WO2020119356A1 - 无线通信方法及装置 - Google Patents

无线通信方法及装置 Download PDF

Info

Publication number
WO2020119356A1
WO2020119356A1 PCT/CN2019/117046 CN2019117046W WO2020119356A1 WO 2020119356 A1 WO2020119356 A1 WO 2020119356A1 CN 2019117046 W CN2019117046 W CN 2019117046W WO 2020119356 A1 WO2020119356 A1 WO 2020119356A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
data
terminal device
node device
indication information
Prior art date
Application number
PCT/CN2019/117046
Other languages
English (en)
French (fr)
Inventor
李俊超
唐浩
周国华
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19895466.1A priority Critical patent/EP3886526A4/en
Publication of WO2020119356A1 publication Critical patent/WO2020119356A1/zh
Priority to US17/342,930 priority patent/US11909539B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a wireless communication method and device.
  • smart factories With the continuous development of technology, smart factories came into being. Among them, smart factories have the following characteristics: extremely dense network deployment, such as the distance between the base station and the base station can reach 20m; larger transmit power, such as the base station transmit power can Up to 24dBm per 20MHz, the transmission power of the terminal equipment can reach 23dBm; heavier network load, such as the number of activated terminal equipment, large data packets; low latency and high reliable service transmission requirements, such as smart factory data transmission has low Enhanced mobile broadband (eMBB) services and ultra-high reliability and low latency (URLLC) services with high latency and reliable transmission requirements.
  • eMBB Enhanced mobile broadband
  • URLLC ultra-high reliability and low latency
  • the wireless link between the base station and the terminal equipment is often caused by fading, occlusion, etc.
  • the resulting interruption results in a lower robustness of data transmission between the base station and the terminal equipment.
  • the embodiments of the present application provide a wireless communication method and device, which are used to improve the robustness of data transmission between a terminal device and a node device.
  • a first aspect of embodiments of the present application provides a wireless communication method, including:
  • the terminal device receives the first data in the first cell, and the first cell is the first primary cell.
  • the terminal device determines that it is wrong to receive the first data in the first cell, the terminal device is in the second
  • the cell sends first indication information, the second cell is a secondary cell or a second primary cell, and the first indication information indicates that the terminal device erroneously receives the first data in the first cell or requests the first data
  • the second cell transmits the first data to the terminal device; the terminal device receives the first data in the second cell. It can be seen from the first aspect that the terminal device receives the first data error in the first cell and can request to receive the first data from the second cell through the indication information, which improves the robustness of data transmission.
  • the method further includes: The terminal device monitors a first downlink control channel in the second cell, and the first downlink control channel is used by the terminal device to receive the first data.
  • the method further includes: the terminal device is in the first cell Sending second indication information indicating that the terminal device erroneously receives the first data in the first cell or requests to transmit the first data to the terminal device in the first cell; The terminal device receives the first data in the first cell.
  • the first indication information includes a negative response NACK or a scheduling request SR.
  • the second indication information includes NACK or SR.
  • the second aspect of the embodiments of the present application provides another wireless communication method, including:
  • the node device sends first data to the terminal device in the first cell, and the first cell is the first primary cell; the node device receives the first indication information from the terminal device in the second cell, and the second cell Is a secondary cell or a second primary cell, and the first indication information instructs the terminal device to erroneously receive the first data in the first cell or requests to send the first data to the terminal device in the second cell Data; the node device sends the first data to the terminal device in the second cell. It can be seen from the second aspect that the node device can send the first data to the terminal device through the first cell and the second cell, which improves the robustness of data transmission.
  • the method further includes: the node device receives a second indication from the terminal device in the first cell Information, the second indication information instructs the terminal device to erroneously receive the first data in the first cell or requests to transmit the first data to the terminal device in the first cell; the node The device sends the first data to the terminal device in the first cell.
  • the first indication information includes a negative response NACK or a scheduling request SR.
  • all The second indication information includes NACK or SR.
  • a third aspect of the embodiments of the present application provides another wireless communication method, including:
  • the first node device sends the first data to the terminal device in the first cell, and the first cell is the first primary cell; the first node device sends the first data, the first data to the second node device Used by the second node device to send to the terminal device in a second cell after receiving the first indication information, the first indication information instructing the terminal device to erroneously receive the first data or the first data in the first cell Requesting the second node device to send the first data to the terminal device in the second cell, where the second cell is a secondary cell or a second primary cell.
  • the first node device sends first data to the second node device, and the first data is used by the second node device to send to the terminal device in the second cell after receiving the first indication information. Therefore, the third In one aspect, the first data can be sent to the terminal device through the first cell and the second cell, which improves the robustness of data transmission.
  • the method further includes: the first node device receives, in the first cell, the first Two indication information, the second indication information instructs the terminal device to erroneously receive the first data in the first cell or request to transmit the first data to the terminal device in the first cell; The first node device sends the first data to the terminal device in the first cell.
  • the first indication information includes a negative response NACK or a scheduling request SR.
  • the second indication information includes NACK or SR.
  • the fourth aspect of the embodiments of the present application provides another wireless communication method, including:
  • the second node device receives first indication information from the terminal device in the second cell, and the second indication information indicates that the terminal device erroneously receives the first data in the first cell or requests the first cell to
  • the terminal device transmits the first data, the first cell is a first primary cell, and the second cell is a secondary cell or a second primary cell; the second node device transmits data to the second cell
  • the terminal device sends the first data.
  • the terminal device can request to receive the first data from the second cell of the second node device by sending the first indication information, which improves the robustness of data transmission.
  • the second node device before the second cell sends the first data to the terminal device, the second node device The method further includes: the second node device receives the first data from the first node device, and the first node device is a node device corresponding to the first cell.
  • the first indication information includes a negative response NACK or a scheduling request SR.
  • a fifth aspect of the embodiments of the present application provides another wireless communication method, including:
  • the terminal device receives the first data correctly in the first cell, the first cell is the first primary cell; the terminal device sends the third indication information in the second cell, and the second cell is the secondary cell or the second primary cell ,
  • the third indication information indicates that the terminal device correctly receives the first data in the first cell or requests to stop transmission of the first data in the second cell; the terminal device stops at the first
  • the second cell receives the first data. It can be seen from the fifth aspect that the terminal device can indicate that the node device does not need to send the first data in the second cell through the indication information, which reduces interference between the cells and also improves the use efficiency of spectrum resources.
  • the method further includes: The terminal device stops monitoring the first downlink control channel in the second cell, and the first downlink control channel is used by the terminal device to receive the first data.
  • the method further includes: the terminal device is in the first cell Sending fourth indication information indicating that the terminal device correctly receives the first data in the first cell or requests to stop transmission of the first data in the first cell; the terminal device Stop receiving the first data in the first cell.
  • the third indication information Including acknowledgment ACK.
  • the fourth indication information Including ACK.
  • the sixth aspect of the embodiments of the present application provides another wireless communication method, including:
  • the node device sends first data to the terminal device in the first cell, where the first cell is the first primary cell; the node device receives third indication information from the terminal device in the second cell, and the second cell As a secondary cell or a second primary cell, the third indication information instructs the terminal device to correctly receive the first data in the first cell or requests to stop transmission of the first data in the second cell; The node device stops sending the first data in the second cell. It can be seen from the sixth aspect that after receiving the third indication information, the node device does not send the first data in the second cell, so that the node device can reduce the interference between the cells while configuring at least two cells to transmit the first data, It also improves the efficiency of using spectrum resources.
  • the method further includes: the node device receives a fourth indication from the terminal device in the first cell Information, the fourth indication information indicates that the terminal device correctly receives the first data in the first cell or requests to stop transmission of the first data in the first cell; the node device stops at the The first cell sends the first data.
  • the third indication information includes an acknowledgement ACK.
  • the fourth indication information Including ACK.
  • the seventh aspect of the embodiments of the present application provides another wireless communication method, including:
  • the second node device receives third indication information from the terminal device in the second cell, and the third indication information instructs the terminal device to correctly receive the first data in the first cell or requests to stop the first data at
  • the first cell is a first primary cell
  • the second cell is a secondary cell or a second primary cell
  • the second node device stops sending the first cell in the second cell ⁇ One data.
  • the second node device configures the second cell to transmit the first data for the terminal device. After receiving the third indication information, the second node device does not transmit the first data in the second cell, which reduces the inter-cell The interference also improves the efficiency of the use of spectrum resources.
  • the third indication information includes an acknowledgement ACK.
  • the eighth aspect of the embodiments of the present application provides another wireless communication method, including:
  • the terminal device sends a first scheduling request SR in the first cell and sends a second SR in the second cell, where resources for carrying the first SR correspond to resources for carrying the second SR, the first An SR and the second SR are used to request transmission of second data; the terminal device monitors the second downlink control channel in the first cell and monitors the third downlink control channel in the second cell; the The terminal device receives downlink control information DCI on at least one of the third downlink control channel and the second downlink control channel; the terminal device sends the second data according to the DCI. It can be seen from the eighth aspect that the terminal device improves the robustness of the transmission SR by sending the scheduling request of the second data to at least two cells, thereby improving the robustness of the data corresponding to the transmission SR.
  • the first cell is a first primary cell
  • the second cell is a secondary cell or a second primary cell
  • the ninth aspect of the embodiments of the present application provides another wireless communication method, including:
  • the first node device receives the first scheduling request SR from the terminal device in the first cell, where resources for carrying the first SR correspond to resources for carrying the second SR, and the resources for carrying the second SR Is the resource that carries the second SR from the terminal device in the second cell, and the first SR and the second SR are used to request transmission of second data; the first node device is in the The first cell sends downlink control information DCI to the terminal device, the DCI is carried by a second downlink control channel, and the DCI includes parameters for transmitting the second data; the first node device is in the first A cell receives the second data from the terminal device. It can be seen from the ninth aspect that the terminal device sends the scheduling request of the second data through at least two cells, which improves the robustness of transmitting SR.
  • the method further includes: the first node device sends fifth indication information to the second node device, the first Five indication information is used to instruct the first node device to send the DCI in the first cell.
  • the tenth aspect of the embodiments of the present application provides another wireless communication method, including:
  • the second node device receives a second scheduling request SR from the terminal device in the second cell, where resources for carrying the second SR correspond to resources for carrying the first SR, and the resources for carrying the first SR
  • the resource is the resource that carries the first SR from the terminal device in the first cell, and the first SR and the second SR are used to request the transmission of the second data;
  • the second node device sends downlink control information DCI to the terminal device in the second cell, and the DCI is carried by a third downlink control channel; or, the second node device receives the first Five indication information, and stop sending the DCI to the terminal device in the second cell, the fifth indication information is used to instruct to stop sending the DCI, and the DCI includes a means for transmitting the second data parameter. It can be seen from the tenth aspect that the terminal device sends the scheduling request of the second data through at least two cells, which improves the robustness of the transmission of SR.
  • the second node device after the second cell sends downlink control information DCI to the terminal device, the The method further includes the second node device receiving the second data from the terminal device in the second cell.
  • the first cell is the first primary cell.
  • the second cell is a secondary cell or a second primary cell.
  • An eleventh aspect of an embodiment of the present application provides another wireless communication method, including:
  • the node device receives the first scheduling request SR in the first cell and receives the second SR in the second cell, where resources for carrying the second SR correspond to resources for carrying the first SR; the node The device sends downlink control information DCI to the terminal device in at least one of the first cell and the second cell.
  • the DCI sent in the first cell is carried by the second downlink control channel.
  • the DCI sent by the second cell is carried by a third downlink control channel, and the DCI includes parameters for transmitting second data; the node device receives at least one of the first cell and the second cell The second data from the terminal device. It can be seen from the eleventh aspect that the node device receives the scheduling request of the second data through at least two cells, which improves the robustness of transmitting SR.
  • the first cell is a first primary cell
  • the second cell is a secondary cell or a second primary cell
  • a twelfth aspect of an embodiment of the present application provides another wireless communication method, including:
  • the terminal device obtains a first configuration parameter of the carrier bandwidth.
  • the carrier bandwidth is a carrier bandwidth for transmitting the first data.
  • the carrier bandwidth is preset with at least two sets of configuration parameters.
  • the first configuration parameters are included in the at least two sets of configurations. Parameters; the terminal device determines at least one of a transmission cell, a retransmission mode, and a feedback mode of the first data from the first configuration parameter.
  • the node device can determine the configuration parameters corresponding to the first data from the at least two sets of configuration parameters according to the service type of the first data, and the terminal device can determine the configuration parameters according to the carrier
  • the bandwidth configuration parameters determine the transmission cell, retransmission mode, and feedback mode of the first data, so that the terminal device can use the transmission cell, retransmission mode, and feedback mode to process the data according to different configuration parameters, thereby satisfying the data transmission requirements of different services Different needs.
  • the first configuration parameter includes at least one of a terminal device identifier, a data channel parameter, and a control channel parameter.
  • the retransmission manner includes: The terminal device receives the first data error in the first cell; the terminal device sends first indication information in the second cell, and the first indication information indicates that the first data received an error or request in the first cell The first data is transmitted in the second cell, and the terminal device receives the first data in the second cell.
  • the transmission cell includes at least the first cell and the second cell, the first cell is a first primary cell, and the second cell is a secondary cell or a second primary cell.
  • the feedback manner includes: when the terminal device receives the first data error in the first cell, the terminal device sends the first indication information in the second cell, The first indication information indicates that the first data received an error in the first cell or requests transmission of the first data in the second cell.
  • the feedback manner further includes: the terminal device sends the second indication information in the first cell, and the second indication information indicates that the first data is received in the first cell An error or request for transmission of the first data in the first cell.
  • the retransmission mode further includes: the terminal device receives the first data correctly in the first cell; the terminal device sends third indication information in the second cell, and the third indication information Indicate that the first data is received correctly in the first cell or request to stop transmission of the first data in the second cell; the terminal device stops receiving the first data in the second cell.
  • the feedback method further includes: the terminal device sends third indication information in the second cell, and the third indication information indicates that the first data is received correctly in the first cell or Request to stop the transmission of the first data in the second cell.
  • the feedback method further includes: the terminal device sends fourth indication information in the first cell, and the fourth indication information indicates that the first data is received correctly in the first cell or Request to stop transmission of the first data in the first cell.
  • a thirteenth aspect of an embodiment of the present application provides a communication device, the communication device having the foregoing first aspect and any possible implementation manner of the first aspect, the fifth aspect, and any possible implementation manner of the fifth aspect, the first
  • the function of the terminal device behavior of the eighth aspect and any possible implementation manner of the eighth aspect or the twelfth aspect and any possible implementation manner of the twelfth aspect can be realized by hardware, and can also be implemented by hardware executing corresponding software, and can also be implemented by combining software and hardware.
  • the hardware and/or software includes one or more modules corresponding to the above functions.
  • a fourteenth aspect of an embodiment of the present application provides a communication device having the above second aspect and any possible implementation manner of the second aspect, the sixth aspect, and any possible implementation manner or sixth aspect of the sixth aspect
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software, and can also be implemented by combining software and hardware.
  • the hardware and/or software includes one or more modules corresponding to the above functions.
  • a fifteenth aspect of an embodiment of the present application provides a communication device having the third aspect and any possible implementation manner of the third aspect or the ninth aspect and any possible implementation manner of the ninth aspect
  • the function of a node device behavior can be realized by hardware, and can also be implemented by hardware executing corresponding software, and can also be implemented by combining software and hardware.
  • the hardware and/or software includes one or more modules corresponding to the above functions.
  • a sixteenth aspect of an embodiment of the present application provides a communication device having the above fourth aspect and any possible implementation manner of the fourth aspect, the seventh aspect, and any possible implementation manner or seventh aspect of the seventh aspect
  • This function can be realized by hardware, and can also be implemented by hardware executing corresponding software, and can also be implemented by combining software and hardware.
  • the hardware and/or software includes one or more modules corresponding to the above functions.
  • a seventeenth aspect of an embodiment of the present application provides a communication device.
  • the communication device includes: a processor, the processor is coupled to a memory, and the memory is used to store a program or instruction.
  • the program or instruction When executed by the processor, the communication device is caused to execute the first aspect and any possible implementation manner of the first aspect, the fifth aspect and any possible implementation manner of the fifth aspect, the eighth aspect and any possible implementation of the eighth aspect.
  • An eighteenth aspect of an embodiment of the present application provides a communication device.
  • the communication device includes: a processor, the processor is coupled to a memory, and the memory is used to store a program or instruction.
  • the program or instruction When executed by the processor, the communication device is caused to execute the second aspect and any possible implementation manner of the second aspect, the sixth aspect and any possible implementation manner of the sixth aspect, or the eleventh aspect and any possible aspect of the eleventh aspect The processing or operation performed on the side of the node device.
  • a nineteenth aspect of an embodiment of the present application provides a communication device.
  • the communication device includes: a processor, the processor is coupled to a memory, and the memory is used to store a program or instruction.
  • the program or instruction When executed by the processor, the communication device causes the third node and any possible implementation manner of the third aspect or the ninth aspect and any possible implementation manner of the ninth aspect to perform processing or operations performed on the first node device side.
  • a twentieth aspect of an embodiment of the present application provides a communication device.
  • the communication device includes: a processor, the processor is coupled to a memory, and the memory is used to store a program or instruction.
  • the program or instruction When executed by the processor, the communication device is caused to execute the fourth aspect and any possible implementation manner of the fourth aspect, the seventh aspect and any possible implementation manner of the seventh aspect, or the tenth aspect and any possible implementation manner of the tenth aspect The processing or operation performed on the second node device side.
  • a twenty-first aspect of an embodiment of the present application provides a storage medium on which a computer program or instruction is stored, which is characterized in that, when the computer program or instruction is executed, the computer executes any one of the first aspect to the twelfth aspect Possible methods.
  • a twenty-second aspect of an embodiment of the present application provides a computer program product containing instructions, which is characterized in that, when it runs on a computer, the computer is allowed to execute any possible implementation method of the first aspect to the twelfth aspect .
  • a twenty-third aspect of an embodiment of the present application provides a chip system.
  • the chip system includes at least one processor and a communication interface.
  • the chip system may further include a memory, the memory, the communication interface, and the at least one processing.
  • the devices are interconnected by lines, and the at least one memory stores instructions; the instructions are executed by the at least one processor to perform any possible implementation method of the first aspect to the twelfth aspect.
  • a twenty-fourth aspect of an embodiment of the present application provides a communication system.
  • the communication system includes: the foregoing first aspect and any possible implementation manner of the first aspect, the fifth aspect, and any possible implementation of the fifth aspect ,
  • a node device that may be implemented, the sixth aspect, and any possible implementation manner of the sixth aspect or the eleventh aspect and any possible implementation manner of the eleventh aspect.
  • a twenty-fifth aspect of an embodiment of the present application provides a communication system.
  • the communication system includes: the foregoing first aspect and any possible implementation manner of the first aspect, the fifth aspect, and any possible implementation of the fifth aspect.
  • the second node device in any possible implementation manner or the tenth aspect and any possible implementation manner in the tenth aspect.
  • At least two cells are configured on the node device side, where the node device sends first data to the terminal device in the first cell, and the terminal device sends first indication information to the node device when the first cell receives the first data error ,
  • the node device sends third data to the terminal device in the second cell according to the first indication information. Therefore, in this embodiment, the terminal device can trigger the node device to send data to the terminal device in the second cell through the indication information, so that the node device can send data through the first cell and the second cell, which improves the robustness of the transmitted data .
  • the node device does not send the third data to the terminal device in the second cell until the second cell receives the first indication information, which reduces interference between the cells and also ensures the efficiency of spectrum resources.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a first wireless communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of a second wireless communication method provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a third wireless communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of a fourth wireless communication method provided by an embodiment of this application.
  • FIG. 7 is a schematic flowchart of a fifth wireless communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic flowchart of a sixth wireless communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a seventh wireless communication method provided by an embodiment of this application.
  • FIG. 10 is a schematic flowchart of an eighth wireless communication method provided by an embodiment of this application.
  • FIG. 11 is a schematic block diagram of a first terminal device provided by an embodiment of this application.
  • FIG. 12 is a schematic block diagram of a first type of node device provided by an embodiment of this application.
  • FIG. 13 is a schematic block diagram of a first type of first node device provided by an embodiment of this application.
  • FIG. 14 is a schematic block diagram of a first type of second node device provided by an embodiment of this application.
  • 15 is a schematic block diagram of a second terminal device provided by an embodiment of this application.
  • 16 is a schematic block diagram of a second node device provided by an embodiment of this application.
  • 17 is a schematic block diagram of a second type of second node device provided by an embodiment of this application.
  • FIG. 18 is a schematic block diagram of a third terminal device provided by an embodiment of this application.
  • FIG. 19 is a schematic block diagram of a second first node device provided by an embodiment of this application.
  • 20 is a schematic block diagram of a third type of second node device provided by an embodiment of this application.
  • 21 is a schematic block diagram of a third node device provided by an embodiment of this application.
  • FIG. 22 is a schematic block diagram of a fourth terminal device provided by an embodiment of this application.
  • FIG. 23 is a schematic diagram of a hardware structure of a terminal device provided by an embodiment of this application.
  • FIG. 24 is a schematic diagram of a hardware structure of a node device provided by an embodiment of this application.
  • 25 is a schematic diagram of a hardware structure of a first node device provided by an embodiment of this application.
  • FIG. 26 is a schematic diagram of a hardware structure of a second node device provided by an embodiment of the present application.
  • the embodiments of the present application provide a wireless communication method and device, which are used to improve the robustness of data transmission between a terminal device and a node device.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • the schematic diagram of the application scenario includes a terminal device 101 and a node device 102.
  • the node device 102 and the terminal device 101 can communicate in the first cell, the second cell, and the Nth cell.
  • the node device 102 communicates with the terminal device 101 through the first cell and the second cell as an example to describe the wireless communication method provided in the embodiment of the present application.
  • the node device 102 provided in the embodiment of the present application may be a network device used to communicate with the terminal device 101, or may be a terminal device used to communicate with the terminal device 101. In this embodiment of the present application, only the node device 102 is used as the network device.
  • the wireless communication method provided in the embodiment of the application is described.
  • FIG. 2 is a schematic diagram of another application scenario provided by an embodiment of the present application.
  • the schematic diagram of the application scenario includes a terminal device 101, a first node device 201, a second node device 202, and an Nth Node device 203. among them.
  • the first node device 201 can communicate with the terminal device 101 through the first cell
  • the second node device 202 can communicate with the terminal device 101 through the second cell
  • the Nth node device 203 can communicate with the terminal device 101 through the Nth cell .
  • only the terminal device 101 communicates with the first node device 201 through the first cell and the terminal device 101 communicates with the second node device 202 through the second cell as an example.
  • the wireless communication method is described.
  • the first node device 201 and the second node device 202 corresponding to FIG. 2 may be network devices used to communicate with the terminal device 101. It may also be that the first node device 201 can serve as a network device, and the second node device 202 can serve as a terminal device. The first node device 201 may also serve as a terminal device, and the second node device 202 may serve as a network device. The first node device 201 may also serve as a terminal device, and the second node device 202 may serve as a terminal device. The embodiment of the present application only uses the first node device 201 and the second node device 202 as network devices as examples to describe the wireless communication method provided by the embodiment of the present application.
  • the terminal device 101 corresponding to FIG. 1 and FIG. 2 may refer to a user equipment (UE), an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, and a mobile device , User terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • an access terminal a user unit
  • a user station a mobile station
  • a mobile station a mobile station
  • a remote station a remote terminal
  • a mobile device User terminal, terminal, wireless communication device, user agent or user device.
  • Terminal equipment can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (wireless local loop (WLL) stations, personal digital processing (personal digital assistant, PDA), wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in future 5G networks or terminals in future evolved public land mobile communication networks (PLMN)
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • PLMN public land mobile communication networks
  • the network device may be a device for communicating with the terminal device 101.
  • the network The device can be a global mobile system (GSM) system or a base station (base transceiver) (BTS) in code division multiple access (CDMA) or wideband code division multiple access (wideband)
  • GSM global mobile system
  • BTS base transceiver
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • the base station (nodeB, NB) in code division multiple access (WCDMA) system can also be the evolutionary base station (evolutional nodeB, eNB or eNodeB) in the LTE system, or it can be the fifth generation mobile communication technology (5th-Generation, 5G)
  • the base station (gNodeB, or gNB) of the network can also be a wireless controller in the cloud radio access network (CRAN) scenario, or the network device can be a relay station, access point, or on-board device , Wearable devices, and transmission and reception points (TRP)
  • GSM global system of mobile
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • TDD time division duplex
  • UMTS universal mobile communication system
  • GSM global system of mobile
  • WiMAX 5th generation
  • 5G 5th generation
  • NR new Wireless
  • FIG. 3 is a schematic flowchart of a first wireless communication method provided by an embodiment of the present application. As shown in FIG. 3, the schematic flowchart may include the following steps :
  • the node device sends first data to the terminal device in the first cell.
  • the node device sends first data to the terminal device in the first cell, where the first data may be the data initially transmitted by the node device to the terminal device in the first cell, or may be retransmitted by the node device to the terminal device in the first cell data.
  • the first data when the node device serves as a base station, the first data is downlink data, and when the node device serves as a terminal device, the first data is sidelink data.
  • the secondary link may also be referred to as an edge link or a side link.
  • the terminal device performs radio resource control (RRC) communication with the node device through the first cell, that is, the first cell is the first primary cell (PCell).
  • RRC radio resource control
  • PCell is the cell where the UE establishes the initial connection, or the cell where the RRC connection is reestablished, or the cell designated during the handover process.
  • the PCell is responsible for RRC communication with the UE. It can be understood that the RRC communication between the terminal device and the node device through the first cell may refer to the communication performed by the terminal device after the RRC connection is established between the first cell and the node device.
  • the terminal device determines whether the first data received in the first cell is incorrect. If yes, perform steps 303 to 307; if not, perform steps 308 to 311.
  • the terminal device receives the first data in the first cell and determines whether the first data is received in error. When the terminal device determines that the first data received in the first cell is wrong, the terminal device performs steps 303 to 307, and when the terminal device determines that the first data received in the first cell is correct, the terminal device performs steps 308 to 311.
  • the terminal device may determine whether the first data is received in error based on the signal quality of receiving the first data in the first cell. For example, when the signal quality of the first data is lower than the first preset threshold, the terminal device determines that the first data is received incorrectly, so that steps 303 to 307 are performed; when the signal quality of the first data is higher than the second preset threshold , The terminal device determines that the first data is received correctly, and the terminal device performs steps 308 to 311.
  • the error of receiving the first data in the first cell may also mean that the terminal device does not receive the first data in the first cell, which is not limited herein.
  • the terminal device sends the first indication message to the node device in the second cell.
  • the terminal device sends the first indication information to the node device in the second cell.
  • the first indication information may indicate that the terminal device receives an error in receiving the first data in the first cell, or may request the node device to send third data to the terminal device in the second cell.
  • the third data that the first indication information requests the node device to send in the second cell may be the first data, that is, the first indication information may request the node device to jointly transmit the first data in the second cell.
  • the first indication information involved in this embodiment and the subsequent embodiments may be a negative acknowledgement (NACK), a scheduling request (SR), or other indication information. , Not specifically limited here.
  • the communication between the terminal device and the node device in the second cell may be RRC communication or may not be RRC communication, that is, the second cell may be a second Pcell, and the second cell may also be a secondary cell (SCell) ).
  • SCell secondary cell
  • the Scell may be added during RRC reconfiguration to provide additional wireless resources, and there is no RRC communication or RRC connection between the SCell and the UE.
  • the terminal device monitors the first downlink control channel in the second cell.
  • the terminal device After the terminal device sends the first indication information to the node device in the second cell, the terminal device monitors the first downlink control channel in the second cell.
  • the first downlink control channel is a control channel where the node device sends third data to the terminal device in the second cell.
  • the terminal device monitors the first downlink control information in the second cell, that is, the terminal device is sending The first indication information will not detect the first downlink control channel before, which reduces the energy consumption of the blind detection control channel of the terminal device and also ensures the efficiency of the spectrum resource.
  • the node device sends third data to the terminal device in the second cell.
  • the node device receives the first indication information sent by the terminal device in the second cell, and sends third data to the terminal device in the second cell according to the first indication information.
  • the third data sent by the node device to the terminal device in the second cell may be carried on the first downlink control channel. It can be understood that when the third data is carried on the first downlink control channel, the third data Control data carried on the first downlink control channel.
  • the third data sent by the node device to the terminal device in the second cell may also be carried on the downlink shared channel. It can be understood that when the third data is carried on the downlink shared channel, the third data is service data. It should be noted that the parameters used by the terminal device to receive the third data on the downlink shared channel are carried in the first downlink control channel.
  • the third data sent in the second cell may correspond to the first data sent in the first cell, that is, the third data sent by the node device to the terminal device in the second cell may be the first data.
  • the third data sent in the second cell corresponding to the first data sent in the first cell may refer to the third data sent by the node device to the terminal device in the second cell and the first data sent by the node device in the first cell
  • the corresponding transport block (Transport block, TB) is the same first TB.
  • the third data sent in the second cell corresponds to the first data sent in the first cell may also mean that the third data sent by the node device in the second cell to the terminal device corresponds to the first data sent by the node device in the first cell
  • the same hybrid automatic repeat (HARQ) process so that the terminal device can determine that the first data and the third data correspond to the same first TB according to the same HARQ process, and send the node device to the terminal in the second cell
  • the third data sent by the device is combined with the first data sent by the node device in the first cell, thereby improving demodulation performance.
  • HARQ hybrid automatic repeat
  • the third data sent in the second cell corresponds to the first data sent in the first cell may also refer to the third data sent by the node device to the terminal device in the second cell and the first data sent by the node device in the first cell respectively
  • the corresponding TB is different redundancy versions of the first TB after channel coding; for example, the first data sent in the first cell is the basic data of the first TB, and the third data sent in the second cell is the first TB The first redundant data.
  • the third data sent in the second cell corresponding to the first data sent in the first cell may also mean that the third data sent in the second cell and the first data sent in the first cell are under media access control (media access control).
  • Media access control media access control
  • the terminal device sends second indication information to the node device in the first cell.
  • the terminal device sends the second indication information to the node device in the first cell.
  • the second indication information may indicate that the terminal device receives an error in receiving the first data in the first cell, or may request the node device to send the third data to the terminal device in the first cell.
  • the third data requested by the node device to be sent to the terminal device in the first cell by the second indication information may be the first data, that is, the second indication information requests the node device to retransmit the first data in the first cell.
  • the second indication information involved in this embodiment and subsequent embodiments may be a negative acknowledgement (NACK), a scheduling request (SR), or other indication information, which is not done here Specific restrictions.
  • NACK negative acknowledgement
  • SR scheduling request
  • the node device sends third data to the terminal device in the first cell.
  • the node device receives the second indication information sent by the terminal device in the first cell and sends third data to the terminal device in the first cell according to the second indication information.
  • the TB corresponding to the third data sent by the first cell and the third data sent by the second cell may be different redundancy versions of the second TB after channel coding; for example, the third data sent by the first cell is The basic data of the second TB, and the third data sent in the second cell may be redundant data of the second TB.
  • the third data sent in the first cell may correspond to the first data sent in the first cell, that is, the third data sent by the node device to the terminal device in the first cell may be the first data.
  • the third data sent in the first cell corresponding to the first data sent in the first cell may refer to the third data sent by the node device in the first cell to the terminal device and the first data sent by the node device in the first cell
  • the corresponding first TB is the same.
  • the third data sent in the first cell corresponds to the first data sent in the first cell may also mean that the third data sent by the node device in the first cell to the terminal device corresponds to the first data sent by the node device in the first cell.
  • the same HARQ process so that the terminal device determines that the first data and the third data correspond to the same first TB according to the same HARQ process, and places the third data sent by the node device in the first cell to the terminal device in the first
  • the first data sent by the cell is combined to improve demodulation performance.
  • the third data sent in the first cell corresponds to the first data sent in the first cell may also mean that the TB corresponding to the third data sent in the first cell and the first data sent in the first cell is the first TB passing Different redundancy versions after channel coding; for example, for example, the first data sent in the first cell is the basic data of the first TB, and the third data sent in the first cell is the second redundant data of the first TB,
  • the second redundant data and the first redundant data may be the same or different, and this embodiment is not limited.
  • the third data sent in the first cell corresponding to the first data sent in the first cell may also mean that the third data sent in the first cell and the first data sent in the first cell are under media access control (media access control).
  • Media access control media access control
  • steps 306 to 307 are optional steps, that is, steps 306 and 307 may be performed, or steps 306 and 307 may not be performed.
  • steps 303 to 305 can be performed first, and then steps 306 to 307 can be performed; steps 306 to 307 can be performed first, and then steps 303 to 305 can be performed; steps 306 to 307 and steps can be performed simultaneously 303-Step 305.
  • the terminal device sends the third indication information to the node device in the second cell.
  • the terminal device sends the third indication information to the node device in the second cell.
  • the third indication information may indicate that the terminal device receives the first data correctly in the first cell, or may request the node device to stop sending the third data to the terminal device in the second cell.
  • the terminal device requests the node device to stop sending the third data to the terminal device in the second cell through the third indication information, and may send the third indication information to the node device based on the signal quality of receiving the first data in the first cell. For example, when the signal quality of the first data is higher than the second preset threshold, the terminal device sends third indication information to the node device in the second cell.
  • the third indication information requesting the node device to stop sending the third data to the terminal device in the second cell may also refer to requesting the node device to stop sending the first data to the terminal device in the second cell.
  • the third indication information involved in this embodiment and subsequent embodiments may be an acknowledgement (acknowledgement, ACK) or other indication information, which is not specifically limited herein.
  • acknowledgement acknowledgement
  • ACK acknowledgement
  • step 308 is an optional step, that is, the terminal device determines that the first data is received correctly, the terminal device may send the third indication information to the node device in the second cell, or may not send the third indication information to the node device in the second cell Instructions.
  • the node device stops sending third data to the terminal device in the second cell.
  • the node device may stop sending the third data to the terminal device in the second cell in one of the following ways.
  • the node device receives the third indication information sent by the terminal device in the second cell and stops sending the third data to the terminal device in the second cell according to the third indication information.
  • stopping sending the third data to the terminal device in the second cell may mean that the node device does not send the third data to the terminal device in the second cell, for example, it may be one of the following cases:
  • Case 1-1 Before receiving the third indication information, the node device does not send the third data to the terminal device in the second cell; after receiving the third indication information, the node device will not The second cell sends the third data to the terminal device.
  • Case 1-2 Before receiving the third indication information, the node device has sent the third data to the terminal device in the second cell; after receiving the third indication information, the node device will not be in the second cell Send the third data to the terminal device.
  • Case 1-3 Before receiving the third indication information, the node device is sending third data to the terminal device in the second cell; after receiving the third indication information, the node device will not be in the second cell Send the third data to the terminal device.
  • Method 2 Before the first moment, the node device does not receive the first indication information sent by the terminal device in the second cell, then the node device determines that the terminal device receives the first data correctly in the first cell, and when the first moment is reached The node device may also stop sending the third data to the terminal device in the second cell. Among them, the first moment may be predefined or configured. Wherein, stopping sending the third data to the terminal device in the second cell means that the node device does not send the third data to the terminal device in the second cell, for example, one of the following cases:
  • Case 2-1 The node device does not send the third data to the terminal device in the second cell before the first moment; the node device does not send the terminal device in the second cell to the terminal device after the first moment The third data.
  • Case 2-2 Before the first time, the node device sends the third data to the terminal device in the second cell; after the first time, the node device does not send the third data to the terminal device in the second cell data.
  • Case 2-3 The node device is sending third data to the terminal device in the second cell before the first moment; the node device will not send the third data to the terminal device in the second cell after the first moment data.
