WO2020119283A1 - 带有液体镜片的摄像模组及其像面校正方法 - Google Patents

带有液体镜片的摄像模组及其像面校正方法 Download PDF

Info

Publication number
WO2020119283A1
WO2020119283A1 PCT/CN2019/113349 CN2019113349W WO2020119283A1 WO 2020119283 A1 WO2020119283 A1 WO 2020119283A1 CN 2019113349 W CN2019113349 W CN 2019113349W WO 2020119283 A1 WO2020119283 A1 WO 2020119283A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
liquid lens
liquid
camera module
film layer
Prior art date
Application number
PCT/CN2019/113349
Other languages
English (en)
French (fr)
Inventor
王明珠
姚立锋
陈振宇
向恩来
黄乾友
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to EP19897502.1A priority Critical patent/EP3882685A4/en
Priority to US17/312,582 priority patent/US11997374B2/en
Publication of WO2020119283A1 publication Critical patent/WO2020119283A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/12Fluid-filled or evacuated lenses
    • G02B3/14Fluid-filled or evacuated lenses of variable focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0075Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having an element with variable optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/004Optical devices or arrangements for the control of light using movable or deformable optical elements based on a displacement or a deformation of a fluid
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0068Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens

Definitions

  • the invention relates to a camera module, in particular to a camera module with a liquid lens and its image plane correction method.
  • the lens of the camera module is composed of multiple lenses to form an optical system.
  • the number of lenses is also increasing, reaching 6 or even 7 lenses, of which the number of lenses required for the zoom camera module may be more More and more, the volume of the lens is getting larger and larger, which is not conducive to the development trend of miniaturization and thinning of the camera module.
  • the camera module used for shooting macros has high requirements on the light collecting ability of the lens.
  • it is to increase the light collecting ability of the lens by increasing the curvature of the lens.
  • the curvature of the lens must be controlled within a range, so in super macro lenses, that is, when the focal length of the lens is 40mm or shorter, lenses made from existing rigid materials cannot Meet the needs of shooting super macro.
  • the liquid lens includes a rigid support and two optical film layers, and the two optical film layers cover an upper opening and a lower opening of the rigid support, respectively, so as to seal a liquid in a receiving cavity of the rigid support.
  • the optical film layer can be deformed, and the liquid placed between the two optical film layers has fluidity, so that the liquid lens can be easily made into a super macro lens with a very small focal length. Further, By driving the two optical film layers close to or away from each other, the focal length of the liquid lens can be changed, so that the camera module can image at different focal lengths.
  • the single liquid lens will inevitably produce aberration phenomena, such as field curvature, in the actual use process, which will further affect the final imaging effect of the camera module.
  • the focal length of the liquid lens is reduced by increasing the curvature of the optical film layer of the liquid lens, so that the camera module can take macro photos
  • the distance between the center of the image surface and the liquid lens is smaller than the distance between the periphery of the image surface and the liquid lens, thereby making the image surface of the single liquid lens a curved surface, which reduces The imaging quality of the camera module.
  • An object of the present invention is to provide a camera module with a liquid lens and an image plane correction method thereof, wherein the camera module can improve the imaging quality of a liquid lens of the camera module by a correction lens, and thereby improve The imaging quality of the camera module.
  • Another object of the present invention is to provide a camera module with a liquid lens and an image plane correction method, wherein the camera module improves the imaging quality of the liquid lens by correcting spherical aberration, astigmatism and other aberrations.
  • Another object of the present invention is to provide a camera module with a liquid lens and an image plane correction method thereof, wherein the correction lens and the liquid lens cooperate with each other to further compensate the field curvature of the optical system to improve the camera mode Group imaging quality.
  • Another object of the present invention is to provide a camera module with a liquid lens and an image plane correction method thereof, wherein the correction lens of the camera module is held on the optical axis of the liquid lens, and the correction lens It can be driven to reciprocate on the optical axis of the liquid lens to correct the field curvature of the optical system, thereby improving the imaging quality of the camera module.
  • Another object of the present invention is to provide a camera module with a liquid lens and an image plane correction method thereof, wherein the correction lens of the camera module provides at least one rigid lens, by driving the rigid lens in the liquid
  • the reciprocating motion on the optical axis of the lens enables the correction lens and the liquid lens to cooperate with each other to eliminate or reduce field curvature.
  • Another object of the present invention is to provide a camera module with a liquid lens and an image plane correction method thereof, wherein the correction lens of the camera module provides at least one compensation liquid lens, wherein the compensation liquid lens can The aberration of the camera module with the liquid lens is compensated.
  • Another object of the present invention is to provide a camera module with a liquid lens and an image plane correction method thereof, wherein the power of the compensation liquid lens can be matched with the power of the liquid lens to eliminate or Reduce field curvature.
  • Another object of the present invention is to provide a camera module with a liquid lens and its image plane correction method, wherein the distance between the center of the image plane and the lens can be made approximately equal to the periphery of the image plane by changing the shape of the compensation liquid lens
  • the distance of the lens can eliminate or reduce field curvature and improve the imaging quality of the camera module.
  • Another object of the present invention is to provide a camera module with a liquid lens and an image plane correction method thereof, wherein the curvature of the compensation liquid lens is made by directly controlling the shape change of an optical film layer of the compensation liquid lens Match with the curvature of the liquid lens to eliminate or reduce field curvature.
  • Another object of the present invention is to provide a camera module with a liquid lens and an image plane correction method thereof, wherein the optical film layer of the compensation liquid lens is changed by driving a liquid flow of the compensation liquid lens
  • the shape of the lens makes the power of the compensating liquid lens match the power of the liquid lens to eliminate or reduce field curvature.
  • the present invention further provides a camera module with a liquid lens, which includes:
  • a lens assembly wherein the lens assembly includes a liquid lens with adjustable optical power, the liquid lens is held in a photosensitive path of the photosensitive assembly;
  • a correction lens wherein the correction lens is held in a photosensitive path of the photosensitive assembly, and the correction lens is located between the liquid lens and the photosensitive assembly, the correction lens and the lens assembly of the Liquid lenses cooperate with each other to compensate for aberrations.
  • the correction lens includes at least one rigid lens and a driving element, wherein at least one of the rigid lenses is drivably connected in a reciprocable manner along the optical axis of the liquid lens To the drive element.
  • the rigid lens has a second light incident surface and a second light emitting surface opposite to the second light incident surface, wherein the second light incident surface faces the liquid lens,
  • the second light exit surface faces the photosensitive assembly, and the distance between the second light exit surface of the rigid lens and the photosensitive assembly can be adjusted.
  • the second light incident surface is a concave surface
  • the second light exit surface is a convex surface
  • the curvature of the second light incident surface is greater than the curvature of the second light exit surface
  • the second light emitting surface is a convex surface
  • the second light emitting surface is a concave surface
  • the curvature of the second light emitting surface is greater than the curvature of the second light incident surface
  • the second light incident surface of the rigid lens is a flat surface
  • the second light exit surface is a concave surface
  • the second light incident surface of the rigid lens is a concave surface
  • the second light exit surface is a flat surface
  • the second light incident surface of the rigid lens is a concave surface
  • the second light exit surface is a concave surface
  • the correction lens includes at least one compensation liquid lens, wherein the power of the compensation liquid lens and the power of the liquid lens cooperate with each other to compensate for aberrations.
  • the compensation liquid lens includes a second light incident film layer and a second light exit film layer, wherein the second light incident film layer and the second light exit film layer are deformed Ways to change the power of the liquid compensation lens.
  • the compensation liquid lens includes a second liquid, wherein the second liquid is sealed between the second light incident film layer and the second light exit film layer, the first The two liquids are driven to flow to change the power of the compensating lens.
  • the liquid lens includes a first liquid, wherein the refractive index of the first liquid of the liquid lens is greater than that of the second liquid of the compensation liquid lens of the correction lens Refractive index to reduce other aberrations of the camera module.
  • the present invention further provides a method for assembling a camera module with a liquid lens.
  • the assembling method includes the following steps:
  • An adjustable lens is assembled between the liquid lens and the photosensitive component in an adjustable manner, wherein when the power of the liquid lens changes, the generated image is compensated by adjusting the correction lens difference.
  • the photosensitive path of the correction lens to the photosensitive component is maintained in a manner that a rigid lens of the correction lens is close to the photosensitive component.
  • the correction lens may be movably disposed on the optical axis of the liquid lens.
  • the liquid lens is disposed on the photosensitive path of the photosensitive component in such a manner that the upper surface of the liquid lens is kept convex.
  • a compensation liquid lens with adjustable optical power is provided between the liquid lens and the photosensitive component.
  • the present invention further provides an image plane correction method for an optical system.
  • the image plane correction method includes the following steps:
  • the method further includes the step (IV): compensating for the change in curvature caused by a first light incident film layer and a first light exit film layer of the liquid lens Field curvature changes.
  • a rigid lens driving the correction lens moves on the optical axis of the liquid lens.
  • the power of the correction lens is changed to match the power of the liquid lens.
  • the method further includes the step (V): driving the correction lens of a compensation liquid lens of a second light incident film layer and a second light exit film layer in a manner of changing curvature The power of the compensation liquid lens.
  • the second light incident film layer and the second light exit film layer of the compensation liquid lens are directly deformed.
  • the second light incident film layer and the second light exit film are indirectly changed by driving a second liquid flow of the compensation liquid lens The curvature of the layer.
  • the present invention further provides an image plane correction method of a camera module.
  • the image plane correction method includes the following steps: When the power of a liquid lens of a camera module changes, Compensating for aberrations caused by changes in the power of the liquid lens by adjusting a correction lens, wherein the correction lens is maintained in a photosensitive path of a photosensitive element, and the correction lens is located between the photosensitive element and the optical focus Variable degrees between the liquid lenses.
  • the image produced by changing the power of the liquid lens is compensated by changing the distance between a rigid lens of the correction lens and the liquid lens difference.
  • the aberration generated by the change in the power of the liquid lens is compensated by changing the power of the correction lens.
  • FIG. 1 is a schematic perspective view of a camera module with a liquid lens according to a preferred embodiment of the present invention.
  • FIG. 2 is an exploded view of the camera module with liquid lens according to the above preferred embodiment of the present invention.
  • 3A is a schematic cross-sectional view of the camera module with a liquid lens according to the above preferred embodiment of the present invention.
  • 3B is a schematic diagram illustrating an example of an application scenario of the camera module with a liquid lens according to the above preferred embodiment of the present invention.
  • 3C is a schematic diagram illustrating an example of an application scenario of the camera module with a liquid lens according to the above preferred embodiment of the present invention.
  • FIG. 4A is a schematic cross-sectional view of the camera module with a liquid lens according to another preferred embodiment of the present invention.
  • FIG. 4B is a schematic cross-sectional view of the camera module with a liquid lens according to another preferred embodiment of the present invention.
  • 5A is a schematic cross-sectional view of the camera module with a liquid lens according to another preferred embodiment of the present invention.
  • 5B is a schematic cross-sectional view of the camera module with a liquid lens according to another preferred embodiment of the present invention.
  • 5C is a schematic cross-sectional view of the camera module with a liquid lens according to another preferred embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of the camera module with a liquid lens according to another preferred embodiment of the present invention.
  • FIG. 7A is a schematic diagram of an example of an application scenario of the camera module with a liquid lens according to the above preferred embodiment of the present invention.
  • FIG. 7B is a schematic diagram of the application scene distance of the camera module with a liquid lens according to the above preferred embodiment of the present invention.
  • the term “a” should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element can be one, and in other embodiments, the The quantity can be more than one, and the term “one” cannot be understood as a limitation on the quantity.
  • the camera module includes a lens assembly 10, a A correction lens 20 and a photosensitive assembly 30, wherein the lens assembly 10 further includes a liquid lens 11, the liquid lens 11 and the correction lens 20 are held in the photosensitive path of the photosensitive assembly 30, and the correction lens 20 is held on the optical axis of the liquid lens 11, the correction lens 20 is located between the liquid lens 11 and the photosensitive assembly 30, the correction lens 20 and the liquid lens 11 can have a mutual optical power Cooperate, so that the position of the formed image plane remains unchanged, and the aberrations such as field curvature, spherical aberration, and astigmatism of the camera module can be corrected to achieve a better imaging effect, thereby improving the camera module Image quality.
