terminal
  • the first output terminal of the CCFL conversion circuit is the first output terminal of the power supply circuit
  • the second output terminal of the CCFL conversion circuit is the second output terminal of the power supply circuit
  • the switch K1 When the photovoltaic string is activated, the switch K1 is opened before the switch K2, and the capacitor C1 is used to provide an operating voltage for the CCFL conversion circuit.
  • the current limiting device is an inductor or a resistor.
  • the capacitor C1 is a super capacitor or an electrolytic capacitor.
  • the CCFL conversion circuit drives it.
  • the CCFL conversion circuit includes at least a startup circuit, an inductor L2, a capacitor C3, a transistor TR1, a transistor TR2, a transformer B, primary windings N P1 and N P2 , feedback windings N B1 and N B2 , and The secondary winding N S1
  • the startup circuit includes at least two terminals, the startup input and the startup output; the startup input is connected to the other end of the switch K2, and the startup output is connected to the center taps of the feedback windings N B1 and N B2 ;
  • the transistor TR1 and The emitter of TR2 is connected to the other end of the capacitor C1, the collector is connected to the two ends of the primary windings N P1 and N P2 respectively, the collector is also connected to both ends of the capacitor C3, and the base is connected to the feedback winding N B1 And N B2 ; the center taps of the primary windings N P1 and N P2 are connected to the other end of the switch K2 through the in
  • the starting circuit includes a current supply device, and the current supply device is a resistor or a constant current source device.
  • the startup circuit further includes a capacitor C2, which is connected in parallel with the current supply device, or the capacitor C2 is connected to the startup output terminal and the other end of the capacitor C1.
  • the present invention also provides a photovoltaic power generation system, the technical solution is as follows:
  • a photovoltaic power generation system includes a photovoltaic string, and further includes the power circuit according to any one of claims 1 to 7, the hot end of the photovoltaic string is electrically connected to the first output end of the power circuit, and the ground end of the photovoltaic string is electrically Connect to the second output of the power circuit.
  • the above photovoltaic power generation system further includes a DC power supply, and the DC power supply is connected in series with the output end of the power supply circuit, and the series connection method is one of the following two:
  • the negative pole of the DC power supply is electrically connected to the second output end of the power supply circuit, the first output end of the power supply circuit is electrically connected to the positive pole of the photovoltaic string, and the negative electrode of the photovoltaic string is electrically connected to the positive pole of the DC power supply;
  • the negative pole of the DC power supply is electrically connected to the positive pole of the photovoltaic string
  • the negative pole of the photovoltaic string is electrically connected to the second output end of the power supply circuit
  • the first output end of the power supply circuit is electrically connected to the positive pole of the DC power supply.
  • the peak value of the high-frequency alternating current output by the CCFL conversion circuit is not greater than the open circuit voltage of the activated photovoltaic string.
  • the hot end of the photovoltaic string because the preferences of different manufacturers are not good, some ground the positive pole of the photovoltaic string, and some ground the negative pole of the photovoltaic string, the hot end refers to the end that is not grounded, because there is no ground, It is easy to cause electric shock to the human body, so it is called the hot end, which is usually the end that the solar panel needs to be activated, which may be the positive or negative electrode of the photovoltaic string;
  • the grounding end of the photovoltaic string and the grounding metal frame of the photovoltaic string may be the negative pole of the photovoltaic string, or it may be the positive pole;
  • CCFL inverter Collector resonance type Royer circuit
  • CCFL inverter Cold cathode lamp inverter
  • CCFL converter CCFL conversion circuit for short.
  • CCFL is the abbreviation of "Cold cathode fluorescent lamps”, which originally refers to cold cathode fluorescent lamps. Before white LEDs did not appear, they were mostly used for LCD backlights. Since the previous LCDs were mostly used in notebook computers, the backlights were DC. Power supply, then a variant of the Royer circuit came out, turning DC into pure AC, driving cold cathode fluorescent lamps.
  • the classic Royer circuit oscillates using the saturation characteristics of the magnetic core, and the output is a square wave.
  • the characteristics of the CCFL conversion circuit are: an inductor is connected in series from the middle tap of the primary winding of the push-pull transformer to the power supply end in the Royer circuit.
  • This inductor is generally called the damping inductor L LC in the industry (corresponding to the inductor L2 in FIG. 1 of this application).
  • the amount is generally more than ten times the inductance of the primary winding.
  • a capacitor CL (corresponding to the capacitor C3 in FIG.
  • Push-pull transistor two transistors that realize the self-excited oscillation and stable operation of the Royer circuit and the CCFL conversion circuit, generally two transistors, also known as pair transistors, also known as push-pull transistors, usually bipolar semiconductors , Of course, can also be a unipolar field effect tube;
  • Start-up circuit a circuit that provides start-up current or voltage for the push-pull transistor or field-effect tube in the CCFL conversion circuit, and realizes a fast start or soft start of the CCFL conversion circuit.
  • the voltage waveform ⁇ U/ ⁇ t output from the power supply circuit is small, so that the life of the photovoltaic string in the photovoltaic power generation system using the power supply circuit is extended, and the radiation to the environment is small.
  • FIG. 1 is a schematic diagram of a power supply circuit according to a first embodiment of the invention
  • FIG. 3 is a voltage waveform diagram of the output of the CCFL conversion circuit across the capacitor C1 in the first embodiment of the present invention
  • FIG. 4 is a schematic diagram of an improved power circuit applied to a photovoltaic power generation system according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a power supply circuit according to a third embodiment of the invention.
  • the work of the photovoltaic power generation system is mainly during the daytime when there is good sunlight.
  • the local sun height angle reaches the maximum, it is recorded as 12 o'clock local time.
  • the photovoltaic power generation system can effectively output electrical energy.
  • the generated power is reduced and has no practical value.
  • the output characteristics of photovoltaic strings are not constant voltage sources, but most of them are similar to the characteristics of constant current sources. In order to obtain greater output power, the principle of maximum power output is generally used as far as possible, so that the output terminal voltage is to ensure system efficiency On the premise of being as high as possible.
  • the output voltage curve of the two ends of the photovoltaic string rises relatively quickly in the morning because the load is almost empty.
  • the grid When the grid is connected to the power generation, it first drops due to load, reaches the maximum value when the light is strongest at noon, and then slowly decreases.
  • the network When the network is disconnected at about 14:00 local time, the voltage will increase again to the open circuit voltage under the corresponding illuminance due to the lightening of the load, and then decrease with time, and it will be close to zero at night. If it is a rainy day, the photovoltaic string The voltage is in a low voltage state close to zero throughout the day.
  • the idea of the present invention is to provide a power supply circuit that utilizes a capacitor discharge to output a DC voltage that decreases with time.
  • a CCFL conversion circuit is connected behind the capacitor.
  • the CCFL conversion circuit converts the input DC voltage that decreases with time to a sinusoidal AC output Since the CCFL conversion circuit works in open loop, the peak-to-peak value of the sinusoidal AC output by the CCFL conversion circuit is proportional to the operating voltage of the CCFL conversion circuit. This voltage decreases with time, that is, the peak-to-peak value of the sinusoidal AC output by the CCFL conversion circuit also decreases with time. Then, the effective value of sinusoidal alternating current also decreases with time, and a decaying sinusoidal alternating current voltage is obtained.