  • the third data that the node device stops sending to the terminal device in the second cell may be the first data, that is, the node device may stop sending to the terminal device in the second cell according to the third instruction information The first data.
  • the terminal device sends fourth indication information to the node device in the first cell.
  • the terminal device determines that the first data is received correctly and sends fourth indication information to the node device in the first cell, where the fourth indication information may indicate that the terminal device receives the first data correctly in the first cell, or may request the node device to stop Send the third data to the terminal device in the first cell.
  • the fourth indication information requesting the node device to stop sending the third data to the terminal device in the first cell may also refer to requesting the node device to stop sending the first data to the terminal device in the first cell.
  • the fourth indication information involved in this embodiment and subsequent embodiments may be ACK or other indication information, which is not specifically limited here.
  • the node device stops sending third data in the first cell.
  • the node device receives the fourth indication information of the terminal device in the first cell and stops sending the third data to the terminal device in the first cell according to the fourth indication information.
  • the node device stops sending the third data to the terminal device in the first cell may mean that the node device does not send the third data to the terminal device in the first cell, for example, it may be one of the following cases:
  • Case 3-1 Before receiving the fourth indication information, the node device does not send third data to the terminal device in the first cell; after receiving the fourth indication information, the node device will not A cell sends third data to the terminal device.
  • Case 3-2 Before receiving the fourth indication information, the node device has sent third data to the terminal device in the first cell; after receiving the fourth indication information, the node device will not be in the first cell Send the third data to the terminal device.
  • Case 3-3 Before receiving the fourth indication information, the node device is sending third data to the terminal device in the first cell; after receiving the fourth indication information, the node device will not be in the first cell Send the third data to the terminal device.
  • the third data that the node device stops sending to the terminal device in the first cell according to the fourth instruction information may also be first data, that is, the node device may stop sending the first data to the terminal device in the first cell according to the fourth instruction information. ⁇ One data.
  • steps 308 to 311 are optional steps.
  • steps 308 to 311 may be performed first, steps 310 to 311 may be performed first, or steps 310 to 311 may be performed first.
  • steps 308 to 309 may be performed simultaneously.
  • Step 310 to step 311 are not limited here.
  • At least two cells are configured on the node device side, where the node device sends first data to the terminal device in the first cell, and the terminal device sends first indication information to the node device when the first cell receives the first data error ,
  • the node device sends third data to the terminal device in the second cell according to the first indication information. Therefore, in this embodiment, the terminal device can trigger the node device to send data to the terminal device in the second cell through the indication information, so that the node device can send data through the first cell and the second cell, which improves the robustness of the transmitted data .
  • the node device does not send the third data to the terminal device in the second cell until the second cell receives the first indication information, which reduces interference between the cells and also ensures the efficiency of spectrum resources.
  • the first wireless communication method provided by the embodiment of the present application is described above, and another wireless communication method provided by the embodiment of the present application is described below.
  • FIG. 4 is a schematic flowchart of a second wireless communication method according to an embodiment of the present application.
  • the schematic flowchart may include the following steps :
  • the node device sends the first data to the terminal device in the first cell.
  • Step 401 of this embodiment is similar to step 301 corresponding to FIG. 3 described above. For details, please refer to step 301 of FIG. 3, which will not be repeated here.
  • the terminal device determines whether it is an error to receive the first data in the first cell. If not, perform steps 403 to 404, and if yes, perform steps 405 to 410.
  • Step 402 of this embodiment is similar to step 302 corresponding to FIG. 3 described above. For details, please refer to step 302 of FIG. 3, which will not be repeated here.
  • the terminal device sends third indication information to the node device in the second cell and sends fourth indication information to the node device in the first cell.
  • the terminal device sends third indication information to the node device in the second cell and sends fourth indication information to the node device in the first cell.
  • the third indication information may indicate that the terminal device receives the first data correctly in the first cell, or may request the node device to stop sending the third data to the terminal device in the second cell
  • the fourth indication information may indicate that the terminal device is in The first cell receives the first data correctly, or may request the node device to stop sending the third data to the terminal device in the first cell.
  • the third indication information requesting the node device to stop sending the third data to the terminal device in the second cell may also refer to requesting the node device to stop sending the first data to the terminal device in the second cell.
  • the fourth instruction information requesting the node device to stop sending the third data to the terminal device in the first cell may also refer to requesting the node device to stop sending the first data to the terminal device in the first cell.
  • the communication between the terminal device and the node device in the second cell may be RRC communication or may not be RRC communication, that is, the second cell may be a second Pcell, and the second cell may also be a secondary cell (SCell) ).
  • SCell secondary cell
  • the Scell may be added during RRC reconfiguration to provide additional wireless resources, and there is no RRC communication or RRC connection between the SCell and the UE.
  • the node device stops sending third data to the terminal device in the first cell and in the second cell.
  • the node device receives the third indication information sent by the terminal device in the second cell and stops sending the third data to the terminal device in the second cell according to the third indication information.
  • stopping sending the third data to the terminal device in the second cell may mean that the node device does not send the third data to the terminal device in the second cell, for example, it may be one of the following cases:
  • Case 4-1 Before receiving the third indication information, the node device does not send the third data to the terminal device in the second cell; after receiving the third indication information, the node device will not The second cell sends the third data to the terminal device.
  • Case 4-2 Before receiving the third indication information, the node device has sent third data to the terminal device in the second cell; after receiving the third indication information, the node device will not be in the second cell Send the third data to the terminal device.
  • Case 4-3 Before receiving the third indication information, the node device is sending third data to the terminal device in the second cell; after receiving the third indication information, the node device will not be in the second cell Send the third data to the terminal device.
  • the third data that the node device stops sending to the terminal device in the second cell according to the third instruction information may be first data, that is, the node device may stop sending the first data to the terminal device in the second cell according to the third instruction information data.
  • the node device receives the fourth indication information of the terminal device in the first cell and stops sending the third data to the terminal device in the first cell according to the fourth indication information. In this embodiment, the node device stops sending third data to the terminal device in the first cell. This is similar to the node device stopping sending third data in the first cell to the terminal device in step 311 corresponding to the foregoing FIG. 3, and details are not described here. .
  • the third data that the node device stops sending to the terminal device in the first cell according to the fourth instruction information may also be first data, that is, the node device may stop sending the first data to the terminal device in the first cell according to the fourth instruction information. ⁇ One data.
  • the terminal device sends the first indication message to the node device in the second cell.
  • the terminal device sends the first indication information to the node device in the second cell.
  • the first indication information may indicate that the terminal device receives an error in receiving the first data in the first cell, or may request the node device to send third data to the terminal device in the second cell.
  • the third data that the first indication information requests the node device to send in the second cell may be the first data, that is, the first indication information may request the node device to jointly transmit the first data in the second cell.
  • step 405 is an optional step, that is, the terminal device determines that the first data error is received.
  • the terminal device may send the first indication information to the node device in the second cell, or may not send the first indication information to the node device in the second cell Instructions.
  • the terminal device monitors the first downlink control channel in the second cell.
  • the terminal device After the terminal device determines that the first data reception error, the terminal device monitors the first downlink control channel in the second cell.
  • the first downlink control channel is a control channel where the node device sends third data to the terminal device in the second cell.
  • the terminal device after the terminal device determines that the first data reception error, the terminal device will monitor the first downlink control information in the second cell, that is, the terminal device receives in the first cell
  • the first downlink control channel will not be detected before the first data, which reduces the energy consumption of the blind detection control channel of the terminal device and also ensures the efficiency of spectrum resources.
  • the node device sends third data to the terminal device in the second cell.
  • the node device may send the third data to the terminal device in the second cell in one of the following ways.
  • Method 1 Before the second time, the node device does not receive the third indication information sent by the terminal device in the second cell, then the node device determines that the terminal device receives the first data error in the first cell, and when the second time is reached Send the third data to the terminal device in the second cell.
  • the second moment may be predefined or configured.
  • the third data sent by the node device to the terminal device in the second cell may be carried on the first downlink control channel. It can be understood that when the third data is carried on the first downlink When controlling the channel, the third data is the control data of the first downlink control channel.
  • the third data sent by the node device to the terminal device in the second cell may also be carried on the downlink shared channel. It can be understood that when the third data is carried on the downlink shared channel, the third data is service data. It should be noted that the parameters used by the terminal device to receive the third data on the downlink shared channel are carried in the first downlink control channel.
  • the third data sent in the second cell may correspond to the first data sent in the first cell, that is, the third data sent by the node device to the terminal device in the second cell may be the first ⁇ One data.
  • the third data sent in the second cell in step 407 may correspond to the first data sent in the first cell and the third data sent in the second cell described in step 305 of the embodiment corresponding to FIG. 3 may be Corresponding to the first data sent in the first cell is similar, it will not be repeated here, please refer to step 305 for details.
  • the terminal device sends second indication information to the node device in the first cell.
  • the terminal device sends the second indication information to the node device in the first cell.
  • the second indication information may indicate that the terminal device receives an error in receiving the first data in the first cell, or may request the node device to send the third data to the terminal device in the first cell.
  • the third data requested by the node device to be sent to the terminal device in the first cell by the second indication information may be the first data, that is, the second indication information requests the node device to retransmit the first data in the first cell.
  • the terminal device monitors the fourth downlink control channel in the first cell.
  • the terminal device After the terminal device sends the second indication information to the node device in the first cell, the terminal device monitors the fourth downlink control channel in the first cell.
  • the fourth downlink control channel is a control channel where the node device sends third data to the terminal device in the first cell.
  • the node device sends third data to the terminal device in the first cell.
  • the node device receives the second indication information sent by the terminal device in the first cell and sends third data to the terminal device in the first cell according to the second indication information.
  • the TB corresponding to the third data sent by the first cell and the third data sent by the second cell may be different redundancy versions of the second TB after channel coding; for example, the third data sent by the first cell is The basic data of the second TB, and the third data sent in the second cell may be redundant data of the second TB.
  • the third data sent in the first cell may correspond to the first data sent in the first cell, that is, the third data sent in the first cell is the first data.
  • the third data sent in the first cell in step 410 may correspond to the first data sent in the first cell and the third data sent in the first cell described in step 307 in the embodiment corresponding to FIG. 3 described above.
  • the three data may correspond to the first data sent in the first cell is similar, which will not be repeated here, please refer to step 307 for details.
  • steps 405-step 410 are optional steps.
  • the terminal device executes steps 405-step 410.
  • steps 405-step 407 can be executed first, then steps 408-step 410 can be executed, steps 408-step 410 can be executed first, and steps 405-step 407 and step 408 can also be executed at the same time.
  • -Step 410 not limited here.
  • At least two cells are configured on the node device side, where the node device sends the first data to the terminal device in the first cell, and the node device does not receive the third indication information in the second cell before the second preset time Or, if the first indication information is received in the second cell, the node device sends the first data to the terminal device in the second cell. Therefore, in this embodiment, the first indication information sent by the terminal device or the second preset moment preset by the node device triggers the node device to send third data in the second cell, so that the node device can pass through the first cell Sending data with the second cell improves the robustness of the transmitted data. In addition, the node device does not send the first data to the terminal device in the second cell before the second cell receives the first indication information or before the second preset time, which reduces the interference between the cells and also guarantees the spectrum resources. effectiveness.
  • the second wireless communication method provided by the embodiment of the present application is described above, and another wireless communication method provided by the embodiment of the present application is described below.
  • FIG. 5 is a schematic flowchart of a third wireless communication method provided by an embodiment of the present application. As shown in FIG. 5, the schematic flowchart may include the following steps :
  • the first node device sends the first data to the terminal device in the first cell.
  • step 501 the actions performed by the first node device are similar to the actions performed by the node device in step 301 corresponding to the foregoing FIG. 3. For details, refer to step 301 in FIG. 3, and details are not described here.
  • the terminal device determines whether it is an error to receive the first data in the first cell. If yes, perform steps 503 to 508; if not, perform steps 509 to 512.
  • Step 502 in this embodiment is similar to step 302 corresponding to FIG. 3 described above. For details, please refer to step 302 in FIG. 3, which will not be repeated here.
  • the terminal device sends the first indication information to the second node device in the second cell.
  • the terminal device sends the first indication information to the second node device in the second cell.
  • the first indication information may indicate that the terminal device receives an error in receiving the first data in the first cell, or may request the second node device to send third data to the terminal device in the second cell.
  • the third data that the first indication information requests the second node device to send in the second cell may be the first data, that is, the first indication information may request the second node device to perform joint transmission in the second cell. ⁇ One data.
  • the communication between the terminal device and the second node device in the second cell may be RRC communication, or may not be RRC communication, that is, the second cell may be a second Pcell, and the second cell may also be an SCell.
  • the Scell may be added during RRC reconfiguration to provide additional wireless resources, and there is no RRC communication or RRC connection between the SCell and the UE.
  • the terminal device monitors the first downlink control channel in the second cell.
  • the terminal device After the terminal device sends the first indication information to the second node device in the second cell, the terminal device monitors the first downlink control channel in the second cell.
  • the first downlink control channel is a control channel where the second node device sends third data to the terminal device in the second cell.
  • the terminal device monitors the first downlink control information in the second cell, that is, the terminal device is sending The first indication information will not detect the first downlink control channel before, which reduces the energy consumption of the blind detection control channel of the terminal device and also ensures the efficiency of the spectrum resource.
  • the first node device sends third data to the second node device.
  • the first node device may send the third data to the second node device through an air interface message.
  • the third data is data sent by the first node device to the terminal device in the first cell. It can be understood that the first node device may also send the third data to the second node device by other means, for example, by wire
  • the connection or optical fiber connection sends the third data to the second node device, which is not limited here.
  • the first node device may send the third data to the second node device while the first cell sends the first data to the terminal device.
  • the second node device may also send the third data to the second node device before the second cell sends the first data to the node device in the second cell.
  • the third data may also be sent to the second node device, which is not limited herein.
  • the third data sent by the first node device to the second node device may be the first data.
  • step 505 is an optional step.
  • the first node device executes step 505.
  • the second node device sends third data to the terminal device in the second cell.
  • the actions performed by the second node device in step 506 of this implementation are similar to the actions performed by the node device in step 305 corresponding to the foregoing FIG. 3, and details are not described herein again.
  • the terminal device sends second indication information to the first node device in the first cell.
  • the terminal device sends second indication information to the first node device in the first cell.
  • the second indication information may indicate that the terminal device receives an error in receiving the first data in the first cell, or may request the first node device to send third data to the terminal device in the first cell.
  • the third data that the second indication information requests the first node device to send to the terminal device in the first cell may be the first data, that is, the second indication information requests the first node device to retransmit the first data in the first cell ⁇ One data.
  • the first node device sends third data to the terminal device in the first cell.
  • step 508 the actions performed by the first node device are similar to the actions performed by the node device in step 307 corresponding to the foregoing FIG. 3. For details, refer to step 307 in FIG. 3, and details are not described here.
  • steps 507-508 are optional, that is, steps 507-508 may be performed, or steps 507-508 may not be performed.
  • steps 503-step 506 can be executed first, then steps 507-step 508 can be executed, steps 507-step 508 can be executed first, then steps 503-step 506 can be executed, and steps 503-step 506 and steps can also be executed simultaneously.
  • the terminal device sends third indication information to the second node device in the second cell.
  • step 509 the actions performed by the second node device are similar to the actions performed by the node device in step 308 corresponding to the foregoing FIG. 3. For details, refer to step 308 in FIG. 3, and details are not described here.
  • step 509 is an optional step, that is, after the terminal device determines that the first data is received correctly, the terminal device may send the third indication information to the second node device in the second cell, or may not send the second indication information to the second cell The node device sends third indication information.
  • the second node device stops sending third data to the terminal device in the second cell.
  • step 510 the actions performed by the second node device are similar to the actions performed by the node device in step 309 corresponding to the foregoing FIG. 3. For details, refer to step 309 in FIG. 3, and details are not described here.
  • the terminal device sends fourth indication information to the first node device in the first cell.
  • the terminal device determines that the first data is received correctly and sends fourth indication information to the node device in the first cell, where the fourth indication information may indicate that the terminal device receives the first data correctly in the first cell, or may request the node device to stop Send the third data to the terminal device in the first cell.
  • the fourth indication information requesting the node device to stop sending the third data to the terminal device in the first cell may also refer to requesting the node device to stop sending the first data to the terminal device in the first cell.
  • the first node device stops sending third data to the terminal device in the first cell.
  • step 512 the actions performed by the first node device are similar to the actions performed by the node device in step 311 corresponding to the foregoing FIG. 3. For details, refer to step 311 in FIG. 3, and details are not described here.
  • steps 509-step 512 are optional steps. In practical applications, when it is determined that the first cell receives the first data correctly, the terminal device performs steps 509-step 512. among them. In this embodiment, steps 509-510 may be performed first, then steps 511-512 may be performed, steps 511-step 512 may be performed first, then steps 509-510 may be performed, and steps 509-510 and 511 may be performed simultaneously. -Step 512, not limited here.
  • the terminal device is associated with at least two node devices, where the first node device sends first data to the terminal device in the first cell, and the terminal device sends to the second node device when the first cell receives the first data error
  • the second node device sends the third data to the terminal device in the second cell according to the first indication information. Therefore, in this embodiment, the terminal device can trigger the second node device to send the third data to the terminal device in the second cell through the indication information, so that the terminal device can receive data through the first node device and the second node device, which improves transmission Robustness of data.
  • the second node device will not send the third data to the terminal device in the second cell until the second cell receives the first indication information, which reduces interference between the cells and also ensures the efficiency of spectrum resources.
  • the third wireless communication method provided by the embodiment of the present application is described above, and another wireless communication method provided by the embodiment of the present application is described below.
  • FIG. 6 is a schematic flowchart of a fourth wireless communication method provided by an embodiment of the present application. As shown in FIG. 6, the schematic flowchart may include the following steps :
  • the first node device sends the first data to the terminal device in the first cell.
  • step 601 the actions performed by the first node device are similar to the actions performed by the node device in step 301 corresponding to the foregoing FIG. 3. For details, refer to step 310 in FIG. 3, and details are not described here.
  • the terminal device determines whether it is an error to receive the first data in the first cell. If not, perform steps 603 to 606, and if so, perform steps 607 to 613.
  • Step 602 of this embodiment is similar to step 302 corresponding to FIG. 3 described above. For details, please refer to step 302 of FIG. 3, which will not be repeated here.
  • the terminal device sends third indication information to the second cell and the second node device.
  • the terminal device sends the third indication information to the second node device in the second cell.
  • the third indication information may indicate that the terminal device receives the first data correctly in the first cell, or may request the second node device to stop sending the third data to the terminal device in the second cell.
  • the third indication information requesting the second node device to stop sending the third data to the terminal device in the second cell may also refer to requesting the second node device to stop sending the first data to the terminal device in the second cell.
  • the communication between the terminal device and the node device in the second cell may be RRC communication or may not be RRC communication, that is, the second cell may be a second Pcell, and the second cell may also be a secondary cell (SCell) ).
  • SCell secondary cell
  • the Scell may be added during RRC reconfiguration to provide additional wireless resources, and there is no RRC communication or RRC connection between the SCell and the UE.
  • the second node device stops sending third data to the terminal device in the second cell.
  • the second node device determines that the terminal device successfully receives the first data in the first cell according to the third instruction information, and stops sending the third data to the terminal device in the second cell. In this embodiment, the second node device stops sending third data to the terminal device in the second cell. This is similar to the node device stopping sending third data in the second cell to the terminal device in step 404 corresponding to the foregoing FIG. 4. Repeat again.
  • the third data that the second node device stops sending to the terminal device in the second cell according to the third instruction information may be first data, that is, the second node device may stop sending the terminal in the second cell to the terminal according to the third instruction information The device sends the first data.
  • the terminal device sends fourth indication information to the first node device in the first cell.
  • the terminal device sends fourth indication information to the first node device in the first cell.
  • the fourth indication information may indicate that the terminal device receives the first data correctly in the first cell, or may request the first node device to stop sending the third data to the terminal device in the first cell.
  • the fourth indication information requesting the first node device to stop sending the third data to the terminal device in the first cell may also refer to requesting the first node device to stop sending the first data to the terminal device in the first cell.
  • the first node device stops sending third data to the terminal device in the first cell.
  • the second node device determines that the terminal device successfully receives the first data in the first cell according to the fourth instruction information, and stops sending the third data to the terminal device in the first cell.
  • the first node device stops sending third data to the terminal device in the first cell. This is similar to the node device stopping sending third data in the first cell to the terminal device in step 311 corresponding to the foregoing FIG. 3. Repeat again.
  • the third data that the first node device stops sending to the terminal device in the first cell according to the fourth indication information may also be the first data, that is, the first node device may stop sending data in the first cell according to the fourth indication information.
  • the terminal device sends the first data.
  • the terminal device may first perform steps 603-step 604, and then perform steps 605-step 606, or may perform steps 605-step 606, then perform steps 603-step 604, or may simultaneously execute steps 603- Step 604 and step 605-step 606 are not limited here.
  • the terminal device sends the first indication message to the second node device in the second cell.
  • the terminal device sends the first indication information to the second node device in the second cell.
  • the first indication information may indicate that the terminal device receives an error in receiving the first data in the first cell, or may request the second node device to send third data to the terminal device in the second cell.
  • the third data that the first indication information requests the second node device to send in the second cell may be the first data, that is, the first indication information may request the second node device to perform joint transmission in the second cell. ⁇ One data.
  • step 607 is an optional step, that is, the terminal device determines to receive the first data error, and the terminal device may send the first indication information to the second node device in the second cell, or may not send the second node to the second node The device sends first indication information.
  • the terminal device monitors the first downlink control channel in the second cell.
  • the terminal device monitors the first downlink control channel in the second cell.
  • the first downlink control channel is a control channel where the second node device sends third data to the terminal device in the second cell.
  • the terminal device after the terminal device determines that the first data reception error, the terminal device will monitor the first downlink control information in the second cell, that is, the terminal device receives in the first cell
  • the first downlink control channel will not be detected before the first data, which reduces the energy consumption of the blind detection control channel of the terminal device and also ensures the efficiency of spectrum resources.
  • the first node device sends third data to the second node device.
  • Step 609 in this embodiment is similar to step 505 corresponding to the foregoing FIG. 5.
  • Step 505 in FIG. 5 please refer to step 505 in FIG. 5, which will not be repeated here.
  • the second node device sends third data to the terminal device in the second cell.
  • the second node device may send the third data to the terminal device in the second cell in one of the following ways.
  • Method 1 Before the second moment, the second node device does not receive the third indication information sent by the terminal device in the second cell, then the second node device determines that the terminal device receives the first data error in the first cell and arrives At the second moment, the third data is sent to the terminal device in the second cell.
  • the second moment may be predefined or configured.
  • Method 2 When the second node device receives the first indication information sent by the terminal device in the second cell, the second node device may also determine that the terminal device receives the first data error according to the first indication information and send the error to the terminal device in the second cell Send third data.
  • the third data sent by the second node device to the terminal device in the second cell may be carried on the first downlink control channel. It can be understood that when the third data is carried on the first In a downlink control channel, the third data is control data of the first downlink control channel.
  • the third data sent by the second node device to the terminal device in the second cell may also be carried on the downlink shared channel. It can be understood that when the third data is carried on the downlink shared channel, the third data is service data. It should be noted that the parameters used by the terminal device to receive the third data on the downlink shared channel are carried in the first downlink control channel.
  • the third data sent in the second cell may correspond to the first data sent in the first cell, that is, the third data sent by the second node device to the terminal device in the second cell may Is the first data.
  • the third data sent in the second cell in step 610 may correspond to the first data sent in the first cell and the third data sent in the second cell described in step 305 of the embodiment corresponding to FIG. 3 described above.
  • the three data may correspond to the first data sent in the first cell is similar, which will not be repeated here, please refer to step 305 for details.
  • the terminal device sends second indication information to the first node device in the first cell.
  • the terminal device sends second indication information to the first node device in the first cell.
  • the second indication information may indicate that the terminal device receives the first data error in the first cell, or may request the first node device to send the third data to the terminal device in the first cell.
  • the third data that the second indication information requests the first node device to send to the terminal device in the first cell may be the first data, that is, the second indication information requests the first node device to retransmit the first data in the first cell ⁇ One data.
  • the terminal device monitors the fourth downlink control channel in the first cell.
  • the terminal device After the terminal device sends the second indication information to the first node device in the first cell, the terminal device monitors the fourth downlink control channel in the first cell.
  • the fourth downlink control channel is a control channel where the first node device sends third data to the terminal device in the first cell.
  • the first node device sends third data to the terminal device in the first cell.
  • step 613 the actions performed by the first node device are similar to the actions performed by the node device in step 410 corresponding to the foregoing FIG. 4, for details, refer to step 310 in FIG. 3, and details are not described here.
  • steps 607 to 613 are optional steps.
  • the terminal device executes steps 607 to 613.
  • steps 607 to 610 may be executed first, steps 611 to 613 may be executed, steps 611 to 613 may be executed first, steps 607 to 610 may be executed, and steps 607 to 613 and steps may be executed simultaneously. 611 Step 613, which is not limited here.
  • the terminal device is associated with at least two node devices, where the first node device sends the first data to the terminal device in the first cell, and the second node device does not receive it in the second cell before the second preset time If the fourth indication information or the first indication information is received in the second cell, the second node device sends the first data to the terminal device in the second cell. Therefore, in this embodiment, the first indication information sent by the terminal device or the second preset time preset by the second node device triggers the node device to send the third data in the second cell, so that the terminal device can receive the first The node device and the second node device send third data, which improves the robustness of the transmitted data. In addition, the second node device will not send the third data to the terminal device in the second cell until the second cell receives the first indication information or before the second preset time, which reduces the interference between the cells and also guarantees The efficiency of spectrum resources.
  • the fourth wireless communication method provided by the embodiment of the present application is described above, and another wireless communication method provided by the embodiment of the present application is described below.
  • FIG. 7 is a schematic flowchart of a fifth wireless communication method provided by an embodiment of the present application. As shown in FIG. 7, the schematic flowchart may include the following steps :
  • the terminal device sends a first scheduling request (SR) SR to the node device in the first cell and sends a second SR to the node device in the second cell.
  • SR scheduling request
  • the terminal device Before the terminal device sends the second data, the terminal device sends the first SR to the node device in the first cell and sends the second SR to the node device in the second cell.
  • the first SR is used to request the second data to be sent to the node device
  • the second SR is used to request the second data to be sent to the node device. It should be noted that this embodiment and subsequent embodiments only use the example of sending an SR for requesting second data in the first cell and the second cell as an example for description, and may send the request for second data in more cells. SR, not limited here.
  • the second data is uplink data
  • the node device serves as a terminal device
  • the second data is sidelink data
  • the resources for carrying the first SR correspond to the resources for carrying the second SR of the first node device.
  • the correspondence between the resources used to carry the first SR of the first node device and the resources used to carry the second SR of the first node device is described in detail below.
  • the correspondence between the resources used to carry the second SR and the resources used to carry the first SR may refer to that there is a predefined or configured between the index used to carry the second SR and the index used to carry the first SR Relationship.
  • the terminal device is configured with N1 candidate resources that can be used to send the first SR in the first cell, and its index X is 0 to N1-1; the terminal is configured with N2 resources that can be used to send the second cell
  • the candidate resource of the second SR has an index Y of 0 to N2-1.
  • the frequency domain position F1 of the resource for carrying the first SR may be the position of the lowest subcarrier, the position of the center subcarrier or the position of the highest subcarrier for carrying the resources of the first SR
  • the frequency domain position F2 of the resources of the second SR may be the position of the lowest subcarrier, the position of the center subcarrier, or the position of the highest subcarrier used to carry the resources of the second SR.
  • the terminal equipment requests the first SR and the second SR to schedule the second data
  • the terminal device performs RRC communication with the node device through the first cell, that is, the first cell is the first PCell; the terminal device may also perform RRC communication with the node device through the second cell, that is, the second cell It may be a second Pcel; the terminal device may not perform RRC communication with the node device through the second cell, that is, the second cell may also be an SCell.
  • the RRC communication between the terminal device and the node device may refer to the communication performed after the terminal device and the node device establish an RRC connection.
  • the terminal device monitors the second downlink control channel and the third downlink control channel.
  • the terminal device After the terminal device sends the first SR to the node device in the first cell and sends the second SR to the node device in the second cell, the terminal device monitors the second downlink control channel in the first cell and the third downlink control channel in the second cell.
  • the second downlink control channel is a control channel where the node device sends downlink control information (downlink control information, DCI) in the first cell
  • the third downlink control channel is the control channel where the node device sends DCI in the second cell.
  • the node device sends DCI to the terminal device.
  • the node device After the node device receives the first SR and the second SR, the node device determines that the first SR and the second SR are used for the request according to the correspondence between the resources for carrying the first SR and the resources for carrying the second SR Send the second data to the node device.
  • the node device may send DCI to the terminal device on the second downlink control channel, or may send DCI to the terminal device on the third downlink control channel, or may send DCI to the terminal device on the second downlink control channel and the third downlink control channel, where The DCI is used by the terminal device to send the second data to the node device.
  • the DCI includes parameters used to transmit the second data, such as HARQ information and power control parameters.
  • the terminal device sends second data to the node device.
  • the terminal device After the terminal device receives the DCI sent by the node device, the terminal device sends the second data to the node device in the first cell according to the DCI, or may send the second data to the node device in the second cell, and may also be sent between the first cell and the second cell.
  • the cell sends the second data to the node device.
  • the terminal device sends the first SR to the node device in the first cell and sends the second SR to the node device in the second cell, where resources used to carry the first SR and resources used to carry the second SR Correspondence, so that the node device can determine that the first SR and the second SR are used to request to send the second data according to the correspondence between the resources used to carry the first SR and the resources used to carry the second SR. Therefore, in this embodiment, the terminal device may send the SR to the node device through at least two cells, which improves the robustness of the transmission of the SR, thereby improving the robustness of the transmission of the second data.
  • the fifth wireless communication method provided by the embodiment of the present application is described above, and another wireless communication method provided by the embodiment of the present application is described below.
  • FIG. 8 is a schematic flowchart of a sixth wireless communication method provided by an embodiment of the present application. As shown in FIG. 8, the schematic flowchart may include the following steps :
  • the terminal device sends the first SR to the first node device in the first cell.
  • the terminal device Before the terminal device sends the second data, the terminal device sends the first SR to the first node device in the first cell. Among them, the first SR is used to request to send the second data.
  • the terminal device sends the second SR to the second node device in the second cell.
  • the terminal device While the terminal device sends the first SR to the first node device in the first cell, the terminal device may also send the second SR to the second node device in the second cell. Wherein, both the first SR and the second SR are used to request to send the second data.
  • this embodiment and subsequent embodiments only use the example of sending an SR for requesting second data to the first node device and the second node device as an example, and may also send a request for request to more node devices
  • the SR of the second data is not limited here.
  • resources for carrying the first SR of the first node device correspond to resources for carrying the second SR of the first node device.
  • the correspondence between the resources used to carry the first SR of the first node device and the resources used to carry the second SR of the first node device is similar to that described in step 701 of FIG. 7 and will not be repeated here.
  • the terminal device performs RRC communication with the node device through the first cell, that is, the first cell is the first PCell; the terminal device may also perform RRC communication with the node device through the second cell, that is, the second cell It may be a second Pcel; the terminal device may not perform RRC communication with the node device through the second cell, that is, the second cell may also be an SCell.
  • the terminal device may perform step 801 and step 802 at the same time, or may perform step 801 before performing step 802, or perform step 802 before performing step 801, which is not limited herein.
  • the terminal device monitors the second downlink control channel and the third downlink control channel.
  • the terminal device After the terminal device sends the first SR to the node device in the first cell and sends the second SR to the node device in the second cell, the terminal device monitors the second downlink control channel in the first cell and the third downlink control channel in the second cell .
  • the second downlink control channel is a control channel where the node device sends DCI in the first cell
  • the third downlink control channel is the control channel where the node device sends DCI in the second cell.
  • the first node device sends DCI to the terminal device in the first cell.
  • the first node device After the first node device receives the first SR in the first cell, the first node device sends DCI to the terminal device through the second downlink control channel.
  • the DCI corresponds to the second data, and the DCI includes parameters used to transmit the second data, such as HARQ information and power control parameters.
  • the first node device sends fifth indication information to the second node device.
  • the first node device sends fifth indication information to the second node device.
  • the fifth indication information instructs the first node device to send DCI to the terminal device in the first cell, that is to say, the fifth indication information indicates that the second node device does not need to send DCI to the terminal device in the second cell.
  • the first node device may send fifth indication information to the second node device before sending DCI to the terminal device, or may send the fifth indication information to the second node device after sending DCI to the terminal device, or While sending DCI to the terminal device, the fifth indication information is sent to the second node device, which is not limited here.
  • step 805 is an optional step. In practical applications, step 805 may or may not be executed.
  • the second node device stops sending DCI to the terminal device in the second cell.
  • the second node device determines that the first node device sends DCI to the terminal device in the first cell
  • the second node device does not send DCI to the terminal device.
  • the second node device may determine that the first node device sends DCI to the terminal device in the first cell according to the fifth indication information.
  • the second node device After the second node device receives the second SR in the second cell, the second node device corresponds to the resource for carrying the first SR of the first node device and the resource for carrying the second SR of the first node device Relationship, it is determined that both the first SR and the second SR are used to request second data.
  • the first node device sends DCI to the terminal device in the first cell according to the first SR, the second node device no longer sends DCI to the terminal device.
  • the second node device after receiving the fifth indication information, the second node device does not send DCI to the terminal device, thereby saving network resources.
  • the terminal device sends second data.
  • the terminal device receives the DCI sent by the second node device and sends the second data to the first node device in the first cell according to the DCI. It should be noted that the terminal device may also send the second data to the second node device in the second cell , The second data may also be sent to the first node device in the first cell and to the second node device in the second cell.
  • the terminal device sends the first SR to the first node device in the first cell and sends the second SR to the second node device in the second cell, where resources used to carry the first SR and The resources of the two SRs correspond to each other, so that the first node device and the second node device can determine the first SR and the second SR to request to send the first ⁇ Data. Therefore, in this embodiment, the terminal device improves the robustness of transmitting the SR by sending the SR to at least two node devices, so that the robustness of transmitting the second data can be improved.
  • the sixth wireless communication method provided by the embodiment of the present application is described above, and another wireless communication method provided by the embodiment of the present application is described below.
  • FIG. 9 is a schematic flowchart of a seventh wireless communication method provided by an embodiment of the present application. As shown in FIG. 9, the schematic flowchart may include the following steps :
  • the terminal device sends the first SR to the first node device in the first cell.
  • the terminal device sends the second SR to the second node device in the second cell.
  • the terminal device monitors the second downlink control channel and the third downlink control channel.
  • steps 901 to 903 are similar to steps 801 to 803 in the embodiment corresponding to FIG. 8 described above, and are not repeated here.
  • the second node device sends DCI to the terminal device in the second cell.
  • the second node device receives the second SR in the second cell and sends DCI to the terminal device through the third downlink control channel.
  • the third downlink control channel is a control channel for the second node device to send DCI in the second cell.
  • the DCI includes parameters used to transmit the second data, such as HARQ information and power control parameters.
  • the terminal device sends second data.
  • the terminal device receives the DCI sent by the node device and sends the second data to the second node device in the second cell. It should be noted that the terminal device may also send the second data to the first node device in the first cell. The first cell sends second data to the first node device and the second cell to the second node device.