  • the lens assembly 10 further includes a liquid lens 11, the liquid lens 11 and the correction lens 20 are held in the photosensitive path of the photosensitive assembly 30, and the correction lens 20 is held on the optical axis of the liquid lens 11, the correction lens 20 is located between the liquid lens 11 and the photosensitive assembly 30, the correction lens 20 and the liquid lens 11 can have
  • the liquid lens 11 includes a first support body 111, a first light incident film layer 112, a first light exit film layer 113, and a first liquid 114, wherein the first support body 111 has a first accommodating cavity 1111 for accommodating the first liquid 114, and the first light incident film layer 112 and the first light exit film layer 113 are respectively disposed on two sides of the first supporting body 111 Side to seal the first liquid 114 in the first receiving cavity 1111.
  • the liquid lens 11 has a first light incident surface 101 and a first light emitting surface 102 opposite to the first light incident surface 101, wherein the first light incident surface 101 and the first light emitting surface Surfaces 102 are formed on the first light incident film layer 112 and the first light exit film layer 113 respectively, the first light exit surface 102 faces the correction lens 20, and external light enters through the first light incident surface 101
  • the lens assembly 10 further includes at least one auxiliary lens 12, wherein the auxiliary lens 12 is held between the liquid lens 11 and the correction lens 20, and external light passes through the liquid lens 11 and the auxiliary lens in sequence 12 and the correction lens 20, and imaged on a photosensitive surface 31 of the photosensitive assembly 30, wherein the auxiliary lens 12 can reduce the aberration generated by the single liquid lens 11 imaging.
  • the liquid lens 11, the auxiliary lens 12, and the correction lens 20 of the lens assembly 10 can cooperate with each other to correct the aberration of the optical system of the camera module, and then to a better Imaging effect.
  • the focal length of the liquid lens 11 can be adjusted, and the focal length of the camera module can be less than 50mm, that is, the camera module is a micro-focus lens, so that the camera module can Macro shooting, and is conducive to miniaturization and ultra-thinness of the camera module.
  • first light incident film layer 112 and the first light exit film layer 113 are implemented as an elastic material, and the first support body 111 is manufactured from a rigid material.
  • the first light incident film layer 112 and the first light exit film layer 113 disposed on the rigid first support body 111 can be deformed, thereby changing the optical power of the liquid lens 11.
  • first light incident film layer 112 the first light exit film layer 113, and the first support body 111 are not limited, and the first light incident film layer 112 and the first A light emitting film layer 113 may be implemented as, but not limited to, silicone rubber, hard plastic elastomer, thermoplastic elastomer, acrylic elastomer or polyurethane elastomer or other materials known to those skilled in the art;
  • a supporting body 111 may be implemented as, but not limited to, glass, plastic, metal, or other materials known to those skilled in the art.
  • the specific implementation of the liquid lens 11 is not limited.
  • the first light incident film layer 112 and the first light exit film layer 113 may be adhered to the first support body 111 by an adhesive.
  • the first light incident film layer 112 and the first light exit film layer 113 may seal the first receiving cavity 1111 of the first support body 111 by welding.
  • the first light incident film layer 112 and the first light exit film layer 113 can be sandwiched between the first support body 111 and seal the first accommodation of the first support body 111 ⁇ 1111.
  • the first light incident film layer 112 and the first light exit film layer 113 may be directly or indirectly fixed to the first support body 111 to seal the first liquid 114 to the In the first receiving cavity 1111 of the first supporting body 111.
  • the specific implementation of the liquid lens 11 is only an example, and cannot be a limitation on the content and scope of the camera module with liquid lens of the present invention.
  • the surface shapes of the first light incident film layer 112 and the first light exit film layer 113 of the liquid lens 11 can be driven to change, thereby changing the first light incident film layer 112 and the first
  • the curvature of the light emitting film layer 113 changes the optical power of the liquid lens 11. That is to say, by controlling the change of the focal power of the liquid lens 11, the zoom capability of the camera module can be improved, so that the camera module can take macro shots.
  • the liquid lens 11 is electrically connected to a control circuit, and the shape of the first light incident film layer 112 and the first light exit film layer 113 of the liquid lens 11 can be changed by an actuator , So that the curvatures of the first light incident surface 101 and the first light exit surface 102 are changed, thereby changing the optical power of the liquid lens 11 to adjust the focal length of the camera module. More specifically, when the curvature of the first light incident film layer 112 and the first light exit film layer 113 of the liquid lens 11 becomes larger, the focal length of the camera module becomes shorter; when the liquid lens 11 The curvatures of the first light incident film layer 112 and the first light exit film layer 113 become smaller, and the focal length of the camera module becomes longer.
  • the type of the actuator is not limited, and the actuator may be implemented as, but not limited to, an electrostatic actuator, an electromagnetic actuator, an electromagnetic actuator, an electroactive polymer actuator , Piezoelectric actuators, fluid pump actuators or other actuators known to those skilled in the art.
  • the liquid lens 11 maintains a convex shape when the upper surface is not energized. In this way, after assembling the camera module, there is no need to energize.
  • the liquid lens 11 can also be imaged normally.
  • the liquid lens 11 maintains the form of a biconvex lens in a state where there is no power, that is, both the first light incident surface 101 and the first light exit surface 102 of the liquid lens 11 are convex surfaces, see FIG. 3A.
  • the liquid lens 11 maintains the form of a plano-convex lens in the state of no power, that is, the first light incident surface 101 of the liquid lens 11 is a convex surface, and the first light emitting surface 102 is a flat surface, refer to 4A; or, the first light incident surface 101 of the liquid lens 11 is a flat surface, and the first light exit surface 102 is a convex surface.
  • the liquid lens 11 maintains the form of a concave-convex lens when there is no electricity, that is, the first light incident surface 101 of the liquid lens 11 is a convex surface, and the first light emitting surface 102 is a concave surface.
  • the liquid lens 11 may also be implemented to maintain the form of a concave lens without being energized, and after being energized, by driving the first light incident film layer 112 and the The first light-emitting film layer 113 is deformed to form a convex lens shape, so that the image can be formed normally.
  • the liquid lens 11 is a convex lens in a normal working state, and has a positive refractive power.
  • the calibration lens 20 can reduce the phenomenon of field curvature of the liquid lens 11 during the imaging process, so as to improve the imaging quality of the camera module.
  • the correction lens 20 includes at least one rigid lens 21, the rigid lens 21 is held on the optical axis of the liquid lens 11, and the rigid lens 21 can be Drive the reciprocating motion on the optical axis of the liquid lens 11 to ensure that when the focal length of the liquid lens 11 changes, the position of the image plane of the camera module remains the same, while compensating for the Aberrations such as field curvature of the optical system, so that the camera module achieves higher imaging quality.
  • the specific material of the rigid lens 21 is not limited, and the rigid lens 21 can be implemented as, but not limited to, glass, plastic, resin, or other materials known to those skilled in the art.
  • the rigid lenses 21 close to the photosensitive element 30 are concave lenses, and the rigid lenses 21 have a negative power, and have a negative power.
  • the rigid lens 21 can cooperate with the liquid lens 11 with positive power to reduce the curvature of field and improve the imaging quality of the camera module.
  • the rigid lens 21 further has a second light incident surface 201 and a second light emitting surface 202 opposite to the second light incident surface 201, wherein the second light incident surface 201 faces the liquid lens 11, The second light emitting surface 202 faces the photosensitive element 30.
  • the rigid lens 21 is a convex-concave lens, that is, the second light incident surface 201 of the rigid lens 21 is a concave surface, the second light emitting surface 202 is a convex surface, and the second light incident surface
  • the curvature of 201 is greater than the curvature of the second light emitting surface 202, see FIG. 3A; or, the second light incident surface 201 is a convex surface, the second light emitting surface 202 is a concave surface, and the curvature of the second light emitting surface 202 It is greater than the curvature of the first light exit surface 201.
  • the rigid lens 21 is a plano-concave lens, that is, the second light incident surface 201 of the rigid lens 21 is a flat surface, and the second light emitting surface 202 is a concave surface, see FIG. 5A; or, the rigid The second light incident surface 201 of the lens 21 is a concave surface, and the second light exit surface 202 is a flat surface.
  • the rigid lens 21 is a double concave lens, that is, both the second light incident surface 201 and the second light emitting surface 202 of the rigid lens 21 are concave surfaces, refer to FIG. 5B.
  • the curvature of the first light incident film layer 112 and the first light exit film layer 113 of the liquid lens 11 changes.
  • the rigid lens 21 of the correction lens 20 reciprocates on the optical axis of the liquid lens 11 and can compensate for field curvature, so as to ensure that the image plane position of the camera module remains unchanged at the same time and compensate the camera model Aberrations such as field curvature of the optical system of the group improve the imaging quality of the camera module.
  • the first incident light of the liquid lens 11 is controlled by controlling the actuator
  • the curvature of the film layer 112 and the first light-emitting film layer 113 becomes larger, so that the focal length of the camera module becomes shorter, and at the same time, the rigid lens 21 driving the correction lens 20 is close to the photosensitive element 30
  • the rigid lens 21 moves in the direction of the optical element 30 in the direction of the optical axis of the liquid lens 11, thereby compensating for the first light incident film layer 112 of the liquid lens 11 and the first The curvature of field caused by the curvature change of the light emitting film layer 113.
  • the curvatures of the first light incident film layer 112 and the first light exit film layer 113 of the liquid lens 11 can be reduced, so that the liquid lens 11
  • the focal length becomes longer, and at the same time, the rigid lens 21 of the rigid lens 21 driving the correction lens 20 close to the photosensitive assembly 30 faces the direction of the liquid lens 11 in the optical axis direction of the liquid lens 11
  • the movement compensates for the change in field curvature caused by the change in curvature of the first light incident film layer 112 and the first light exit film layer 113 of the liquid lens 11. In this way, by correcting aberrations such as field curvature of the optical system of the camera module, the imaging quality of the camera module is further improved.
  • the specific moving direction of the rigid lens 21 of the correction lens 20 and the embodiment of the focal length change of the liquid lens 11 are only examples, and those skilled in the art should know that different optical designs or Different shapes of the lenses, the direction of movement of the rigid lens 21 of the correction lens 20 will also be different, and the curvature shown in the drawings of the specification is only an example, and cannot be used for the liquid lens of the present invention. Restrictions on the content and scope of the camera module.
  • the camera module further includes a driving element 40.
  • the driving element 40 is connected to the rigid lens 21 of the rigid lens 21 of the correction lens 20 near the photosensitive element 30, so The driving element 40 can drive the rigid lens 21 of the correction lens 20 to move on the optical axis of the liquid lens 11, thereby enabling the correction lens 20 to compensate for the first entry of the liquid lens 11
  • the curvature of field caused by the curvature change of the light film layer 112 and the first light emitting film layer 113 compensates for the aberration of the optical system of the camera module.
  • the drive element 40 is implemented as a motor.
  • the camera module further includes a housing 50 and a lens holder 60, wherein the housing 50 has a receiving space 51, a light inlet 52 and a light outlet 53 communicating with the receiving space 51, so
  • the lens base 60 has an imaging space 61 and an optical path opening 62 communicating with the imaging space 61
  • the housing 50 is disposed on the lens base 60
  • the optical path opening 63 communicates with the accommodating space 51 and the The imaging space 61.
  • the liquid lens 11, the correction lens 20 and the driving element 40 are accommodated in the accommodating space 51, and the photosensitive assembly 30 is oriented such that a photosensitive surface 31 of the photosensitive assembly 30 faces the liquid lens 10 It is set in the imaging space 61.
  • the driving element 40 is fixed to the housing 50.
  • the driving element 40 is fixed to the mirror base 60.
  • the camera module further includes a color filter element 70, wherein the color filter element 70 is disposed between the correction lens 20 and the photosensitive assembly 30, and the color filter element 70 is held On the light-sensing path of the light-sensing component 30, the color filter element 70 is capable of filtering stray light and unintended infrared light to ensure the imaging effect of the camera module.
  • the correction lens 20A includes at least one compensating liquid lens 21A, wherein the power of the compensating liquid lens 21A can be matched with the power of the liquid lens 11A To reduce field curvature and improve the imaging quality of the camera module.
  • the compensation liquid lens 21A includes a second support body 211A, a second light incident film layer 212A, a second light exit film layer 213A, and a second liquid 214A, wherein the second support body 211A has A second accommodating cavity 2111A for accommodating the second liquid 214A, the second light incident film layer 212A and the second light exit film layer 213A are disposed on both sides of the second support body 211A, In order to seal the second liquid 214A in the second accommodating chamber 2111A.
  • the compensation liquid lens 21A has a second light incident surface 201A and a second light emitting surface 202A opposite to the second light incident surface 201A, wherein the second light incident surface 201A and the second The light exit surface 202A is formed on the second light incident film layer 212A and the second light exit film layer 213A, respectively, the second light incident surface 201A faces the first light exit surface 102A of the liquid lens 11A, the The second light exit surface 202A faces the photosensitive assembly 30A, and the light emitted from the first light exit surface 102A of the liquid lens 11A can sequentially pass through the auxiliary lens 12A and the compensation liquid lens 21A of the correction lens 20A
  • the second light incident surface 201A and the second light exit surface 202A are imaged on the photosensitive surface 31A of the photosensitive assembly 30A.
  • the second light incident film layer 212A and the second light exit film layer 213A are implemented as an elastic material, and the second supporting body 211A is made of a rigid material.
  • the second light incident film layer 212A and the second light exit film layer 213A provided on the rigid second supporting body 211A can be deformed to match the change in the focal length of the liquid lens 11A to compensate for the Aberrations such as field curvature of the optical system of the camera module.