  • the voltage waveform ⁇ U/ ⁇ t output from the power circuit is small. Since the sine wave is a single frequency, there are few harmonic components, and there is little air radiation, which is very friendly to the environment, which makes the power supply applied.
  • the life of the photovoltaic strings in the photovoltaic power generation system of the circuit is extended, and the radiation to the environment is small, and the power circuit of the present invention is simple to implement and low in cost.
  • FIG. 1 is a schematic diagram of a power circuit according to a first embodiment of the present invention.
  • the composition and connection of its components are as follows:
  • the power supply circuit shown in FIG. 1 includes a switch K1, an inductor L1, a capacitor C1, a switch K2, and a CCFL conversion circuit;
  • One end of the switch K1 is the positive input end of the power supply circuit, the other end of the switch K1 is connected to one end of the inductor L1, the other end of the inductor L1 is simultaneously connected to one end of the capacitor C1 and one end of the switch K2, and the other end of the capacitor C1 is the negative end of the power supply circuit
  • the input terminal, the positive input terminal of the CCFL conversion circuit is connected to the other end of the switch K2
  • the negative input terminal of the CCFL conversion circuit is connected to the negative input terminal of the power circuit
  • the first output terminal of the CCFL conversion circuit is the first output terminal of the power circuit
  • CCFL The second output terminal of the conversion circuit is the second output terminal of the power supply circuit.
  • the CCFL conversion circuit of this embodiment includes a starting circuit composed of a resistor R1 and a capacitor C2, a capacitor C3, an inductor L2, a transistor TR1, a transistor TR2, a transformer B, primary windings N P1 and N P2 , and feedback windings N B1 and N B2 , And the secondary winding N S1 , the startup circuit includes at least two terminals, one end of the resistor R1 is the startup input terminal, the connection point of the other end of the resistor R2 and the end of the capacitor C2 is the startup output terminal, in this embodiment, two push Pull the transistor TR1 and TR2 to provide the starting current device is the resistor R1;
  • the connection relationship of the CCFL conversion circuit is: the start input is connected to the other end of the switch K2, the start output is connected to the center taps of the feedback windings N B1 and N B2 , the other end of the capacitor C2 is connected to the other end of the capacitor C1; the transistors TR1 and TR2 The emitters are connected to the other end of the capacitor C1, the collectors of the transistors TR1 and TR2 are connected to the two ends of the primary windings N P1 and N P2 respectively, and the collectors of the transistors TR1 and TR2 are respectively connected to the two terminals of the capacitor C3 , The bases of the transistors TR1 and TR2 are connected to the two ends of the feedback windings N B1 and N B2 respectively, the center taps of the primary windings N P1 and N P2 are connected to the other end of the switch K2 through the inductor L2; the secondary winding N S1 One end is the first output end of the CCFL conversion circuit, and the other end of the secondary winding N
  • the capacitor C1 of the present invention is preferably a supercapacitor or a large electrolytic capacitor with a small leakage current, and is obtained through series connection or parallel connection.
  • the output of the CCFL conversion circuit is alternating current, the first output terminal and the second output terminal of the power circuit of the present invention can be exchanged.
  • the voltage applied to the photovoltaic string activation in this application is sinusoidal alternating current, and the acquisition of alternating current is very complicated. If it is directly obtained by using a switching power supply, the waveform edge of the output voltage is very steep, such as The voltage waveform outputted by the push-pull converter is a square wave, and its ⁇ U/ ⁇ t is close to infinity. Therefore, the defects described in the background art also exist. If the digital audio power amplifier is used, the switching power supply plus the output filter, the cost and control circuit are very complicated.
  • the circuit for obtaining sinusoidal alternating current in this embodiment uses a CCFL conversion circuit, and considering that the wavelength of the high-frequency alternating current of 1 MHz is 30 meters, the length of the corresponding half-wave dipole antenna is 1/4 wavelength, which is 7.5 meters, which is the power supply circuit of the present invention.
  • the output high-frequency alternating current has a frequency below 1MHz, so its radiation is relatively easy to control.
  • the output high-frequency alternating current has a frequency of 100KHz and a quarter wavelength of 75 meters.
  • this embodiment requires the CCFL conversion circuit to operate at a relatively "low frequency" below 1 MHz, which is still referred to herein as high-frequency alternating current, or sinusoidal alternating current.
  • the CCFL conversion circuit is a kind of self-excited push-pull converter.
  • the working principle of the sinusoidal output voltage waveform is analyzed as follows:
  • the circuit on the right side of the capacitor C1 in FIG. 1 is the CCFL conversion circuit.
  • the difference between the CCFL conversion circuit and the self-excited push-pull converter is the addition of the capacitor C3 and the inductance L2; the oscillation principle of the circuit and the self-excited push-pull type
  • the converter is similar, but the CCFL conversion circuit does not use the core saturation characteristic for push-pull oscillation, but uses the total inductance of the capacitor C3 and the windings N P1 and N P2 of the coupling transformer B for LC loop oscillation.
  • the output waveform of the circuit is a sine wave It is no longer a square wave.
  • the role of the inductance L2 is: 1. Provide a large AC input impedance for the transformer. 2.
  • the characteristics of the CCFL conversion circuit are: the use of LC series resonant circuit oscillation, the frequency is relatively stable, the output is a sine wave or approximate sine wave, and the efficiency is low, so it is also necessary to induct L2 in series in the power supply loop to improve efficiency.
  • the present invention requires that the inductance of the inductor L2 is more than 10 times the inductance of the winding NP1 or NP2 . At this time, it is the perfect sine wave that is oscillated by the inductor L2 and the capacitor C3.
  • the CCFL conversion circuit Since the working voltage of the CCFL conversion circuit is the terminal voltage of the capacitor C1, the CCFL conversion circuit outputs an envelope formed by connecting the positive half-cycle peaks of the high-frequency alternating current.
  • the shape of the envelope will be similar to the change in the terminal voltage of C1.
  • the envelope formed by connecting the negative half-cycle peaks of the high-frequency alternating current of the CCFL conversion circuit the shape of the envelope after mirroring the X axis in common coordinates will be similar to the change in the terminal voltage of C1.
  • the external power supply to the power supply circuit of the present invention may be a rectified DC of the battery and the mains, first close the switch K1 to charge the capacitor C1, then open the switch K1, and close the switch K2 , Use capacitor C1 to gradually discharge, that is, the photovoltaic string provides the activation voltage.
  • the best activation plan is to use the photovoltaic string itself as an external power source when the grid-connected power generation at 2 pm is meaningless, close the switch K1, charge the capacitor C1, and open the switch when the sun goes down. K1, then close the switch K2, using the characteristics of the gradual decay of the voltage at the discharge terminal of the capacitor C1 to provide a decayed operating voltage for the CCFL conversion circuit.
  • the output of the CCFL conversion circuit obtains a decayed sinusoidal AC voltage that acts on the activated Both ends of the photovoltaic string. If the activation is not enough, increase the capacity of capacitor C1, and vice versa.
  • FIG. 3 is a voltage waveform diagram of the output of the CCFL conversion circuit at both ends of the capacitor C1 according to the first embodiment of the present invention.
  • the voltage waveform at both ends of the capacitor C1 is as a straight line S1 in FIG.
  • the output voltage waveform refers to curve S2, which is a decayed high-frequency alternating current.
  • the straight line S3 is the envelope of the curve S2 in the positive half cycle
  • the straight line S4 is the envelope of the curve S2 in the negative half cycle