  • the terminal device sends the first SR to the first node device in the first cell and sends the second SR to the second node device in the second cell, where resources used to carry the first SR and The resources of the two SRs correspond to each other, so that the first node device and the second node device can determine the first SR and the second SR to request to send the first ⁇ Data. Therefore, in this embodiment, the terminal device improves the robustness of transmitting SR by sending SR to at least two node devices, so that the robustness of transmitting second data can be improved.
  • the seventh wireless communication method provided by the embodiment of the present application is described above, and another wireless communication method provided by the embodiment of the present application is described below.
  • FIG. 10 is a schematic flowchart of an eighth wireless communication method according to an embodiment of the present application. As shown in FIG. 10, the flowchart may include the following steps:
  • the node device configures parameters for the terminal device according to the service type of the service.
  • the node device can configure parameters for the terminal device according to the quality of service (QoS) corresponding to the service type of the service.
  • QoS quality of service
  • the service quality can correspond to the transmission robustness or Transmission delay requirements, etc.
  • the node device configures at least two sets of configuration parameters for the terminal device, for example, the carrier bandwidth for transmitting the first service is configured with the first configuration parameter, and the carrier bandwidth for transmitting the second service is configured with the second configuration parameter.
  • the transmission cell, retransmission mode and feedback mode corresponding to different configuration parameters is different.
  • at least one of the transmission cell, retransmission mode, and feedback mode corresponding to the first configuration parameter is different from the transmission cell, retransmission mode, and feedback mode corresponding to the second configuration parameter.
  • the first One configuration parameter corresponds to the first transmission cell, the first retransmission mode and the first feedback mode
  • the second configuration parameter corresponds to the second transmission cell, the second retransmission mode and the second feedback mode
  • the first configuration parameter may also correspond to the first transmission cell, the first retransmission mode, and the first feedback mode
  • the second configuration parameter corresponds to the second transmission cell, the first retransmission mode, and the first feedback mode.
  • only the first configuration parameter corresponds to the first transmission cell, the first retransmission mode and the first feedback mode
  • the second configuration parameter corresponds to the second transmission cell, the second retransmission mode and the second
  • the feedback method is described as an example.
  • the configuration parameters of the terminal device may include the terminal device identification, data channel parameters, and control channel parameters.
  • the terminal device identifier includes at least a radio network temporary identifier (RNTI)
  • the data channel parameters include at least a resource block group (RBG) table, a time domain resource allocation table, and a modulation and coding strategy.
  • MCS modulation and coding scheme
  • CQI channel quality information
  • the control channel parameters include at least DCI format. That is to say, at least one of the RNTI, DCI format, RBG table, time domain resource allocation table, MCS table, and CQI table respectively corresponding to the first configuration parameter and the second configuration parameter is different.
  • the node device may determine the configuration parameter for transmitting the first data according to the service type corresponding to the first data. For example, the node device configures the first configuration parameter for the terminal device according to the service corresponding to the first data.
  • the terminal device obtains the first configuration parameter.
  • the terminal device obtains the first configuration parameter from the network device, where the first configuration parameter is a configuration parameter for transmitting the first data, and the first configuration parameter indicates at least one of a transmission cell of the first data, a retransmission mode, and a feedback mode,
  • the first configuration parameter includes at least one of a terminal device identifier, a data channel parameter, and a control channel parameter.
  • the terminal device determines at least one of a first data transmission cell, a retransmission mode, and a feedback mode from the first configuration parameter.
  • the terminal device determines the terminal device identifier, the data channel parameter, and the control channel parameter from the acquired first configuration parameters and determines at least one of the first data transmission cell, retransmission mode, and feedback mode according to at least one of the parameters.
  • only one of the terminal device identifier, the data channel parameter, and the control channel parameter determines the transmission cell, the retransmission mode, and the feedback mode of the first data as an example for description.
  • the following uses DCI format as the control channel parameter, RNTI as the terminal device identifier, and MCS table, RBG configuration table, time domain resource allocation table, and CQI table as data control channels, respectively, to determine the transmission of the first data for the terminal device.
  • DCI format as the control channel parameter
  • RNTI as the terminal device identifier
  • MCS table RBG configuration table
  • time domain resource allocation table as data control channels, respectively.
  • CQI table CQI table
  • control channel parameters are in DCI format.
  • the terminal device may determine the transmission cell, retransmission mode, and feedback mode of the first data according to the DCI format. It should be noted that different DCI formats may have different payloads of DCI, different bit fields included in DCI, or the same bit field included in DCI but occupying different number of bits.
  • the number of bit fields included in the DCI format corresponding to the first transmission cell of the first data, the first retransmission mode, and the first feedback mode is the same as the second transmission cell of the first data, the second retransmission mode, and the second The number of bit fields included in the DCI format corresponding to the feedback mode is different, so that the terminal device can determine the transmission cell, retransmission mode, and feedback mode of the first data according to the number of bit fields included in the DCI format.
  • the terminal device may also determine the transmission cell, retransmission mode, and feedback mode of the first data according to the value range of the bit field in the DCI format.
  • the value range of the bit field in the DCI format corresponding to the first transmission cell, the first retransmission mode, and the first feedback mode of the first data is different from the second transmission cell, the second retransmission mode, and the first The value range of the bit field value in the DCI format corresponding to the second feedback mode.
  • the value range of the bit domain may refer to the value range of the number of bits in the bit domain, and the value range of the bit domain may also refer to the value range of the value represented by the bits in the bit domain.
  • the terminal device may also determine the transmission cell, retransmission mode, and feedback mode of the first data according to the number of bits included in the DCI. For example, the number of bits in the bit domain used for frequency domain scheduling, time domain scheduling, and/or MCS indication in the DCI format corresponding to the first transmission cell of the first data, the first retransmission mode, and the first feedback mode is less than the first The number of bits in the bit domain used for frequency domain scheduling, time domain scheduling, and/or MCS indication in the DCI format corresponding to the second transmission cell of the data, the second retransmission mode, and the second feedback mode.
  • the control channel parameters are of RNTI type.
  • the terminal device may also determine the transmission cell, retransmission mode, and feedback mode of the first data according to the RNTI type. Specifically, during the process of acquiring the DCI, the terminal device may detect the DCI through different RNTIs and determine that the RNTI corresponding to the DCI is detected, and then the terminal device determines the transmission cell of the first data according to the RNTI corresponding to the detected DCI. Retransmission mode and feedback mode.
  • the first transmission cell of the first data, the first retransmission mode and the first feedback mode correspond to the newly defined cell radio network temporary identifier (new C-RNTI) and the newly defined pre-scheduled radio network temporary identifier (new CS-RNTI) RNTI), one or more of the newly defined semi-permanent channel state information wireless network temporary identifier (new SP-CSI-RNTI), the second transmission cell of the first data, the second retransmission mode and the second feedback mode
  • Corresponding cell radio network temporary identifier (cell RNTI, C-RNTI), pre-scheduling radio network temporary identifier (configured scheduling RNTI, CS-RNTI), semi-permanent channel state information radio network temporary identifier (semi-persistent channel state information RNTI, SP -One or more of CSI-RNTI).
  • the data channel parameters are RBG configuration tables.
  • the terminal device may also determine the transmission cell, retransmission mode, and feedback mode of the first data according to the RBG configuration table.
  • the RBG in the first RBG configuration table corresponding to the first transmission cell, the first retransmission mode, and the first feedback mode of the first data is greater than the second transmission cell, the second retransmission mode, and the second feedback mode.
  • Two RBG in the RBG configuration table For example, the minimum RBG in the first RBG configuration table may be greater than the maximum RBG in the second RBG configuration table, or the maximum RBG in the first RBG configuration table may be greater than the maximum RBG in the second RBG configuration table. There are no restrictions.
  • the size of the RBG in the RBG configuration table enables the terminal device to determine the transmission cell, retransmission mode, and feedback mode of the first data from the RBG configuration table.
  • an RBG greater than a preset threshold can be configured in the RBG configuration table, so that the number of symbols required to transmit the first data can also be reduced under the premise of transmitting the same amount of data, thereby reducing the transmission delay of the first data , And reduce the DCI load size for scheduling the first data, improve the robustness of DCI transmission, and reduce the overhead of parsing DCI.
  • the data channel parameters are time-domain resource allocation tables.
  • the terminal device may also determine the transmission cell, retransmission mode, and feedback mode of the first data according to the time domain resource allocation table. Specifically, the maximum number of rows or the maximum number of columns in the time domain resource allocation table configured for different transmission cells, retransmission modes, and feedback modes may be different, that is, the terminal device may allocate the maximum number of rows or the maximum columns in the time domain resource allocation table The number determines the transmission cell, retransmission mode and feedback mode of the first data.
  • the maximum number of rows of the time domain resource allocation table that can be configured for the first transmission cell of the first data, the first retransmission mode, and the first feedback mode is 4, and the second transmission cell of the first data, the second retransmission
  • the maximum number of rows of the time domain resource allocation table that can be configured in the mode and the second feedback mode is 16 rows.
  • a time-domain resource allocation table with fewer rows than a preset threshold can be configured to reduce the DCI load size for scheduling the first data, improve the robustness of DCI transmission, and reduce the overhead of parsing DCI.
  • the data channel parameters are MCS tables.
  • the terminal device may also determine the transmission cell, the retransmission mode, and the feedback mode of the first data according to the MCS table. Specifically, the maximum number of rows or the maximum number of columns of the MCS table configured for different transmission cells, retransmission modes, and feedback modes may be different, that is, the terminal device may also determine the first number according to the maximum number of rows or the maximum number of columns in the MCS table. Data transmission cell, retransmission mode and feedback mode.
  • the maximum number of rows of the MCS table configured for the first transmission cell of the first data, the first retransmission mode, and the first feedback mode is 4, and the second transmission cell, the second retransmission mode, and the second of the first data
  • the maximum number of rows of the MCS table configured in the feedback mode is 16 rows.
  • the target code rate supported in the MCS table configured in the MCS table configured for different transmission cells, retransmission modes, and feedback modes may also be different, where the target code rate may be the maximum code rate or the minimum code rate. That is, the terminal device may also determine the transmission cell, the retransmission mode, and the feedback mode of the first data according to the target code rate of the MCS table.
  • the target code rate supported in the MCS table configured by the first transmission cell of the first data, the first retransmission mode, and the first feedback mode is the first code rate
  • the second code rate of the target code rate supported in the MCS table configured in the mode and the second feedback mode is the first code rate, and the second transmission cell of the first data, the second retransmission The second code rate of the target code rate supported in the MCS table configured in the mode and the second feedback mode.
  • the highest modulation order supported in the MCS table configured in the MCS table configured for different transmission cells, retransmission modes, and feedback modes may also be different. That is, the terminal device may also determine the transmission cell, retransmission mode, and feedback mode of the first data according to the highest modulation order supported in the MCS table.
  • the highest modulation order supported in the MCS table configured by the first transmission cell of the first data, the first retransmission mode, and the first feedback mode is the first modulation order
  • the second transmission cell of the first data the second The highest modulation order supported in the MCS table configured in the retransmission mode and the second feedback mode is the second modulation order.
  • configuring a target code rate lower than a preset threshold in the MCS table can improve the ability to resist interference during the first data transmission, thereby achieving improved transmission robustness.
  • configuring an MCS table with a number of rows less than a preset threshold the size of the DCI load for scheduling the first data can be reduced, the robustness of DCI transmission can be improved, and the overhead of the communication device to parse DCI can be reduced.
  • the data channel parameters are CQI tables.
  • the terminal device may also determine the transmission cell, retransmission mode, and feedback mode of the first data according to the CQI table.
  • the target code rate supported in the CQI table configured by different transmission cells, retransmission modes, and feedback modes may be different, where the target code rate may be the maximum code rate or the minimum code rate. That is, the terminal device may also determine the transmission cell, retransmission mode, and feedback mode of the first data according to the target code rate of the CQI table.
  • the target code rate supported in the MCS table configured by the first transmission cell of the first data, the first retransmission mode, and the first feedback mode is the third code rate, the second transmission cell of the first data, the second retransmission
  • the anti-interference ability during the first data transmission process can be improved, thereby achieving improved transmission robustness.
  • the following describes the transmission cell, retransmission mode, and feedback mode corresponding to the first configuration parameter:
  • the first data retransmission method includes: the terminal device receives the first data error in the first cell; the terminal device sends the first indication information in the second cell, and the first indication information indicates that the first data receives an error in the first cell or requests the first When data is transmitted in the second cell, the terminal device receives the first data in the second cell.
  • the first data transmission cell includes a first cell and a second cell.
  • the feedback method of the first data includes: when the terminal device receives the first data error in the first cell, the terminal device sends first indication information in the second cell, and the first indication information indicates that the first data receives an error or request in the first cell The transmission of the first data in the second cell.
  • the feedback method of the first data further includes: the terminal device sends second indication information in the first cell, and the second indication information indicates that the first data receives an error in the first cell or requests transmission of the first data in the first cell.
  • the method of retransmitting the first data further includes: the terminal device receives the first data correctly in the first cell; the terminal device sends third indication information in the second cell, and the third indication information indicates that the first data is received correctly or requested in the first cell Stop the transmission of the first data in the second cell; the terminal device stops receiving the first data in the second cell.
  • the feedback method of the first data further includes: the terminal device sends third indication information in the second cell, and the third indication information indicates that the first data is correctly received in the first cell or requests to stop transmission of the first data in the second cell.
  • the feedback method of the first data further includes: the terminal device sends fourth indication information in the first cell, and the fourth indication information indicates that the first data is received correctly in the first cell or requests to stop transmission of the first data in the first cell.
  • the terminal device performs operations on the transmission cell, retransmission mode, and feedback mode corresponding to the first configuration parameter.
  • the operations of the terminal device to perform the transmission cell, retransmission mode, and feedback mode corresponding to the first configuration parameter are similar to the foregoing embodiments corresponding to FIG. 3, FIG. 4, FIG. 5, or FIG. 6, and are not repeated here.
  • the node device configures parameters for the terminal device according to the service type of the service, where different services can be configured with different configuration parameters, and different configuration parameters correspond to different transmission cells, retransmission modes, and feedback modes.
  • the terminal device can determine the data transmission cell, retransmission mode, and feedback mode according to the carrier bandwidth configuration parameters. Therefore, in this embodiment, the node device can configure different parameters for the terminal device according to different services, so that different services can correspond to different transmission cells, retransmission methods, and feedback methods to meet the different data transmission requirements of different services. demand.
  • FIG. 11 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 110 includes:
  • the processing unit 1101 is configured to determine that a first data error is received in a first cell, and the first cell is a first primary cell;
  • the sending unit 1102 is configured to send first indication information in a second cell, where the second cell is a secondary cell or a second primary cell, and the first indication information indicates that the first data is incorrectly received in the first cell Or request the transmission of the first data in the second cell;
  • the receiving unit 1103 is configured to receive the first data in the second cell.
  • the terminal device 110 further includes a monitoring unit 1104, configured to monitor a first downlink control channel in the second cell, and the first downlink control channel is used for the terminal device Receiving the first data.
  • a monitoring unit 1104 configured to monitor a first downlink control channel in the second cell, and the first downlink control channel is used for the terminal device Receiving the first data.
  • the sending unit 1102 is further configured to send second indication information in the first cell, and the second indication information instructs the terminal device to erroneously receive the The first data or request transmits the first data to the terminal device in the first cell; the terminal device receives the first data in the first cell.
  • the first indication information includes a negative response NACK or a scheduling request SR.
  • the second indication information includes NACK or SR.
  • the sending unit 1101 sends the first indication information to the node device when the processing unit 1101 determines that the first cell receives the first data error, and the receiving unit 1103 sends the first data to the terminal device in the second cell. Therefore, in this embodiment, the terminal device 110 can trigger the sending of data to the terminal device 110 in the second cell through the indication information, so that the terminal device 110 can receive data through the first cell and the second cell, which improves the robustness of the transmitted data Sex.
  • the monitoring unit 1104 does not monitor the first data in the second cell before the sending unit 1101 sends the first indication information, which reduces interference between cells and also ensures the efficiency of spectrum resources.
  • the first terminal device provided by the embodiment of the present application is described above, and the node device provided by the embodiment of the present application is described below.
  • FIG. 12 is a schematic block diagram of a first node device according to an embodiment of the present application.
  • the node device 120 includes:
  • the sending unit 1201 is configured to send first data to a terminal device in a first cell, where the first cell is a first primary cell;
  • the receiving unit 1202 is configured to receive first indication information from the terminal device in a second cell, where the second cell is a secondary cell or a second primary cell, and the first indication information indicates that the terminal device is in the first
  • the cell erroneously receives the first data or requests to send the first data to the terminal device in the second cell;
  • the sending unit 1201 is further configured to send the first data to the terminal device in the second cell.
  • the sending unit 1201 is further configured to receive second indication information from the terminal device in the first cell, and the second indication information indicates that the terminal device is in the first A cell erroneously receives the first data or requests to transmit the first data to the terminal device in the first cell; the sending unit 1201 is further configured to send the first data to the terminal device in the first cell The first data.
  • the first indication information includes a negative response NACK or a scheduling request SR.
  • the second indication information includes NACK or SR.
  • the sending unit 1201 sends the first data to the terminal device in the first cell, and after the receiving unit 1202 receives the first indication information, the sending unit 1201 sends the first data to the terminal device in the second cell. Therefore, in this embodiment, the node device 120 sends data to the terminal device in the second cell after receiving the indication information, which ensures the efficiency of the spectrum resource and improves the robustness of the transmitted data.
  • the first node device provided by the embodiment of the present application is described above, and the first node device provided by the embodiment of the present application is described below.
  • FIG. 13 is a schematic block diagram of a first type of first node device according to an embodiment of the present application.
  • the first node device 130 includes:
  • the sending unit 1301 is configured to send first data to a terminal device in a first cell, where the first cell is a first primary cell;
  • the sending unit 1301 is further configured to send the first data to the second node device, and the first data is used to send the second node device to the terminal device in the second cell after receiving the first indication information ,
  • the first indication information instructs the terminal device to erroneously receive the first data in the first cell or requests the second node device to send the first data to the terminal device in the second cell
  • the second cell is a secondary cell or a second primary cell.
  • the first node device 130 further includes a receiving unit 1302, and the receiving unit 1302 is configured to receive second indication information from the terminal device in the first cell, and the first Two indication information instructs the terminal device to erroneously receive the first data in the first cell or requests to transmit the first data to the terminal device in the first cell; the sending unit 1301 is also used to Sending the first data to the terminal device in the first cell.
  • the first indication information includes a negative response NACK or a scheduling request SR.
  • the second indication information includes NACK or SR.
  • the sending unit 1301 may send first data to the terminal device and the second node device.
  • the first data is used by the second node device to send the first indication information to the terminal device in the second cell. Therefore, in this embodiment, the first node device 130 may send the first data to the second node device so that the second node device sends the first data to the terminal device in the second cell after receiving the first indication information, Therefore, the first data can be sent to the terminal device through the first cell and the second cell, which improves the robustness of data transmission.
  • the first type of first node device provided by the embodiment of the present application is described above, and the second node device provided by the embodiment of the present application is described below.
  • FIG. 14 is a schematic block diagram of a first type of second node device according to an embodiment of the present application.
  • the second node device 140 includes:
  • the receiving unit 1401 is configured to receive first indication information from a terminal device in a second cell, and the second indication information instructs the terminal device to erroneously receive the first data in the first cell or request the first data in the first cell
  • the cell transmits the first data to the terminal device, the first cell is a first primary cell, and the second cell is a secondary cell or a second primary cell;
  • the sending unit 1402 is configured to send the first data to the terminal device in the second cell.
  • the receiving unit 1401 is further configured to receive the first data from a first node device, and the first node device is a node device corresponding to the first cell.
  • the first indication information includes a negative response NACK or a scheduling request SR.
  • the second node device provided by the embodiment of the present application is described above, and the terminal device provided by the embodiment of the present application is described below.
  • the receiving unit 1401 receives the first indication information sent by the terminal device, and the sending unit 1402 sends the first data to the terminal device in the second cell according to the first indication information. Therefore, in this embodiment, the second node device 140 sends the first data to the terminal counting device in the second cell only after receiving the first indication information and determining that the terminal device erroneously receives the first data in the first cell, which guarantees At the same time as the efficiency of spectrum resources, the robustness of the transmitted data is improved.
  • the first type of second node device provided by the embodiment of the present application is described above, and another type of node device provided by the embodiment of the present application is described below.
  • FIG. 15 is a schematic block diagram of a second terminal device according to an embodiment of the present application.
  • the terminal device 150 includes:
  • the processing unit 1501 is configured to determine that the first data is received correctly in the first cell, and the first cell is the first primary cell;
  • the sending unit 1502 is configured to send third indication information in a second cell, where the second cell is a secondary cell or a second primary cell, and the third indication information instructs the terminal device to correctly receive the first indication in the first cell The first data or request to stop the transmission of the first data in the second cell;
  • the stopping unit 1503 is configured to stop receiving the first data in the second cell.
  • the stopping unit 1503 is further configured to stop monitoring the first downlink control channel in the second cell, and the first downlink control channel is used by the terminal device to receive the first ⁇ One data.
  • the sending unit 1502 is further configured to send fourth indication information in the first cell, and the fourth indication information instructs the terminal device to correctly receive the The first data or request to stop the transmission of the first data in the first cell; the stopping unit 1503 is further used to stop receiving the first data in the first cell.
  • the third indication information includes an acknowledgement ACK.
  • the fourth indication information includes an acknowledgement ACK.
  • the sending unit 1502 sends the third indication information in the second cell when the processing unit 1501 determines that the first data is received correctly, and the stopping unit 1503 stops receiving the first data in the second cell. Therefore, in this embodiment, the terminal device 150 can instruct the node device to stop sending the first data in the second cell by sending the indication information in the second cell, while backing up the two cells to send the first data, the spectrum is guaranteed Resource efficiency and reduced interference between cells.
  • the second terminal device provided by the embodiment of the present application is described above, and another node device provided by the embodiment of the present application is described below.
  • FIG. 16 is a schematic block diagram of a second type of node device according to an embodiment of the present application.
  • the node device 160 includes:
  • the sending unit 1601 is configured to send first data to a terminal device in a first cell, where the first cell is a first primary cell;
  • the receiving unit 1602 is configured to receive third indication information from the terminal device in a second cell, where the second cell is a secondary cell or a second primary cell, and the third indication information indicates that the terminal device is in the first The cell correctly receives the first data or requests to stop transmission of the first data in the second cell;
  • the stopping unit 1603 is configured to stop sending the first data in the second cell.
  • the receiving unit 1602 is further configured to receive fourth indication information from the terminal device in the first cell, where the fourth indication information indicates that the terminal device is in the first cell Receiving the first data correctly or requesting to stop the transmission of the first data in the first cell; the stopping unit 1603 is also used to stop sending the first data in the first cell.
  • the third indication information includes an acknowledgement ACK.
  • the fourth indication information includes an acknowledgement ACK.
  • the stopping unit 1603 stops sending the first data to the terminal device in the second cell. Therefore, in this embodiment, after receiving the third indication information, the node device 160 does not send the first data in the second cell.
  • the node device configures at least two cells to transmit the first data, it can reduce the interference between the cells, and Improve the efficiency of spectrum resources.
  • the second node device provided by the embodiment of the present application has been described above, and another second node device provided by the embodiment of the present application is described below.
  • FIG. 17 is a schematic block diagram of a second type of second node device according to an embodiment of the present application.
  • the second node device 170 includes:
  • the receiving unit 1701 is configured to receive third indication information from a terminal device in a second cell, the third indication information instructing the terminal device to correctly receive the first data in the first cell or request to stop the first Data transmission in the second cell, the first cell is a first primary cell, and the second cell is a secondary cell or a second primary cell;
  • the stopping unit 1702 is configured to stop sending the first data in the second cell.
  • the third indication information includes an acknowledgement ACK.
  • the second node device 170 configures the second cell to transmit the first data for the terminal device. After receiving the third instruction information, the receiving unit 1701 of the second node device 170 stops the transmission in the second cell The second data reduces the interference between cells and also improves the use efficiency of spectrum resources.
  • the second type of second node device provided by the embodiment of the present application is described above, and another type of terminal device provided by the embodiment of the present application is described below.
  • FIG. 18 is a schematic block diagram of a third terminal device according to an embodiment of the present application.
  • the terminal device 180 includes:
  • the sending unit 1801 is configured to send a first scheduling request SR in a first cell and send a second SR in a second cell, where resources for carrying the first SR correspond to resources for carrying the second SR , The first SR and the second SR are used to request transmission of second data;
  • the monitoring unit 1802 is configured to monitor the second downlink control channel in the first cell and monitor the third downlink control channel in the second cell;
  • the receiving unit 1803 is configured to receive downlink control information DCI on at least one of the third downlink control channel and the second downlink control channel;
  • the sending unit 1801 is further configured to send the second data according to the DCI.
  • the first cell is a first primary cell
  • the second cell is a secondary cell or a second primary cell.
  • the sending unit 1801 sends a first scheduling request SR in a first cell and sends a second SR in a second cell, where the first SR and the second SR are used to request transmission of sending second data . Therefore, in this embodiment, the terminal device 180 sends the scheduling request of the second data through at least two two cells, which improves the robustness of the transmission of the SR, and thus can improve the robustness of the transmission of the second data corresponding to the first SR.
  • the third terminal device provided by the embodiment of the present application is described above, and another first node device provided by the embodiment of the present application is described below.
  • FIG. 19 is a schematic block diagram of a second type of first node device according to an embodiment of the present application.
  • the first node device 190 includes:
  • the receiving unit 1901 is configured to receive a first scheduling request SR from a terminal device in a first cell, where resources used to carry the first SR correspond to resources used to carry the second SR, and the resources used to carry the first
  • the resources of the second SR are resources of carrying the second SR from the terminal device in the second cell, and the first SR and the second SR are used to request transmission of the second data;
  • the sending unit 1902 is configured to send downlink control information DCI to the terminal device in the first cell, where the DCI is carried by a second downlink control channel, and the DCI includes parameters for transmitting the second data;
  • the receiving unit 1901 is further configured to receive the second data from the terminal device in the first cell.
  • the sending unit 1902 is further configured to send fifth indication information to a second node device, where the fifth indication information is used to instruct the first node device to send the fifth indication information in the first cell DCI.
  • the sending unit 1901 sends fifth indication information to the second node device.
  • the fifth indication information may instruct the first node device 190 to send DCI to the terminal device in the first cell, so that the second node device receives the first In the second SR, DCI is not sent to the terminal device, thereby saving spectrum resources.
  • the second type of first node device provided by the embodiment of the present application is described above, and another type of second node device provided by the embodiment of the present application is described below.
  • FIG. 20 is a schematic block diagram of a third type of second node device provided by an embodiment of the present application.
  • the second node device 200 includes: a receiving unit 2001, a sending unit 2002, or a stopping unit 2003;
  • the receiving unit 2001 is configured to receive a second scheduling request SR from a terminal device in a second cell, where resources for carrying the second SR correspond to resources for carrying the first SR, and the The resources carrying the first SR are resources carrying the first SR from the terminal device in the first cell, and the first SR and the second SR are used to request transmission of the second data;
  • the sending unit 2002 is used to send downlink control information DCI to the terminal device in the second cell, and the DCI is carried by a third downlink control channel; or, the receiving unit 2001 is used to receive from the first node The fifth indication information of the device; the stopping unit 2003 is used to stop sending the DCI to the terminal device in the second cell.
  • the receiving unit 2001 is further configured to receive the second data from the terminal device in the second cell.
  • the first cell is a first primary cell
  • the second cell is a secondary cell or a second primary cell.
  • the stopping unit 2003 stops sending DCI to the terminal device in the second cell. Therefore, in this embodiment, the second node device 200 may determine that the first node device sends DCI to the terminal device in the first cell according to the fifth indication information, and does not send DCI to the terminal device after receiving the second SR, thereby saving spectrum Resources.
  • the third type of second node device provided by the embodiment of the present application is described above, and another type of node device provided by the embodiment of the present application is described below.
  • FIG. 21 is a schematic block diagram of a third node device according to an embodiment of the present application.
  • the node device 210 includes:
  • the receiving unit 2101 is configured to receive a first scheduling request SR in a first cell and receive a second SR in a second cell, where resources for carrying the second SR correspond to resources for carrying the first SR ;
  • a sending unit 2102 configured to send downlink control information DCI to the terminal device in at least one of the first cell and the second cell, and the DCI sent in the first cell is controlled by the second downlink Channel bearer, the DCI sent in the second cell is carried by a third downlink control channel, and the DCI includes parameters for transmitting second data;
  • the receiving unit 2101 is further configured to receive the second data from the terminal device in at least one cell of the first cell and the second cell.
  • the first cell is a first primary cell
  • the second cell is a secondary cell or a second primary cell.
  • the receiving unit 2101 receives the first SR and the second SR for scheduling the same data in the first cell and the second cell, thereby improving the robustness of receiving the SR.
  • the third node device provided by the embodiment of the present application is described above, and another terminal device provided by the embodiment of the present application is described below.
  • FIG. 22 is a schematic block diagram of a fourth terminal device according to an embodiment of the present application.
  • the terminal device 220 includes:
  • the obtaining unit 2201 is configured to obtain a first configuration parameter of a carrier bandwidth.
  • the carrier bandwidth is a carrier bandwidth for transmitting first data.
  • the carrier bandwidth is preset with at least two sets of configuration parameters.
  • the first configuration parameter is included in the At least two sets of configuration parameters;
  • the processing unit 2202 is configured to determine at least one of a transmission cell, a retransmission mode, and a feedback mode of the first data from the first configuration parameter.
  • the first configuration parameter includes at least one of a terminal device identifier, a data channel parameter, and a control channel parameter.
  • the retransmission manner includes: the terminal device receives the first data error in the first cell; the terminal device sends the first indication information in the second cell, and the first An indication message indicates that the first data is received in the first cell in error or requests for transmission of the first data in the second cell, and the terminal device receives the first data in the second cell.
  • the transmission cell includes at least the first cell and the second cell, the first cell is a first primary cell, and the second cell is a secondary cell or a second cell Main cell.
  • the feedback manner includes: when the terminal device receives the first data error in the first cell, the terminal device sends the first data in the second cell An indication message, the first indication message indicating that the first data is received in the first cell incorrectly or requesting transmission of the first data in the second cell.
  • the feedback manner further includes: the terminal device sends the second indication information in the first cell, and the second indication information indicates that the first data is in the The first cell receives an error or requests the transmission of the first data in the first cell.
  • the retransmission manner further includes: the terminal device receives the first data correctly in the first cell; and the terminal device sends third indication information in the second cell.
  • the third indication information indicates that the first data is received correctly in the first cell or requests to stop transmission of the first data in the second cell; the terminal device stops receiving the first data in the second cell ⁇ One data.
  • the feedback manner further includes: the terminal device sends third indication information in the second cell, and the third indication information indicates that the first data is in the first The cell receives correctly or requests to stop transmission of the first data in the second cell.
  • the feedback manner further includes: the terminal device sends fourth indication information in the first cell, and the fourth indication information indicates that the first data is in the first The cell receives correctly or requests to stop transmission of the first data in the first cell.
  • At least two sets of configuration parameters are configured for the carrier bandwidth, wherein the at least two sets of configuration parameters include first configuration parameters, the obtaining unit 2201 obtains the first configuration parameters of the carrier bandwidth, and the processing unit 2202 determines the first configuration parameters from the first At least one of a data transmission cell, a retransmission method, and a feedback method. Therefore, in this embodiment, the terminal device may determine at least one of the first data transmission cell, the retransmission method, and the feedback method according to the carrier bandwidth configuration parameter, so as to meet different requirements of different services for data transmission.
  • FIG. 23 is a schematic diagram of a hardware structure of a terminal device according to an embodiment of the present application.
  • FIG. 23 shows a simplified schematic diagram of a hardware structure of a terminal device. It is easy to understand and convenient to illustrate.
  • the terminal device uses a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and input and output devices.
  • the processor is mainly used for processing communication protocols and communication data, as well as controlling terminal devices, executing software programs, and processing software program data.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to the user. It should be noted that some types of terminal devices may not have input/output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing, and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 23 only one memory and processor are shown in FIG. 23. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium, storage device, or the like.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiments of the present application.
  • an antenna and a radio frequency circuit with a transceiver function can be regarded as a transceiver unit of a terminal device, and a processor with a processing function can be regarded as a processing unit of the terminal device. among them.
  • the transceiver unit may also be called a transceiver, a transceiver, a transceiver device, or the like.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device used to implement the receiving function in the transceiver unit can be regarded as the receiving unit
  • the device used to implement the sending function in the transceiver unit can be regarded as the sending unit
  • the transceiver unit includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the transceiving unit is used to perform the sending operation and the receiving operation on the terminal device side in the above method embodiment, and the processing unit is used to perform other processing operations on the terminal device in addition to the transceiving operation in the above method embodiment.
  • FIG. 24 is a schematic diagram of a hardware structure of a node device provided by an embodiment of the present application.
  • the node device 240 includes:
  • the transceiver may include a receiver and a transmitter, and the memory 2450 may include a read-only memory and/or a random access memory, and provide operation instructions and data to the processor 2410.
  • a portion of the memory 2450 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory and the processor may be independently connected through a bus or an interface, or may be integrated together.
  • the memory 2450 stores the following elements, executable modules or data structures, or their subsets, or their extensions.
  • the corresponding operation is performed by calling the operation instruction stored in the memory 2450 (the operation instruction may be stored in the operating system).
  • the processor 2410 controls the operation of the node device 240.
  • the processor 2410 may also be called a CPU (Central Processing Unit).
  • the memory 2450 may include read-only memory and random access memory, and provide instructions and data to the processor 2410.
  • a portion of the memory 2450 may also include non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the various components of the node device 240 are coupled together through a bus system 2420.
  • the bus system 2420 may also include a power bus, a control bus, and a status signal bus. However, for clarity, various buses are marked as the bus system 2420 in the figure.
  • the method disclosed in the above embodiments of the present application may be applied to the processor 2410 or implemented by the processor 2410.
  • the processor 2410 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method may be completed by an integrated logic circuit of hardware in the processor 2410 or an instruction in the form of software.
  • the aforementioned processor 2410 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware Components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, and registers.
  • the storage medium is located in the memory 2450.
  • the memory 2450 may be a physically independent unit, or may be integrated with the processor 2410.
  • the processor 2410 reads the information in the memory 2450 and completes the steps of the above method in combination with its hardware.
  • the transceiver 2430 is used to perform the operation steps related to receiving and sending on the node device side in the above method embodiments. Or it is used to perform the steps of sending and receiving data on the node device side in other optional embodiments.
  • the processor 2410 is configured to execute the steps of data processing on the node device side in the foregoing method embodiments. Or it is used to perform the data processing steps on the node device side in other optional embodiments.
  • FIG. 25 is a schematic diagram of a hardware structure of a first node device provided by an embodiment of the present application.
  • the first node device 250 includes at least one processor 2510, memory 2550, transceiver 2530, and Bus system 2420.
  • processor 2510 the functional structure of at least one processor 2510, memory 2550, transceiver 2530, and bus system 2420 is similar to that of FIG. 24 described above, and details are not described here.
  • the transceiver 2530 is used to perform the operation steps related to receiving and sending on the first node device side in the above method embodiment. Or used to perform the steps of data transmission and reception on the first node device side in other optional embodiments.
  • the processor 2510 is configured to execute the data processing steps of the first node device side in the foregoing method embodiment. Or used to perform the data processing steps of the first node device side in other optional embodiments.
  • FIG. 26 is a schematic diagram of a hardware structure of a second node device provided by an embodiment of the present application.
  • the second node device 260 includes at least one processor 2610, memory 2650, transceiver 2630, and Bus system 2420.
  • processor 2610 the functional structure of at least one processor 2610, memory 2650, transceiver 2630, and bus system 2420 is similar to that of FIG. 24 described above, and details are not described here.
  • the transceiver 2630 is used to perform the operation steps related to receiving and sending on the second node device side in the above method embodiments. Or used to perform the steps of data transmission and reception on the second node device side in other optional embodiments.
  • the processor 2610 is configured to perform the steps of data processing on the second node device side in the foregoing method embodiments. Or used to perform the data processing steps of the second node device side in other optional embodiments.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a division of logical functions.
  • there may be other divisions for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware, or in the form of a software functional unit, or in the form of a combination of software and hardware.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种无线通信方法及装置,用于提高终端设备与节点设备间数据传输的鲁棒性。本申请实施例方法包括:终端设备在第一小区接收第一数据错误,所述第一小区为第一主小区;所述终端设备在第二小区发送第一指示信息,所述第二小区为辅小区或第二主小区,所述第一指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第二小区的传输;所述终端设备在所述第二小区接收所述第一数据。因此,本申请实施例中终端设备通过指示信息触发在第二小区向终端设备发送数据,提高了数据传输的鲁棒性。