  • the materials of the second light incident film layer 212A, the second light exit film layer 213A, and the second support body 211A are not limited, and the second light incident film layer 212A and the first
  • the second light emitting film layer 213A may be implemented as, but not limited to, silicone rubber, hard plastic elastomer, thermoplastic elastomer, acrylic elastomer or polyurethane elastomer or other materials known to those skilled in the art;
  • the second supporting body 211A may be implemented as, but not limited to, glass, plastic, metal, or other materials known to those skilled in the art.
  • the specific embodiment of the liquid lens 11A is not limited.
  • the second light incident film layer 212A and the second light exit film layer 213A may be adhered to the second support body 211A by an adhesive.
  • the second light incident film layer 212A and the first light exit film layer 113 may seal the second receiving cavity 2111A of the second support body 211A by welding.
  • the second light incident film layer 212A and the second light exit film layer 213A can be sandwiched between the second support body 211A and seal the second accommodation of the second support body 211A Cavity 2111A.
  • the second light incident film layer 212A and the second light exit film layer 213A may be directly or indirectly fixed to the second support body 211A to seal the second liquid 214A to the In the second receiving cavity 2111A of the second supporting body 211A.
  • the specific implementation of the liquid lens 11A is only an example, and cannot be a limitation on the content and scope of the camera module with a liquid lens of the present invention.
  • the second light incident film layer 212A and the second light exit film layer 213A of the compensation liquid lens 21A of the correction lens 20A can be driven to change, thereby changing the second light incident film
  • the curvature of the layer 212A and the second light-emitting film layer 213A and enables the power of the compensation liquid lens 21A to cooperate with the power of the liquid lens 11A to reduce the optical power of the camera module
  • the field curvature of the system The field curvature of the system.
  • the compensation liquid lens 21A is electrically connected to the control circuit, and the second light incident film layer 212A and the second light exit of the compensation liquid lens 21A can be changed by the actuator
  • the shape of the film layer 213A is such that the curvature of the second light incident surface 201A and the second light exit surface 202A changes and the optical power changes to match the first light incident film layer of the liquid lens 11A
  • the curvature changes of 112A and the first light-emitting film layer 113A compensate for the aberration of the imaging of the liquid lens 11A, thereby reducing the aberration to improve the imaging quality of the camera module.
  • the actuator by controlling the actuator, the curvatures of the first light incident film layer 112A and the first light exit film layer 113A of the liquid lens 11A become larger, so that the liquid The focal length of the lens 11A becomes shorter, and accordingly, the actuator is controlled so that the curvature of the second light incident film layer 212A and the second light exit film layer 213A of the compensation liquid lens 21A becomes larger to match the The curvature of the first light incident surface 101A and the first light exit surface 102A of the liquid lens 11A changes, thereby further reducing aberrations such as field curvature of the camera module.
  • FIG. 7A by controlling the actuator, the curvatures of the first light incident film layer 112A and the first light exit film layer 113A of the liquid lens 11A become larger, so that the liquid The focal length of the lens 11A becomes shorter, and accordingly, the actuator is controlled so that the curvature of the second light incident film layer 212A and the second light exit film layer 213A of the compensation liquid lens 21A becomes larger to match the The cur
  • the curvature of the first light incident film layer 112A and the first light exit film layer 113A of the liquid lens 11A is reduced by controlling the actuator, so that the focal length of the camera module Becomes longer, and accordingly, the actuator is controlled so that the curvatures of the second light incident film layer 212A and the second light exit film layer 213A of the compensation liquid lens 21A become smaller to match the liquid lens 11A
  • the curvature of the first light incident surface 101A and the first light exit surface 102A changes, thereby further reducing aberrations such as field curvature of the camera module.
  • the second light incident film layer 212A and the second light exit film layer 213A of the compensation liquid lens 21A are directly driven by the actuator to be deformed.
  • the movement of the second liquid 214A contained between the first light incident film layer 212A and the second light exit film layer 213A can be controlled by the actuator, indirectly The curvature of the second light incident film layer 212A and the second light exit film layer 213A of the compensation liquid lens 21A.
  • the ratio that is, the sum of the ratios of the powers of all the lenses of the camera module and their refractive indexes is equal to zero.
  • the refractive index of the first liquid 114A of the liquid lens 11A is greater than the refractive index of the second liquid 214A of the compensation liquid lens 21A of the correction lens 20A.
  • the refractive indexes of the first liquid 114A of the liquid lens 11A and the second liquid 214A of the compensation liquid lens 21A are selected as large as possible to avoid other Aberration.
  • the liquid lens 11A has advantages in process and cost over conventional lenses.
  • the liquid compensation lens 21A has an optical focus The degree can be matched with the power of the liquid lens 11A to eliminate or reduce field curvature.
  • the form of the compensation liquid lens 21A in the state where it is not energized is not limited.
  • the compensation liquid lens 21A maintains the form of a pair of concave lenses without being energized, that is, both the second light incident surface 201A and the second light exit surface 202A of the compensation liquid lens 21A are concave surfaces, the The compensation liquid lens 21A has a crescent shape.
  • the compensation liquid lens 21A maintains the form of a plano-concave lens without being energized, that is, the second light incident surface 201A of the compensation liquid lens 21A is a concave surface, and the second light exit surface 202A is a flat surface Or, the second light incident surface 201A of the compensation liquid lens 21A is a flat surface, and the second light exit surface 202A is a concave surface.
  • the compensation liquid lens 21A maintains the form of a convex-concave lens without being energized, that is, the second light incident surface 201A of the compensation liquid lens 21A is a concave surface, and the second light exit surface 202A is Convex surface, and the curvature of the second light incident surface 201A is greater than the curvature of the second light exit surface 202A; or, the second light incident surface 201A of the compensation liquid lens 21A is a convex surface, the second light exit surface 202A is a concave surface, and the curvature of the second light emitting surface 202A is greater than the curvature of the second light incident surface 201A.
  • the compensation liquid lens 21A can also be implemented to maintain the form of a convex lens without being energized, and after being energized, by driving the second light incident film layer 212A and all
  • the second light-emitting film layer 213A is deformed to form a concave lens shape, and can be imaged normally. That is to say, the compensation liquid lens 21A is a concave lens in a normal working state, and the power of the compensation liquid lens 21A can be matched with the power of the liquid lens 11A, to protect the camera mode
  • the position of the image plane of the group remains unchanged, and compensates for aberrations such as field curvature of the optical system of the camera module, thereby improving the imaging quality of the camera module.
  • the invention further provides an assembly method of a camera module with a liquid lens, wherein the assembly method includes the following steps:
  • the liquid lens 11 is provided on the photosensitive path of the photosensitive assembly 30 so as to maintain the liquid lens 11 in the form of a convex lens.
  • the liquid lens 11 may be implemented as a meniscus lens, a plano-convex lens, or a biconvex lens.
  • the rigid lens 21 of the correction lens 20 is close to a photosensitive surface 31 of the photosensitive assembly 30 to maintain the sensitivity of the correction lens 20 to the photosensitive assembly 30 path.
  • the correction lens 20 is movably disposed on the optical axis of the liquid lens 11 so that the distance between the correction lens 20 and the photosensitive assembly 30 can be adjusted.
  • the rigid lens 21 of the correction lens 20 is a concave lens, that is, the rigid lens 21 has negative power, and the rigid lens 21 with negative power can be The liquid lenses 11 cooperate with each other to eliminate field curvature and improve the imaging quality of the camera module.
  • the type of the rigid lens 21 is not limited, and the rigid lens 21 may be implemented as a convex-concave lens, a plano-concave lens, or a double-concave lens.
  • a compensation liquid lens 21A of the correction lens 20A is provided in the photosensitive path of the photosensitive element 30.
  • the ratio that is, the sum of the ratios of the powers of all the lenses of the camera module and their refractive indexes is equal to zero.
  • the refractive index of the first liquid 114A of the liquid lens 11A is greater than the refractive index of the second liquid 214A of the compensation liquid lens 21A of the correction lens 20A.
  • the refractive indexes of the first liquid 114A of the liquid lens 11A and the second liquid 214A of the compensation liquid lens 21A are selected as large as possible to avoid other Aberration. Further, the form of the compensation liquid lens 21A in a state where it is not energized is not limited.
  • the compensation liquid lens 21A can be kept in the form of a concave lens or a convex lens in the state of no power, but the compensation liquid lens 21A is a concave lens in a normal working state, and the power of the compensation liquid lens 21A It can be matched with the power of the liquid lens 11A to ensure that the image plane position of the camera module remains unchanged and to compensate for aberrations such as field curvature of the optical system of the camera module, thereby improving the The imaging quality of the camera module.
  • step (b) includes the step of: maintaining an auxiliary lens 12 between the liquid lens 11 and the photosensitive assembly 30.
  • the external light passes through the liquid lens 11, the auxiliary lens 12, and the correction lens 20 in order, and then reaches the photosensitive surface 31 of the photosensitive assembly 30.
  • the present invention further provides an image plane correction method of an optical system, wherein the image plane correction method includes the following steps:
  • the light from the photographed object enters the camera module with liquid lens, the light passes through a liquid lens 11 of a lens assembly 10, an auxiliary lens 12 and a correction lens 20 in turn, and is imaged on a photosensitive A photosensitive surface 301 of the component 30, and then the camera module with a liquid lens obtains the imaging.
  • the optical power of the liquid lens 11 By adjusting the optical power of the liquid lens 11, the focal length of the camera module with liquid lens is adjusted and macro shooting is possible.
  • the optical power of the liquid lens 11 changes, aberrations such as field curvature appear in the imaging obtained by the camera module with liquid lens.
  • a processing device calculates a compensation amount required by the liquid camera module based on the imaged aberrations, to subsequently adjust the correction lens with the liquid camera module according to the compensation amount, and
  • the correction lens and the liquid lens 11 are matched with each other to reduce or eliminate aberrations.
  • the processing device is communicably connected to the photosensitive assembly 30 and the correction lens 20, the photosensitive assembly 30 converts the optical signal into an electrical signal, and transmits the electrical signal to the processing apparatus, so The processing device calculates the compensation amount required by the liquid camera module based on the imaged aberration.
  • the processing device may be implemented as a processor of a mobile electronic device using the camera module with the liquid lens, or the processing device may also be implemented as the liquid lens with the liquid lens
  • the processor of the camera module should be understood by those skilled in the art that the specific implementation of the processing device is only an example, and cannot be a limitation on the content and scope of the image plane correction method of the optical system of the present invention. .
  • the step (III) includes a step (IV): compensating for the change in field curvature due to the change in curvature of a first light incident film layer 112 and a first light exit film layer 113 of the liquid lens 11 .
  • a rigid lens 21 that drives the correction lens 20 reciprocates on the optical axis of the liquid lens 11, so that the correction lens 20 and the liquid lens 11 cooperate with each other, thereby compensating the camera mode Aberrations such as field curvature of the optical system of the group.
  • the power of the correction lens 20A is changed to match the power of the liquid lens 11A, thereby reducing the field curvature of the optical system of the camera module.
  • the method further includes step (V): driving the correction lens 20A of a compensation liquid lens 21A of a second light-incident film layer 212A and a second light-emitting film layer 213A to change the manner of deformation
  • the negative optical power of the compensation liquid lens 21A so that the curvature change of the second light incident film layer 212A and the second light exit film layer 213A of the compensation liquid lens 21A can match the change of the curvature of the liquid lens 11A
  • the curvature of the first light incident surface 101A and the first light exit surface 102A can be changed to compensate for the first light incident film layer 112 of the liquid lens 11
  • the curvature of field caused by the curvature of the first light-emitting film layer 113 changes to reduce the curvature of field and thereby improve the imaging quality of the camera module.
  • the second light incident film layer 212A and the second light exit film layer 213A of the compensation liquid lens 21A are directly deformed.
  • the manner of driving the second fluid 214A of the compensation liquid lens 21A to flow changes the curvature of the second light incident film layer 212A and the second light exit film layer 213A. It should be understood that the manner of changing the curvature of the second light incident film layer 212A and the second light exit film layer 213A of the compensation liquid lens 21A is only for illustration, and cannot be used Limitation of content and scope of group image plane correction method.
  • the present invention further provides an image plane correction method of a camera module, wherein the image plane correction method includes the following steps: when the power of a liquid lens 11 of a camera module changes To compensate for aberrations caused by changes in the power of the liquid lens 11 by adjusting a correction lens 20, wherein the correction lens 20 is maintained in a photosensitive path of a photosensitive element 30, and the correction lens 20 is located at Between the photosensitive assembly 30 and the liquid lens 11 with variable optical power.
  • the aberration generated by the change in the power of the liquid lens is compensated by changing the distance between a rigid lens 21 of the correction lens 20 and the liquid lens 11.
  • Aberrations caused by changes in the power of the liquid lens 11 are compensated by changing the power of the correction lens.
  • the aberration generated by the change in the power of the liquid lens 11 is compensated by changing the power of the correction lens 20.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