  • the straight lines S3 and S4 are along the X axis Mirror symmetry.
  • the hot end of the photovoltaic string to be activated is electrically connected to the first output end of the power circuit, and the ground end of the photovoltaic string to be activated is electrically connected to the second output end of the power circuit.
  • the photovoltaic string providing the working voltage and the activated photovoltaic string may be the same or different.
  • electrical connection also includes indirect connection (that is, other components can be connected between two electrical connection objects), and includes connection through inductive coupling.
  • the second embodiment of the present application is an indirect connection, and the following situations are also indirect connections:
  • the activation of photovoltaic strings in this application is recommended to be carried out at night.
  • the activation is performed every few days.
  • the time required for activation is related to the aging degree of the photovoltaic strings. The higher the aging degree, the longer the time required. In order to achieve a better Activation effect, the slower the voltage output from the BUCK circuit in the power supply circuit, the better, and the cumulative fall time is greater than or equal to 20 minutes.
  • the power circuit parameter of the present invention is that the operating voltage is the above open circuit voltage 377V, which is directly derived from the output of the photovoltaic string in the photovoltaic power generation equipment at 15:00 in the afternoon, and the capacitor C1 is 2200uF/ Two 450V in parallel, the switch K1 is open at 17:00 in the afternoon, the switch K2 is closed at 20:00 in the evening, the working frequency of the CCFL conversion circuit is 3.4KHz, the work is only 1 minute and 43 seconds, and the voltage of the capacitor C1 has dropped to 60V
  • the measured power generated on the next day rose to 757W, and was activated again for 1 minute and 43 seconds that night.
  • the power generated on the third day increased to 823W. After 21 activations, it increased to 1986W, which was close to the nominal output power. Good results have been achieved.
  • the inside of the photovoltaic string is equivalent to a constant current source, a most basic unit, there is a PN junction diode inside, the diode cannot be turned on when the photovoltaic string is normally activated, otherwise it will burn the CCFL conversion circuit due to current short circuit. Even through clever design and protection through current limiting circuits, electrical energy is wasted.
  • the present invention requires that the peak value of the high-frequency alternating current output by the CCFL conversion circuit should not be greater than the open circuit voltage of the activated photovoltaic string, so as to effectively avoid the conduction of the diode inside the photovoltaic string.
  • the higher the frequency the better the activation effect, but because the photovoltaic strings show a certain capacity, and will consume too much power, so for different power photovoltaic strings, you should choose different high-frequency alternating current frequency
  • the larger the cell area the greater the output power, the higher the junction capacitance of the PN junction, and the lower the frequency should be, even as low as 800Hz.
  • the power circuit used for activation of the present invention consumes energy The lower the frequency, the lower the frequency, and the longer the activation time, the higher the power consumption.
  • this junction capacitance is ultimately equivalent to: in parallel with the capacitor C3, and the CCFL converter is working in the resonance state of a sine wave, and its LC loop can reduce the junction capacitance energy of the photovoltaic string Absorption, so as to achieve low energy consumption activation, especially the CCFL converter abandons the use of self-excited push-pull oscillation mode, but uses it to drive, so that the transistor TR1 or TR2 are only turned on when the sine wave is close to the peak, the conversion efficiency is higher. This is why the present invention uses the capacitor C1 to supply power to the CCFL conversion capacitor, which can achieve the purpose of the invention.
  • the CCFL converter uses a self-excited push-pull oscillation mode of operation.
  • the transistor TR1 or TR2 can only be turned on when the sine wave is close to the peak, and the conversion efficiency It is also very high.
  • the resistance R1 in the startup circuit is replaced with a constant current source, then, as mentioned above, when the operating voltage drops from 377V to 60V, The base current provided by the constant current source to the transistor TR1 or TR2 is not reduced, so that the CCFL converter will not stop vibration. This will be shown in the third embodiment.
  • the traditional color TV receiver using a glass kinescope scanned by an electron gun uses attenuated sinusoidal AC to demagnetize the kinescope. Its working principle is very simple.
  • a PTC thermistor is connected in series to the degaussing coil.
  • the resistance of PTC thermistors has risen from about 10 ohms to more than 220K, and the degaussing current has dropped from more than ten amps to less than 1mA, but this technology cannot be directly used for the activation of photovoltaic strings.
  • photovoltaic strings are capacitive, PTC thermistors cannot be connected in series.
  • the activation time required for photovoltaic strings is long, and PTC thermistors cannot be selected.
  • FIG. 4 is a schematic diagram of the improved power circuit applied to the photovoltaic power generation system according to the second embodiment of the present invention. Since the photovoltaic string internally has a diode in series with it, in order to improve the activation effect, a series is connected at the output end of the power circuit A group of DC power supply E, that is, a group of DC power supply E connected in series with the photovoltaic string, the series connection method is one of the following two:
  • the negative pole of the DC power supply is electrically connected to the second output end of the power supply circuit, the first output end of the power supply circuit is electrically connected to the positive pole of the photovoltaic string, and the negative electrode of the photovoltaic string is electrically connected to the positive pole of the DC power supply;
  • the negative pole of the DC power supply is electrically connected to the positive pole of the photovoltaic string
  • the negative pole of the photovoltaic string is electrically connected to the second output end of the power supply circuit
  • the first output end of the power supply circuit is electrically connected to the positive pole of the DC power supply.
  • electrical connection is also used to describe the connection relationship.
  • electrical connection includes not only direct connection but also indirect connection (that is, other components can be connected between two electrical connection objects), It also includes connection through inductive coupling, which has been described in the first embodiment.
  • the photovoltaic string PV1 and the activated photovoltaic string PV2 in FIG. 4 that provide the working voltage for the power supply circuit may be the same photovoltaic string or different.
  • the activation voltage obtained between the hot end and the grounding end of the photovoltaic string can be an AC voltage waveform with a positive half cycle and a negative half of the same size.
  • the positive half cycle can ensure that the diode inside the photovoltaic string is not conductive during activation. High negative pressure in half a week can obtain better activation effect.
  • FIG. 5 is a schematic diagram of a power supply circuit according to a third embodiment of the present invention.
  • the third embodiment differs from the first embodiment in that the resistor R1 is replaced with a constant current source, and the current direction is the same, so that the input voltage of the CCFL conversion circuit can be reduced
  • the current provided to the bases of the two push-pull transistors TR1 and TR2 is constant, so that the input voltage of the power supply circuit can be wider, as described above, when the operating voltage drops from 377V At 60V, the CCFL converter will not stop vibration because the base current provided by the constant current source to the transistor TR1 or TR2 is not reduced.
  • the working principle of this embodiment and its application in the photovoltaic power generation system are the same as those in the first embodiment, and are not repeated here.
  • connection is explicitly used in the present invention is just to emphasize this meaning, but it does not exclude that the “connection” also has such a meaning.
  • connection also has such a meaning.
  • the various technical features in the creation of the present invention can be combined interactively on the premise that they do not contradict each other.