Description

无线通信方法及装置
本申请要求于2018年12月10日提交中国专利局、申请号为201811503889.X、发明名称为“无线通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种无线通信方法及装置。
背景技术
随着科技的不断发展,智能工厂应运而生,其中,智能工厂有以下特点:极密的网络部署,比如基站与基站之间的间距可以达到20m;较大的发射功率,比如基站发射功率可以达到24dBm每20MHz,终端设备的发射功率可以达到23dBm;较重的网络负载,比如激活的终端设备数多,数据包较大;低时延高可靠业务传输需求,比如智能工厂的数据传输具有低时延高可靠传输需求的增强移动宽带(enhanced mobile broadband,eMBB)业务和超高可靠低时延(ultra-high reliability and low latency,URLLC)业务。
由于智能工厂环境的影响,比如机械臂、自动导引运输车(automated guided vehicle,AGV)等设备的移动性,往往会导致基站与终端设备之间的无线链路会因为衰落、遮挡等原因而产生的中断,从而导致了基站与终端设备之间数据传输的鲁棒性较低。
发明内容
本申请实施例提供了一种无线通信方法及装置,用于提高终端设备与节点设备间数据传输的鲁棒性。
本申请实施例第一方面提供一种无线通信方法,包括:
终端设备在第一小区接收第一数据,所述第一小区为第一主小区,当所述终端设备确定在所述第一小区接收所述第一数据错误时,所述终端设备在第二小区发送第一指示信息,所述第二小区为辅小区或第二主小区,所述第一指示信息指示所述终端设备在第一小区错误地接收所述第一数据或请求在所述第二小区向所述终端设备传输所述第一数据;所述终端设备在所述第二小区接收所述第一数据。由第一方面可见,终端设备在第一小区接收第一数据错误,可以通过指示信息请求从第二小区接收第一数据,提高了数据传输的鲁棒性。
基于本申请实施例的第一方面,本申请实施例第一方面的第一种实现方式中,所述终端设备在所述第二小区发送所述第一指示信息之后,所述方法还包括:所述终端设备在所述第二小区监测第一下行控制信道,所述第一下行控制信道用于所述终端设备接收所述第一数据。
基于本申请实施例第一方面以及第一方面的第一种实现方式,本申请实施例第一方面的第二种实现方式中,所述方法还包括:所述终端设备在所述第一小区发送第二指示信息,所述第二指示信息指示所述终端设备在第一小区错误地接收所述第一数据或请求在所述第一小区向所述终端设备传输所述第一数据;所述终端设备在所述第一小区接收所述第一数据。
基于本申请实施例第一方面以及第一方面的第一种实现方式至第一方面的第二种实现方式中的任一项,本申请实施例第一方面的第三种实现方式中,所述第一指示信息包括否定应答NACK或调度请求SR。
基于本申请实施例第一方面以及第一方面的第一种实现方式至第一方面的第三种实现方式中的任一项,本申请实施例第一方面的第四种实现方式中,所述第二指示信息包括NACK或SR。
本申请实施例第二方面提供另一种无线通信方法,包括:
节点设备在第一小区向终端设备发送第一数据,所述第一小区为第一主小区;所述节点设备在第二小区接收来自所述终端设备的第一指示信息,所述第二小区为辅小区或第二主小区,所述第一指示信息指示所述终端设备在第一小区错误地接收所述第一数据或请求在所述第二小区向所述终端设备发送所述第一数据;所述节点设备在所述第二小区向所述终端设备发送所述第一数据。由第二方面可见,节点设备可以通过第一小区和第二小区向终端设备发送第一数据,提高了数据传输的鲁棒性。
基于本申请实施例第二方面,本申请实施例第二方面的第一种实现方式中,所述方法还包括:所述节点设备在所述第一小区接收来自所述终端设备的第二指示信息,所述第二指示信息指示所述终端设备在所述第一小区错误地接收所述第一数据或请求在所述第一小区向所述终端设备传输所述第一数据;所述节点设备在第一小区向所述终端设备发送所述第一数据。
基于本申请实施例第二方面以及第二方面的第一种实现方式,本申请实施例第二方面的第二种实现方式中,所述第一指示信息包括否定应答NACK或调度请求SR。
基于本申请实施例第二方面以及第二方面的第一种实现方式至第二方面的第二种实现方式中的任一项,本申请实施例第二方面的第三种实现方式中,所述第二指示信息包括NACK或SR。
本申请实施例第三方面提供另一种无线通信方法,包括:
第一节点设备在第一小区向终端设备发送第一数据,所述第一小区为第一主小区;所述第一节点设备向第二节点设备发送所述第一数据,所述第一数据用于所述第二节点设备收到第一指示信息后在第二小区向所述终端设备发送,所述第一指示信息指示所述终端设备在第一小区错误地接收所述第一数据或请求所述第二节点设备在所述第二小区向所述终端设备发送所述第一数据,所述第二小区为辅小区或第二主小区。由第三方面可见,第一节点设备通过向第二节点设备发送第一数据,第一数据用于第二节点设备收到第一指示信息后在第二小区向终端设备发送,因此,第三方面,可以通过第一小区和第二小区向终端设备发送第一数据,提高了数据传输的鲁棒性。
基于本申请实施例第三方面,本申请实施例第三方面的第一种实现方式中,所述方法还包括:所述第一节点设备在所述第一小区接收来自所述终端设备的第二指示信息,所述第二指示信息指示所述终端设备在所述第一小区错误地接收所述第一数据或请求在所述第一小区向所述终端设备传输所述第一数据;所述第一节点设备在所述第一小区向所述终端设备发送所述第一数据。
基于本申请实施例第三方面以及第三方面的第一种实现方式至第三方面的第一种实现 方式中的任一项,本申请实施例第三方面的第二种实现方式中,所述第一指示信息包括否定应答NACK或调度请求SR。
基于本申请实施例第三方面以及第三方面的第一种实现方式至第三方面的第二种实现方式中的任一项,本申请实施例第三方面的第三种实现方式中,所述第二指示信息包括NACK或SR。
本申请实施例第四方面提供另一种无线通信方法,包括:
第二节点设备在第二小区接收来自终端设备的第一指示信息,所述第二指示信息指示所述终端设备在第一小区错误地接收所述第一数据或请求在所述第一小区向所述终端设备传输所述第一数据,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区;所述第二节点设备在所述第二小区向所述终端设备发送所述第一数据。由第四方面可见,终端设备在第一小区接收第一数据错误后,可以通过发送第一指示信息请求从第二节点设备的第二小区接收第一数据,提高了数据传输的鲁棒性。
基于本申请实施例第四方面,本申请实施例第四方面的第一种实现方式中,所述第二节点设备在所述第二小区向所述终端设备发送所述第一数据之前,所述方法还包括:所述第二节点设备接收来自第一节点设备的所述第一数据,所述第一节点设备为所述第一小区对应的节点设备。
基于本申请实施例第四方面以及第四方面的第一种实现方式,本申请实施例第四方面的第二种实现方式中,所述第一指示信息包括否定应答NACK或调度请求SR。
本申请实施例第五方面提供另一种无线通信方法,包括:
终端设备在第一小区接收第一数据正确,所述第一小区为第一主小区;所述终端设备在第二小区发送第三指示信息,所述第二小区为辅小区或第二主小区,所述第三指示信息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第二小区的传输;所述终端设备停止在所述第二小区接收所述第一数据。由第五方面可见,终端设备可以通过指示信息指示节点设备无需在第二小区发送第一数据,降低了小区之间的干扰,也提高了频谱资源的使用效率。
基于本申请实施例第五方面,本申请实施例第五方面的第一种实现方式中,所述终端设备在所述第二小区发送所述第三指示信息之后,所述方法还包括:所述终端设备停止在所述第二小区监测第一下行控制信道,所述第一下行控制信道用于所述终端设备接收所述第一数据。
基于本申请实施例第五方面以及第五方面的第一种实现方式,本申请实施例第四方面的第二种实现方式中,所述方法还包括:所述终端设备在所述第一小区发送第四指示信息,所述第四指示信息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第一小区的传输;所述终端设备停止在所述第一小区接收所述第一数据。
基于本申请实施例第五方面以及第五方面的第一种实现方式至第五方面的第二种实现方式,本申请实施例第五方面的第三种实现方式中,所述第三指示信息包括肯定应答ACK。
基于本申请实施例第五方面以及第五方面的第一种实现方式至第五方面的第三种实现方式,本申请实施例第五方面的第四种实现方式中,所述第四指示信息包括ACK。
本申请实施例第六方面提供另一种无线通信方法,包括:
节点设备在第一小区向终端设备发送第一数据,所述第一小区为第一主小区;所述节点设备在第二小区接收来自所述终端设备的第三指示信息,所述第二小区为辅小区或第二主小区,所述第三指示信息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第二小区的传输;所述节点设备停止在所述第二小区发送所述第一数据。由第六方面可见,节点设备在接收到第三指示信息后,不在第二小区发送第一数据,使得节点设备在配置至少两个小区传输第一数据的同时,可以降低小区之间的干扰,也提高了频谱资源的使用效率。
基于本申请实施例第六方面,本申请实施例第六方面的第一种实现方式中,所述方法还包括:所述节点设备在所述第一小区接收来自所述终端设备的第四指示信息,所述第四指示信息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第一小区的传输;所述节点设备停止在所述第一小区发送所述第一数据。
基于本申请实施例第六方面以及第六方面的第一种实现方式,本申请实施例第六方面的第二种实现方式中,所述第三指示信息包括肯定应答ACK。
基于本申请实施例第六方面以及第六方面的第一种实现方式至第六方面的第二种实现方式,本申请实施例第六方面的第三种实现方式中,所述第四指示信息包括ACK。
本申请实施例第七方面提供另一种无线通信方法,包括:
第二节点设备在第二小区接收来自终端设备的第三指示信息,所述第三指示信息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第二小区的传输,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区;所述第二节点设备停止在所述第二小区发送所述第一数据。由第七方面可见,在第二节点设备配置第二小区为终端设备传输第一数据,在收到第三指示信息后,第二节点设备不在第二小区传输第一数据,降低了小区之间的干扰,也提高了频谱资源的使用效率。
基于本申请实施例第七方面,本申请实施例第七方面的第一种实现方式中,所述第三指示信息包括肯定应答ACK。
本申请实施例第八方面提供另一种无线通信方法,包括:
终端设备在第一小区发送第一调度请求SR和在第二小区发送第二SR,其中,用于承载所述第一SR的资源和用于承载所述第二SR的资源对应,所述第一SR和所述第二SR用于请求发送第二数据的传输;所述终端设备在所述第一小区监测第二下行控制信道和在所述第二小区监测第三下行控制信道;所述终端设备在所述第三下行控制信道和所述第二下行控制信道中的至少一条接收下行控制信息DCI;所述终端设备根据所述DCI发送所述第二数据。由第八方面可见,终端设备通过向至少两个小区发送第二数据的调度请求,提高了传输SR的鲁棒性,从而提高了传输SR对应的数据的鲁棒性。
基于本申请实施例第八方面,本申请实施例第八方面的第一种实现方式中,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
本申请实施例第九方面提供另一种无线通信方法,包括:
第一节点设备在第一小区接收来自终端设备的第一调度请求SR,其中,用于承载所述第一SR的资源和用于承载第二SR的资源对应,所述用于承载第二SR的资源为在第二小区承载来自所述终端设备的第二SR的资源,所述第一SR和所述第二SR用于请求发送第二数 据的传输;所述第一节点设备在所述第一小区向所述终端设备发送下行控制信息DCI,所述DCI由第二下行控制信道承载,所述DCI包括用于传输所述第二数据的参数;所述第一节点设备在所述第一小区接收来自所述终端设备的所述第二数据。由第九方面可见,终端设备通过至少两个小区发送第二数据的调度请求,提高了传输SR的鲁棒性。
基于本申请实施例第九方面,本申请实施例第九方面的第一种实现方式中,所述方法还包括:所述第一节点设备向第二节点设备发送第五指示信息,所述第五指示信息用于指示所述第一节点设备在第一小区发送所述DCI。
本申请实施例第十方面提供另一种无线通信方法,包括:
第二节点设备在第二小区接收来自终端设备的第二调度请求SR,其中,用于承载所述第二SR的资源和用于承载第一SR的资源对应,所述用于承载第一SR的资源为在第一小区承载来自所述终端设备的第一SR的资源,所述第一SR和所述第二SR用于请求发送第二数据的传输;
所述第二节点设备在所述第二小区向所述终端设备发送下行控制信息DCI,所述DCI由第三下行控制信道承载;或者,所述第二节点设备接收来自第一节点设备的第五指示信息,并停止在所述第二小区向所述终端设备发送所述DCI,所述第五指示信息用于指示停止发送所述DCI,所述DCI包括用于传输所述第二数据的参数。由第十方面可见,终端设备通过至少两个小区发送第二数据的调度请求,提高了传输SR的鲁棒性。
基于本申请实施例第十方面,本申请实施例第十方面的第一种实现方式中,所述第二节点设备在所述第二小区向所述终端设备发送下行控制信息DCI之后,所述方法还包括:所述第二节点设备在所述第二小区接收来自所述终端设备的所述第二数据。
基于本申请实施例第十方面和本申请实施例第十方面的第一种实现方式,本申请实施例第十方面的第二种实现方式中,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
本申请实施例第十一方面提供另一种无线通信方法,包括:
节点设备在第一小区接收第一调度请求SR和在第二小区接收第二SR,其中,用于承载所述第二SR的资源和用于承载所述第一SR的资源对应;所述节点设备在所述第一小区和所述第二小区中的至少一个小区向所述终端设备发送下行控制信息DCI,在所述第一小区发送的所述DCI由第二下行控制信道承载,在所第二小区发送的所述DCI由第三下行控制信道承载,所述DCI包括用于传输第二数据的参数;所述节点设备在所述第一小区和所述第二小区中至少一个小区接收来自所述终端设备的所述第二数据。由第十一方面可见,节点设备通过至少两个小区接收第二数据的调度请求,提高了传输SR的鲁棒性。
基于本申请实施例第十一方面,本申请实施例第十一方面的第一种实现方式中,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
本申请实施例第十二方面提供另一种无线通信方法,包括:
终端设备获取载波带宽的第一配置参数,所述载波宽带为传输第一数据的载波带宽,所述载波带宽预置至少两套配置参数,所述第一配置参数包含于所述至少两套配置参数;所述终端设备从所述第一配置参数确定所述第一数据的传输小区、重传方式和反馈方式中的至少一种。由第十二方面可见,在载波带宽中预置至少两套配置参数,节点设备可以根 据第一数据的业务类型从至少两套配置参数中确定第一数据对应的配置参数,终端设备可以根据载波带宽的配置参数确定第一数据的传输小区、重传方式、和反馈方式,从而使得终端设备可以根据不同的配置参数使用传输小区、重传方式和反馈方式处理数据,从而满足不同业务对数据传输的不同需求。
基于本申请实施例第十二方面,本申请实施例第十二方面的第一种实现方式中,所述第一配置参数包括终端设备标识、数据信道参数、控制信道参数中的至少一种。
基于本申请实施例第十二方面以及本申请实施例第十二方面的第一种实现方式,本申请实施例第十二方面的第二种实现方式中,所述重传方式包括:所述终端设备在第一小区接收所述第一数据错误;所述终端设备在第二小区发送第一指示信息,所述第一指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第二小区的传输,所述终端设备在所述第二小区接收所述第一数据。
基于本申请实施例第十二方面以及本申请实施例第十二方面的第一种实现方式至本申请实施例第十二方面的第二种实现方式,本申请实施例第十二方面的第三种实现方式中,所述传输小区至少包括所述第一小区和所述第二小区,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
基于本申请实施例第十二方面以及本申请实施例第十二方面的第一种实现方式至本申请实施例第十二方面的第三种实现方式,本申请实施例第十二方面的第四种实现方式中,所述反馈方式包括:当所述终端设备在所述第一小区接收所述第一数据错误时,所述终端设备在所述第二小区发送所述第一指示信息,所述第一指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第二小区的传输。
基于本申请实施例第十二方面以及本申请实施例第十二方面的第一种实现方式至本申请实施例第十二方面的第四种实现方式,本申请实施例第十二方面的第五种实现方式中,所述反馈方式还包括:所述终端设备在所述第一小区发送所述第二指示信息,所述第二指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第一小区的传输。
基于本申请实施例第十二方面以及本申请实施例第十二方面的第一种实现方式至本申请实施例第十二方面的第五种实现方式,本申请实施例第十二方面的第六种实现方式中,所述重传方式还包括:所述终端设备在第一小区接收所述第一数据正确;所述终端设备在第二小区发送第三指示信息,所述第三指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第二小区的传输;所述终端设备停止在所述第二小区接收所述第一数据。
基于本申请实施例第十二方面以及本申请实施例第十二方面的第一种实现方式至本申请实施例第十二方面的第六种实现方式,本申请实施例第十二方面的第七种实现方式中,所述反馈方式还包括:所述终端设备在所述第二小区发送第三指示信息,所述第三指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第二小区的传输。
基于本申请实施例第十二方面以及本申请实施例第十二方面的第一种实现方式至本申请实施例第十二方面的第七种实现方式,本申请实施例第十二方面的第八种实现方式中, 所述反馈方式还包括:所述终端设备在所述第一小区发送第四指示信息,所述第四指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第一小区的传输。
本申请实施例第十三方面提供一种通信装置,所述通信装置具有实现上述第一方面以及第一方面任一可能实现的方式、第五方面以及第五方面任一可能实现的方式、第八方面以及第八方面任一可能实现的方式或第十二方面以及第十二方面任一可能实现的方式的终端设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,还可以采用软件与硬件结合的形式实现。该硬件和/或软件包括一个或多个与上述功能相对应的模块。
本申请实施例第十四方面提供一种通信装置,所述通信装置具有实现上述第二方面以及第二方面任一可能实现的方式、第六方面以及第六方面任一可能实现的方式或第十一方面以及第十一方面任一可能实现的方式的节点设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,还可以采用软件与硬件结合的形式实现。该硬件和/或软件包括一个或多个与上述功能相对应的模块。
本申请实施例第十五方面提供一种通信装置,所述通信装置具有实现上述第三方面以及第三方面任一可能实现的方式或第九方面以及第九方面任一可能实现的方式的第一节点设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,还可以采用软件与硬件结合的形式实现。该硬件和/或软件包括一个或多个与上述功能相对应的模块。
本申请实施例第十六方面提供一种通信装置,所述通信装置具有实现上述第四方面以及第四方面任一可能实现的方式、第七方面以及第七方面任一可能实现的方式或第十方面以及第十方面任一可能实现的方式的第二节点设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现,还可以采用软件与硬件结合的形式实现。该硬件和/或软件包括一个或多个与上述功能相对应的模块。
本申请实施例第十七方面提供一种通信装置,所述通信装置包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得通信装置执行上述第一方面以及第一方面任一可能实现的方式、第五方面以及第五方面任一可能实现的方式、第八方面以及第八方面任一可能实现的方式或第十二方面以及第十二方面任一可能实现的方式在终端设备侧进行的处理或操作。
本申请实施例第十八方面提供一种通信装置,所述通信装置包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得通信装置执行上述第二方面以及第二方面任一可能实现的方式、第六方面以及第六方面任一可能实现的方式或第十一方面以及第十一方面任一可能实现的方式在节点设备侧进行的处理或操作。
本申请实施例第十九方面提供一种通信装置,所述通信装置包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得通信装置执行上述第三方面以及第三方面任一可能实现的方式或第九方面以及第九方面任一可能实现的方式在第一节点设备侧进行的处理或操作。
本申请实施例第二十方面提供一种通信装置,所述通信装置包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得通信装置执行上述第四方面以及第四方面任一可能实现的方式、第七方面以及第七方面任一可能实现的方式或第十方面以及第十方面任一可能实现的方式在第二节点设备侧进行的处理或操作。
本申请实施例第二十一方面提供一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行第一方面至第十二方面任一可能实现的方法。
本申请实施例第二十二方面提供一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行第一方面至第十二方面任一可能实现的方法。
本申请实施例第二十三方面提供一种芯片系统,所述芯片系统包括至少一个处理器和通信接口,所述芯片系统还可以包括存储器,所述存储器、所通信接口和所述至少一个处理器通过线路互联,所述至少一个存储器中存储有指令;所述指令被所述至少一个处理器执行,以执行第一方面至第十二方面任一可能实现的方法。
本申请实施例第二十四方面提供一种通信系统,所述通信系统包括:用于执行上述第一方面以及第一方面任一可能实现的方式、第五方面以及第五方面任一可能实现的方式、第八方面以及第八方面任一可能实现的方式或第十二方面以及第十二方面任一可能实现的方式的终端设备;以及用于执行上述第二方面以及第二方面任一可能实现的方式、第六方面以及第六方面任一可能实现的方式或第十一方面以及第十一方面任一可能实现的方式的节点设备。
本申请实施例第二十五方面提供一种通信系统,所述通信系统包括:用于执行上述第一方面以及第一方面任一可能实现的方式、第五方面以及第五方面任一可能实现的方式、第八方面以及第八方面任一可能实现的方式或第十二方面以及第十二方面任一可能实现的方式的终端设备;用于执行上述第三方面以及第三方面任一可能实现的方式或第九方面以及第九方面任一可能实现的方式的第一节点设备;以及用于执行上述上述第四方面以及第四方面任一可能实现的方式、第七方面以及第七方面任一可能实现的方式或第十方面以及第十方面任一可能实现的方式的第二节点设备。
从以上技术方案可以看出,本申请实施例具有以下优点:
本实施例中,节点设备侧配置至少两个小区,其中,节点设备在第一小区向终端设备发送第一数据,终端设备在第一小区接收第一数据错误时向节点设备发送第一指示信息,节点设备根据第一指示信息在第二小区向终端设备发送第三数据。因此,本实施例中,终端设备可以通过指示信息触发节点设备在第二小区向终端设备发送数据,从而使得节点设备可以通过第一小区和第二小区发送数据,提高了传输数据的鲁棒性。此外,节点设备在第二小区收到第一指示信息之前,不在第二小区向终端设备发送第三数据,降低了小区之间的干扰,也保证了频谱资源的效率。
附图说明
图1为本申请实施例提供的一个应用场景示意图;
图2为本申请实施例提供的另一个应用场景示意图;
图3为本申请实施例提供的第一种无线通信方法的示意性流程图;
图4为本申请实施例提供的第二种无线通信方法的示意性流程图;
图5为本申请实施例提供的第三种无线通信方法的示意性流程图;
图6为本申请实施例提供的第四种无线通信方法的示意性流程图;
图7为本申请实施例提供的第五种无线通信方法的示意性流程图;
图8为本申请实施例提供的第六种无线通信方法的示意性流程图;
图9为本申请实施例提供的第七种无线通信方法的示意性流程图;
图10为本申请实施例提供的第八种无线通信方法的示意性流程图;
图11为本申请实施例提供的第一种终端设备的示意性框图;
图12为本申请实施例提供的第一种节点设备的示意性框图;
图13为本申请实施例提供的第一种第一节点设备的示意性框图;
图14为本申请实施例提供的第一种第二节点设备的示意性框图;
图15为本申请实施例提供的第二种终端设备的示意性框图;
图16为本申请实施例提供的第二种节点设备的示意性框图;
图17为本申请实施例提供的第二种第二节点设备的示意性框图;
图18为本申请实施例提供的第三种终端设备的示意性框图;
图19为本申请实施例提供的第二种第一节点设备的示意性框图;
图20为本申请实施例提供的第三种第二节点设备的示意性框图;
图21为本申请实施例提供的第三种节点设备的示意性框图;
图22为本申请实施例提供的第四种终端设备的示意性框图;
图23为本申请实施例提供的终端设备的一个硬件结构示意图;
图24为本申请实施例提供的节点设备的一个硬件结构示意图;
图25为本申请实施例提供的第一节点设备的一个硬件结构示意图;
图26为本申请实施例提供的第二节点设备的一个硬件结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着新技术的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例的实施例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本申请实施例提供了一种无线通信方法及装置,用于提高终端设备与节点设备间数据传输的鲁棒性。
请参考图1,图1为本申请实施例提供的一个应用场景示意图,如图1所示,该应用场景示意图包括终端设备101和节点设备102。其中,节点设备102和终端设备101可以在第一小区、第二小区以及第N小区进行通信。需要说明的是,本申请实施例中仅以节点设备102通过第一小区和第二小区与终端设备101进行通信作为例子对本申请实施例提供的无线通信方法进行描述。
本申请实施例提供的节点设备102可以是用于与终端设备101通信的网络设备,也可以是用于与终端设备101通信的终端设备,本申请实施例中仅以节点设备102作为网络设备对本申请实施例提供的无线通信方法进行描述。
请参考图2,图2为本申请实施例提供的另一个应用场景示意图,如图2所示,该应用场景示意图包括终端设备101、第一节点设备201、第二节点设备202、以及第N节点设备203。其中。第一节点设备201可以通过第一小区与终端设备101进行通信,第二节点设备202可以通过第二小区与终端设备101进行通信,第N节点设备203可以通过第N小区与终端设备101进行通信。需要说明的是,本申请实施例中仅以终端设备101通过第一小区和第一节点设备201进行通信以及终端设备101通过第二小区和第二节点设备202进行通信作为例子对本申请实施例提供的无线通信方法进行描述。
本申请实施例图2所对应的第一节点设备201和第二节点设备202可以是用于与终端设备101通信的网络设备。也可以是第一节点设备201可以作为网络设备,第二节点设备202作为终端设备。还可以是第一节点设备201作为终端设备,第二节点设备202作为网络设备。还可以是第一节点设备201作为终端设备,第二节点设备202作为终端设备。本申请实施例仅以第一节点设备201和第二节点设备202为网络设备作为例子对本申请实施例提供的无线通信方法进行描述。
本申请实施例图1和图2所对应的终端设备101可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端等,本申请实施例对此并不限定。
本申请实施例中当图1的节点设备102,以及图2的第一节点设备201和第二节点设备202作为网络设备时,该网络设备可以是用于与终端设备101通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是第五代移动通信技术(5th-Generation,5G)网络的基站(gNodeB,或,gNB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及收发点(transmission  reception point,TRP)或者未来演进的PLMN网络中的网络设备等。
本申请实施例可应用于各种通信系统,例如:全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
上面对本申请实施例提供的应用场景示意图进行了描述,下面对本申请实施例提供的无线通信方法进行描述。
基于图1所示的应用场景,请参考图3,图3为本申请实施例提供的第一种无线通信方法的示意性流程图,如图3所示,该示意性流程图可以包括以下步骤:
301、节点设备在第一小区向终端设备发送第一数据。
节点设备在第一小区向终端设备发送第一数据,其中,第一数据可以是节点设备在第一小区向终端设备初传的数据,也可以是节点设备在第一小区向终端设备重传的数据。
需要说明的是,当节点设备作为基站时,第一数据为下行数据,当节点设备作为终端设备时,第一数据为副链路(sidelink)数据。可以理解的是,副链路也可以被称为边链路或旁链路。
本实施例中,终端设备通过第一小区与节点设备进行无线资源控制(radio resource control,RRC)通信,即第一小区为第一主小区(primary cell,PCell)。需指出,PCell是UE进行初始连接建立的小区,或进行RRC连接重建的小区,或是在切换过程中指定的小区,PCell负责与UE之间的RRC通信。可以理解的是,终端设备通过第一小区与节点设备进行的RRC通信可以是指终端设备在第一小区与节点设备建立RRC连接后所进行的通信。
302、终端设备确定在第一小区接收的第一数据是否错误,若是,则执行步骤303至步骤307,若否,则执行步骤308至步骤311。
终端设备在第一小区接收第一数据并确定第一数据是否接收错误。当终端设备确定在第一小区接收的第一数据错误时,终端设备执行步骤303至步骤307,当终端设备确定在第一小区接收的第一数据正确时,终端设备执行步骤308至步骤311。
具体地,终端设备可以基于在第一小区接收第一数据的信号质量确定第一数据是否接收错误。例如,当第一数据的信号质量低于第一预设阈值时,终端设备确定第一数据接收错误,从而执行步骤303至步骤307;当第一数据的信号质量高于第二预设阈值时,终端设备确定第一数据接收正确,终端设备执行步骤308至步骤311。
可以理解的是,在第一小区接收第一数据错误也可以是指终端设备在第一小区没有接收到第一数据,此处不做限定。
303、终端设备在第二小区向节点设备发送第一指示消息。
终端设备在第二小区向节点设备发送第一指示信息。其中,第一指示信息可以指示终端设备在第一小区接收第一数据错误,也可以是请求节点设备在第二小区向终端设备发送 第三数据。
可选地,第一指示信息请求节点设备在第二小区发送的第三数据可以为第一数据,也就是说第一指示信息可以是请求节点设备在第二小区进行联合传输第一数据。
需要说明的是,本实施例以及后续实施例中所涉及的第一指示信息可以是否定应答(negative acknowledgement,NACK),也可以是调度请求(scheduling request,SR),还可以是其他的指示信息,此处不做具体限定。
本实施中,终端设备在第二小区与节点设备进行的通信可以是RRC通信,也可以不是RRC通信,即第二小区可以为第二Pcell,第二小区也可以为辅小区(secondary cell,SCell)。需指出,Scell可以是在RRC重配置时添加的,用于提供额外的无线资源,SCell与UE之间不存在RRC通信或RRC连接。
304、终端设备在第二小区监测第一下行控制信道。
终端设备在第二小区向节点设备发送第一指示信息之后,终端设备在第二小区监测第一下行控制信道。其中,该第一下行控制信道为节点设备在第二小区向终端设备发送第三数据的控制信道。
可以理解的是,在一种可能的实施方式中,终端设备在第二小区发送第一指示信息之后,终端设备才会在第二小区监测第一下行控制信息,也就说终端设备在发送第一指示信息之前不会检测第一下行控制信道,降低了终端设备盲检控制信道的能耗,也保证了频谱资源的效率。
305、节点设备在第二小区向终端设备发送第三数据。
节点设备在第二小区接收终端设备发送的第一指示信息,并根据第一指示信息在第二小区向终端设备发送第三数据。
具体地,节点设备在第二小区向终端设备发送的第三数据可以承载在第一下行控制信道上,可以理解的是,当第三数据承载在第一下行控制信道时,第三数据为第一下行控制信道承载的控制数据。节点设备在第二小区向终端设备发送的第三数据也可以承载在下行共享信道上,可以理解的是,当第三数据承载在下行共享信道时,第三数据为业务数据。需要说明的是,用于终端设备在下行共享信道接收第三数据所使用的参数承载于第一下行控制信道中。
可选地,在第二小区发送的第三数据可以对应在第一小区发送的第一数据,即节点设备在第二小区向终端设备发送的第三数据可以为第一数据。
其中,在第二小区发送的第三数据对应在第一小区发送的第一数据可以是指节点设备在第二小区向终端设备发送的第三数据与节点设备在第一小区发送的第一数据对应的传输块(Transport block,TB)为相同的第一TB。
在第二小区发送的第三数据对应在第一小区发送的第一数据也可以是指节点设备在第二小区向终端设备发送的第三数据与节点设备在第一小区发送的第一数据对应相同的混合自动重传(hybrid automatic repeat request,HARQ)进程,使得终端设备可以根据相同的HARQ进程确定第一数据和第三数据对应相同的第一TB,并将节点设备在第二小区向终端设备发送的第三数据与节点设备在第一小区发送的第一数据进行合并,从而可以提高解调性能。
在第二小区发送的第三数据对应在第一小区发送的第一数据也可以是指节点设备在第二小区向终端设备发送的第三数据与节点设备在第一小区发送的第一数据分别对应的TB为第一TB经过信道编码后的不同冗余版本;例如,在第一小区发送的第一数据为第一TB的基本数据,在第二小区发送的第三数据为第一TB的第一冗余数据。
在第二小区发送的第三数据对应在第一小区发送的第一数据还可以是指在第二小区发送的第三数据和在第一小区发送的第一数据在媒体接入控制(media access control,MAC)层或分组数据汇聚协议(packet data convergence protocol,PDCP)层对应相同的数据包。
306、终端设备在第一小区向节点设备发送第二指示信息。
终端设备在第一小区向节点设备发送第二指示信息。其中,第二指示信息可以指示终端设备在第一小区接收第一数据错误,也可以是请求节点设备在第一小区向终端设备发送第三数据。
可选地,第二指示信息请求节点设备在第一小区向终端设备发送的第三数据可以为第一数据,也就说第二指示信息请求节点设备在第一小区重传第一数据。
本实施例以及后续实施例中所涉及的第二指示信息可以是否定应答(negative acknowledgement,NACK),也可以是调度请求(scheduling request,SR),还可以是其他的指示信息,此处不做具体限定。
307、节点设备在第一小区向终端设备发送第三数据。
节点设备在第一小区接收到终端设备发送的第二指示信息并根据第二指示信息在第一小区向终端设备发送第三数据。
其中,在第一小区发送的第三数据和第二小区发送的第三数据分别对应的TB可以为第二TB经过信道编码后的不同冗余版本;例如,第一小区发送的第三数据为第二TB的基本数据,在第二小区发送的第三数据可以为第二TB的冗余数据。
可选地,在第一小区发送的第三数据可以对应在第一小区发送的第一数据,即节点设备在第一小区向终端设备发送的第三数据可以为第一数据。其中,在第一小区发送的第三数据对应在第一小区发送的第一数据可以是指节点设备在第一小区向终端设备发送的第三数据与节点设备在第一小区发送的第一数据对应的第一TB相同。
在第一小区发送的第三数据对应在第一小区发送的第一数据也可以是指节点设备在第一小区向终端设备发送的第三数据与节点设备在第一小区发送的第一数据对应相同的HARQ进程,从而终端设备根据相同的HARQ进程确定第一数据和第三数据对应相同的第一TB,并将节点设备在第一小区向终端设备发送的第三数据与节点设备在第一小区发送的第一数据进行合并,以提高解调性能。
在第一小区发送的第三数据对应在第一小区发送的第一数据还可以是指在第一小区发送的第三数据和第一小区发送的第一数据分别对应的TB为第一TB经过信道编码后的不同冗余版本;例如,例如,在第一小区发送的第一数据为第一TB的基本数据,在第一小区发送的第三数据为第一TB的第二冗余数据,其中,第二冗余数据与第一冗余数据可以相同,也可以不同,本实施例不做限制。
在第一小区发送的第三数据对应在第一小区发送的第一数据还可以是指在第一小区发 送的第三数据和在第一小区发送的第一数据在媒体接入控制(media access control,MAC)层或分组数据汇聚协议(packet data convergence protocol,PDCP)层对应相同的数据包。
需要说明的是,本实施例中步骤306-步骤307为可选步骤,即可以执行步骤306和步骤307,也可以不执行步骤306和步骤307。本实施例还可以先执行步骤303-步骤305,再执行步骤306-步骤307;也可以先执行步骤306-步骤307,再执行步骤303-步骤305;还可以同时执行步骤306-步骤307与步骤303-步骤305。
308、终端设备在第二小区向节点设备发送第三指示信息。
终端设备在第二小区向节点设备发送第三指示信息。其中,第三指示信息可以是指示终端设备在第一小区接收第一数据正确,也可以是请求节点设备停止在第二小区向终端设备发送第三数据。
具体地,终端设备通过第三指示信息请求节点设备停止在第二小区向终端设备发送第三数据,可以基于在第一小区接收第一数据的信号质量向节点设备发送第三指示信息。例如,当第一数据的信号质量高于第二预设阈值时,终端设备在第二小区向节点设备发送第三指示信息。