一带有液体镜片(11)的摄像模组及其像面校正方法,其中带有液体镜片(11)的摄像模组包括一感光组件(30)、一透镜组件(10)以及一校正镜头(20),透镜组件(10)包括光焦度可调的一液体镜片(11),液体镜片(11)被保持于感光组件(30)的感光路径,校正镜头(20)被保持于感光组件(30)的感光路径,且校正镜头(20)位于液体镜片(11)和感光组件(30)之间,校正镜头(20)和透镜组件(10)的液体镜片(11)相互配合以补偿像差,以校正带有液体镜片(11)的摄像模组的光学系统的像差。

Description

带有液体镜片的摄像模组及其像面校正方法 技术领域
本发明涉及一摄像模组,特别涉及一带有液体镜片的摄像模组及其像面校正方法。
背景技术
摄像模组的镜头为多片镜片共同组成光学系统,为了达到更高的成像质量,镜片的数量也越来越多,达到6片甚至7片,其中变焦摄像模组所需的镜片数量可能更多,导致镜头的体积越来越大,不利于摄像模组小型化、轻薄化的发展趋势。并且,用于拍摄微距的摄像模组,对镜片的聚光能力要求较高,除了使用折射率高的材料的方式外,就是通过增大镜片的曲率以提高所述镜片的聚光能力。然而,由于材料和工艺的限制,镜片的曲率必须控制在一个范围内,故在超微距镜头中,即,镜片的焦距在40mm甚至更短时,由现有的刚性材料制得的镜片无法满足拍摄超微距的需求。
液体镜片包括一刚性支架和两光学膜层,两个所述光学膜层分别覆盖于所述刚性支架的一上开口和一下开口,以将一液体密封于所述刚性支架的一容纳腔内。所述光学膜层能够发生形变,且被置于两个所述光学膜层之间的所述液体具有流动性,使得所述液体镜片容易做成焦距极小的超微距镜头,进一步地,通过驱动两个所述光学膜层相互靠近或是相互远离的方式能够改变所述液体镜片的焦距,以使得所述摄像模组能够以不同的焦距成像。但是,单个所述液体镜片在实际的使用过程中必然会产生像差的现象,如场曲,进而影响所述摄像模组最终的成像效果。具体来说,当通过增大所述液体镜片的所述光学膜层的曲率的方式减小所述液体镜片的焦距,以使得所述摄像模组能够拍摄微距照片时,所述液体镜片的焦距减小,成像的同时会造成像面中心与所述液体镜片的距离小于像面周边与所述液体镜片之间的距离,进而使得单个所述液体镜片的像面为一个曲面,而降低了所述摄像模组的成像质量。
因此,亟需对带有液体镜头的摄像模组进行改进,以改善像差现象,提高摄像模组的成像质量。
发明内容
本发明的一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中所述摄像模组藉由一校正镜头能够改善所述摄像模组的一液体镜头成像的质量,进而提高所述摄像模组的成像质量。
本发明的另一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中所述摄像模组通过校正球差、像散等像差的方式改善所述液体镜头成像的质量。
本发明的另一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中所述校正镜头和所述液体镜头相互配合,进而补偿光学系统的场曲,以提高所述摄像模组的成像质量。
本发明的另一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中所述摄像模组的所述校正镜头被保持于所述液体镜头的光轴,且所述校正镜头能够被驱动在所述液体镜头的光轴上往复运动,以校正所述光学系统的场曲,从而提高所述摄像模组的成像质量。
本发明的另一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中所述摄像模组的所述校正镜头提供至少一刚性镜片,通过驱动所述刚性镜片在所述液体镜头的光轴上往复运动,使得所述校正镜头能够和所述液体镜头相互配合,以消除或是减小场曲。
本发明的另一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中所述摄像模组的所述校正镜头提供至少一补偿液体镜片,其中所述补偿液体镜片能够对带有所述液体镜片的所述摄像模组的像差进行补偿。
本发明的另一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中所述补偿液体镜片的光焦度能够和所述液体镜头的光焦度相互配合,以消除或是减小场曲。
本发明的另一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中通过改变所述补偿液体镜片的形状的方式能够使得像面中心与透镜的距离大致等于像面周边到镜头的距离,以消除或是减小场曲,提高所述摄像模组的成像质量。
本发明的另一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中通过直接控制所述补偿液体镜片的一光学膜层的形状变化的方式使得所 述补偿液体镜片的曲率和所述液体透镜的曲率相配合,以消除或是减小场曲。
本发明的另一个目的在于提供一带有液体镜片的摄像模组及其像面校正方法,其中通过驱动所述补偿液体镜片的一液体的流动的方式改变所述补偿液体镜片的所述光学膜层的形状,进而使得所述补偿液体镜片的光焦度和所述液体透镜的光焦度相匹配,以消除或是减小场曲。
依本发明的一个方面,本发明进一步提供一带有液体镜片的摄像模组,其包括:
一感光组件;
一透镜组件,其中所述透镜组件包括光焦度可调的一液体镜片,所述液体镜片被保持于所述感光组件的感光路径;以及
一校正镜头,其中所述校正镜头被保持于所述感光组件的感光路径,且所述校正镜头位于所述液体镜片和所述感光组件之间,所述校正镜头和所述透镜组件的所述液体镜片相互配合以补偿像差。
根据本发明的一个实施例,所述校正镜头包括至少一刚性镜片和一驱动元件,其中至少一所述刚性镜片被以可沿着所述液体镜片的光轴往复运动的方式被可驱动地连接于所述驱动元件。
根据本发明的一个实施例,所述刚性镜片具有一第二入光面和相对于所述第二入光面的一第二出光面,其中第二入光面朝向所述液体镜片,所述第二出光面朝向所述感光组件,所述刚性镜片的所述第二出光面与所述感光组件之间的距离能够被调整。
根据本发明的一个实施例,所述第二入光面为凹面,所述第二出光面为凸面,且所述第二入光面的曲率大于所述第二出光面的曲率。
根据本发明的一个实施例,所述第二出光面为凸面,所述第二出光面为凹面,且所述第二出光面的曲率大于所述第二入光面的曲率。
根据本发明的一个实施例,所述刚性镜片的所述第二入光面为平面,所述第二出光面为凹面。
根据本发明的一个实施例,所述刚性镜片的所述第二入光面为凹面,所述第二出光面为平面。
根据本发明的一个实施例,所述刚性镜片的所述第二入光面为凹面,所述第二出光面为凹面。
根据本发明的一个实施例,所述校正镜头包括至少一补偿液体镜片,其中所述补偿液体镜片的光焦度和所述液体镜片的光焦度相互配合以补偿像差。
根据本发明的一个实施例,所述补偿液体镜片包括一第二入光膜层和一第二出光膜层,其中所述第二入光膜层和所述第二出光膜层以发生形变的方式改变所述液体补偿镜片的光焦度。
根据本发明的一个实施例,所述补偿液体镜片包括一第二液体,其中所述第二液体被密封于所述第二入光膜层和所述第二出光膜层之间,所述第二液体以被驱动而流动的方式改变所述补偿镜片的光焦度。
根据本发明的一个实施例,所述摄像模组的所有镜片的光焦度和折射率满足以下条件:ΣφⅢ/ni=0,其中φⅢ为所述摄像模组的任一镜片的光焦度,其中ni为所述镜片的折射率。
根据本发明的一个实施例,所述液体镜片包括一第一液体,其中所述液体镜片的所述第一液体的折射率大于所述校正镜头的所述补偿液体镜片的所述第二液体的折射率,以减少所述摄像模组的其他像差。
依本发明的一个方面,本发明进一步提供一带有液体镜片的摄像模组的组装方法,所述组装方法包括如下步骤:
(a)保持光焦度可调的一液体镜片于一感光组件的感光路径;和
(b)以可调整的方式在所述液体镜片和所述感光组件之间组装一校正镜头,其中在所述液体镜片的光焦度变化时,通过调整所述校正镜头的方式补偿产生的像差。
根据本发明的一个实施例,以所述校正镜头的一刚性镜片靠近所述感光组件的方式保持所述校正镜头于所述感光组件的感光路径。
根据本发明的一个实施例,在上述方法中,可活动地设置所述校正镜头于所述液体镜片的光轴。
根据本发明的一个实施例,在所述步骤(a)中,以保持所述液体镜片的上表面为凸面的形态的方式将所述液体镜片设置于所述感光组件的感光路径。
根据本发明的一个实施例,所述步骤(b)中,设置光焦度可调的一补偿液体镜片于所述液体镜片和所述感光组件之间。
依本发明的另一个方面,本发明进一步提供一光学系统的像面校正方法,所述像面校正方法包括如下步骤:
(Ⅰ)藉由一带有液体镜片的摄像模组获得一成像;
(Ⅱ)根据所述成像的像差计算所述带有液体镜片的摄像模组所需的一补偿量;以及
(Ⅲ)根据所述补偿量调整所述带有液体摄像镜片的摄像模组的一校正镜头,以补偿所述成像的像差。
根据本发明的一个实施例,在所述步骤(Ⅲ)中,进一步包括步骤(Ⅳ):补偿由于所述液体镜片的一第一入光膜层和一第一出光膜层的曲率变化带来的场曲变化。
根据本发明的一个实施例,在所述步骤(Ⅳ)中,驱动所述校正镜头的一刚性镜片在所述液体镜片的光轴上运动。
根据本发明的一个实施例,在所述步骤(Ⅳ)中,改变所述校正镜头的光焦度,以配合所述液体镜片的光焦度。
根据本发明的一个实施例,在上述方法中,进一步包括步骤(Ⅴ):驱动所述校正镜头的一补偿液体镜片的一第二入光膜层和一第二出光膜层改变曲率的方式改变所述补偿液体镜片的光焦度。
根据本发明的一个实施例,在所述步骤(Ⅴ)中,直接驱动所述补偿液体镜片的所述第二入光膜层和所述第二出光膜层发生形变。
根据本发明的一个实施例,在所述步骤(Ⅴ)中,通过驱动所述补偿液体镜片的一第二液体流动的方式间接地改变所述第二入光膜层和所述第二出光膜层的曲率。
依本发明的另一个方法,本发明进一步提供了一摄像模组的像面校正方法,所述像面校正方法包括如下步骤:在一摄像模组的一液体镜片的光焦度发生变化时,以调整一校正镜头的方式补偿所述液体镜片的光焦度变化而产生的像差,其中所述校正镜头保持于一感光组件的一感光路径,且所述校正镜头位于所述感光组件和光焦度可变的所述液体镜片之间。
根据本发明的一较佳实施例,在上述方法中,通过改变所述校正镜头的一刚性镜片与所述液体镜片之间的距离的方式补偿所述液体镜片的光焦度变化而产生的像差。
根据本发明的一较佳实施例,在上述方法中,通过改变所述校正镜头的光焦度的方式补偿所述液体镜片的光焦度变化而产生的像差。
附图说明
图1是根据本发明的一较佳实施例的一带有液体镜头的摄像模组的立体图示意图。
图2是根据本发明的上述较佳实施例的所述带有液体镜头的摄像模组的分解图示意图。
图3A是根据本发明的上述较佳实施例的所述带有液体镜头的摄像模组的剖视图示意图。
图3B是根据本发明的上述较佳实施例的所述带有液体镜头的摄像模组的应用场景举例示意图。
图3C是根据本发明的上述较佳实施例的所述带有液体镜头的摄像模组的应用场景举例示意图。
图4A是根据本发明的另一较佳实施例的所述带有液体镜头的摄像模组的剖视图示意图。
图4B是根据本发明的另一较佳实施例的所述带有液体镜头的摄像模组的剖视图示意图。
图5A是根据本发明的另一较佳实施例的所述带有液体镜头的摄像模组的剖视图示意图。
图5B是根据本发明的另一较佳实施例的所述带有液体镜头的摄像模组的剖视图示意图。
图5C是根据本发明的另一较佳实施例的所述带有液体镜头的摄像模组的剖视图示意图。
图6是根据本发明的另一较佳实施例的所述带有液体镜头的摄像模组的剖视图示意图。
图7A是根据本发明的上述较佳实施例的所述带有液体镜头的摄像模组的应用场景举例的示意图。
图7B是根据本发明的上述较佳实施例的所述带有液体镜头的摄像模组的应用场景距离的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参照说明书附图1至图3C,根据本发明的一较佳实施例的一带有液体镜头的摄像模组将在接下来的描述中被阐述,其中所述摄像模组包括一透镜组件10、一校正镜头20以及一感光组件30,其中所述透镜组件10进一步包括一液体镜片11,所述液体镜片11和所述校正镜头20被保持于所述感光组件30的感光路径,且所述校正镜头20被保持于所述液体镜片11的光轴,所述校正镜头20位于所述液体镜片11和所述感光组件30之间,所述校正镜头20能够和所述液体镜片11的光焦度相互配合,使得形成的像面位置始终保持不变,且能够校正所述摄像模组的场曲、球差、像散等像差,以达到较佳的成像效果,进而提高所述摄像模组的成像质量。
参照图1至图3C,所述液体镜片11包括一第一支撑主体111、一第一入光膜层112、一第一出光膜层113以及一第一液体114,其中所述第一支撑主体111具有一第一容纳腔1111,以供容纳所述第一液体114,所述第一入光膜层112和所述第一出光膜层113分别被设置于所述第一支撑主体111的两侧,以将所述第一液体114密封于所述第一容纳腔1111内。进一步地,所述液体镜片11具有一第一入光面101和相对于所述第一入光面101的一第一出光面102,其中所述第一入光面101和所述第一出光面102分别形成于所述第一入光膜层112和所述第一出光膜层113,所述第一出光面102朝向所述校正镜头20,外部光线经过所述第一入光面101进入所述液体透镜10。