Abstract

一种电源电路及包含该电源电路的光伏发电系统,利用电容放电输出的电压为随时间下降的直流电压,在电容后面接CCFL变换电路,CCFL变换电路将输入的随时间下降的直流电压变换为正弦交流电输出,由于CCFL变换电路为开环工作,其输出的正弦交流电的峰峰值正比于CCFL变换电路的工作电压,这个电压随时间而下降,即CCFL变换电路输出的正弦交流电峰峰值也在随时间而下降,那么,正弦交流电的有效值也随时间而下降,获得一个衰减的正弦交流电电压。作用于被活化的光伏组串两端,使得电源电路输出的电压波形ΔU/Δt小,从而使得光伏组串寿命得到延长,且对环境的辐射小,并且所述电源电路实现简单,成本低廉。

Description

一种电源电路及包含该电源电路的光伏发电系统 技术领域
本发明涉及用于光伏发电系统的电源电路,特别涉及对老化的光伏组串进行活化处理的电源电路。
背景技术
随着化石能源的枯竭预期和其带来的环境污染,可再生清洁能源的研究和应用被全球各国高度重视,其中风力发电和光伏发电技术成为主要的研究热点,光伏发电是太阳能发电的简称。我国光伏发电的开发和研究起步于20世纪70年代,90年代进入稳定发展时期,21世纪开始注重太阳能光伏发电的研究,2000年,我国的光伏技术已经步入大规模的并网发电阶段。
在光伏发电领域,2005年美国SunPower公司首次发现并提出了PID效应,英文全称为:Potential Induced Degradation,即电势诱导衰减。SunPower发现PID效应时提出:光伏组件串联后可形成较高的系统电压(美国为代表的600V,欧洲为代表的1000V),组件长期在高电压工作,在盖板玻璃、封装材料、边框之间存在漏电流,大量电荷聚集在电池片表面,使得电池片表面的钝化效果恶化,导致填充因子(FF)、短路电流(Isc)、开路电压(Voc)降低,使组件性能低于设计标准。SunPower称此现象为表面极化效应,但此衰减是可逆的。自此,光伏界的工程技术人员开始关注PID的研究和讨论。
2012年开始,PID引起的组件质量问题在光伏电站中大量出现,PID现象由此走入公众视野。同年12月,美国独立光伏组件测试实验室PV Evolution Labs(PVEL)率先对五家国际一级组件制造商进行了PID测试,上述企业包括中国英利绿色能源、晶澳太阳能、天合光能、日本京瓷和德国Solarworld。
此后,越来越多光伏组件制造商增强了对PID的重视,截至2015年第二季度,日本松下、阿特斯、晋能、昱辉阳光、韩华、中盛光电等国内外主流光伏制造商先后宣布其组件通过了第三方PID测试。
据第三方检测机构的介绍,PID指的是当太阳能组件与地面形成高强度负电压,其所形成的电位差除了会导致太阳能电池或模组造成损害外,还会引起发电效率衰减的问题。
PID可影响整个系统的发电能力和总输出功率,严重者将直接减少光伏电站投资收益率,近年来已经成为国际买家投诉国内组件质量的痛点之一。
现有技术减缓或避免PID效应的方法主要如下:
1、组件接地
如果给组件施加负偏压(电池片电压相对边框为负值),则可以把上述积累的负电荷排出到地面上,电池性能得到恢复,这就是电池性能可恢复的极化效应。
基于上述分析,在组件进行串联使用时,为了避免极化效应,SunPower提出N型前表面太阳电池的组件采取正极接地,P型前表面电池的组件采用负极接地。
2、增强组件的绝缘和防水性能,减小漏电流
例如采用稳定性能更好的封装材料,不使用金属边框,增加电池的体电阻,改进钝化膜的厚度和特性,在器件中增加阻挡层等。
3、杜绝离子产生的源头
采用石英玻璃,低钠玻璃等。
4、降低组串电压
小规模项目可考虑使用微型逆变器,降低组串电压。这也是特斯拉公司主张以家庭为单位的微网光伏系统的原因。
此外,在公开号为CN107086601A的中国发明专利申请中公开了一种光伏发电系统及电压补偿方法,该专利申请通过电压补偿装置输出的脉冲电压对光伏组串进行电压补偿,进而恢复PID效应所产生的不良影响,但由于电压补偿装置并没有具体的实现方式,只是提出了其功能为输出脉冲电压,具体实施方式中给出的脉冲电压包括方波、三角波和梯形波三种形式,CN107086601A中图5A的本质和其图5C是相同的,这是因为在图5A中,t1和t2分别为上升沿和下降沿,不可能做到理想化,其上升和下降都是存在一小段时间的,而这正是图5C示出的小波形。这三种脉冲电压ΔU/Δt变化都非常大,会导致光伏组串剥离开裂,寿命缩短;且该脉冲电压直接作用于光伏组串,由于光伏组串难以实现电磁屏蔽,使得其对环境的电磁辐射非常大。众所周知,如图5A,其谐波极多,尽管光伏设施多安装在荒无人烟的不毛之地,但是电磁辐射非常大,通过 大气层中的电离层反射,仍造成极大的电磁环境污染。而且获得这三种波形的成本并不低。
发明内容
有鉴于此,本发明要解决的技术问题是提供一种电源电路及包含该电源电路的光伏发电系统,电源电路输出电压的ΔU/Δt变化小,从而使得应用该电源电路的光伏发电系统对环境的污染小。
为解决上述技术问题,本发明提供的技术方案如下:
一种电源电路,应用于光伏发电系统,
包括开关K1、限流器件、电容C1、开关K2和CCFL变换电路;开关K1的一端为电源电路的正输入端,开关K1的另一端连接限流器件的一端,限流器件的另一端同时连接电容C1的一端和开关K2的一端,电容C1的另一端为电源电路的负输入端,CCFL变换电路的正输入端连接开关K2的另一端,CCFL变换电路的负输入端连接电源电路的负输入端,CCFL变换电路的第一输出端为电源电路的第一输出端,CCFL变换电路的第二输出端为电源电路的第二输出端;
当对光伏组串活化时,开关K1先于开关K2断开,利用电容C1为CCFL变换电路提供工作电压。
作为限流器件的具体实施方式,其特征在于:限流器件为电感或电阻。
优选地,电容C1为超级电容或电解电容。
优选地,CCFL变换电路为它驱。
作为CCFL变换电路的具体实施方式,CCFL变换电路至少包括启动电路、电感L2、电容C3、三极管TR1、三极管TR2、变压器B、原边绕组N P1和N P2、反馈绕组N B1和N B2,以及副边绕组N S1,启动电路至少包括两个端子,启动输入端和启动输出端;启动输入端连接开关K2的另一端,启动输出端连接反馈绕组N B1和N B2的中心抽头;三极管TR1和TR2的发射极均连接至电容C1的另一端,集电极分别连接原边绕组N P1和N P2的两个端头,集电极还分别连接电容C3的两端,基极分别连接反馈绕组N B1和N B2的两个端头;原边绕组N P1和N P2的中心抽头通过电感L2连接开关K2的另一端;副边绕组N S1的一端为CCFL变换电路的第一输出端,副边绕组N S1的另一端为CCFL变换电路的第二输出端。
优选地,启动电路中包括电流提供器件,电流提供器件为电阻,或为恒流源器件。
进一步地,启动电路中还包括电容C2,电容C2与电流提供器件并联,或者电容C2连接于启动输出端和电容C1的另一端。
对应地,本发明还提供一种光伏发电系统,技术方案如下:
一种光伏发电系统,包括光伏组串,还包括权利要求1至7任一项所述的电源电路,光伏组串的热端电联接电源电路的第一输出端,光伏组串的接地端电联接电源电路的第二输出端。
进一步地,上述光伏发电系统还包括直流电源,直流电源和所述的电源电路的输出端串联,串联方法为以下两种之一:
(1)直流电源的负极电联接电源电路的第二输出端,电源电路的第一输出端电联接光伏组串的正极,光伏组串的负极电联接直流电源的正极;
(2)直流电源的负极电联接光伏组串的正极,光伏组串的负极电联接电源电路第二输出端,电源电路第一输出端电联接直流电源的正极。
优选地,CCFL变换电路输出的高频交流电峰值不大于被活化的光伏组串的开路电压。
针对本申请涉及的技术术语,本申请和现有技术可能有多种命名,以下各条中的技术术语表示的含义相同,各条中所罗列内容并未穷尽:
(1)太阳能电池板,很多文献把多个单体的太阳能电池板并联、串联后也叫太阳能电池板,或叫光伏组串,甚至叫光伏板组;
(2)光伏组串的热端,因为不同厂家的喜好不好,有的把光伏组串的正极接地,有的把光伏组串的负极接地,热端指没有接地的一端,因为没有接地,容易对人体产生触电,故称为热端,通常也是太阳能电池板需要被活化的一端,可能是光伏组串的正极或负极;
(3)光伏组串的接地端、光伏组串的接地金属架;如上述,可能是光伏组串的负极,也有可能是正极;