可选地,第三指示信息请求节点设备停止在第二小区向终端设备发送第三数据也可以是指请求节点设备停止在第二小区向终端设备发送第一数据。
本实施例以及后续实施例中所涉及的第三指示信息可以是肯定应答(acknowledgement,ACK),也可以是其他的指示信息,此处不做具体限定。
需要说明的是,步骤308为可选步骤,即终端设备确定接收第一数据正确,终端设备可以在第二小区向节点设备发送第三指示信息,也可以不在第二小区向节点设备发送第三指示信息。
309、节点设备停止在第二小区向终端设备发送第三数据。
本实施例中,节点设备可以通过以下方式中的一种停止在第二小区向终端设备发送第三数据。
方式一:节点设备在第二小区接收到终端设备发送的第三指示信息并根据第三指示信息停止在第二小区向终端设备发送第三数据。其中,停止在第二小区向终端设备发送第三数据可以是指节点设备不在第二小区向终端设备发送第三数据,例如可以是下述情况中的一种:
情况1-1:节点设备在接收到第三指示信息之前,该节点设备并未在第二小区向终端设备发送第三数据;该节点设备在接收到第三指示信息之后,也不会在第二小区向终端设备发送第三数据。
情况1-2:节点设备在接收到第三指示信息之前,该节点设备在第二小区向终端设备发送过第三数据;该节点设备在接收到第三指示信息之后,不会在第二小区向终端设备发送第三数据。
情况1-3:节点设备在接收到第三指示信息之前,该节点设备在第二小区正在向终端设备发送第三数据;该节点设备在接收到第三指示信息之后,不会在第二小区向终端设备发送第三数据。
方式二:在第一时刻之前,节点设备在第二小区没有接收到终端设备发送的第一指示信息,则节点设备确定终端设备在第一小区接收第一数据正确,且在到达第一时刻时节点设备也可以停止在第二小区向终端设备发送第三数据。其中,第一时刻可以是预定义或配置的。其中,停止在第二小区向终端设备发送第三数据是指节点设备不在第二小区向终端设备发送第三数据,例如可以是下述情况中的一种:
情况2-1:节点设备在第一时刻之前,该节点设备并未在第二小区向终端设备发送第三数据;该节点设备在第一时刻之后,也不会在第二小区向终端设备发送第三数据。
情况2-2:节点设备在第一时刻之前,该节点设备在第二小区向终端设备发送过第三数据;该节点设备在第一时刻之后,不会在第二小区向终端设备发送第三数据。
情况2-3:节点设备在第一时刻之前,该节点设备在第二小区正在向终端设备发送第三数据;该节点设备在第一时刻之后,不会在第二小区向终端设备发送第三数据。
在上述两种方式中,可选地,节点设备停止在第二小区向终端设备发送的第三数据可以为第一数据,即节点设备可以根据第三指示信息停止在第二小区向终端设备发送第一数据。
310、终端设备在第一小区向节点设备发送第四指示信息。
终端设备确定接收第一数据正确并在第一小区向节点设备发送第四指示信息,其中,第四指示信息可以是指示终端设备在第一小区接收第一数据正确,也可以是请求节点设备停止在第一小区向终端设备发送第三数据。
可选地,第四指示信息请求节点设备停止在第一小区向终端设备发送第三数据也可以是指请求节点设备停止在第一小区向终端设备发送第一数据。
本实施例以及后续实施例中所涉及的第四指示信息可以是ACK,也可以是其他的指示信息,此处不做具体限定。
311、节点设备停止在第一小区发送第三数据。
节点设备在第一小区接收到终端设备的第四指示信息并根据第四指示信息停止在第一小区向终端设备发送第三数据。其中,节点设备停止在第一小区向终端设备发送第三数据可以是指节点设备不在第一小区向终端设备发送第三数据,例如可以是下述情况中的一种:
情况3-1:节点设备在接收到第四指示信息之前,该节点设备并未在第一小区向终端设备发送第三数据;该节点设备在接收到第四指示信息之后,也不会在第一小区向终端设备发送第三数据。
情况3-2:节点设备在接收到第四指示信息之前,该节点设备在第一小区向终端设备发送过第三数据;该节点设备在接收到第四指示信息之后,不会在第一小区向终端设备发送第三数据。
情况3-3:节点设备在接收到第四指示信息之前,该节点设备在第一小区正在向终端设备发送第三数据;该节点设备在接收到第四指示信息之后,不会在第一小区向终端设备发送第三数据。
可选地,节点设备根据第四指示信息停止在第一小区向终端设备发送的第三数据也可以为第一数据,即节点设备可以根据第四指示信息停止在第一小区向终端设备发送第一数据。
本实施例中,步骤308-步骤311为可选步骤,在实际应用中,当确定在第一小区接收第一数据正确时,终端设备执行步骤308-步骤311。其中。本实施例可以先执行步骤308-步骤309,也可以先执行步骤310-步骤311,也可以先执行步骤310-步骤311,在执行步骤308-步骤309,还可以同时执行步骤308-步骤309和步骤310-步骤311,此处不限定。
本实施例中,节点设备侧配置至少两个小区,其中,节点设备在第一小区向终端设备发送第一数据,终端设备在第一小区接收第一数据错误时向节点设备发送第一指示信息,节点设备根据第一指示信息在第二小区向终端设备发送第三数据。因此,本实施例中,终端设备可以通过指示信息触发节点设备在第二小区向终端设备发送数据,从而使得节点设备可以通过第一小区和第二小区发送数据,提高了传输数据的鲁棒性。此外,节点设备在第二小区收到第一指示信息之前,不在第二小区向终端设备发送第三数据,降低了小区之间的干扰,也保证了频谱资源的效率。
上面对本申请实施例提供的第一种无线通信方法进行了描述,下面对本申请实施例提供的另一种无线通信方法进行描述。
基于图1所示的应用场景,请参考图4,图4为本申请实施例提供的第二种无线通信方法的示意性流程图,如图4所示,该示意性流程图可以包括以下步骤:
401、节点设备在第一小区向终端设备发送第一数据。
本实施例的步骤401与前述图3对应的步骤301类似,具体请参考图3的步骤301,此处不再赘述。
402、终端设备确定在第一小区接收第一数据是否错误,若否,则执行步骤403至404,若是,则执行步骤405至步骤410。
本实施例的步骤402与前述图3对应的步骤302类似,具体请参考图3的步骤302,此处不再赘述。
403、终端设备在第二小区向节点设备发送第三指示信息以及在第一小区向节点设备发送第四指示信息。
终端设备在第二小区向节点设备发送第三指示信息以及在第一小区向节点设备发送第四指示信息。其中,第三指示信息可以是指示终端设备在第一小区接收第一数据正确,也可以是请求节点设备停止在第二小区向终端设备发送第三数据,第四指示信息可以是指示终端设备在第一小区接收第一数据正确,也可以是请求节点设备停止在第一小区向终端设备发送第三数据。
可选地,第三指示信息请求节点设备停止在第二小区向终端设备发送第三数据也可以是指请求节点设备停止在第二小区向终端设备发送第一数据。第四指示信息请求节点设备停止在第一小区向终端设备发送第三数据也可以是指请求节点设备停止在第一小区向终端设备发送第一数据。
本实施中,终端设备在第二小区与节点设备进行的通信可以是RRC通信,也可以不是RRC通信,即第二小区可以为第二Pcell,第二小区也可以为辅小区(secondary cell,SCell)。需指出,Scell可以是在RRC重配置时添加的,用于提供额外的无线资源,SCell与UE之间不存在RRC通信或RRC连接。
404、节点设备停止在第一小区和在第二小区向终端设备发送第三数据。
节点设备在第二小区接收到终端设备发送的第三指示信息并根据第三指示信息停止在第二小区向终端设备发送第三数据。其中,停止在第二小区向终端设备发送第三数据可以是指节点设备不在第二小区向终端设备发送第三数据,例如可以是下述情况中的一种:
情况4-1:节点设备在接收到第三指示信息之前,该节点设备并未在第二小区向终端设备发送第三数据;该节点设备在接收到第三指示信息之后,也不会在第二小区向终端设备发送第三数据。
情况4-2:节点设备在接收到第三指示信息之前,该节点设备在第二小区向终端设备发送过第三数据;该节点设备在接收到第三指示信息之后,不会在第二小区向终端设备发送第三数据。
情况4-3:节点设备在接收到第三指示信息之前,该节点设备在第二小区正在向终端设备发送第三数据;该节点设备在接收到第三指示信息之后,不会在第二小区向终端设备发送第三数据。
可选地,节点设备根据第三指示信息停止在第二小区向终端设备发送的第三数据可以为第一数据,即节点设备可以根据第三指示信息停止在第二小区向终端设备发送第一数据。
节点设备在第一小区接收到终端设备的第四指示信息并根据第四指示信息停止在第一小区向终端设备发送第三数据。本实施例中,节点设备停止在第一小区向终端设备发送第三数据与前述图3对应的步骤311中的节点设备停止在第一小区向终端设备发送第三数据类似,此处不再赘述。
可选地,节点设备根据第四指示信息停止在第一小区向终端设备发送的第三数据也可以为第一数据,即节点设备可以根据第四指示信息停止在第一小区向终端设备发送第一数据。
405、终端设备在第二小区向节点设备发送第一指示消息。
终端设备在第二小区向节点设备发送第一指示信息。其中,第一指示信息可以指示终端设备在第一小区接收第一数据错误,也可以是请求节点设备在第二小区向终端设备发送第三数据。
可选地,第一指示信息请求节点设备在第二小区发送的第三数据可以为第一数据,也就说第一指示信息可以是请求节点设备在第二小区进行联合传输第一数据。
需要说明的是,步骤405为可选步骤,即终端设备确定接收第一数据错误,终端设备可以在第二小区向节点设备发送第一指示信息,也可以不在第二小区向节点设备发送第一指示信息。
406、终端设备在第二小区监测第一下行控制信道。
终端设备确定第一数据接收错误之后,终端设备在第二小区监测第一下行控制信道。其中,该第一下行控制信道为节点设备在第二小区向终端设备发送第三数据的控制信道。
可以理解的是,在一种可能的实施方式中,终端设备确定第一数据接收错误之后,终端设备才会在第二小区监测第一下行控制信息,也就说终端设备在第一小区接收第一数据之前不会检测第一下行控制信道,降低了终端设备盲检控制信道的能耗,也保证了频谱资源的效率。
407、节点设备在第二小区向终端设备发送第三数据。
本实施例中,节点设备可以通过以下方式中的一种在第二小区向终端设备发送第三数据。
方式一:在第二时刻之前,节点设备在第二小区没有接收到终端设备发送的第三指示信息,则节点设备确定终端设备在第一小区接收第一数据错误,并在到达第二时刻时在第二小区向终端设备发送第三数据。其中,第二时刻可以是预定义或者配置的。
方式二:当节点设备在第二小区接收终端设备发送的第一指示信息时,节点设备根据第一指示信息确定终端设备接收第一数据错误并在第二小区向终端设备发送第三数据。
在上述两种方式中,具体地,节点设备在第二小区向终端设备发送的第三数据可以承载在第一下行控制信道上,可以理解的是,当第三数据承载在第一下行控制信道时,第三数据为第一下行控制信道的控制数据。节点设备在第二小区向终端设备发送的第三数据也可以承载在下行共享信道上,可以理解的是,当第三数据承载在下行共享信道时,第三数据为业务数据。需要说明的是,用于终端设备在下行共享信道接收第三数据所使用的参数承载于第一下行控制信道中。
在上述两种方式中,可选地,在第二小区发送的第三数据可以对应在第一小区发送的第一数据,即节点设备在第二小区向终端设备发送的第三数据可以为第一数据。
其中,步骤407中的在第二小区发送的第三数据可以对应在第一小区发送的第一数据与前述图3对应实施例的步骤305中所描述的在第二小区发送的第三数据可以对应在第一小区发送的第一数据类似,此处不再赘述,具体请参考步骤305。
408、终端设备在第一小区向节点设备发送第二指示信息。
终端设备在第一小区向节点设备发送第二指示信息。其中,第二指示信息可以指示终端设备在第一小区接收第一数据错误,也可以是请求节点设备在第一小区向终端设备发送第三数据。
可选地,第二指示信息请求节点设备在第一小区向终端设备发送的第三数据可以为第一数据,也就说第二指示信息请求节点设备在第一小区重传第一数据。
409、终端设备在第一小区监测第四下行控制信道。
终端设备在第一小区向节点设备发送第二指示信息之后,终端设备在第一小区监测第四下行控制信道。其中,第四下行控制信道为节点设备在第一小区向终端设备发送第三数据的控制信道。
410、节点设备在第一小区向终端设备发送第三数据。
节点设备在第一小区接收到终端设备发送的第二指示信息并根据第二指示信息在第一小区向终端设备发送第三数据。其中,在第一小区发送的第三数据和第二小区发送的第三数据分别对应的TB可以为第二TB经过信道编码后的不同冗余版本;例如,第一小区发送的第三数据为第二TB的基本数据,在第二小区发送的第三数据可以为第二TB的冗余数据。
可选地,在第一小区发送的第三数据可以对应在第一小区发送的第一数据,即在第一小区发送的第三数据为第一数据。需要说明的是,步骤410中的在第一小区发送的第三数据可以对应在第一小区发送的第一数据与前述图3对应实施例的步骤307中所描述的在第一小区发送的第三数据可以对应在第一小区发送的第一数据类似,此处不再赘述,具体请参考步骤307。
本实施例中,步骤405-步骤410为可选步骤,在实际应用中,当确定在第一小区接收第一数据错误时,终端设备执行步骤405-步骤410。其中,本实施例可以先执行步骤405-步骤407,再执行步骤408-步骤410,先执行步骤408-步骤410,在执行步骤405-步骤407,还可以同时执行步骤405-步骤407和步骤408-步骤410,此处不限定。
本实施例中,节点设备侧配置至少两个小区,其中,节点设备在第一小区向终端设备发送第一数据,节点设备在第二预置时刻之前在第二小区没有接收到第三指示信息或者在第二小区接收到第一指示信息,则节点设备在第二小区向终端设备发送第一数据。因此,本实施例中,通过终端设备发送的第一指示信息或者在节点设备预置的第二预置时刻触发节点设备在在第二小区发送第三数据,从而使得节点设备可以通过第一小区和第二小区发送数据,提高了传输数据的鲁棒性。此外,节点设备在第二小区收到第一指示信息之前或者在第二预置时刻之前,不在第二小区向终端设备发送第一数据,降低了小区之间的干扰,也保证了频谱资源的效率。
上面对本申请实施例提供的第二种无线通信方法进行了描述,下面对本申请实施例提供的另一种无线通信方法进行描述。
基于图2所示的应用场景,请参考图5,图5为本申请实施例提供的第三种无线通信方法的示意性流程图,如图5所示,该示意性流程图可以包括以下步骤:
501、第一节点设备在第一小区向终端设备发送第一数据。
在步骤501中,第一节点设备所执行的动作与前述图3对应的步骤301的节点设备执行的动作类似,具体请参考图3的步骤301,此处不再赘述。
502、终端设备确定在第一小区接收第一数据是否错误,若是,则执行步骤503至步骤508,若否,则执行步骤509至步骤512。
本实施例的步骤502与前述图3对应的步骤302类似,具体请参考图3的步骤302,此处不再赘述。
503、终端设备在第二小区向第二节点设备发送第一指示信息。
终端设备在第二小区向第二节点设备发送第一指示信息。其中,第一指示信息可以指示终端设备在第一小区接收第一数据错误,也可以是请求第二节点设备在第二小区向终端设备发送第三数据。
可选地,第一指示信息请求第二节点设备在第二小区发送的第三数据可以为第一数据,也就说第一指示信息可以是请求第二节点设备在第二小区进行联合传输第一数据。
本实施中,终端设备在第二小区与第二节点设备进行的通信可以是RRC通信,也可以不是RRC通信,即第二小区可以为第二Pcell,第二小区也可以为SCell。需指出,Scell可以是在RRC重配置时添加的,用于提供额外的无线资源,SCell与UE之间不存在RRC通信或RRC连接。
504、终端设备在第二小区监测第一下行控制信道。
终端设备在第二小区向第二节点设备发送第一指示信息之后,终端设备在第二小区监测第一下行控制信道。其中,该第一下行控制信道为第二节点设备在第二小区向终端设备发送第三数据的控制信道。
可以理解的是,在一种可能的实施方式中,终端设备在第二小区发送第一指示信息之 后,终端设备才会在第二小区监测第一下行控制信息,也就说终端设备在发送第一指示信息之前不会检测第一下行控制信道,降低了终端设备盲检控制信道的能耗,也保证了频谱资源的效率。
505、第一节点设备向第二节点设备发送第三数据。
第一节点设备可以通过空口消息向第二节点设备发送第三数据。其中,该第三数据为第一节点设备在第一小区向终端设备发送的数据,可以理解的是,第一节点设备还可以通过其他方式向第二节点设备发送第三数据,例如可以通过有线连接或光纤连接向第二节点设备发送第三数据,此处不做限定。
需要说明的是,第一节点设备可以在第一小区向终端设备发送第一数据的同时,向第二节点设备发送第三数据。也可以在第二节点设备在第二小区向节点设备发送第一数据之前,向第二节点设备发送第三数据。还可以在第二节点设备在第二小区向节点设备发送第一数据之后,向第二节点设备发送第三数据,此处不做限定。
可选地,第一节点设备向第二节点设备发送第三数据可以为第一数据。
本实施例中,步骤505为可选步骤,当第一节点设备与第二节点设备之间的数据链路backhaul为非理想backhaul,第一节点设备执行步骤505。
506、第二节点设备在第二小区向终端设备发送第三数据。
本实施步骤506中第二节点设备所执行的动作与前述图3对应的步骤305中的节点设备执行的动作类似,此处不再赘述。
507、终端设备在第一小区向第一节点设备发送第二指示信息。
终端设备在第一小区向第一节点设备发送第二指示信息。其中,第二指示信息可以是指示终端设备在第一小区接收第一数据错误,也可以是请求第一节点设备在第一小区向终端设备发送第三数据。
可选地,第二指示信息请求第一节点设备在第一小区向终端设备发送的第三数据可以为第一数据,也就说第二指示信息请求第一节点设备在第一小区重传第一数据。
508、第一节点设备在第一小区向终端设备发送第三数据。
在步骤508中,第一节点设备所执行的动作与前述图3对应的步骤307的节点设备执行的动作类似,具体请参考图3的步骤307,此处不再赘述。
需要说明的是,在实际应用中,步骤507-步骤508为可选步骤,即可以执行步骤507-步骤508,也可以不执行步骤507-步骤508。本实施例中可以先执行步骤503-步骤506,再执行步骤507-步骤508,也可以先执行步骤507-步骤508,再执行步骤503-步骤506,还可以同时执行步骤503-步骤506和步骤507-步骤508,此处不限定。
509、终端设备在第二小区向第二节点设备发送第三指示信息。
在步骤509中,第二节点设备所执行的动作与前述图3对应的步骤308的节点设备执行的动作类似,具体请参考图3的步骤308,此处不再赘述。
需要说明的是,步骤509为可选步骤,即终端设备确定接收第一数据正确之后,终端设备可以在第二小区向第二节点设备发送第三指示信息,也可以不在第二小区向第二节点设备发送第三指示信息。
510、第二节点设备停止在第二小区向终端设备发送第三数据。
在步骤510中,第二节点设备所执行的动作与前述图3对应的步骤309的节点设备执行的动作类似,具体请参考图3的步骤309,此处不再赘述。
511、终端设备在第一小区向第一节点设备发送第四指示信息。
终端设备确定接收第一数据正确并在第一小区向节点设备发送第四指示信息,其中,第四指示信息可以是指示终端设备在第一小区接收第一数据正确,也可以是请求节点设备停止在第一小区向终端设备发送第三数据。
可选地,第四指示信息请求节点设备停止在第一小区向终端设备发送的第三数据也可以是指请求节点设备停止在第一小区向终端设备发送第一数据。
512、第一节点设备停止在第一小区向终端设备发送第三数据。
在步骤512中,第一节点设备所执行的动作与前述图3对应的步骤311的节点设备执行的动作类似,具体请参考图3的步骤311,此处不再赘述。
本实施例中,步骤509-步骤512为可选步骤,在实际应用中,当确定在第一小区接收第一数据正确时,终端设备执行步骤509-步骤512。其中。本实施例可以先执行步骤509-步骤510,再执行步骤511-步骤512,也可以先执行步骤511-步骤512,再执行步骤509-步骤510,还可以同时执行步骤509-步骤510和步骤511-步骤512,此处不限定。
本实施例中,终端设备关联至少两个节点设备,其中,第一节点设备在第一小区向终端设备发送第一数据,终端设备在第一小区接收第一数据错误时向第二节点设备发送第一指示信息,第二节点设备根据第一指示信息在第二小区向终端设备发送第三数据。因此,本实施例中终端设备可以通过指示信息触发第二节点设备在第二小区向终端设备发送第三数据,从而使得终端设备可以通过第一节点设备和第二节点设备接收数据,提高了传输数据的鲁棒性。此外,第二节点设备在第二小区收到第一指示信息之前,不会在第二小区向终端设备发送第三数据,降低了小区之间的干扰,也保证了频谱资源的效率。
上面对本申请实施例提供的第三种无线通信方法进行了描述,下面对本申请实施例提供的另一种无线通信方法进行描述。
基于图2所示的应用场景,请参考图6,图6为本申请实施例提供的第四种无线通信方法的示意性流程图,如图6所示,该示意性流程图可以包括以下步骤:
601、第一节点设备在第一小区向终端设备发送第一数据。
在步骤601中,第一节点设备所执行的动作与前述图3对应的步骤301的节点设备执行的动作类似,具体请参考图3的步骤310,此处不再赘述。
602、终端设备确定在第一小区接收第一数据是否错误,若否,则执行步骤603至步骤606,若是,则执行步骤607至步骤613。
本实施例的步骤602与前述图3对应的步骤302类似,具体请参考图3的步骤302,此处不再赘述。
603、终端设备向第二小区向第二节点设备发送第三指示信息。
终端设备在第二小区向第二节点设备发送第三指示信息。其中,第三指示信息可以是指示终端设备在第一小区接收第一数据正确,也可以是请求第二节点设备停止在第二小区向终端设备发送第三数据。
可选地,第三指示信息请求第二节点设备停止在第二小区向终端设备发送第三数据也 可以是指请求第二节点设备停止在第二小区向终端设备发送第一数据。
本实施中,终端设备在第二小区与节点设备进行的通信可以是RRC通信,也可以不是RRC通信,即第二小区可以为第二Pcell,第二小区也可以为辅小区(secondary cell,SCell)。需指出,Scell可以是在RRC重配置时添加的,用于提供额外的无线资源,SCell与UE之间不存在RRC通信或RRC连接。
604、第二节点设备停止在第二小区向终端设备发送第三数据。
第二节点设备根据第三指示信息确定终端设备在第一小区接收第一数据成功,停止在第二小区向终端设备发送第三数据。本实施例中,第二节点设备停止在第二小区向终端设备发送第三数据与前述图4对应的步骤404中的节点设备停止在第二小区向终端设备发送第三数据类似,此处不再赘述。
可选地,第二节点设备根据第三指示信息停止在第二小区向终端设备发送的第三数据可以为第一数据,即第二节点设备可以根据第三指示信息停止在第二小区向终端设备发送第一数据。
605、终端设备在第一小区向第一节点设备发送第四指示信息。
终端设备在第一小区向第一节点设备发送第四指示信息。其中,第四指示信息可以是指示终端设备在第一小区接收第一数据正确,也可以是请求第一节点设备停止在第一小区向终端设备发送第三数据。
可选地,第四指示信息请求第一节点设备停止在第一小区向终端设备发送第三数据也可以是指请求第一节点设备停止在第一小区向终端设备发送第一数据。
606、第一节点设备停止在第一小区向终端设备发送第三数据。
第二节点设备根据第四指示信息确定终端设备在第一小区接收第一数据成功,停止在第一小区向终端设备发送第三数据。本实施例中,第一节点设备停止在第一小区向终端设备发送第三数据与前述图3对应的步骤311中的节点设备停止在第一小区向终端设备发送第三数据类似,此处不再赘述。
可选地,第一节点设备根据第四指示信息停止在第一小区向终端设备发送的第三数据也可以为第一数据,即第一节点设备可以根据第四指示信息停止在第一小区向终端设备发送第一数据。
本实施例中,终端设备可以先执行步骤603-步骤604,再执行步骤605-步骤606,也可以先执行步骤605-步骤606,再执行步骤603-步骤604,还可以是同时执行步骤603-步骤604和步骤605-步骤606,此处不做限定。
607、终端设备在第二小区向第二节点设备发送第一指示消息。
终端设备在第二小区向第二节点设备发送第一指示信息。其中,第一指示信息可以指示终端设备在第一小区接收第一数据错误,也可以是请求第二节点设备在第二小区向终端设备发送第三数据。
可选地,第一指示信息请求第二节点设备在第二小区发送的第三数据可以为第一数据,也就说第一指示信息可以是请求第二节点设备在第二小区进行联合传输第一数据。
需要说明的是,步骤607为可选步骤,即终端设备确定接收第一数据错误,终端设备可以在第二小区向第二节点设备发送第一指示信息,也可以不在第二小区向第二节点设备 发送第一指示信息。
608、终端设备在第二小区监测第一下行控制信道。
终端设备确定第一数据接收错误之后,终端设备在第二小区监测第一下行控制信道。其中,该第一下行控制信道为第二节点设备在第二小区向终端设备发送第三数据的控制信道。
可以理解的是,在一种可能的实施方式中,终端设备确定第一数据接收错误之后,终端设备才会在第二小区监测第一下行控制信息,也就说终端设备在第一小区接收第一数据之前不会检测第一下行控制信道,降低了终端设备盲检控制信道的能耗,也保证了频谱资源的效率。
609、第一节点设备向第二节点设备发送第三数据。
本实施例的步骤609与前述图5对应的步骤505类似,具体请参考图5的步骤505,此处不再赘述。
610、第二节点设备在第二小区向终端设备发送第三数据。
本实施例中,第二节点设备可以通过以下方式中的一种在第二小区向终端设备发送第三数据。
方式一:在第二时刻之前,第二节点设备在第二小区没有接收到终端设备发送的第三指示信息,则第二节点设备确定终端设备在第一小区接收第一数据错误,并在到达第二时刻时在第二小区向终端设备发送第三数据。其中,第二时刻可以是预定义或者配置的。
方式二:当第二节点设备在第二小区接收终端设备发送的第一指示信息时,第二节点设备也可以根据第一指示信息确定终端设备接收第一数据错误并在第二小区向终端设备发送第三数据。
在上述两种方式中,具体地,第二节点设备在第二小区向终端设备发送的第三数据可以承载在第一下行控制信道上,可以理解的是,当第三数据承载在第一下行控制信道时,第三数据为第一下行控制信道的控制数据。第二节点设备在第二小区向终端设备发送的第三数据也可以承载在下行共享信道上,可以理解的是,当第三数据承载在下行共享信道时,第三数据为业务数据。需要说明的是,用于终端设备在下行共享信道接收第三数据所使用的参数承载于第一下行控制信道中。
在上述两种方式中,可选地,在第二小区发送的第三数据可以对应在第一小区发送的第一数据,即第二节点设备在第二小区向终端设备发送的第三数据可以为第一数据。
需要说明的是,步骤610中的在第二小区发送的第三数据可以对应在第一小区发送的第一数据与前述图3对应实施例的步骤305中所描述的在第二小区发送的第三数据可以对应在第一小区发送的第一数据类似,此处不再赘述,具体请参考步骤305。
611、终端设备在第一小区向第一节点设备发送第二指示信息。
终端设备在第一小区向第一节点设备发送第二指示信息。其中,第二指示信息可以指示终端设备在第一小区接收第一数据错误,也可以是请求第一节点设备在第一小区向终端设备发送第三数据。
可选地,第二指示信息请求第一节点设备在第一小区向终端设备发送的第三数据可以为第一数据,也就说第二指示信息请求第一节点设备在第一小区重传第一数据。
612、终端设备在第一小区监测第四下行控制信道。
终端设备在第一小区向第一节点设备发送第二指示信息之后,终端设备在第一小区监测第四下行控制信道。其中,第四下行控制信道为第一节点设备在第一小区向终端设备发送第三数据的控制信道。
613、第一节点设备在第一小区向终端设备发送第三数据。
在步骤613中,第一节点设备所执行的动作与前述图4对应的步骤410的节点设备执行的动作类似,具体请参考图3的步骤310,此处不再赘述。
本实施例中,步骤607-步骤613为可选步骤,在实际应用中,当确定在第一小区接收第一数据错误时,终端设备执行步骤607-步骤613。其中,本实施例可以先执行步骤607-步骤610,在执行步骤611步骤613,也可以先执行步骤611步骤613,在执行步骤607-步骤610,还可以是同时执行步骤607-步骤613和步骤611步骤613,此处不限定。
本实施例中,终端设备关联至少两个节点设备,其中,第一节点设备在第一小区向终端设备发送第一数据,第二节点设备在第二预置时刻之前没有在第二小区接收到第四指示信息或者在第二小区接收到第一指示信息,则第二节点设备在第二小区向终端设备发送第一数据。因此,本实施例中,通过终端设备发送的第一指示信息或者在第二节点设备预置的第二预置时刻触发节点设备在第二小区发送第三数据,从而使得终端设备可以接收第一节点设备和第二节点设备发送第三数据,提高了传输数据的鲁棒性。此外,第二节点设备在第二小区收到第一指示信息之前或者在第二预置时刻之前,不会在第二小区向终端设备发送第三数据,降低了小区之间的干扰,也保证了频谱资源的效率。
上面对本申请实施例提供的第四种无线通信方法进行了描述,下面对本申请实施例提供的另一种无线通信方法进行描述。
基于图1所示的应用场景,请参考图7,图7为本申请实施例提供的第五种无线通信方法的示意性流程图,如图7所示,该示意性流程图可以包括以下步骤:
701、终端设备在第一小区向节点设备发送第一调度请求(scheduling request,SR)SR和在第二小区向节点设备发送第二SR。
终端设备在发送第二数据之前,终端设备在第一小区向节点设备发送第一SR和在第二小区向节点设备发送第二SR。其中,第一SR用于请求向节点设备发送第二数据,第二SR用于请求向节点设备发送第二数据。需要说明的是,本实施例以及后续实施例仅以在第一小区和第二小区发送用于请求第二数据的SR为例进行说明,还可以在更多小区发送用于请求第二数据的SR,此处不做限定。
需要说明的是,当节点设备作为基站时,第二数据为上行数据,当节点设备作为终端设备时,第二数据为sidelink数据。
本实施例中,用于承载第一SR的资源和用于承载第一节点设备第二SR的资源对应。下面对于用于承载第一节点设备第一SR的资源和用于承载第一节点设备第二SR的资源的对应关系进行详细描述。
用于承载第二SR的资源和用于承载第一SR的资源对应,可以是指用于承载第二SR的资源的索引和用于承载第一SR的资源的索引之间具有预定义或配置的关系。举例而言,终端设备在第一小区被配置了N1个可以用于发送第一SR的候选资源,其索引X为0至N1-1; 终端在第二小区被配置了N2个可以用于发送第二SR的候选资源,其索引Y为0至N2-1。当用于承载第一SR的资源的索引X和用于承载第二SR的资源的索引Y之间满足预定义或配置的关系,例如,满足X=Y+K或X=Y-K时,则表示终端设备通过第一SR和第二SR请求调度的都是第二数据,对应地预定义或配置的K的取值可以为-N2+1至N1-1中的一个或多个。还可以是满足X=Y*K,对应地,预定义或配置的K可以为任意正整数。
用于承载第二SR的资源和用于承载第一SR的资源对应,也可以是指用于承载第二SR的资源的频域位置F1和用于承载第一SR的资源的频域位置F2之间具有预定义或配置的关系。例如,满足F1=F2+ΔF或F1=F2-ΔF,ΔF任意整数的子载波且ΔF为预定义或配置,则表示终端设备通过第一SR和第二SR请求调度的都是第二数据。可选地,用于承载第一SR的资源的频域位置F1可以是用于承载第一SR的资源的最低子载波的位置、中心子载波的位置或最高子载波的位置,用于承载第二SR的资源的频域位置F2可以是用于承载第二SR的资源的最低子载波的位置、中心子载波的位置或最高子载波的位置。
用于承载第二SR的资源和用于承载第一SR的资源对应,还可以是指用于承载第二SR的资源的时域偏移Offset1和用于承载第一SR的资源的时域偏移Offset2之间具有预定义或配置的关系。例如,Offset1=Offset2+ΔOffset或Offset1=Offset2-ΔOffset,且ΔOffset整数个传输时隙或传输符号且ΔOffset为预定义或者配置,则表示终端设备通过第一SR和第二SR请求调度的都是第二数据。具体地,当第一SR的周期和第二SR的周期相等且都大于或等于1个时隙时,第一SR传输机会(transmission occasion)所在系统帧n f,1中的时隙n s,f,1满足(n f,1·N slot+n s,f,1–Offset1)mod P 1=0,第二SR传输机会(transmission occasion)所在系统帧n f,2中的时隙n s,f,2满足(n f,2·N slot+n s,f,2–Offset2)mod P 2=0,则表示终端设备通过第一SR和第二SR请求调度的都是第二数据;特别地,当P 1和P 2相等且都等于1个时隙时,有Offset1或Offset2等于0;当P 1和P 2相等且都小于1个时隙时,第一SR的传输起始符号l 1满足(l 1–Offset1mod P 1)mod P 1=0,第二SR的传输起始符号l 2满足(l 2–Offset2mod P 1)mod P 2=0,则表示终端设备通过第一SR和第二SR请求调度的都是第二数据,其中,N slot为一个系统帧所包括的时隙数,P 1为第一SR的周期,P 2为第二SR的周期。
可选地,本实施例中,终端设备通过第一小区与节点设备进行RRC通信,即第一小区为第一PCell;终端设备也可以通过第二小区与节点设备进行RRC通信,即第二小区可以是第二Pcel;终端设备也可以不通过第二小区与节点设备进行RRC通信,即第二小区也可以是SCell。可以理解的是,终端设备与节点设备进行的RRC通信可以是指终端设备与节点设备建立RRC连接后进行的通信。
702、终端设备监测第二下行控制信道和第三下行控制信道。
终端设备在第一小区向节点设备发送第一SR和在第二小区向节点设备发送第二SR之后,终端设备在第一小区监测第二下行控制信道和在第二小区第三下行控制信道。
其中,第二下行控制信道为节点设备在第一小区发送下行控制信息(downlink control information,DCI)的控制信道,第三下行控制信道为节点设备在第二小区发送DCI的控制信道。
703、节点设备向终端设备发送DCI。
节点设备在收到第一SR和第二SR之后,节点设备根据用于承载第一SR的资源和用于承载第二SR的资源之间的对应关系确定第一SR和第二SR用于请求向节点设备发送第二数据。
节点设备可以在第二下行控制信道向终端设备发送DCI,也可以在第三下行控制信道向终端设备发送DCI,还可以在第二下行控制信道和第三下行控制信道向终端设备发送DCI,其中,该DCI用于终端设备向节点设备发送第二数据,DCI包括用于传输所述第二数据的参数,比如,HARQ信息和功率控制等参数。
704、终端设备向节点设备发送第二数据。
终端设备接收到节点设备发送的DCI之后,终端设备根据DCI在第一小区向节点设备发送第二数据,也可以在第二小区向节点设备发送第二数据,还可以在第一小区和第二小区向节点设备发送第二数据。
本实施例中,终端设备在第一小区向节点设备发送第一SR和在第二小区向节点设备发送第二SR,其中,用于承载第一SR的资源和用于承载第二SR的资源对应,使得节点设备可以根据用于承载第一SR的资源和用于承载第二SR的资源对应关系确定第一SR和第二SR用于请求发送第二数据。因此,本实施例中终端设备可以通过至少两个小区向节点设备发送SR,提高了传输SR的鲁棒性,从而可以提高传输第二数据的鲁棒性。
上面对本申请实施例提供的第五无线通信方法进行了描述,下面对本申请实施例提供的另一种无线通信方法进行描述。
基于图2所示的应用场景,请参考图8,图8为本申请实施例提供的第六种无线通信方法的示意性流程图,如图8所示,该示意性流程图可以包括以下步骤:
801、终端设备在第一小区向第一节点设备发送第一SR。
终端设备在发送第二数据之前,终端设备在第一小区向第一节点设备发送第一SR。其中,第一SR用于请求发送第二数据。
802、终端设备在第二小区向第二节点设备发送第二SR。
终端设备在第一小区向第一节点设备发送第一SR的同时,终端设备也可以在第二小区向第二节点设备发送第二SR。其中,第一SR和第二SR都用于请求发送第二数据。
需要说明的是,本实施例以及后续实施例仅以向第一节点设备和第二节点设备发送用于请求第二数据的SR为例进行说明,还可以向更多的节点设备发送用于请求第二数据的SR,此处不做限定。
本实施例中,用于承载第一节点设备第一SR的资源和用于承载第一节点设备第二SR的资源对应。其中,用于承载第一节点设备第一SR的资源和用于承载第一节点设备第二SR的资源的对应关系与前述图7的步骤701所描述的类似,此处不再赘述。
可选地,本实施例中,终端设备通过第一小区与节点设备进行RRC通信,即第一小区为第一PCell;终端设备也可以通过第二小区与节点设备进行RRC通信,即第二小区可以是第二Pcel;终端设备也可以不通过第二小区与节点设备进行RRC通信,即第二小区也可以是SCell。
本实施例中,终端设备可以同时执行步骤801和步骤802,也可以先执行步骤801再执行步骤802,或者先执行步骤802再执行步骤801,此处不做限定。
803、终端设备监测第二下行控制信道和第三下行控制信道。
终端设备在第一小区向节点设备发送第一SR和在第二小区向节点设备发送第二SR之后,终端设备在第一小区监测第二下行控制信道和在第二小区监测第三下行控制信道。
其中,第二下行控制信道为节点设备在第一小区发送DCI的控制信道,第三下行控制信道为节点设备在第二小区发送DCI的控制信道。
804、第一节点设备在第一小区向终端设备发送DCI。
第一节点设备在第一小区接收到第一SR之后,第一节点设备通过第二下行控制信道向终端设备发送DCI。其中,DCI与第二数据对应,DCI包括用于传输所述第二数据的参数,比如,HARQ信息和功率控制等参数。
805、第一节点设备向第二节点设备发送第五指示信息。
第一节点设备向第二节点设备发送第五指示信息。其中,第五指示信息指示第一节点设备在第一小区向终端设备发送DCI,也就说第五指示信息指示第二节点设备无需在第二小区向终端设备发送DCI。
需要说明的是,第一节点设备可以在向终端设备发送DCI之前向第二节点设备发送第五指示信息,也可以在向终端设备发送DCI之后向第二节点设备发送第五指示信息,还可以在向终端设备发送DCI的同时向第二节点设备发送第五指示信息,此处不做限定。
需要说明的是,步骤805为可选步骤,在实际应用中,可以执行步骤805,也可以不执行步骤805。
806、第二节点设备停止在第二小区向终端设备发送DCI。
当第二节点设备确定第一节点设备在第一小区向终端设备发送DCI后,第二节点设备不向终端设备发送DCI。其中,第二节点设备可以根据第五指示信息确定第一节点设备在第一小区向终端设备发送DCI。
具体地,在第二节点设备在第二小区接收到第二SR之后,第二节点设备根据用于承载第一节点设备第一SR的资源和用于承载第一节点设备第二SR的资源对应关系,确定第一SR和第二SR均用于请求第二数据,当第一节点设备根据第一SR在第一小区向终端设备发送DCI后,第二节点设备不再向终端设备发送DCI。