所述透镜组件10进一步包括至少一辅助镜片12,其中所述辅助镜片12被保持于所述液体镜片11和所述校正镜头20之间,外部光线依次经过所述液体镜片11、所述辅助镜片12以及所述校正镜头20,并成像于所述感光组件30的一感光面31,其中所述辅助镜片12能够减小单片所述液体镜片11成像产生的像差。换句话说,所述透镜组件10的所述液体镜片11、所述辅助镜片12以及所述校正镜头20能够相互配合,以校正所述摄像模组的光学系统的像差,进而到较佳的成像效果。
值得一提的是,所述液体镜片11的焦距能够被调整,且所述摄像模组的焦距能够小于50mm,即,所述摄像模组为一微焦镜头,以使得所述摄像模组能够拍摄微距,且有利于所述摄像模组小型化,超薄化。
进一步地,所述第一入光膜层112和所述第一出光膜层113被实施为一弹性材料制得,所述第一支撑主体111由一刚性材料制得。被设置于刚性的所述第一支撑主体111的所述第一入光膜层112和所述第一出光膜层113能够发生形变,进而使得所述液体镜片11的光焦度发生变化。应该理解的是,所述第一入光膜层112、所述第一出光膜层113以及所述第一支撑主体111的材料不受限制,所述第一入光膜层112和所述第一出光膜层113可以被实施为但不限于硅橡胶、硬塑料弹性体、热塑料弹性体、丙烯弹性体或是聚氨酯的弹性体或者本领域技术人员已知的其他材料制得;所述第一支撑主体111可以被实施为但不限于玻璃、塑料、金属或是其他本领域技术人员已知的其他材料制得。
并且,所述液体镜片11的具体实施方式不受限制。优选地,所述第一入光膜层112和所述第一出光膜层113可以通过粘合剂粘合于所述第一支撑主体111。可选地,所述第一入光膜层112和所述第一出光膜层113可以通过焊接的方式密封所述第一支撑主体111的所述第一容纳腔1111。可选地,所述第一入光膜层112和所述第一出光膜层113能够被夹持于所述第一支撑主体111,并密封所述第一支撑主体111的所述第一容纳腔1111。也就是说,所述第一入光膜层112和所述第一出光膜层113可以被直接或是间接地固定于所述第一支撑主体111,以将所述第一液体114密封于所述第一支撑主体111的所述第一容纳腔1111内。所述本领域技术人员应该知晓,所述液体镜片11的具体实施方式仅仅作为示例,不能成为对本发明所述带有液体镜片的摄像模组的内容和范围的限制。
所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的面型 能够被驱动而发生变化,进而改变所述第一入光膜层112和所述第一出光膜层113的曲率,以改变所述液体镜片11的光焦度。也就是说,通过控制所述液体镜片11的焦光焦度变化的方式能够提高所述摄像模组的变焦能力,以使得所述摄像模组能够拍摄微距。具体来说,所述液体镜片11被电连接于一控制电路,并通过一致动器能够改变所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的形状,使得所述第一入光面101和所述第一出光面102的曲率被改变,进而改变所述液体镜片11的光焦度,以调节所述摄像模组的焦距。更具体地,当所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的曲率变大,所述摄像模组的焦距变短;当所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的曲率变小,所述摄像模组的焦距变长。应该理解的是,所述致动器的类型不受限制,所述致动器可以被实施为但不限于静电致动器、电磁致动器、电磁致动器、电活性聚合物致动器、压电致动器、流体泵致动器或是其他本领域技术人员已知的致动器。
根据本发明的一较佳实施例,所述液体镜片11在没有通电的状态下保持一上表面为凸面的形态,通过这样的方式,在组装完成所述摄像模组后,无需进行通电,所述液体镜片11也能够正常地成像。优选地,所述液体镜片11在没有通电的状态下保持一双凸透镜的形态,即,所述液体镜片11的第一入光面101和所述第一出光面102都为凸面,参照图3A。优选地,所述液体镜片11在没有通电的状态下保持一平凸透镜的形态,即,所述液体镜片11的所述第一入光面101为凸面,所述第一出光面102为平面,参照图4A;或者,所述液体镜片11的所述第一入光面101为平面,所述第一出光面102为凸面。优选地,所述液体镜片11在没有通电的状态下保持一凹凸透镜的形态,即,所述液体镜片11的所述第一入光面101为凸面,所述第一出光面102为凹面,且所述第一入光面101的曲率大于所述第一出光面102的曲率,参照图4B。在本发明其他的实施例中,所述液体镜片11也可以被实施为在没有通电的状态下保持一凹透镜的形态,并在通电后,通过驱动所述第一入光膜层112和所述第一出光膜层113形变而形成凸透镜的形态,进而能够正常地成像。也就是说,所述液体镜片11在正常的工作状态下为凸透镜,且具有正光焦度。
进一步地,藉由所述校准镜头20能够减小所述液体镜片11在成像过程中出现场曲的现象,以提高所述摄像模组成像的质量。在本发明的一个较佳的实施例 中,所述校正镜头20包括至少一刚性镜片21,所述刚性镜片21被保持于所述液体镜片11的光轴上,且所述刚性镜片21能够被驱动在所述液体镜片11的光轴上往复运动,以保障在所述液体镜片11的焦距发生变化时,所述摄像模组的像面位置始终保持不变,同时补偿所述摄像模组的光学系统的场曲等像差,以使所述摄像模组达到较高的成像质量。值得一提的是,所述刚性镜片21的具体材质不受限制,所述刚性镜片21可以被实施为但不限于玻璃、塑料、树脂或是其他本领域技术人员已知的其他材质制得。
具体来说,所述校正镜头20的所述刚性镜片21中靠近所述感光组件30的所述刚性镜片21为凹透镜,所述刚性镜片21具有负光焦度,且具有负光焦度的所述刚性镜片21能够和具有正光焦度的所述液体镜片11相互配合,以减小场曲,提高所述摄像模组的成像质量。所述刚性镜片21进一步具有一第二入光面201和相对于所述第二入光面201的一第二出光面202,其中所述第二入光面201朝向所述液体镜片11,所述第二出光面202朝向所述感光组件30。
优选地,所述刚性镜片21为一凸凹透镜,即,所述刚性镜片21的所述第二入光面201为凹面,所述第二出光面202为凸面,且所述第二入光面201的曲率大于所述第二出光面202的曲率,参照图3A;或者,所述第二入光面201为凸面,所述第二出光面202为凹面,所述第二出光面202的曲率大于所述第一出光面201的曲率。优选地,所述刚性镜片21为一平凹透镜,即,所述刚性镜片21的所述第二入光面201为平面,所述第二出光面202为凹面,参照图5A;或者,所述刚性镜片21的所述第二入光面201为凹面,所述第二出光面202为平面。优选地,所述刚性镜片21为一双凹透镜,即,所述刚性镜片21的所述第二入光面201和所述第二出光面202都为凹面,参照图5B。
进一步地,在所述摄像模组进行变焦或是对焦的过程中,所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的曲率发生变化,通过驱动所述校正镜头20的所述刚性镜片21在所述液体镜片11的光轴上往复运动,能够补偿场曲,以保障所述摄像模组的像面位置始终保持不变,同时补偿所述摄像模组的光学系统的场曲等像差,进而提高所述摄像模组的成像质量。
举例来说,参照图3B,在利用所述摄像模组拍摄超微距时,即,物面距离透镜小于5cm,通过控制所述致动器使得所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的曲率变大,从而,所述摄像模组的焦距变短,同 时,驱动所述校正镜头20的所述刚性镜片21中靠近所述感光组件30的所述刚性镜片21在所述液体镜片11的光轴方向上朝向所述感光组件30的方向移动,进而补偿由于所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的曲率变化带来的场曲变化。参照图3C,通过控制所述致动器能够使得所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的曲率变小,从而,所述液体镜片11的焦距变长,同时,驱动所述校正镜头20的所述刚性镜片21中靠近所述感光组件30的所述刚性镜片21在所述液体镜片11的光轴方向上朝向所述液体镜片11的方向移动,进而补偿由于所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的曲率变化带来的场曲变化。通过这样的方式,通过校正所述摄像模组的光学系统的场曲等像差,进而提高所述摄像模组的成像质量。值得一提的是,所述校正镜头20的所述刚性镜片21的具体移动方向和所述液体镜片11的焦距变化的实施方式仅仅作为示例,本领域技术人员应该知晓,不同的光学设计或是镜片的不同形状,所述校正镜头20的所述刚性镜片21的移动方向也会不同,并且,说明书附图中示出的曲率仅仅作为示例,均不能成为对本发明所述的带有液体镜头的摄像模组的内容和范围的限制。
参照图2,所述摄像模组进一步包括一驱动元件40,所述驱动元件40被连接于所述校正镜头20的所述刚性镜片21中靠近所述感光组件30的所述刚性镜片21,所述驱动元件40能够驱动所述校正镜头20的所述刚性镜片21在所述液体镜片11的光轴上移动,进而使得所述校正镜头20能够补偿由于所述液体镜片11的所述第一入光膜层112和所述第一出光膜层113的曲率变化带来的场曲变化,以补偿所述摄像模组的光学系统的像差。优选地,所述驱动元件40被实施为马达。
参照图2,所述摄像模组进一步包括一外壳50和一镜座60,其中所述外壳50具有一容纳空间51、连通所述容纳空间51的一入光口52和一出光口53,所述镜座60具有一成像空间61和连通所述成像空间61的一光路开口62,所述外壳50被设置于所述镜座60,且所述光路开口63连通所述容纳空间51和所述成像空间61。所述液体镜片11、所述校正镜头20以及所述驱动元件40被容纳于所述容纳空间51,所述感光组件30以所述感光组件30的一感光面31朝向所述液体透镜10的方式被设置于所述成像空间61。优选地,参照图3A至图5B,所述驱动元件40被固定于所述外壳50。优选地,参照图5C,所述驱动元件40被 固定于所述镜座60。
参照图2,所述摄像模组进一步包括一滤色元件70,其中所述滤色元件70被设置于所述校正镜头20和所述感光组件30之间,且所述滤色元件70被保持于所述校感光组件30的感光路径上,所述滤色元件70被能够对杂光及不希望接收的红外光进行过滤,以保证所述摄像模组的成像效果。
参照图6至图7B,根据本发明的另一较佳实施例所述的带有液体镜头的摄像模组将在接下来的描述中被阐述。图6至图7B所示出的所述带有液体镜头的摄像模组和图1至图3C所示出的带有液体镜头的摄像模组的差异在于,在图6至图7B所示出的所述带有液体镜头的摄像模组中,所述校正镜头20A包括至少一补偿液体镜片21A,其中所述补偿液体镜片21A的光焦度能够和所述液体镜片11A的光焦度相互配合,以减小场曲,提高所述摄像模组的成像质量。
具体来说,所述补偿液体镜片21A包括一第二支撑主体211A、一第二入光膜层212A、一第二出光膜层213A以及一第二液体214A,其中所述第二支撑主体211A具有一第二容纳腔2111A,以供容纳所述第二液体214A,所述第二入光膜层212A和所述第二出光膜层213A分别被设置于所述第二支撑主体211A的两侧,以将所述第二液体214A密封于所述第二容纳腔2111A内。进一步地,所述补偿液体镜片21A具有一第二入光面201A和相对于所述第二入光面201A的一第二出光面202A,其中所述第二入光面201A和所述第二出光面202A分别形成于所述第二入光膜层212A和所述第二出光膜层213A,所述第二入光面201A朝向所述液体镜片11A的所述第一出光面102A,所述第二出光面202A朝向所述感光组件30A,自所述液体镜片11A的所述第一出光面102A射出的光线能够依次经过所述辅助镜片12A、所述校正镜头20A的所述补偿液体镜片21A的所述第二入光面201A和所述第二出光面202A,并成像于所述感光组件30A的所述感光面31A。
进一步地,所述第二入光膜层212A和所述第二出光膜层213A被实施为一弹性材料制得,所述第二支撑主体211A由一刚性材料制得。被设置于刚性的所述第二支撑主体211A的所述第二入光膜层212A和所述第二出光膜层213A能够发生形变,以配合所述液体镜片11A的焦距变化,以补偿所述摄像模组的光学系统的场曲等像差。应该理解的是,所述第二入光膜层212A、所述第二出光膜层213A以及所述第二支撑主体211A的材料不受限制,所述第二入光膜层212A和所述第二出光膜层213A可以被实施为但不限于硅橡胶、硬塑料弹性体、热塑料弹性体、 丙烯弹性体或是聚氨酯的弹性体或者本领域技术人员已知的其他材料制得;所述第二支撑主体211A可以被实施为但不限于玻璃、塑料、金属或是其他本领域技术人员已知的其他材料制得。