(4)集极谐振型Royer电路,或叫“冷阴极灯管逆变器(CCFL inverter)”,所以也会简称为CCFL逆变器、CCFL变换器、CCFL变换电路。CCFL是“Cold cathode fluorescent lamps”的缩写,原指冷阴极萤光灯,在白光LED没有出 现之前,多用于液晶显示器的背光源,由于以前的液晶显示器多用于笔记本电脑,所以背光源均为直流供电,这时一种变种的Royer电路就问世,把直流变成了纯净的交流,驱动冷阴极萤光灯。经典的Royer电路利用磁心饱和特性进行振荡,输出为方波,参见中国申请号为201110436259.7的专利文件,有详细说明。CCFL变换电路的特点是:在Royer电路中推挽变压器初级绕组中间抽头至供电端串入电感,该电感在业界一般称为阻尼电感L LC(对应本申请图1中的电感L2),其电感量一般是原边绕组电感量的十倍以上,同时在推挽三极管的两个集电极之间并上一只电容CL(对应本申请图1中的电容C3),该电容与推挽变压器形成一个公知的LC振荡回路,其中电容为CL,L是推挽变压器初级绕组的总电感量。推挽变压器总电感量是其中原边绕组1或2的电感量的四倍。输出为正弦波或近似正弦波。若输出方波,因谐波成份多,会对环境产生电磁污染。CCFL变换电路在中国申请号为201110242377.4的专利文件中,该文件中图3以及对应背景技术也有较详细的说明。
针对以下技术术语,本申请表示的含义如下:
(1)推挽三极管:实现Royer电路以及CCFL变换电路自激振荡并稳定工作的两只三极管,一般为两只三极管,也称为对管,也称为推挽三极管,通常为双极性半导体,当然,也可以为单极性的场效应管;
(2)启动电路:为CCFL变换电路中的推挽三极管或场效应管提供启动电流或电压,实现CCFL变换电路快速启动或软启动的电路。
本发明的工作原理将在具体实施例中进行分析,在此不赘述。
本发明的电源电路的有益效果为:
(1)电源电路输出的电压波形ΔU/Δt小,从而使得应用该电源电路的光伏发电系统中的光伏组串寿命延长,且对环境的辐射小。
(2)电路实现简单,成本低廉,且可靠性高、能耗低。
附图说明
图1为本发明第一实施例电源电路原理图;
图2为本发明第一实施例电源电路中的CCFL变换电路单独工作时输出的电压波形图;
图3为本发明第一实施例中的电容C1两端、CCFL变换电路输出的电压波形图;
图4为本发明第二实施例电源电路应用于光伏发电系统改进后的原理图;
图5为本发明第三实施例电源电路原理图。
具体实施方式
光伏发电系统的工作主要在有良好阳光的白天,在当地太阳高度角达到最大时记为当地时间12点整,在当地时间10:00至14:00区间,光伏发电系统能有效地输出电能,当地时间10:00前或14:00后,发电功率聚减,而没有实用价值。光伏组串的输出特性并非是恒压源,而是大部分类似恒流源的特性,为了获得更大的输出功率,一般尽可能利用最大功率输出原理,让其输出的端电压在保证系统效率的前提下,尽可能地高一些。光伏组串两端的输出电压曲线为,早晨较快速升高,因为负载几乎为空载,并网发电时,因带载而先下降,到中午光照最强的时候达到最大值,然后缓慢下降,到当地时间14:00左右脱网时,因负载减轻,电压再次升高至对应照度下的开路电压,再随着时间推移而下降,到晚上接近为零,如果为阴雨天,光伏组串的电压则全天处于接近为零的低压状态。
本发明的构思为提供一种电源电路,利用电容放电输出的电压为随时间下降的直流电压,在电容后面接CCFL变换电路,CCFL变换电路将输入的随时间下降的直流电压变换为正弦交流电输出,由于CCFL变换电路为开环工作,其输出的正弦交流电的峰峰值正比于CCFL变换电路的工作电压,这个电压随时间而下降,即CCFL变换电路输出的正弦交流电峰峰值也在随时间而下降,那么,正弦交流电的有效值也随时间而下降,获得一个衰减的正弦交流电电压。作用于被活化的光伏组串两端,使得电源电路输出的电压波形ΔU/Δt小,由于正弦波为单一频率,谐波成分少,空中辐射也少,对环境很友好,从而使得应用该电源电路的光伏发电系统中的光伏组串寿命得到延长,且对环境的辐射小,并且本发明的电源电路实现简单,成本低廉。
为了使得本领域的技术人员更加容易理解本发明,下面结合具体的实施方式对本发明进行说明。
第一实施例
请参阅图1,图1为本发明第一实施例电源电路原理图。其元器件组成及连接关系如下:
图1所示电源电路包括开关K1、电感L1、电容C1、开关K2和CCFL变换电路;
开关K1的一端为电源电路的正输入端,开关K1的另一端连接电感L1的一端,电感L1的另一端同时连接电容C1的一端和开关K2的一端,电容C1的另一端为电源电路的负输入端,CCFL变换电路的正输入端连接开关K2的另一端,CCFL变换电路的负输入端连接电源电路的负输入端,CCFL变换电路的第一输出端为电源电路的第一输出端,CCFL变换电路的第二输出端为电源电路的第二输出端。
本实施例的CCFL变换电路包括由电阻R1和电容C2组成的启动电路、电容C3、电感L2、三极管TR1、三极管TR2、变压器B、原边绕组N P1和N P2,反馈绕组N B1和N B2,以及副边绕组N S1,启动电路至少包括两个端子,电阻R1的一端为启动输入端,电阻R2的另一端和电容C2的一端的连接点为启动输出端,本实施例为两只推挽三极管TR1和TR2提供启动电流的器件为电阻R1;
CCFL变换电路的连接关系为:启动输入端连接开关K2的另一端,启动输出端连接反馈绕组N B1和N B2的中心抽头,电容C2的另一端连接电容C1的另一端;三极管TR1和TR2的发射极均连接至电容C1的另一端,三极管TR1和TR2的集电极分别连接原边绕组N P1和N P2的两个端头,三极管TR1和TR2的集电极还分别连接电容C3的两个端子,三极管TR1和TR2的基极分别连接反馈绕组N B1和N B2的两个端头,原边绕组N P1和N P2的中心抽头通过电感L2连接开关K2的另一端;副边绕组N S1的一端为CCFL变换电路的第一输出端,副边绕组N S1的另一端为CCFL变换电路的第二输出端。
本发明电容C1优选超级电容或漏电流小的大型电解电容,通过串联、并联获得。
由于CCFL变换电路输出的为交流电,因此本发明电源电路的第一输出端和第二输出端可以交换。
为了克服现有技术脉冲电压的缺陷,本申请对光伏组串进行活化施加的电压为正弦交流电,而交流电的获得非常复杂,如果利用开关电源来直接获得, 输出电压的波形边缘非常陡峭,如自激推挽式变换器输出的电压波形为方波,其ΔU/Δt为接近无穷大,因此同样存在背景技术所述的缺陷。若采用数码式音频功率放大器的方式,开关电源方式加上输出滤波器,其成本和控制电路均很复杂。
本实施例获得正弦交流电的电路采用CCFL变换电路,并且鉴于1MHz的高频交流电的波长为30米,其对应的半波振子天线长度为其1/4波长,为7.5米,即本发明电源电路输出的高频交流电,其频率在1MHz以下,那么其辐射就比较容易控制,如输出的高频交流电频率为100KHz,1/4波长为75米,对于远低于75米的走线,其辐射效率很低,因此本实施例要求CCFL变换电路工作于低于1MHz以下的相对“低频”,文中仍称为高频交流电,或正弦交流电。
CCFL变换电路为自激推挽式变换器的一种,其实现正弦输出电压波形的工作原理分析如下:
参见图1中电容C1右侧的电路即为CCFL变换电路,CCFL变换电路较自激推挽式变换器的不同之处在于增加了电容C3和电感L2;电路的振荡原理和自激推挽式变换器相似,但CCFL变换电路不是利用磁心饱和特性进行推挽振荡,而是利用电容C3和耦合变压器B的绕组N P1和N P2的总电感来进行LC回路振荡,电路的输出波形为正弦波,不再是方波,其中的电感L2的作用为:1、为变压器提供一个较大的交流输入阻抗,2、确保输出完美的正弦波,CCFL变换电路独立工作时输出的电压波形参见图2,图2并不完美,这里仅作为示例,进一步加大L2,图2的波形失真度THD会小于10%,这时具备实用性。这种形式的振荡对器件的选值要求很严。图2的波形失真度THD越小,本发明的电源电路能量消耗越低。
CCFL变换电路的特点为:利用LC串联谐振回路振荡,频率相对稳定,输出为正弦波或近似正弦波,效率较低,因此也需要在供电回路中串入电感L2提高效率。
本发明要求电感L2的电感量是绕组N P1或N P2电感量的10倍以上,此时电感L2和电容C3振荡出来的才是较为完美的正弦波。
由于CCFL变换电路的工作电压即为电容C1的端电压,因此CCFL变换电路输出高频交流电的正半周峰值连起来形成的包络线,该包络线的形状将相似于 C1的端电压变化,同样,CCFL变换电路输出高频交流电的负半周峰值连起来形成的包络线,对常见坐标中X轴镜像后的包络线的形状将相似于C1的端电压变化。
本发明当需要对光伏组串活化时,对本发明的电源电路供电的外部电源,可以是蓄电池、市电整流后的直流,先闭合开关K1对电容C1充电,然后断开开关K1,闭合开关K2,利用电容C1逐渐放电,即光伏组串提供活化电压。