可以理解的是,第二节点设备在接收到第五指示信息之后,不向终端设备发送DCI,从而节约了网络资源。
807、终端设备发送第二数据。
终端设备接收到第二节点设备发送的DCI并根据DCI在第一小区向第一节点设备发送第二数据,需要说明的是,终端设备也可以在第二小区向第二节点设备发送第二数据,还可以在第一小区向第一节点设备和在第二小区向第二节点设备发送第二数据。
本实施例中,终端设备在第一小区向第一节点设备发送第一SR和在第二小区向第二节点设备发送第二SR,其中,用于承载第一SR的资源和用于承载第二SR的资源对应,使得第一节点设备和第二节点设备可以根据用于承载第一SR的资源和用于承载第二SR的资源对应关系确定第一SR和第二SR用于请求发送第二数据。因此,本实施例中终端设备通过向至少两个节点设备发送SR,提高了传输SR的鲁棒性,从而可以提高传输第二数据的鲁棒性。
上面对本申请实施例提供的第六种无线通信方法进行了描述,下面对本申请实施例提供的另一种无线通信方法进行描述。
基于图2所示的应用场景,请参考图9,图9为本申请实施例提供的第七种无线通信方法的示意性流程图,如图9所示,该示意性流程图可以包括以下步骤:
901、终端设备在第一小区向第一节点设备发送第一SR。
902、终端设备在第二小区向第二节点设备发送第二SR。
903、终端设备监测第二下行控制信道和第三下行控制信道。
本实施例中,步骤901至步骤903与前述图8对应实施例的步骤801至803类似,此处不在赘述。
904、第二节点设备在第二小区向终端设备发送DCI。
第二节点设备在第二小区接收到第二SR并通过第三下行控制信道向终端设备发送DCI,第三下行控制信道为第二节点设备在第二小区发送DCI的控制信道。其中,DCI包括用于传输所述第二数据的参数,比如,HARQ信息和功率控制等参数。
905、终端设备发送第二数据。
终端设备接收到节点设备发送的DCI并在第二小区向第二节点设备发送第二数据,需要说明的是,终端设备也可以在第一小区向第一节点设备发送第二数据,还可以在第一小区向第一节点设备和第二小区向第二节点设备发送第二数据。
本实施例中,终端设备在第一小区向第一节点设备发送第一SR和在第二小区向第二节点设备发送第二SR,其中,用于承载第一SR的资源和用于承载第二SR的资源对应,使得第一节点设备和第二节点设备可以根据用于承载第一SR的资源和用于承载第二SR的资源对应关系确定第一SR和第二SR用于请求发送第二数据。因此,本实施例中终端设备通过向至少两个节点设备发送SR,提高了传输SR的鲁棒性,从而可以提高传输第二数据的鲁棒性。
上面对本申请实施例提供的第七种无线通信方法进行了描述,下面对本申请实施例提供的另一种无线通信方法进行描述。
请参考图10,图10为本申请实施例提供的第八种无线通信方法的示意性流程图,如图10所示,该流程性示意图可以包括以下步骤:
1001、节点设备配置参数。
节点设备根据业务的业务类型为终端设备配置参数,比如,节点设备可以根据业务的业务类型对应的服务质量(quality of service,QoS)为终端设备配置参数,该服务质量可以对应传输鲁棒性或传输时延需求等。
本实施例中,节点设备至少为终端设备配置至少两套配置参数,比如,用于传输第一业务的载波带宽配置第一配置参数,用于传输第二业务的载波带宽配置第二配置参数。其中,不同的配置参数对应的传输小区、重传方式和反馈方式中的至少有一种不同。比如,第一配置参数对应的传输小区、重传方式和反馈方式中的至少一种不同于第二配置参数对应的传输小区、重传方式和反馈方式,比如,在一种实现方式中,第一配置参数对应第一传输小区、第一重传方式和第一反馈方式,第二配置参数对应第二传输小区、第二重传方式和第二反馈方式。在另一种实现方式中第一配置参数也可以对应第一传输小区、第一重 传方式和第一反馈方式,第二配置参数对应第二传输小区、第一重传方式和第一反馈方式。本实施例中以及后续实施例中仅以第一配置参数对应第一传输小区、第一重传方式和第一反馈方式,第二配置参数对应第二传输小区、第二重传方式和第二反馈方式为例进行说明。
具体地,终端设备的配置参数可以包括终端设备标识、数据信道参数、控制信道参数。其中,第一配置参数和第二配置参数分别对应的终端设备标识、数据信道参数、控制信道参数中至少有一种不同。需要说明的是,终端设备标识至少包括无线网络临时标识(radio network temporary identity,RNTI),数据信道参数至少包括资源块组(resource block group,RBG)表格、时域资源分配表格、调制与编码策略(modulation and coding scheme,MCS)表格和信道质量信息(channel quality information,CQI)表格,控制信道参数至少包括DCI格式。也就说第一配置参数和第二配置参数分别对应的RNTI、DCI格式、RBG表格、时域资源分配表格、MCS表格、CQI表格中至少有一种不同。
可以理解的是,节点设备可以根据第一数据所对应的业务类型确定用于传输第一数据的配置参数。例如,节点设备根据第一数据对应的业务为终端设备配置第一配置参数。
1002、终端设备获取第一配置参数。
终端设备从网络设备获取第一配置参数,其中,第一配置参数为传输第一数据的配置参数,第一配置参数指示第一数据的传输小区、重传方式和反馈方式中的至少一种,该第一配置参数包括终端设备标识、数据信道参数、控制信道参数中的至少一种。
1003、终端设备从第一配置参数中确定第一数据的传输小区、重传方式和反馈方式中的至少一种。
终端设备从获取的第一配置参数中确定终端设备标识、数据信道参数和控制信道参数并根据其中的至少一种参数确定第一数据的传输小区、重传方式和反馈方式中的至少一种。
需要说明的是,本实施例以及后续实施例中仅以终端设备标识、数据信道参数和控制信道参数中的一种参数确定第一数据的传输小区、重传方式和反馈方式为例进行说明。
下面分别以DCI格式作为控制信道参数,以RNTI作为终端设备标识,以及以MCS表格、RBG配置表格、时域资源分配表格和CQI表格作为数据控制信道为例分别对终端设备确定第一数据的传输小区、重传方式和反馈方式进行描述。
一、控制信道参数为DCI格式。
终端设备可以根据DCI格式确定第一数据的传输小区、重传方式和反馈方式。需要说明的是,不同DCI格式可以是DCI的载荷不同,也可以是DCI中包括的比特域不同,也可以是DCI包括的相同比特域但占用不同比特数。
具体地,第一数据的第一传输小区、第一重传方式和第一反馈方式对应的DCI格式中包括的比特域数与第一数据的第二传输小区、第二重传方式和第二反馈方式对应的DCI格式中包括的比特域数不同,从而使得终端设备可以根据DCI格式包括的比特域数确定第一数据的传输小区、重传方式和反馈方式。
对于DCI包括的比特域,终端设备也可以根据DCI格式中比特域的取值范围确定第一数据的传输小区、重传方式和反馈方式。比如,第一数据的第一传输小区、第一重传方式和第一反馈方式对应的DCI格式中比特域的取值范围不同于第一数据的第二传输小区、第二重传方式和第二反馈方式对应的DCI格式中该比特域取值的取值范围。其中,比特域的 取值范围可以是指比特域中比特数量的取值范围,比特域的取值范围也可以是指比特域中比特表示的取值的取值范围。
对于DCI包括的比特数,终端设备也可以根据DCI包括的比特数确定第一数据的传输小区、重传方式和反馈方式。比如,第一数据的第一传输小区、第一重传方式和第一反馈方式对应的DCI格式中用于频域调度、时域调度、和/或MCS指示的比特域的比特数小于第一数据的第二传输小区、第二重传方式和第二反馈方式对应的DCI格式中用于频域调度、时域调度、和/或MCS指示的比特域的比特数。
二、控制信道参数为RNTI类型。
终端设备也可以根据RNTI类型确定第一数据的传输小区、重传方式和反馈方式。具体地,终端设备在获取DCI的过程中,终端设备可以通过不同RNTI检测DCI,并确定检测得到DCI所对应的RNTI,然后终端设备根据检测得到DCI所对应的RNTI确定第一数据的传输小区、重传方式和反馈方式。
例如,第一数据的第一传输小区、第一重传方式和第一反馈方式对应新定义的小区无线网络临时标识(new C-RNTI)、新定义的预先调度无线网络临时标识(new CS-RNTI)、新定义的半永久性信道状态信息无线网络临时标识(new SP-CSI-RNTI)中的一种或多种,第一数据的第二传输小区、第二重传方式和第二反馈方式对应小区无线网络临时标识(cell RNTI,C-RNTI)、预先调度无线网络临时标识(configured scheduling RNTI,CS-RNTI)、半永久性信道状态信息无线网络临时标识(semi-persistent channel state information RNTI,SP-CSI-RNTI)中的一种或多种。
三、数据信道参数为RBG配置表格。
终端设备也可以根据RBG配置表格确定第一数据的传输小区、重传方式和反馈方式。例如,第一数据的第一传输小区、第一重传方式和第一反馈方式对应的第一RBG配置表格中的RBG大于第二传输小区、第二重传方式和第二反馈方式对应的第二RBG配置表格中的RBG。比如,可以是第一RBG配置表格中的最小RBG大于第二RBG配置表格中的最大RBG,也可以是可以是第一RBG配置表格中的最大RBG大于第二RBG配置表格中的最大RBG,此处不做限定。通过RBG配置表格中的RBG的大小使得终端设备可以从RBG配置表格确定第一数据的传输小区、重传方式和反馈方式。
本实施例中,可以在RBG配置表格中配置大于预设阈值的RBG,使得在传输相同数据量的前提下,还可以减少传输第一数据需要的符号数,从而降低了第一数据传输时延,并降低的调度第一数据的DCI载荷大小,提高DCI传输的鲁棒性,以及降低解析DCI的开销。
四、数据信道参数为时域资源分配表格。
终端设备也可以根据时域资源分配表格确定第一数据的传输小区、重传方式和反馈方式。具体的,不同的传输小区、重传方式和反馈方式配置的时域资源分配表格的最大行数或者最大列数可以是不同,即终端设备可以根据时域资源分配表格的最大行数或者最大列数确定第一数据的传输小区、重传方式和反馈方式。例如,第一数据的第一传输小区、第一重传方式和第一反馈方式可以配置的时域资源分配表格的行数最大为4行,第一数据的第二传输小区、第二重传方式和第二反馈方式可以配置的时域资源分配表格的行数最大为16行。
本实施例中,可以通过配置少于预设阈值的行数的时域资源分配表格,可以降低调度第一数据的DCI载荷大小,提高DCI传输的鲁棒性,以及降低解析DCI的开销。
五、数据信道参数为MCS表格。
终端设备也可以根据MCS表格确定第一数据的传输小区、重传方式和反馈方式。具体地,不同的传输小区、重传方式和反馈方式配置的MCS表格的最大行数或最大列数可以是不同的,即终端设备也可以根据MCS表格的最大行数或最大列数确定第一数据的传输小区、重传方式和反馈方式。例如,第一数据的第一传输小区、第一重传方式和第一反馈方式配置的MCS表格的行数最大为4行,第一数据的第二传输小区、第二重传方式和第二反馈方式配置的MCS表格的行数最大为16行。
可选地,不同的传输小区、重传方式和反馈方式配置的MCS表格配置的MCS表格中支持的目标码率也可以是不同,其中,目标码率可以为最大码率或者最小码率。即终端设备也可以根据MCS表格的目标码率确定第一数据的传输小区、重传方式和反馈方式。比如,第一数据的第一传输小区、第一重传方式和第一反馈方式配置的MCS表格中支持的目标码率为第一码率,第一数据的第二传输小区、第二重传方式和第二反馈方式配置的MCS表格中支持的目标码率第二码率。
可选地,不同的传输小区、重传方式和反馈方式配置的MCS表格配置的MCS表格中支持的最高调制阶数也可以是不同。即终端设备也可以根据MCS表格中支持的最高调制阶数确定第一数据的传输小区、重传方式和反馈方式。比如,第一数据的第一传输小区、第一重传方式和第一反馈方式配置的MCS表格中支持的最高调制阶数为第一调制阶数,第一数据的第二传输小区、第二重传方式和第二反馈方式配置的MCS表格中支持的最高调制阶数为第二调制阶数。
本实施例中,在MCS表格中配置低于预设阈值的目标码率,可以提高第一数据传输过程中对抗干扰的能力,从而实现提高传输鲁棒性。此外,通过配置小于预设阈值的行数的MCS表格,可以降低调度第一数据的DCI载荷大小,提高DCI传输的鲁棒性,以及降低通信设备解析DCI的开销。
六、数据信道参数为CQI表格。
终端设备还可以根据CQI表格确定第一数据的传输小区、重传方式和反馈方式。具体地,不同的传输小区、重传方式和反馈方式配置的CQI表格中支持的目标码率可以是不同,其中,目标码率可以为最大码率或者最小码率。即终端设备也可以根据CQI表格的目标码率确定第一数据的传输小区、重传方式和反馈方式。比如,第一数据的第一传输小区、第一重传方式和第一反馈方式配置的MCS表格中支持的目标码率为第三码率,第一数据的第二传输小区、第二重传方式和第二反馈方式配置的MCS表格中支持的目标码率第四码率。
本实施例中,通过在MCS表格配置低于预设阈值的目标码率,可以提高第一数据传输过程中抗干扰的能力,从而实现提高传输鲁棒性。
下面对第一配置参数对应的传输小区、重传方式和反馈方式进行说明:
第一数据的重传方式包括:终端设备在第一小区接收第一数据错误;终端设备在第二小区发送第一指示信息,第一指示信息指示第一数据在第一小区接收错误或请求第一数据在第二小区的传输,终端设备在第二小区接收第一数据。
第一数据的传输小区包括第一小区和第二小区。
第一数据的反馈方式包括:当终端设备在第一小区接收第一数据错误时,终端设备在第二小区发送第一指示信息,第一指示信息指示第一数据在第一小区接收错误或请求第一数据在第二小区的传输。
第一数据的反馈方式还包括:终端设备在第一小区发送第二指示信息,第二指示信息指示第一数据在第一小区接收错误或请求第一数据在第一小区的传输。
第一数据的重传方式还包括:终端设备在第一小区接收第一数据正确;终端设备在第二小区发送第三指示信息,第三指示信息指示第一数据在第一小区接收正确或请求停止第一数据在第二小区的传输;终端设备停止在第二小区接收第一数据。
第一数据的反馈方式还包括:终端设备在第二小区发送第三指示信息,第三指示信息指示第一数据在第一小区接收正确或请求停止第一数据在第二小区的传输。
第一数据的反馈方式还包括:终端设备在第一小区发送第四指示信息,第四指示信息指示第一数据在第一小区接收正确或请求停止第一数据在第一小区的传输。
1004、终端设备设备执行第一配置参数对应的传输小区、重传方式和反馈方式的操作。
终端设备执行第一配置参数对应的传输小区、重传方式和反馈方式的操作与前述图3、图4、图5或图6对应的实施例类似,此处不再赘述。
本实施例中,节点设备根据业务的业务类型为终端设备配置参数,其中,不同的业务可以配置不同的配置参数,不同的配置参数对应不同的传输小区、重传方式和反馈方式。使得终端设备可以根据载波带宽的配置参数确定数据的传输小区、重传方式和反馈方式。因此,本实施例中,节点设备可以根据不同的业务为终端设备配置不同的参数,从而实现了不同的业务可以对应不同的传输小区、重传方式和反馈方式,满足不同业务对数据传输的不同需求。
上面对本申请实施例提供的无线通信方法进行了描述,下面对本申请实施例提供的装置进行描述。
请参考图11,图11为本申请实施例提供的一种终端设备的示意性框图,该终端设备110包括:
处理单元1101,用于确定在第一小区接收第一数据错误,所述第一小区为第一主小区;
发送单元1102,用于在第二小区发送第一指示信息,所述第二小区为辅小区或第二主小区,所述第一指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第二小区的传输;
接收单元1103,用于在所述第二小区接收所述第一数据。
在一种可能实现的方式中,所述终端设备110还包括监测单元1104,用于在所述第二小区监测第一下行控制信道,所述第一下行控制信道用于所述终端设备接收所述第一数据。
在另一种可能实现的方式中,所述发送单元1102还用于在所述第一小区发送第二指示信息,所述第二指示信息指示所述终端设备在第一小区错误地接收所述第一数据或请求在所述第一小区向所述终端设备传输所述第一数据;所述终端设备在所述第一小区接收所述第一数据。
在另一种可能实现的方式中,所述第一指示信息包括否定应答NACK或调度请求SR。
在另一种可能实现的方式中,所述第二指示信息包括NACK或SR。
本实施例中,发送单元1101在处理单元1101确定在第一小区接收第一数据错误时向节点设备发送第一指示信息,接收单元1103在第二小区向终端设备发送第一数据。因此,本实施例中,终端设备110可以通过指示信息触发在第二小区向终端设备110发送数据,从而使得终端设备110可以通过第一小区和第二小区接收数据,提高了传输数据的鲁棒性。此外,监测单元1104在发送单元1101发送第一指示信息之前,不在第二小区监测第一数据,降低了小区之间的干扰,也保证了频谱资源的效率。
上面对本申请实施例提供的第一种终端设备进行了描述,下面对本申请实施例提供的节点设备进行描述。
请参考图12,图12为本申请实施例提供的第一种节点设备的示意性框图,该节点设备120包括:
发送单元1201,用于在第一小区向终端设备发送第一数据,所述第一小区为第一主小区;
接收单元1202,用于在第二小区接收来自所述终端设备的第一指示信息,所述第二小区为辅小区或第二主小区,所述第一指示信息指示所述终端设备在第一小区错误地接收所述第一数据或请求在所述第二小区向所述终端设备发送所述第一数据;
所述发送单元1201还用于在所述第二小区向所述终端设备发送所述第一数据。
在一种可能实现的方式中,所述发送单元1201还用于在所述第一小区接收来自所述终端设备的第二指示信息,所述第二指示信息指示所述终端设备在所述第一小区错误地接收所述第一数据或请求在所述第一小区向所述终端设备传输所述第一数据;所述发送单元1201还用于在第一小区向所述终端设备发送所述第一数据。
在另一种可能实现的方式中,所述第一指示信息包括否定应答NACK或调度请求SR。
在另一种可能实现的方式中,所述第二指示信息包括NACK或SR。
本实施例中,发送单元1201在第一小区向终端设备发送第一数据,以及在接收单元1202接收到第一指示信息之后发送单元1201在第二小区向终端设备发送第一数据。因此,本实施例节点设备120在收到指示信息之后在第二小区向终端设备发送数据,保证了频谱资源的效率的同时,提高了传输数据的鲁棒性。
上面对本申请实施例提供的第一种节点设备进行了描述,下面对本申请实施例提供的第一节点设备进行描述。
请参考图13,图13为本申请实施例提供的第一种第一节点设备的示意性框图,该第一节点设备130包括:
发送单元1301,用于在第一小区向终端设备发送第一数据,所述第一小区为第一主小区;
所述发送单元1301还用于向第二节点设备发送所述第一数据,所述第一数据用于所述第二节点设备收到第一指示信息后在第二小区向所述终端设备发送,所述第一指示信息指示所述终端设备在第一小区错误地接收所述第一数据或请求所述第二节点设备在所述第二小区向所述终端设备发送所述第一数据,所述第二小区为辅小区或第二主小区。
在一种可能实现的方式中,所述第一节点设备130还包括接收单元1302,所述接收单 元1302用于在所述第一小区接收来自所述终端设备的第二指示信息,所述第二指示信息指示所述终端设备在所述第一小区错误地接收所述第一数据或请求在所述第一小区向所述终端设备传输所述第一数据;所述发送单元1301还用于在所述第一小区向所述终端设备发送所述第一数据。
在另一种可能实现的方式中,所述第一指示信息包括否定应答NACK或调度请求SR。
在另一种可能实现的方式中,所述第二指示信息包括NACK或SR。
本实施例中,发送单元1301可以向终端设备和第二节点设备发送第一数据,第一数据用于第二节点设备收到第一指示信息后在第二小区向所述终端设备发送。因此,本实施例中,第一节点设备130可以通过向第二节点设备发送第一数据,使得第二节点设备在收到第一指示信息之后在第二小区向终端设备发送该第一数据,从而可以通过第一小区和第二小区向终端设备发送第一数据,提高了数据传输的鲁棒性。
上面对本申请实施例提供的第一种第一节点设备进行了描述,下面对本申请实施例提供的第二节点设备进行描述。
请参考图14,图14为本申请实施例提供的第一种第二节点设备的示意性框图,该第二节点设备140包括:
接收单元1401,用于在第二小区接收来自终端设备的第一指示信息,所述第二指示信息指示所述终端设备在第一小区错误地接收所述第一数据或请求在所述第一小区向所述终端设备传输所述第一数据,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区;
发送单元1402,用于在所述第二小区向所述终端设备发送所述第一数据。
在一种可能实现的方式中,所述接收单元1401还用于接收来自第一节点设备的所述第一数据,所述第一节点设备为所述第一小区对应的节点设备。
在另一种可能实现的方式中,所述第一指示信息包括否定应答NACK或调度请求SR。
上面对本申请实施例提供的第二节点设备进行了描述,下面对本申请实施例提供的终端设备进行描述。
本实施例中,接收单元1401接收终端设备发送的第一指示信息,发送单元1402根据第一指示信息在第二小区向终端设备发送第一数据。因此,本实施例中,第二节点设备140在收到第一指示信息并确定终端设备在第一小区错误地接收第一数据时才在第二小区向终端数设备发送第一数据,保证了频谱资源的效率的同时,提高了传输数据的鲁棒性。
上面对本申请实施例提供的第一种第二节点设备进行了描述,下面对本申请实施例提供的另一种节点设备进行描述。
请参考图15,图15为本申请实施例提供的第二种终端设备的示意性框图,该终端设备150包括:
处理单元1501,用于确定在第一小区接收第一数据正确,所述第一小区为第一主小区;
发送单元1502,用于在第二小区发送第三指示信息,所述第二小区为辅小区或第二主小区,所述第三指示信息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第二小区的传输;
停止单元1503,用于停止在所述第二小区接收所述第一数据。
在一种可能实现的方式中,所述停止单元1503还用于停止在所述第二小区监测第一下行控制信道,所述第一下行控制信道用于所述终端设备接收所述第一数据。
在另一种可能实现的方式中,所述发送单元1502还用于在所述第一小区发送第四指示信息,所述第四指示信息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第一小区的传输;所述停止单元1503还用于停止在所述第一小区接收所述第一数据。
在另一种可能实现的方式中,所述第三指示信息包括肯定应答ACK。
在另一种可能实现的方式中,所述第四指示信息包括肯定应答ACK。
本实施例中,发送单元1502在处理单元1501确定第一数据接收正确时在第二小区发送第三指示信息,停止单元1503停止在所述第二小区接收所述第一数据。因此,本实施例中,终端设备150可以通过在第二小区发送指示信息,从而可以指示节点设备停止在第二小区发送第一数据,在备份两个小区发送第一数据的同时,保证了频谱资源的效率和降低了小区间的干扰。
上面对本申请实施例提供的第二种终端设备进行了描述,下面对本申请实施例提供的另一种节点设备进行描述。
请参考图16,图16为本申请实施例提供的第二种节点设备的示意性框图,该节点设备160包括:
发送单元1601,用于在第一小区向终端设备发送第一数据,所述第一小区为第一主小区;
接收单元1602,用于在第二小区接收来自所述终端设备的第三指示信息,所述第二小区为辅小区或第二主小区,所述第三指示信息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第二小区的传输;
停止单元1603,用于停止在所述第二小区发送所述第一数据。
在一种可能实现的方式中,所述接收单元1602还用于在所述第一小区接收来自所述终端设备的第四指示信息,所述第四指示信息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第一小区的传输;所述停止单元1603还用于停止在所述第一小区发送所述第一数据。
在另一种可能实现的方式中,所述第三指示信息包括肯定应答ACK。
在另一种可能实现的方式中,所述第四指示信息包括肯定应答ACK。
本实施例中,在接收单元1602收到终端设备发送的第三指示信息之后,停止单元1603停止在第二小区向终端设备发送第一数据。因此,本实施例节点设备160在接收到第三指示信息后,不在第二小区发送第一数据,在节点设备配置至少两个小区传输第一数据的同时,可以降低小区之间的干扰,也提高了频谱资源的效率。
上面对本申请实施例提供的第二种节点设备进行了描述,下面对本申请实施例提供的另一种第二节点设备进行描述。
请参考图17,图17为本申请实施例提供的第二种第二节点设备的示意性框图,该第二节点设备170包括:
接收单元1701,用于在第二小区接收来自终端设备的第三指示信息,所述第三指示信 息指示所述终端设备在第一小区正确地接收所述第一数据或请求停止所述第一数据在所述第二小区的传输,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区;
停止单元1702,用于停止在所述第二小区发送所述第一数据。
在一种可能实现的方式中,所述第三指示信息包括肯定应答ACK。
本实施例中,在第二节点设备170配置第二小区为终端设备传输第一数据,第二节点设备170的接收单元1701在收到第三指示信息后,停止单元1702停止在第二小区传输第二数据,降低了小区之间的干扰,也提高了频谱资源的使用效率。
上面对本申请实施例提供的第二种第二节点设备进行了描述,下面对本申请实施例提供的另一种终端设备进行描述。
请参考图18,图18为本申请实施例提供的第三种终端设备的示意性框图,该终端设备180包括:
发送单元1801,用于在第一小区发送第一调度请求SR和在第二小区发送第二SR,其中,用于承载所述第一SR的资源和用于承载所述第二SR的资源对应,所述第一SR和所述第二SR用于请求发送第二数据的传输;
监测单元1802,用于在所述第一小区监测第二下行控制信道和在所述第二小区监测第三下行控制信道;
接收单元1803,用于在所述第三下行控制信道和所述第二下行控制信道中的至少一条接收下行控制信息DCI;
所述发送单元1801还用于根据所述DCI发送所述第二数据。
在一种可能实现的方式中,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
本实施例中,发送单元1801在第一小区发送第一调度请求SR和在第二小区发送第二SR,其中,所述第一SR和所述第二SR用于请求发送第二数据的传输。因此,本实施例中终端设备180通过至少两个两个小区发送第二数据的调度请求,提高了传输SR的鲁棒性,从而可以提高传输第一SR对应的第二数据的鲁棒性。
上面对本申请实施例提供的第三种终端设备进行了描述,下面对本申请实施例提供的另一种第一节点设备进行描述。
请参考图19,图19为本申请实施例提供的第二种第一节点设备的示意性框图,该第一节点设备190包括:
接收单元1901,用于在第一小区接收来自终端设备的第一调度请求SR,其中,用于承载所述第一SR的资源和用于承载第二SR的资源对应,所述用于承载第二SR的资源为在第二小区承载来自所述终端设备的第二SR的资源,所述第一SR和所述第二SR用于请求发送第二数据的传输;
发送单元1902,用于在所述第一小区向所述终端设备发送下行控制信息DCI,所述DCI由第二下行控制信道承载,所述DCI包括用于传输所述第二数据的参数;
所述接收单元1901还用于在所述第一小区接收来自所述终端设备的所述第二数据。
在一种可能实现的方式中,所述发送单元1902还用于向第二节点设备发送第五指示信息,所述第五指示信息用于指示所述第一节点设备在第一小区发送所述DCI。
本实施例中,发送单元1901向第二节点设备发送第五指示信息,第五指示信息可以指示第一节点设备190在第一小区向终端设备发送DCI,从而使得第二节点设备在接收到第二SR时不向终端设备发送DCI,从而可以节省频谱资源。
上面对本申请实施例提供的第二种第一节点设备进行了描述,下面对本申请实施例提供的另一种第二节点设备进行描述。
请参考图20,图20为本申请实施例提供的第三种第二节点设备的示意性框图,该第二节点设备200包括:接收单元2001,发送单元2002或者停止单元2003;
所述接收单元2001,用于在第二小区接收来自终端设备的第二调度请求SR,其中,用于承载所述第二SR的资源和用于承载第一SR的资源对应,所述用于承载第一SR的资源为在第一小区承载来自所述终端设备的第一SR的资源,所述第一SR和所述第二SR用于请求发送第二数据的传输;
所述发送单元2002,用于在所述第二小区向所述终端设备发送下行控制信息DCI,所述DCI由第三下行控制信道承载;或者,所述接收单元2001用于接收来自第一节点设备的第五指示信息;所述停止单元2003用于停止在所述第二小区向所述终端设备发送所述DCI。
在一种可能实现的方式中,所述接收单元2001还用于在所述第二小区接收来自所述终端设备的所述第二数据。
在另一种可能实现的方式中,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
本实施例中,在接收单元2001接收到第五指示信息之后,停止单元2003停止在第二小区向终端设备发送DCI。因此,本实施例中第二节点设备200可以根据第五指示信息确定第一节点设备在第一小区向终端设备发送DCI,并在接收到第二SR不向终端设备发送DCI,从而可以节省频谱资源。
上面对本申请实施例提供的第三种第二节点设备进行了描述,下面对本申请实施例提供的另一种节点设备进行描述。
请参考图21,图21为本申请实施例提供的第三种节点设备的示意性框图,该节点设备210包括:
接收单元2101,用于在第一小区接收第一调度请求SR和在第二小区接收第二SR,其中,用于承载所述第二SR的资源和用于承载所述第一SR的资源对应;
发送单元2102,用于在所述第一小区和所述第二小区中的至少一个小区向所述终端设备发送下行控制信息DCI,在所述第一小区发送的所述DCI由第二下行控制信道承载,在所第二小区发送的所述DCI由第三下行控制信道承载,所述DCI包括用于传输第二数据的参数;
所述接收单元2101还用于在所述第一小区和所述第二小区中至少一个小区接收来自所述终端设备的所述第二数据。
在一种可能实现的方式中,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
本实施例中,接收单元2101在第一小区和第二小区接收用于调度相同数据的第一SR和第二SR,从而提高了接收SR的鲁棒性。
上面对本申请实施例提供的第三种节点设备进行了描述,下面对本申请实施例提供的另一种终端设备进行描述。
请参考图22,图22为本申请实施例提供的第四种终端设备的示意性框图,该终端设备220包括:
获取单元2201,用于获取载波带宽的第一配置参数,所述载波宽带为传输第一数据的载波带宽,所述载波带宽预置至少两套配置参数,所述第一配置参数包含于所述至少两套配置参数;
处理单元2202,用于从所述第一配置参数确定所述第一数据的传输小区、重传方式和反馈方式中的至少一种。
在一种可能实现的方式中,所述第一配置参数包括终端设备标识、数据信道参数、控制信道参数中的至少一种。
在另一种可能实现的方式中,所述重传方式包括:所述终端设备在第一小区接收所述第一数据错误;所述终端设备在第二小区发送第一指示信息,所述第一指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第二小区的传输,所述终端设备在所述第二小区接收所述第一数据。
在另一种可能实现的方式中,所述传输小区至少包括所述第一小区和所述第二小区,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
在另一种可能实现的方式中,所述反馈方式包括:当所述终端设备在所述第一小区接收所述第一数据错误时,所述终端设备在所述第二小区发送所述第一指示信息,所述第一指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第二小区的传输。
在另一种可能实现的方式中,所述反馈方式还包括:所述终端设备在所述第一小区发送所述第二指示信息,所述第二指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第一小区的传输。
在另一种可能实现的方式中,所述重传方式还包括:所述终端设备在第一小区接收所述第一数据正确;所述终端设备在第二小区发送第三指示信息,所述第三指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第二小区的传输;所述终端设备停止在所述第二小区接收所述第一数据。
在另一种可能实现的方式中,所述反馈方式还包括:所述终端设备在所述第二小区发送第三指示信息,所述第三指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第二小区的传输。
在另一种可能实现的方式中,所述反馈方式还包括:所述终端设备在所述第一小区发送第四指示信息,所述第四指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第一小区的传输。
本实施例中,载波带宽至少配置两套配置参数,其中该至少两套配置参数包括第一配置参数,获取单元2201获取载波带宽的第一配置参数,处理单元2202从第一配置参数中确定第一数据的传输小区、重传方法和反馈方式中的至少一种。因此,本实施例中,终端设备可以根据载波带宽的配置参数确定第一数据的传输小区、重传方法和反馈方式中的至 少一种,从而满足不同业务对数据传输的不同需求。
上面对本申请实施例提供的一种终端设备进行了描述,下面对本申请实施例提供的另一种终端设备进行描述。
请参考图23,图23为本申请实施例提供的终端设备的一个硬件结构示意图,图23示出了一种简化的终端设备的硬件结构示意图。便于理解和图示方便,图23中,终端设备以手机作为例子。如图23所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图23中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发单元,将具有处理功能的处理器视为终端设备的处理单元。其中。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元中用于实现接收功能的器件视为接收单元,将收发单元中用于实现发送功能的器件视为发送单元,即收发单元包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
其中,收发单元用于执行上述方法实施例中终端设备侧所设备的发送操作和接收操作,处理单元用于执行上述方法实施例中终端设备上除了收发操作之外的其他处理操作。
请参考图24,图24为本申请实施例提供的节点设备的一个硬件结构示意图,如图24所示,该节点设备240包括:
至少一个处理器2410、存储器2450和收发器2430。该收发器可包括接收机和发射机,该存储器2450可以包括只读存储器和/或随机存取存储器,并向处理器2410提供操作指令和数据。存储器2450的一部分还可以包括非易失性随机存取存储器(NVRAM)。存储器与处理器可以是各自独立通过总线或者接口连接,也可以集成在一起。
在一些实施方式中,存储器2450存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集。
在本申请实施例中,通过调用存储器2450存储的操作指令(该操作指令可存储在操作系统中),执行相应的操作。处理器2410控制节点设备240的操作,处理器2410还可以称为 CPU(Central Processing Unit,中央处理单元)。存储器2450可以包括只读存储器和随机存取存储器,并向处理器2410提供指令和数据。存储器2450的一部分还可以包括非易失性随机存取存储器(NVRAM)。具体的应用中节点设备240的各个组件通过总线系统2420耦合在一起,其中总线系统2420除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统2420。
上述本申请实施例揭示的方法可以应用于处理器2410中,或者由处理器2410实现。处理器2410可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2410中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2410可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2450,该存储器2450可以是物理上独立的单元,也可以是与处理器2410集成在一起的,处理器2410读取存储器2450中的信息,结合其硬件完成上述方法的步骤。
本实施例中,收发器2430用于执行上述方法实施例中节点设备侧涉及到接收和发送的操作步骤。或用于执行其他可选实施例中的节点设备侧的数据发送以及接收的步骤。
处理器2410用于执行上述方法实施例中节点设备侧数据处理的步骤。或用于执行其他可选实施例中节点设备侧数据处理的步骤。
请参考图25,图25为本申请实施例提供的第一节点设备的一个硬件结构示意图,如图25所示,该第一节点设备250包括至少一个处理器2510、存储器2550、收发器2530和总线系统2420。
其中,至少一个处理器2510、存储器2550、收发器2530和总线系统2420的功能结构与前述图24的类似,此处不再赘述。
本实施例中,收发器2530用于执行上述方法实施例中第一节点设备侧涉及到接收和发送的操作步骤。或用于执行其他可选实施例中的第一节点设备侧的数据发送以及接收的步骤。
处理器2510用于执行上述方法实施例中第一节点设备侧数据处理的步骤。或用于执行其他可选实施例中第一节点设备侧数据处理的步骤。
请参考图26,图26为本申请实施例提供的第二节点设备的一个硬件结构示意图,如图26所示,该第二节点设备260包括至少一个处理器2610、存储器2650、收发器2630和总线系统2420。
其中,至少一个处理器2610、存储器2650、收发器2630和总线系统2420的功能结构与前述图24的类似,此处不再赘述。
本实施例中,收发器2630用于执行上述方法实施例中第二节点设备侧涉及到接收和发送的操作步骤。或用于执行其他可选实施例中的第二节点设备侧的数据发送以及接收的步 骤。
处理器2610用于执行上述方法实施例中第二节点设备侧数据处理的步骤。或用于执行其他可选实施例中第二节点设备侧数据处理的步骤。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现,还可以采用软件与硬件结合的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (28)