并且,所述液体镜片11A的具体实施方式不受限制。优选地,所述第二入光膜层212A和所述第二出光膜层213A可以通过粘合剂粘合于所述第二支撑主体211A。可选地,所述第二入光膜层212A和所述第一出光膜层113可以通过焊接的方式密封所述第二支撑主体211A的所述第二容纳腔2111A。可选地,所述第二入光膜层212A和所述第二出光膜层213A能够被夹持于所述第二支撑主体211A,并密封所述第二支撑主体211A的所述第二容纳腔2111A。也就是说,所述第二入光膜层212A和所述第二出光膜层213A可以被直接或是间接地固定于所述第二支撑主体211A,以将所述第二液体214A密封于所述第二支撑主体211A的所述第二容纳腔2111A内。所述本领域技术人员应该知晓,所述液体镜片11A的具体实施方式仅仅作为示例,不能成为对本发明所述带有液体镜头的摄像模组的内容和范围的限制。
进一步地,所述校正镜头20A的所述补偿液体镜片21A的所述第二入光膜层212A和所述第二出光膜层213A能够被驱动而发生变化,进而改变所述第二入光膜层212A和所述第二出光膜层213A的曲率,并使得所述补偿液体镜片21A的光焦度能够和所述液体镜片11A的光焦度相互配合,以减小所述摄像模组的光学系统的场曲。具体来说,所述补偿液体镜片21A被电连接于所述控制电路,并通过所述致动器能够改变所述补偿液体镜片21A的所述第二入光膜层212A和所述第二出光膜层213A的形状,使使得所述第二入光面201A和所述第二出光面202A的曲率发生变化进而光焦度改变,以配合所述液体镜片11A的所述第一入光膜层112A和所述第一出光膜层113A的曲率变化,对所述液体镜片11A的成像的像差进行补偿,进而减小像差,以提高所述摄像模组的成像质量。
举例来说,参照图7A,通过控制所述致动器使得所述液体镜片11A的所述第一入光膜层112A和所述第一出光膜层113A的曲率变大,从而,所述液体镜片11A的焦距变短,相应地,控制所述致动器使得所述补偿液体镜片21A的所述第二入光膜层212A和所述第二出光膜层213A的曲率变大,以配合所述液体镜片11A的所述第一入光面101A和所述第一出光面102A的曲率变化,进而减小所述摄像模组的场曲等像差。参照图7B,通过控制所述致动器使得所述液体镜片11A 的所述第一入光膜层112A和所述第一出光膜层113A的曲率变小,从而,所述摄像模组的焦距变长,相应地,控制所述致动器使得所述补偿液体镜片21A的所述第二入光膜层212A和所述第二出光膜层213A的曲率变小,以配合所述液体镜片11A的所述第一入光面101A和所述第一出光面102A的曲率变化,进而减小所述摄像模组的场曲等像差。通过这样的方式,能够校正因所述液体镜片11A的所述第一入光膜层112A和所述第一出光膜层113A的曲率变化带来的场曲等像差,进而提高所述摄像模组的成像质量。值得一提的是,所述校正镜头20A的所述补偿液体镜片21A的所述第二入光膜层212A和所述第二出光膜层213A的具体曲率变化和所述液体镜片11A的焦距变化的实施方式仅仅作为示例,本领域技术人员应该知晓,在其他的实施例中,不同的光学设计如镜片的不同形状,所述第二入光膜层212A和所述第二出光膜层213A的曲率变化也会不同,并且,说明书附图中所示出的所述液体镜片11A和所述补偿液体镜片21A的变化程度及比例仅仅作为示例,均不能成为对本发明所述的带有液体镜头的摄像模组的内容和范围的限制。
在本发明的一较佳实施例中,通过所述致动器直接驱动所述补偿液体镜片21A的所述第二入光膜层212A和所述第二出光膜层213A发生形变。在本发明的其他实施例中,可以通过所述致动器控制容纳于所述第一入光膜层212A和所述第二出光膜层213A之间的所述第二液体214A的运动,间接地改变所述补偿液体镜片21A的所述第二入光膜层212A和所述第二出光膜层213A的曲率。
优选地,所述摄像模组的所有镜片的光焦度和折射率满足:Σφi/ni=0,其中φi为所述摄像模组的任一镜片的光焦度,ni为所述镜片的折射率,即,所述摄像模组的所有镜片的光焦度与其折射率的比值之和等于零。并且,在满足以上公式的情况下,所述液体镜片11A的所述第一液体114A的折射率大于所述校正镜头20A的所述补偿液体镜片21A的所述第二液体214A的折射率。更优选地,在满足以上公式的情况下,所述液体镜片11A的所述第一液体114A和所述补偿液体镜片21A的所述第二液体214A的折射率尽量选择较大的,以避免其他像差。具体的,当物面与所述液体镜片11A之间的距离小于5cm时,所述液体镜片11A相对常规透镜具有工艺和成本的优势,在此范围工作时,所述液体补偿镜片21A的光焦度能够和所述液体镜片11A的光焦度互相配合消除或是减小场曲。
应该理解的是,所述补偿液体镜片21A在没有通电的状态下的形态不受限 制。优选地,所述补偿液体镜片21A在没有通电的状态下保持一双凹透镜的形态,即,所述补偿液体镜片21A的第二入光面201A和所述第二出光面202A都为凹面,所述补偿液体镜片21A呈月弯形状。优选地,所述补偿液体镜片21A在没有通电的状态下保持一平凹透镜的形态,即,所述补偿液体镜片21A的所述第二入光面201A为凹面,所述第二出光面202A为平面;或者,所述补偿液体镜片21A的所述第二入光面201A为平面,所述第二出光面202A为凹面。优选地,所述补偿液体镜片21A在没有通电的状态下保持一凸凹透镜的形态,即,所述补偿液体镜片21A的所述第二入光面201A为凹面,所述第二出光面202A为凸面,且所述第二入光面201A的曲率大于所述第二出光面202A的曲率;或者,所述补偿液体镜片21A的所述第二入光面201A为凸面,所述第二出光面202A为凹面,所述第二出光面202A的曲率大于所述第二入光面201A的曲率。在本发明其他的实施例中,所述补偿液体镜片21A也可以被实施为在没有通电的状态下保持一凸透镜的形态,并在通电后,通过驱动所述第二入光膜层212A和所述第二出光膜层213A形变而形成凹透镜的形态,进而能够正常地成像。也就是说,所述补偿液体镜片21A在正常的工作状态下为凹透镜,且所述补偿液体镜片21A的光焦度能够和所述液体镜片11A的光焦度相匹配,以保障所述摄像模组的像面位置始终保持不变,并补偿所述摄像模组的光学系统的场曲等像差,进而提高所述摄像模组的成像质量。
依本发明的另一方面,本发明进一步提供一带有液体镜头的摄像模组的组装方法,其中所述组装方法包括如下步骤:
(a)保持一摄像模组的光焦度可调的一液体镜片11A于一感光组件30的感光路径;
(b)以可调整的方式在所述液体镜头和所述感光组件之间组装一校正镜头20,其中在所述液体镜片11A的光焦度变化时,通过调整所述校正镜头20的方式补偿产生的像差。
具体来说,在所述步骤(a)中,以保持所述液体镜片11为凸透镜形态的方式将所述液体镜片11设置于所述感光组件30的感光路径。通过这样的方式,在组装完成所述摄像模组后,无需进行通电,所述液体镜片11也能够正常地成像,即可通过其成像来调整组装过程,达到更高的组装精度。应该理解的是,所述液体镜片11的类型不受限制,所述液体镜片11可以被实施为凹凸透镜、平凸透镜, 或是双凸透镜。
优选地,在所述步骤(b)中,以所述校正镜头20的一刚性镜片21靠近所述感光组件30的一感光面31的方式保持所述校正镜头20于所述感光组件30的感光路径。进一步地,可活动地设置所述校正镜头20于所述液体镜片11的光轴,使得所述校正镜头20和所述感光组件30之间的距离能够被调整。进一步地,所述校正镜头20的所述刚性镜片21为凹透镜,即,所述刚性镜片21具有负光焦度,且具有负光焦度的所述刚性镜片21能够和具有正光焦度的所述液体镜片11相互配合,以消除场曲,提高所述摄像模组的成像质量。应该理解的是,所述刚性镜片21的类型不受限制,所述刚性镜片21可以被实施为凸凹透镜、平凹透镜或是双凹透镜。
在本发明的另一较佳实施例中,设置所述校正镜头20A的一补偿液体镜片21A于所述感光组件30的感光路径。优选地,所述摄像模组的所有镜片的光焦度和折射率满足:Σφi/ni=0,其中φi为所述摄像模组的任一镜片的光焦度,ni为所述镜片的折射率,即,所述摄像模组的所有镜片的光焦度与其折射率的比值之和等于零。并且,在满足以上公式的情况下,所述液体镜片11A的所述第一液体114A的折射率大于所述校正镜头20A的所述补偿液体镜片21A的所述第二液体214A的折射率。更优选地,在满足以上公式的情况下,所述液体镜片11A的所述第一液体114A和所述补偿液体镜片21A的所述第二液体214A的折射率尽量选择较大的,以避免其他像差。进一步地,所述补偿液体镜片21A在没有通电的状态下的形态不受限制。所述补偿液体镜片21A在没有通电的状态下,可以保持为凹透镜或是凸透镜的形态,但所述补偿液体镜片21A在正常的工作状态下为凹透镜,且所述补偿液体镜片21A的光焦度能够和所述液体镜片11A的光焦度相匹配,以保障所述摄像模组的像面位置始终保持不变及补偿所述摄像模组的光学系统的场曲等像差,进而提高所述摄像模组的成像质量。
进一步地,在所述步骤(b)之前包括步骤:保持一辅助镜片12于所述液体镜片11和所述感光组件30之间。外部光线依次经过所述液体镜片11、所述辅助镜片12以及所述校正镜头20后,到达所述感光组件30的所述感光面31。
依本发明的另一方面,本发明进一步提供一光学系统的像面校正方法,其中所述像面校正方法包括如下步骤:
(Ⅰ)藉由一带有液体镜片的摄像模组获得一成像;
(Ⅱ)根据所述成像的像差计算所述带有液体镜片的摄像模组所需的一补偿量;以及
(Ⅲ)根据所述补偿量调整所述带有液体摄像镜片的摄像模组的一校正镜头,以补偿所述成像的像差。
具体来说,来自被拍摄物体的光线进入所述带有液体镜片的摄像模组,光线依次经过一透镜组件10的一液体镜片11、一辅助镜片12以及一校正镜头20,并成像于一感光组件30的一感光面301,进而所述带有液体镜片的摄像模组获得所述成像。通过调节所述液体镜片11的光焦度的方式使得所述带有液体镜片的摄像模组的焦距被调节,并能够拍摄微距。当所述液体镜片11的光焦度发生变化,所述带有液体镜片的摄像模组获得的所述成像出现场曲等像差。藉由一处理装置根据所述成像的像差计算所述带有液体摄像模组所需的一补偿量,以在后续根据所述补偿量调节带有液体摄像模组的所述校正镜头,并使的所述校正镜头与所述液体镜片11相互配合而减小或是消除像差。具体地,所述处理装置被可通信地连接于所述感光组件30和所述校正镜头20,所述感光组件30将光信号转换成电信号,并将电信号传输至所述处理装置,所述处理装置根据成像的像差计算所述带有液体摄像模组所需的所述补偿量。所述处理装置可以被实施为应用所述带有所述液体镜片的摄像模组的一移动电子设备的处理器,或者,所述处理装置也可以被实施为所述带有所述液体镜片的摄像模组自带的处理器,本领域技术人员应该理解的是,所述处理装置的具体实施方式仅仅作为示例,不能成为对本发明所述的光学系统的像面矫正方法的内容和范围的限制。
进一步地,在所述步骤(Ⅲ)中包括步骤(Ⅳ):补偿由于所述液体镜片11的一第一入光膜层112和一第一出光膜层113的曲率变化带来的场曲变化。
优选地,驱动所述校正镜头20的一刚性镜片21在所述液体镜片11的光轴上往复运动,以使得所述校正镜头20的与所述液体镜片11相互配合,进而补偿所述摄像模组的所述光学系统的场曲等像差。
优选地,改变所述校正镜头20A的光焦度,以配合所述液体镜片11A的光焦度,进而减小所述摄像模组的光学系统的场曲。具体地,在上述方法中,进一步包括步骤(Ⅴ):驱动所述校正镜头20A的一补偿液体镜片21A的一第二入光膜层212A和一第二出光膜层213A发生形变的方式改变所述补偿液体镜片21A的负光焦度,进而使得所述补偿液体镜片21A的所述第二入光膜层212A和所述第二 出光膜层213A的曲率变化能够配合所述液体镜片11A的所述第一入光面101A和所述第一出光面102A的曲率变化,进而能够通过改变所述补偿液体镜片21A的负场曲补偿由于所述液体镜片11的一第一入光膜层112和一第一出光膜层113的曲率变化带来的场曲变化,以减小场曲,进而提高所述摄像模组的成像质量。
优选地,在上述方法中,直接驱动所述补偿液体镜片21A的所述第二入光膜层212A和所述第二出光膜层213A发生形变。优选地,在上述方法中,驱动所述补偿液体镜片21A的所述第二流体214A流动的方式改变所述第二入光膜层212A和所述第二出光膜层213A的曲率。应该理解的是,改变所述补偿液体镜片21A的所述第二入光膜层212A和所述第二出光膜层213A的曲率的方式仅仅作为示意,不能成为对本发明所述带有液体摄像模组的像面校正方法的内容和范围的限制。
依本发明的另一个方面,本发明进一步提供一摄像模组的像面校正方法,其中所述像面校正方法包括如下步骤:在一摄像模组的一液体镜片11的光焦度发生变化时,以调整一校正镜头20的方式补偿所述液体镜片11的光焦度变化而产生的像差,其中所述校正镜头20保持于一感光组件30的一感光路径,且所述校正镜头20位于所述感光组件30和光焦度可变的所述液体镜片11之间。优选地,通过改变所述校正镜头20的一刚性镜片21与所述液体镜片11之间的距离的方式补偿所述液体镜片的光焦度变化而产生的像差。通过改变所述校正镜头的光焦度的方式补偿所述液体镜片11的光焦度变化而产生的像差。优选地,通过改变所述校正镜头20的光焦度的方式补偿所述液体镜片11的光焦度变化而产生的像差。
本领域的技术人员可以理解的是,以上实施例仅为举例,其中不同实施例的特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有明确指出的实施方式。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (23)