为了提高光伏发电站的效益,最佳活化方案为当下午两点并网发电失去意义时,使用光伏组串本身作为外部电源,闭合开关K1,对电容C1充电,当太阳下山后,断开开关K1,再闭合开关K2,利用电容C1中逐渐放电端电压逐渐衰减的特性,为CCFL变换电路提供一个逐渐衰减的工作电压,CCFL变换电路输出端获得一个衰减的正弦交流电电压,作用于被活化的光伏组串两端。若活化不够,加大电容C1的容量即可,反之亦然。
图3为本发明第一实施例电容C1两端、CCFL变换电路输出的电压波形图,电容C1两端的电压波形如图3中的直线S1,为类似指数式的下降方式,此时CCFL变换电路输出的电压波形参见曲线S2,为逐渐衰减的高频交流电,直线S3为曲线S2在正半周的包络线、直线S4为曲线S2在负半周的包络线,直线S3和直线S4沿X轴镜像对称。
本实施例的电源电路在光伏发电系统中的应用方案如下:
需要活化的光伏组串的热端电联接电源电路的第一输出端,需要活化的光伏组串的接地端电联接电源电路的第二输出端。
本发明利用光伏组串自身为电源电路提供工作电压时,提供工作电压的光伏组串和被活化的光伏组串可以相同,也可以不同。
需要说明的是,当光伏组串的正极接地时,其负极为热端;当光伏组串负极接地时,其正极为热端,两种接法均能实现对光伏组串的活化。
“电联接”代表的含义除了直接联接,还包括间接连接(即两个电联接对象之间还可以连接其它的元器件),并且包括通过感应耦合等方式实现连接。
本申请第二实施例就是间接连接,如下所述情况也是间接连接:
当被活化的光伏组串的两端并联有稳定输出电压的电解电容器组时,为了避免电解电容器组将本发明电源电路输出的高频交流电吸收,从而无法实现对 光伏组串的活化,此时就需要在光伏组串的热端和与电解电容器组连接的连接点之间串联一只电感,使得加在电解电容器组两端的高频交流电因为电感的隔离作用从而能够被施加至光伏组串的两端,从而实现此种情况下对光伏组串的活化。此时光伏组串的热端就不是直接连接在电源电路的第一输出端,但依然落入本申请的保护范围。
本申请对光伏组串进行的活化推荐在夜间进行,隔几天活化一次,活化所需要的时间与光伏组串的老化程度相关,老化程度越高,需要的时间越长,为了达到较好的活化效果,电源电路中BUCK电路输出的电压下降越缓慢越好,且累计下降时间大于或等于20分钟。
为了测试活化电路的效果,我们从淘宝网上购来一套标称输出功率仅2KW的光伏发电设备,已使用6年,原来是为西部落后农村地区配套的,实测在广州晴朗天气下,实际输出功率仅为690W,开路电压为377V,本发明的电源电路参数为,工作电压为上述开路电压377V,直接来源于光伏发电设备中光伏组串在下午15:00的输出,电容C1为2200uF/450V两只并联,下午17:00,开关K1断开,晚上20:00时,开关K2闭合,CCFL变换电路的工作频率为3.4KHz,工作仅1分钟43秒,电容C1的电压已下降至60V左右,实测次日发电功率上升至757W,当晚再次活化1分钟43秒,第三天发电功率上升至823W,经过21次活化,上升至1986W,接近标称输出功率。取得了较好的效果。
此外,由于光伏组串内部相当于一个恒流源,一个最基本的单元,其内部有一个PN结二极管,光伏组串正常活化时二极管不能导通,否则会因电流短路而烧毁CCFL变换电路,即使通过巧妙的设计,通过限流电路来保护,也浪费了电能。为了确保光伏组串的安全,本发明要求CCFL变换电路输出高频交流电的峰值应当不大于被活化的光伏组串的开路电压,从而才能有效避免光伏组串内部的二极管导通。另外,频率越高,活化的效果也越好,但因为光伏组串呈现一定的容性,也会消耗过多的电能,所以针对不同功率的光伏组串,应选择不同的高频交流电的频率,一般来说,单体面积越大,其输出功率也越大,其PN结的结电容也越高,频率应越低,甚至低至800Hz,这时本发明用于活化的电源电路耗能较低,频率再降低,需要的活化时间就要加长,反而又加大了电能消耗。
例如,如果光伏组串中串联的单体电池,即基本单元,单体电池数为24(光伏组串串联的单体电池数量最少要求为24,获得的开路电压约为14.4V至16.8V),由于光伏组串的电学特性也遵循PN结方程,二极管的压降为0.7V,那么光伏组串两端的开路电压最大为0.7V×27=16.8V,那么CCFL变换电路输出高频交流电的峰值要略低于16.8V才能保证光伏组串的安全。再例如,对于美国600V的光伏组串(其内部由1008个基本单元串联组成),活化电压要求略低于600V即可。
由于光伏组串在活化中呈现容性,而这个结电容最终等效为:与电容C3并联,而CCFL变换器是工作在正弦波的谐振状态,其LC回路可以把光伏组串的结电容能量吸收,从而实现低能耗活化,特别是CCFL变换器放弃使用自激推挽振荡工作方式,而是使用它驱,让三极管TR1或TR2都在正弦波接近峰值时才导通,变换效率更高。这也是本发明使用电容C1对CCFL变换电容供电,可以实现发明目的原因。
它驱,也作他驱。需要注意的是,CCFL变换器使用自激推挽振荡工作方式,通过调节反馈绕组与原边绕组的匝比,是同样可以实现三极管TR1或TR2都在正弦波接近峰值时才导通,变换效率同样很高,为了防止CCFL变换器在BUCK电路输出电压较低时停振,其启动电路中电阻R1换成恒流源时,那么,如上所述,当工作电压从377V下降至60V时,由于恒流源向三极管TR1或TR2提供的基极电流没有降低,使得CCFL变换器不会停振。这在第三实施例中会示出。
需要说明的是,在现有技术中,传统的使用电子枪扫描的玻璃显像管的彩色电视接收机,使用了衰减式正弦交流电对显像管消磁,其工作原理很简单,使用PTC热敏电阻串联在消磁线圈中,随着时间的推移,PTC热敏电阻的阻值从10欧姆左右上升至220K以上,消磁电流也从十多安倍下降至1mA以下,但这种技术无法直接用于光伏组串的活化,因为光伏组串呈现容性,无法串联PTC热敏电阻。而且光伏组串需要的活化时间长,PTC热敏电阻也无法选型。
第二实施例
图4为本发明第二实施例电源电路应用于光伏发电系统改进后的原理图,由于光伏组串内部等效有一个与其串联的二极管,因此为了提高活化效果,在 电源电路的输出端串联一组直流电源E,也即与光伏组串串联一组直流电源E,串联方法为以下两种之一:
(1)直流电源的负极电联接电源电路的第二输出端,电源电路的第一输出端电联接光伏组串的正极,光伏组串的负极电联接直流电源的正极;
(2)直流电源的负极电联接光伏组串的正极,光伏组串的负极电联接电源电路的第二输出端,电源电路的第一输出端电联接直流电源的正极。
本实施例也用了“电联接”描述连接关系,同样地,“电联接”代表的含义除了直接联接,还包括间接连接(即两个电联接对象之间还可以连接其它的元器件),并且包括通过感应耦合等方式实现连接,这在第一实施例已说明。
图4中为电源电路提供工作电压的光伏组串PV1和被活化的光伏组串PV2可以是相同一个光伏组串,也可以不同。
从而能使得光伏组串的热端和接地端之间获得的活化电压为正半周小、负半同大的交流电压波形,正半周小能保证活化时光伏组串内部的二极管不导通,负半周负压很高能获得更好的活化效果。
第三实施例
图5为本发明第三实施例电源电路原理图,第三实施例与第一实施例不同之处在于将电阻R1替换为恒流源,电流方向一致,从而能实现CCFL变换电路在输入电压下降时,由于恒流源的存在,向两只推挽三极管TR1和TR2基极提供的电流是恒定不变的,从而使得电源电路的输入电压可以较宽,如上所述,当工作电压从377V下降至60V时,由于恒流源向三极管TR1或TR2提供的基极电流没有降低,使得CCFL变换器不会停振。以便与光伏组串宽范围的端电压相适应。本实施例的工作原理及其在光伏发电系统中的应用于第一实施例相同,在此不赘述。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,如把图1中的电感L1替换为电阻,将图1中的电容C2的另一端接到电阻R1的一端,或在保证CCFL电路为开环工作的条件下将图1中的自驱改为它驱,还可以检测CCFL变换电路的输出电压去控制BUCK电路的占空比,这些改进和润饰也应视为本发明的保护范围,这 里不再用实施例赘述,本发明的保护范围应当以权利要求所限定的范围为准。另外,专利中涉及到的所有“电联接”和“连接”关系,均并非单指构件直接相接,而是指可根据具体实施情况,通过添加联接辅件,来组成更优的联接结构,本发明中明确用“电联接”的地方只是为了强调此含义,但并不排除用“连接”的地方也具备这样的含义。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。