  1. 一种无线通信方法,其特征在于,包括:
    终端设备在第一小区接收第一数据错误,所述第一小区为第一主小区;
    所述终端设备在第二小区发送第一指示信息,所述第二小区为辅小区或第二主小区,所述第一指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第二小区的传输;
    所述终端设备在所述第二小区接收所述第一数据。
  2. 根据权利要求1所述的方法,其特征在于,所述终端设备在所述第二小区发送所述第一指示信息之后,所述方法还包括:
    所述终端设备在所述第二小区监测第一下行控制信道,所述第一下行控制信道用于所述终端设备接收所述第一数据。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一小区发送第二指示信息,所述第二指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第一小区的传输;
    所述终端设备在所述第一小区接收所述第一数据。
  4. 一种无线通信方法,其特征在于,包括:
    节点设备在第一小区向终端设备发送第一数据,所述第一小区为第一主小区;
    所述节点设备在第二小区接收来自所述终端设备的第一指示信息,所述第二小区为辅小区或第二主小区,所述第一指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第二小区的传输;
    所述节点设备在所述第二小区向所述终端设备发送所述第一数据。
  5. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    所述节点设备在所述第一小区接收来自所述终端设备的第二指示信息,所述第二指示信息指示所述第一数据在所述第一小区接收错误或请求所述第一数据在所述第一小区的传输;
    所述节点设备在所述第一小区向所述终端设备发送所述第一数据。
  6. 一种无线通信方法,其特征在于,包括:
    第二节点设备在第二小区接收来自终端设备的第一指示信息,所述第一指示信息指示所述第一数据在第一小区接收错误或请求所述第一数据在所述第二小区的传输,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区;
    所述第二节点设备在所述第二小区向所述终端设备发送所述第一数据。
  7. 根据权利要求6所述的方法,其特征在于,所述第二节点设备在所述第二小区向所述终端设备发送所述第一数据之前,所述方法还包括:
    所述第二节点设备接收来自第一节点设备的所述第一数据,所述第一节点设备为所述第一小区对应的节点设备。
  8. 一种无线通信方法,其特征在于,包括:
    终端设备在第一小区接收第一数据正确,所述第一小区为第一主小区;
    所述终端设备在第二小区发送第三指示信息,所述第二小区为辅小区或第二主小区, 所述第三指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第二小区的传输;
    所述终端设备停止在所述第二小区接收所述第一数据。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备在所述第二小区发送所述第三指示信息之后,所述方法还包括:
    所述终端设备停止在所述第二小区监测第一下行控制信道,所述第一下行控制信道用于所述终端设备接收所述第一数据。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    所述终端设备在所述第一小区发送第四指示信息,所述第四指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第一小区的传输;
    所述终端设备停止在所述第一小区接收所述第一数据。
  11. 一种无线通信方法,其特征在于,包括:
    节点设备在第一小区向终端设备发送第一数据,所述第一小区为第一主小区;
    所述节点设备在第二小区接收来自所述终端设备的第三指示信息,所述第二小区为辅小区或第二主小区,所述第三指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第二小区的传输;
    所述节点设备停止在所述第二小区发送所述第一数据。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述节点设备在所述第一小区接收来自所述终端设备的第四指示信息,所述第四指示信息指示所述第一数据在所述第一小区接收正确或请求停止所述第一数据在所述第一小区的传输;
    所述节点设备停止在所述第一小区发送所述第一数据。
  13. 一种无线通信方法,其特征在于,包括:
    第二节点设备在第二小区接收来自终端设备的第三指示信息,所述第三指示信息指示所述第一数据在第一小区接收正确或请求停止所述第一数据在所述第二小区的传输,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区;
    所述第二节点设备停止在所述第二小区发送所述第一数据。
  14. 一种无线通信方法,其特征在于,包括:
    终端设备在第一小区发送第一调度请求SR和在第二小区发送第二SR,其中,用于承载所述第一SR的资源和用于承载所述第二SR的资源对应,所述第一SR和所述第二SR用于请求第二数据的传输;
    所述终端设备在所述第一小区监测第二下行控制信道和在所述第二小区监测第三下行控制信道;
    所述终端设备在所述第三下行控制信道和所述第二下行控制信道中的至少一条接收下行控制信息DCI;
    所述终端设备根据所述DCI发送所述第二数据。
  15. 根据权利要求14所述的方法,其特征在于,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
  16. 一种无线通信方法,其特征在于,包括:
    第一节点设备在第一小区接收来自终端设备的第一调度请求SR,其中,用于承载所述第一SR的资源和用于承载第二SR的资源对应,所述用于承载第二SR的资源为在第二小区承载来自所述终端设备的第二SR的资源,所述第一SR和所述第二SR用于请求第二数据的传输;
    所述第一节点设备在所述第一小区向所述终端设备发送下行控制信息DCI,所述DCI由第二下行控制信道承载,所述DCI包括用于传输所述第二数据的参数;
    所述第一节点设备在所述第一小区接收来自所述终端设备的所述第二数据。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述第一节点设备向第二节点设备发送第五指示信息,所述第五指示信息用于指示所述DCI在所述第一小区传输。
  18. 一种无线通信方法,其特征在于,包括:
    第二节点设备在第二小区接收来自终端设备的第二调度请求SR,其中,用于承载所述第二SR的资源和用于承载第一SR的资源对应,所述用于承载第一SR的资源为在第一小区承载来自所述终端设备的第一SR的资源,所述第一SR和所述第二SR用于请求第二数据的传输;
    所述第二节点设备在所述第二小区向所述终端设备发送下行控制信息DCI,所述DCI由第三下行控制信道承载;或者,所述第二节点设备接收来自第一节点设备的第五指示信息,并停止在所述第二小区向所述终端设备发送下行控制信息DCI,所述第五指示信息用于指示停止发送所述DCI,所述DCI包括用于传输所述第二数据的参数。
  19. 根据权利要求18所述的方法,其特征在于,所述第二节点设备在所述第二小区向所述终端设备发送下行控制信息DCI之后,所述方法还包括:
    所述第二节点设备在所述第二小区接收来自所述终端设备的所述第二数据。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
  21. 一种无线通信方法,其特征在于,包括:
    节点设备在第一小区接收第一调度请求SR和在第二小区接收第二SR,其中,用于承载所述第二SR的资源和用于承载所述第一SR的资源对应;
    所述节点设备在所述第一小区和所述第二小区中的至少一个小区向所述终端设备发送下行控制信息DCI,在所述第一小区发送的所述DCI由第二下行控制信道承载,在所第二小区发送的所述DCI由第三下行控制信道承载,所述DCI包括用于传输第二数据的参数;
    所述节点设备在所述第一小区和所述第二小区中至少一个小区接收来自所述终端设备的所述第二数据。
  22. 根据权利要求21所述的方法,其特征在于,所述第一小区为第一主小区,所述第二小区为辅小区或第二主小区。
  23. 一种通信装置,其特征在于,所述装置具有实现上述权利要求1-3任一项、8-10任一项或14-15任一项方法的功能。
  24. 一种通信装置,其特征在于,所述装置具有实现上述权利要求4-5任一项、6-7 任一项、11-12任一项、13、16-17任一项、18-20任一项或21-22任一项方法的功能。
  25. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行权利要求1-3任一项、8-10任一项或14-15任一项所述的方法。
  26. 一种通信装置,其特征在于,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述装置执行权利要求4-5任一项、6-7任一项、11-12任一项、13、16-17任一项、18-20任一项或21-22任一项所述的方法。
  27. 一种通信系统,其特征在于,包括:用于执行如权利要求1-22任一项所述方法的通信装置。
  28. 一种存储介质,其上存储有计算机程序或指令,其特征在于,所述计算机程序或指令被执行时使得计算机执行权利要求1-22任一项所述的方法。
PCT/CN2019/117046 2018-12-10 2019-11-11 无线通信方法及装置 WO2020119356A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19895466.1A EP3886526A4 (en) 2018-12-10 2019-11-11 WIRELESS COMMUNICATIONS METHOD AND APPARATUS
US17/342,930 US11909539B2 (en) 2018-12-10 2021-06-09 Wireless communication method and apparatus for improving robustness of data transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811503889.XA CN111294141B (zh) 2018-12-10 2018-12-10 无线通信方法及装置
CN201811503889.X 2018-12-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/342,930 Continuation US11909539B2 (en) 2018-12-10 2021-06-09 Wireless communication method and apparatus for improving robustness of data transmission