  1. 一带有液体镜片的摄像模组,其特征在于,包括:
    一感光组件;
    一透镜组件,其中所述透镜组件包括光焦度可调的一液体镜片,所述液体镜片被保持于所述感光组件的感光路径;以及
    一校正镜头,其中所述校正镜头被保持于所述感光组件的感光路径,且所述校正镜头位于所述液体镜片和所述感光组件之间,所述校正镜头和所述透镜组件的所述液体镜片相互配合以补偿像差。
  2. 根据权利要求1所述的带有液体镜片的摄像模组,其中所述校正镜头包括至少一刚性镜片和一驱动元件,其中至少一所述刚性镜片被以可沿着所述液体镜片的光轴往复运动的方式被可驱动地连接于所述驱动元件。
  3. 根据权利要求2所述带有液体的摄像模组,其中所述刚性镜片具有一第二入光面和相对于所述第二入光面的一第二出光面,其中第二入光面朝向所述液体镜片,所述第二出光面朝向所述感光组件,所述刚性镜片的所述第二出光面与所述感光组件之间的距离能够被调整。
  4. 根据权利要求3所述的带有液体镜片的摄像模组,其中所述第二入光面为凹面,所述第二出光面为凸面,且所述第二入光面的曲率大于所述第二出光面的曲率。
  5. 根据权利要求3所述的带有液体镜片的摄像模组,其中所述第二出光面为凸面,所述第二出光面为凹面,且所述第二出光面的曲率大于所述第二入光面的曲率。
  6. 根据权利要求3所述的带有液体镜片的摄像模组,其中所述刚性镜片的所述第二入光面为平面,所述第二出光面为凹面。
  7. 根据权利要求3所述的带有液体镜片的摄像模组,其中所述刚性镜片的所述第二入光面为凹面,所述第二出光面为平面。
  8. 根据权利要求3所述的带有液体镜片的摄像模组,其中所述刚性镜片的所述第二入光面为凹面,所述第二出光面为凹面。
  9. 根据权利要求1所述的带有液体镜片的摄像模组,其中所述校正镜头包括至少一补偿液体镜片,其中所述补偿液体镜片的光焦度和所述液体镜片的光焦度相互配合以补偿像差。
  10. 根据权利要求9所述的带有液体镜片的摄像模组,其中所述补偿液体镜片包括一第二入光膜层和一第二出光膜层,其中所述第二入光膜层和所述第二出光膜层以发生形变的方式改变所述液体补偿镜片的光焦度。
  11. 根据权利要求10所述的带有液体镜片的摄像模组,其中所述补偿液体镜片包括一第二液体,其中所述第二液体被密封于所述第二入光膜层和所述第二出光膜层之间,所述第二液体以被驱动而流动的方式改变所述补偿镜片的光焦度。
  12. 根据权利要求11所述的带有液体镜片的摄像模组,其中所述摄像模组的所有镜片的光焦度和折射率满足以下条件:Σφi/ni=0,其中φi为所述摄像模组的任一镜片的光焦度,其中ni为所述镜片的折射率。
  13. 根据权利要求12所述的带有液体镜片的摄像模组,其中所述液体镜片包括一第一液体,其中所述液体镜片的所述第一液体的折射率大于所述校正镜头的所述补偿液体镜片的所述第二液体的折射率。
  14. 一光学系统的像面校正方法,其特征在于,所述像面校正方法包括如下步骤:
    (Ⅰ)藉由一带有液体镜片的摄像模组获得一成像;
    (Ⅱ)根据所述成像的像差计算所述带有液体镜片的摄像模组所需的一补偿量;以及
    (Ⅲ)根据所述补偿量调整所述带有液体摄像镜片的摄像模组的一校正镜头,以补偿所述成像的像差。
  15. 根据权利要求14所述的像面校正方法,其中在所述步骤(Ⅲ)中,进一步包括步骤(Ⅳ):补偿由于所述液体镜片的一第一入光膜层和一第一出光膜层的曲率变化带来的场曲变化。
  16. 根据权利要求15所述的像面校正方法,其中在所述步骤(Ⅳ)中,驱动所述校正镜头的一刚性镜片在所述液体镜片的光轴上运动。
  17. 根据权利要求15所述的像面校正方法,其中在所述步骤(Ⅳ)中,改变所述校正镜头的光焦度,以配合所述液体镜片的光焦度。
  18. 根据权利要求17所述的像面校正方法,其中在上述方法中,进一步包括步骤(Ⅴ):驱动所述校正镜头的一补偿液体镜片的一第二入光膜层和一第二出光膜层曲率变化的方式改变所述补偿液体镜片的光焦度。
  19. 根据权利要求18所述的像面校正方法,其中在所述步骤(Ⅴ)中,直接驱动所述补偿液体镜片的所述第二入光膜层和所述第二出光膜层发生形变。
  20. 根据权利要求18所述的像面校正方法,其中在所述步骤(Ⅴ)中,通过驱动所述补偿液体镜片的一第二液体流动的方式间接地改变所述第二入光膜层和所述第二出光膜层的曲率。
  21. 一摄像模组的像面校正方法,其特征在于,所述像面校正方法包括如下步骤:在 一摄像模组的一液体镜片的光焦度发生变化时,以调整一校正镜头的方式补偿所述液体镜片的光焦度变化而产生的像差,其中所述校正镜头保持于一感光组件的一感光路径,且所述校正镜头位于所述感光组件和光焦度可变的所述液体镜片之间。
  22. 根据权利要求21所述的像面校正方法,其中在上述方法中,通过改变所述校正镜头的一刚性镜片与所述液体镜片之间的距离的方式补偿所述液体镜片的光焦度变化而产生的像差。
  23. 根据权利要求21所述的像面校正方法,其中在上述方法中,通过改变所述校正镜头的光焦度的方式补偿所述液体镜片的光焦度变化而产生的像差。
PCT/CN2019/113349 2018-12-13 2019-10-25 带有液体镜片的摄像模组及其像面校正方法 WO2020119283A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19897502.1A EP3882685A4 (en) 2018-12-13 2019-10-25 PHOTOGRAPHY MODULE HAVING A LIQUID LENS AND ITS IMAGE SURFACE CORRECTION METHOD
US17/312,582 US11997374B2 (en) 2018-12-13 2019-10-25 Camera module with liquid lens and image plane correction method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811522097.7A CN111323902A (zh) 2018-12-13 2018-12-13 带有液体镜片的摄像模组及其像面校正方法
CN201811522097.7 2018-12-13