Claims (10)

  1. 一种电源电路,应用于光伏发电系统,其特征在于:
    包括开关K1、限流器件、电容C1、开关K2和CCFL变换电路;开关K1的一端为电源电路的正输入端,开关K1的另一端连接限流器件的一端,限流器件的另一端同时连接电容C1的一端和开关K2的一端,电容C1的另一端为电源电路的负输入端,CCFL变换电路的正输入端连接开关K2的另一端,CCFL变换电路的负输入端连接电源电路的负输入端,CCFL变换电路的第一输出端为电源电路的第一输出端,CCFL变换电路的第二输出端为电源电路的第二输出端;
    当对光伏组串活化时,开关K1先于开关K2断开,利用电容C1为CCFL变换电路提供工作电压。
  2. 根据权利要求1所述的电源电路,其特征在于:限流器件为电感或电阻。
  3. 根据权利要求1所述的电源电路,其特征在于:电容C1为超级电容或电解电容。
  4. 根据权利要求1所述的电源电路,其特征在于:CCFL变换电路为它驱。
  5. 根据权利要求1所述的电源电路,其特征在于:CCFL变换电路至少包括启动电路、电感L2、电容C3、三极管TR1、三极管TR2、变压器B、原边绕组N P1和N P2、反馈绕组N B1和N B2,以及副边绕组N S1,启动电路至少包括两个端子,启动输入端和启动输出端;启动输入端连接开关K2的另一端,启动输出端连接反馈绕组N B1和N B2的中心抽头;三极管TR1和TR2的发射极均连接至电容C1的另一端,集电极分别连接原边绕组N P1和N P2的两个端头,集电极还分别连接电容C3的两端,基极分别连接反馈绕组N B1和N B2的两个端头;原边绕组N P1和N P2的中心抽头通过电感L2连接开关K2的另一端;副边绕组N S1的一端为CCFL变换电路的第一输出端,副边绕组N S1的另一端为CCFL变换电路的第二输出端。
  6. 根据权利要求5所述的电源电路,其特征在于:启动电路中包括电流提供器件,电流提供器件为电阻,或为恒流源器件。
  7. 根据权利要求6所述的电源电路,其特征在于:启动电路中还包括电容C2,电容C2与电流提供器件并联,或者电容C2连接于启动输出端和电容C1的另一端。
  8. 一种光伏发电系统,包括光伏组串,其特征在于还包括:权利要求1至7任一项所述的电源电路,光伏组串的热端电联接电源电路的第一输出端,光伏组串的接地端电联接电源电路的第二输出端。
  9. 根据权利要求8所述的光伏发电系统,其特征在于:还包括直流电源,直流电源和所述的电源电路的输出端串联,串联方法为以下两种之一:
    (1)直流电源的负极电联接电源电路的第二输出端,电源电路的第一输出端电联接光伏组串的正极,光伏组串的负极电联接直流电源的正极;
    (2)直流电源的负极电联接光伏组串的正极,光伏组串的负极电联接电源电路第二输出端,电源电路第一输出端电联接直流电源的正极。
  10. 根据权利要求8或9所述的光伏发电系统,其特征在于:CCFL变换电路输出的高频交流电峰值不大于被活化的光伏组串的开路电压。
PCT/CN2019/119639 2018-12-14 2019-11-20 一种电源电路及包含该电源电路的光伏发电系统 WO2020119408A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019004775.2T DE112019004775T5 (de) 2018-12-14 2019-11-20 Stromversorgungsschaltung und photovoltaisches Stromerzeugungssystem mit dieser Stromversorgungsschaltung
US17/285,100 US11362598B2 (en) 2018-12-14 2019-11-20 Power supply circuit and photovoltaic power generation system comprising same
JP2021531733A JP7213354B2 (ja) 2018-12-14 2019-11-20 電源回路及び該電源回路を備えた光起電力発電システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811533242.1 2018-12-14
CN201811533242.1A CN109660127B (zh) 2018-12-14 2018-12-14 一种电源电路及包含该电源电路的光伏发电系统