Publications (1)

Publication Number Publication Date
WO2020119356A1 true WO2020119356A1 (zh) 2020-06-18

Family

ID=71024648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117046 WO2020119356A1 (zh) 2018-12-10 2019-11-11 无线通信方法及装置

Country Status (4)

Country Link
US (1) US11909539B2 (zh)
EP (1) EP3886526A4 (zh)
CN (1) CN111294141B (zh)
WO (1) WO2020119356A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327637A (zh) * 2012-03-19 2013-09-25 上海贝尔股份有限公司 随机接入从小区的方法和接收数据的方法
WO2014109580A2 (ko) * 2013-01-10 2014-07-17 한국전자통신연구원 소형 셀 향상 방법
CN105594141A (zh) * 2013-08-27 2016-05-18 三星电子株式会社 用于eNB间载波聚合中的随机接入过程和无线电链路故障的方法和系统
CN107154840A (zh) * 2016-03-03 2017-09-12 中兴通讯股份有限公司 资源分配控制方法、装置及系统
CN108377567A (zh) * 2016-11-01 2018-08-07 北京三星通信技术研究有限公司 一种在5g架构下建立双连接传输数据的方法、装置和系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913522A1 (fr) * 2007-03-06 2008-09-12 Vincent Lorphelin Dvd a acces controle.
US9100955B2 (en) * 2010-09-03 2015-08-04 Panasonic Intellectual Property Corporation Of America Terminal, base station and signal transmission control method
KR101907528B1 (ko) * 2011-02-18 2018-10-12 삼성전자 주식회사 이동 통신 시스템 및 그 이동 통신 시스템에서 채널 송수신 방법
CN103444118B (zh) * 2011-03-14 2016-05-18 Lg电子株式会社 在无线通信系统中发射ack/nack的方法和设备
US9203559B2 (en) * 2012-01-27 2015-12-01 Blackberry Limited System and method for supporting inter-band carrier aggregation with different UL/DL TDD configurations
JP6106423B2 (ja) * 2012-12-17 2017-03-29 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信方法及び制御装置
US9801164B2 (en) * 2013-04-18 2017-10-24 Lg Electronics Inc. Methods and devices for transmitting scheduling request in wireless access system
US20150089382A1 (en) * 2013-09-26 2015-03-26 Wu-chi Feng Application context migration framework and protocol
US9338711B2 (en) * 2013-10-21 2016-05-10 Htc Corporation Method of handling handover for network of wireless communication system and communication device thereof
CN105592555B (zh) * 2014-10-23 2019-02-05 杭州华为数字技术有限公司 上行干扰处理方法、设备和系统
US9843955B2 (en) * 2015-03-09 2017-12-12 Ofinno Technologies, Llc Radio configuration in a carrier aggregation
KR102290256B1 (ko) * 2015-12-21 2021-08-17 삼성전자 주식회사 무선 통신 시스템에서 단말을 스케줄링 하는 방법 및 장치
CN108809480B (zh) 2017-04-28 2021-02-26 大唐移动通信设备有限公司 一种数据接收方法及装置
CN108809524B (zh) * 2017-04-28 2021-04-09 华为技术有限公司 传输反馈信息的方法和装置
CN108809594B (zh) * 2017-05-05 2021-01-29 华为技术有限公司 传输数据的方法、终端设备和网络设备
CN111436085B (zh) * 2019-01-11 2021-10-15 华为技术有限公司 通信方法及装置
CN112054880B (zh) * 2019-06-06 2022-09-09 华为技术有限公司 一种通信方法及装置
EP4044482A4 (en) * 2019-11-07 2022-11-02 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND COMMUNICATION DEVICE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103327637A (zh) * 2012-03-19 2013-09-25 上海贝尔股份有限公司 随机接入从小区的方法和接收数据的方法
WO2014109580A2 (ko) * 2013-01-10 2014-07-17 한국전자통신연구원 소형 셀 향상 방법
CN105594141A (zh) * 2013-08-27 2016-05-18 三星电子株式会社 用于eNB间载波聚合中的随机接入过程和无线电链路故障的方法和系统
CN107154840A (zh) * 2016-03-03 2017-09-12 中兴通讯股份有限公司 资源分配控制方法、装置及系统
CN108377567A (zh) * 2016-11-01 2018-08-07 北京三星通信技术研究有限公司 一种在5g架构下建立双连接传输数据的方法、装置和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3886526A4

Also Published As

Publication number Publication date
US11909539B2 (en) 2024-02-20
US20210297201A1 (en) 2021-09-23
CN111294141B (zh) 2021-09-07
CN111294141A (zh) 2020-06-16
EP3886526A1 (en) 2021-09-29
EP3886526A4 (en) 2022-01-19

Similar Documents

Publication Publication Date Title
JP6956065B2 (ja) 無線ネットワークにおけるアップリンク制御情報送/受信
US10609709B2 (en) Method and apparatus of uplink scheduling and HARQ timing
US10631296B2 (en) Resource allocation method, apparatus, and wireless access system
US11849420B2 (en) Systems and methods for synchronous control of HARQ configurations
CN107431592B (zh) 用于发送信道状态信息的方法及其设备
US10855404B2 (en) Systems and methods for carrier aggregation
WO2020048364A1 (zh) 发送和接收混合自动重传请求确认信息的方法、通信装置
CN112136357B (zh) 带宽部分指示的配置方法、装置和通信系统
US9681326B2 (en) Hybrid automatic repeat request (HARQ) mapping for carrier aggregation (CA)
KR102156886B1 (ko) 통신 시스템에서 복수의 셀을 이용하는 방법 및 장치
TWI691194B (zh) 上行鏈路傳送方法及使用者設備
EP3751914B1 (en) Communication method, communication apparatus and readable storage medium
EP3965488A1 (en) Uplink data transmission method and apparatus, and storage medium
US9559817B2 (en) Systems and methods for carrier aggregation
EP3577827B1 (en) Methods and nodes for activation or deactivation of a carrier in a communication network supporting carrier aggregation
WO2014141641A1 (en) Systems and methods for feedback reporting
CN114499803B (zh) 发送数据的方法、通信装置、计算机存储介质
CN115315978A (zh) 在nr v2x中执行拥塞控制的方法和装置
CA3037910A1 (en) Systems and methods for determining frame structure and association timing
WO2020119356A1 (zh) 无线通信方法及装置
JP2023522653A (ja) 無線通信システムにおいてpdsch送受信方法及び装置
WO2023134619A1 (zh) Harq-ack信息反馈方法和装置
KR20230116653A (ko) 무선 통신 시스템에서 하향링크 송수신을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019895466

Country of ref document: EP

Effective date: 20210622