Publications (1)

Publication Number Publication Date
WO2020119408A1 true WO2020119408A1 (zh) 2020-06-18

Family

ID=66114313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119639 WO2020119408A1 (zh) 2018-12-14 2019-11-20 一种电源电路及包含该电源电路的光伏发电系统

Country Status (5)

Country Link
US (1) US11362598B2 (zh)
JP (1) JP7213354B2 (zh)
CN (1) CN109660127B (zh)
DE (1) DE112019004775T5 (zh)
WO (1) WO2020119408A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115622136A (zh) * 2022-12-16 2023-01-17 济钢防务技术有限公司 多模态智能控制器

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109660127B (zh) * 2018-12-14 2019-11-26 广州金升阳科技有限公司 一种电源电路及包含该电源电路的光伏发电系统
CN110165766A (zh) * 2019-05-25 2019-08-23 塞伯睿机器人技术(长沙)有限公司 用于野外机器人的功率平滑器
CN112130073B (zh) * 2020-09-30 2023-08-15 北京动力机械研究所 闭式循环发电系统用高速起发电机发电性能测试系统
CN112865335A (zh) * 2021-01-15 2021-05-28 中国南方电网有限责任公司超高压输电公司天生桥局 一种适用于交叉取能的无线输电电路
CN113937995B (zh) * 2021-09-17 2023-08-08 南京南瑞继保电气有限公司 一种低频输电系统的软启动方法及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299616A (zh) * 2011-08-23 2011-12-28 广州金升阳科技有限公司 一种自激推挽式变换器
CN202601387U (zh) * 2012-05-09 2012-12-12 广州金升阳科技有限公司 一种自激推挽式变换器
CN202601388U (zh) * 2012-05-09 2012-12-12 广州金升阳科技有限公司 一种自激推挽式变换器
US20140313805A1 (en) * 2011-12-22 2014-10-23 Mornsun Guangzhou Science & Technology Ltd. Self-Excitation Push-Pull Type Converter
CN109660127A (zh) * 2018-12-14 2019-04-19 广州金升阳科技有限公司 一种电源电路及包含该电源电路的光伏发电系统
CN109742789A (zh) * 2018-12-19 2019-05-10 广州金升阳科技有限公司 一种光伏发电系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804129B2 (en) * 1999-07-22 2004-10-12 02 Micro International Limited High-efficiency adaptive DC/AC converter
US8461508B2 (en) * 2008-08-10 2013-06-11 Advanced Energy Industries, Inc. Device, system, and method for sectioning and coupling multiple photovoltaic strings
CN202663171U (zh) * 2012-02-15 2013-01-09 西安胜唐电源有限公司 一种锂离子蓄电池化成仪
US20140070614A1 (en) * 2012-09-07 2014-03-13 Atomic Energy Council-Institute Of Nuclear Energy Research Household Grid-Connected Inverter Applied to Solar Power Generation System with Maximum Power Tracking Function
CN202749480U (zh) * 2012-09-20 2013-02-20 蔡中良 脉冲激活器
CN204615474U (zh) * 2015-05-28 2015-09-02 西安科技大学 一种应用于蓄电池储能直流电源的电池活化管理电路
CN107086601B (zh) * 2017-05-18 2020-04-21 华为技术有限公司 一种光伏发电系统及电压补偿方法
CN108964496B (zh) * 2017-05-19 2021-06-25 丰郅(上海)新能源科技有限公司 改善电势诱导衰减引起的组件衰减的发电系统及改善方法
GB2573318B (en) * 2018-05-03 2020-06-10 Zhong Qingchang SYNDEM converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299616A (zh) * 2011-08-23 2011-12-28 广州金升阳科技有限公司 一种自激推挽式变换器
US20140313805A1 (en) * 2011-12-22 2014-10-23 Mornsun Guangzhou Science & Technology Ltd. Self-Excitation Push-Pull Type Converter
CN202601387U (zh) * 2012-05-09 2012-12-12 广州金升阳科技有限公司 一种自激推挽式变换器
CN202601388U (zh) * 2012-05-09 2012-12-12 广州金升阳科技有限公司 一种自激推挽式变换器
CN109660127A (zh) * 2018-12-14 2019-04-19 广州金升阳科技有限公司 一种电源电路及包含该电源电路的光伏发电系统
CN109742789A (zh) * 2018-12-19 2019-05-10 广州金升阳科技有限公司 一种光伏发电系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115622136A (zh) * 2022-12-16 2023-01-17 济钢防务技术有限公司 多模态智能控制器
CN115622136B (zh) * 2022-12-16 2023-04-07 济钢防务技术有限公司 多模态智能控制器

Also Published As

Publication number Publication date
CN109660127B (zh) 2019-11-26
US20210351718A1 (en) 2021-11-11
JP2022514212A (ja) 2022-02-10
CN109660127A (zh) 2019-04-19
US11362598B2 (en) 2022-06-14
JP7213354B2 (ja) 2023-01-26
DE112019004775T5 (de) 2021-06-17

Similar Documents

Publication Publication Date Title
WO2020119408A1 (zh) 一种电源电路及包含该电源电路的光伏发电系统
Barater et al. Recent advances in single‐phase transformerless photovoltaic inverters
WO2020119332A1 (zh) 一种电源电路及包含该电源电路的光伏发电系统
US20100301676A1 (en) Solar power generation system including weatherable units including photovoltaic modules and isolated power converters
TWI408887B (zh) 廣輸入電壓值範圍之直流-交流轉換電路
Yamamoto et al. Thin film silicon solar cell and module
Simões et al. A RISC-microcontroller based photovoltaic system for illumination applications
WO2019120208A1 (zh) 一种光伏电站中的光伏组件衰减修复方法和装置
CN104795985A (zh) 一种防pid效应的光伏系统
CN109742789B (zh) 一种光伏发电系统
CN102624073B (zh) 太阳能逆变电源
CN109525110B (zh) 一种电源电路及包含该电源电路的光伏发电系统
Tao et al. Grid-connected micro solar inverter implement using a c2000 mcu
CN106712475A (zh) 一种基于风力和太阳能双电源的发电网络
CN201393179Y (zh) 光伏离网逆变器
CN202475260U (zh) 高升压比变换器、太阳能逆变器与太阳能电池系统
CN209767392U (zh) 一种全桥隔离dc-dc电路
İnali The process of converting solar power to electricity using solar cells and improving productivity of photovoltaic solar power systems via solar cells
CN202488202U (zh) 太阳能逆变电源
CN110212628A (zh) 太阳能光伏发电逆变控制切换系统及切换方法
Islam Thin Film Solar Charge controller: A research paper for commercialization of Thin film Solar Cell
Sharma et al. IoT integrated system and efficient utilization of solar PV power energy
CN104917454A (zh) 一种太阳能电池
de Melo et al. Photovoltaic grid-connected flyback micro-inverter and boost MPPT integrated to street lighting system based on LEDs
de Melo et al. Hybrid system of distributed power generation and street lighting based on LEDs: Grid connection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894997

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021531733

Country of ref document: JP

Kind code of ref document: A

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 12065A DATED 02/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19894997

Country of ref document: EP

Kind code of ref document: A1