Publications (1)

Publication Number Publication Date
WO2020119283A1 true WO2020119283A1 (zh) 2020-06-18

Family

ID=71077095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113349 WO2020119283A1 (zh) 2018-12-13 2019-10-25 带有液体镜片的摄像模组及其像面校正方法

Country Status (4)

Country Link
US (1) US11997374B2 (zh)
EP (1) EP3882685A4 (zh)
CN (1) CN111323902A (zh)
WO (1) WO2020119283A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527526A (zh) * 2020-11-09 2022-05-24 宁波舜宇光电信息有限公司 分体式镜头、摄像模组以及电子装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213817938U (zh) * 2021-01-14 2021-07-27 深圳市锐尔觅移动通信有限公司 摄像头组件及电子设备
CN115480326B (zh) * 2021-05-31 2024-06-11 宁波舜宇光电信息有限公司 摄像模组及其光学镜头、变焦镜片单元以及变焦方法
CN115480327A (zh) * 2021-05-31 2022-12-16 宁波舜宇光电信息有限公司 摄像模组及其光学镜头和变焦方法
JP7431876B2 (ja) 2022-03-17 2024-02-15 維沃移動通信有限公司 撮像レンズ、撮像装置および電子機器
WO2023245358A1 (zh) * 2022-06-20 2023-12-28 北京小米移动软件有限公司 镜头模组及成像设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050200973A1 (en) * 2004-03-12 2005-09-15 Konica Minolta Opto, Inc. Zoom lens
CN101056360A (zh) * 2006-04-13 2007-10-17 普立尔科技股份有限公司 手持行动装置的可变焦照相模块
CN101988984A (zh) * 2009-08-05 2011-03-23 财团法人工业技术研究院 自动对焦镜头模块
CN102654733A (zh) * 2011-03-03 2012-09-05 上海微电子装备有限公司 波像差校正装置及方法
CN103826040A (zh) * 2012-11-17 2014-05-28 无锡华御信息技术有限公司 全景网络摄像头
CN107544102A (zh) * 2017-09-19 2018-01-05 歌尔科技有限公司 一种镜头模组补偿共焦的系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006201639A (ja) * 2005-01-24 2006-08-03 Citizen Electronics Co Ltd カメラ用ズームユニット及びカメラ
JP4472563B2 (ja) * 2005-03-14 2010-06-02 株式会社リコー 光学ユニットおよび光ピックアップならびに光情報処理装置
CN200962150Y (zh) * 2006-09-30 2007-10-17 宁波舜宇光电信息有限公司 液体镜头
FR2919074B1 (fr) 2007-07-19 2010-10-22 Commissariat Energie Atomique Dispositif optique a membrane deformable par actionnement electrostatique
JP2012103626A (ja) * 2010-11-12 2012-05-31 Canon Inc ズームレンズ
US9639729B2 (en) * 2015-06-02 2017-05-02 Symbol Technologies, Llc Arrangement for and method of imaging targets with improved light collecting efficiency over extended range of working distances
WO2017078189A1 (en) * 2015-11-04 2017-05-11 Lg Electronics Inc. Camera module and mobile terminal having the same
CN107241545A (zh) * 2016-03-29 2017-10-10 齐发光电股份有限公司 对焦方法及对焦装置
JP6938540B2 (ja) 2016-04-29 2021-09-22 エルジー イノテック カンパニー リミテッド 液体レンズを含むカメラモジュール、これを含む光学機器、及び液体レンズを含むカメラモジュールの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050200973A1 (en) * 2004-03-12 2005-09-15 Konica Minolta Opto, Inc. Zoom lens
CN101056360A (zh) * 2006-04-13 2007-10-17 普立尔科技股份有限公司 手持行动装置的可变焦照相模块
CN101988984A (zh) * 2009-08-05 2011-03-23 财团法人工业技术研究院 自动对焦镜头模块
CN102654733A (zh) * 2011-03-03 2012-09-05 上海微电子装备有限公司 波像差校正装置及方法
CN103826040A (zh) * 2012-11-17 2014-05-28 无锡华御信息技术有限公司 全景网络摄像头
CN107544102A (zh) * 2017-09-19 2018-01-05 歌尔科技有限公司 一种镜头模组补偿共焦的系统及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527526A (zh) * 2020-11-09 2022-05-24 宁波舜宇光电信息有限公司 分体式镜头、摄像模组以及电子装置
CN114527526B (zh) * 2020-11-09 2023-10-27 宁波舜宇光电信息有限公司 分体式镜头、摄像模组以及电子装置

Also Published As

Publication number Publication date
US11997374B2 (en) 2024-05-28
US20210329151A1 (en) 2021-10-21
EP3882685A1 (en) 2021-09-22
EP3882685A4 (en) 2022-01-26
CN111323902A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
WO2020119283A1 (zh) 带有液体镜片的摄像模组及其像面校正方法
CN110320639B (zh) 摄像用光学镜头、取像装置及电子装置
KR101046019B1 (ko) 광학계 및 촬상 장치
KR100616616B1 (ko) 카메라 모듈의 자동 초점조절 광학계
TWI429979B (zh) 光學影像透鏡組
TWI407183B (zh) 影像擷取鏡組
TWI626487B (zh) 光學影像鏡頭系統組、取像裝置及電子裝置
KR100835108B1 (ko) 카메라 모듈의 자동 초점조절 광학계
CN103314322B (zh) 摄像透镜、摄像装置以及便携式终端
CN1705901A (zh) 变焦透镜
TWI421534B (zh) 可變焦距成像鏡頭
JP2006209122A (ja) インナーフォーカス方式ズームレンズシステム
CN100354675C (zh) 光学系统及摄像装置
JP4655462B2 (ja) 撮影レンズ及び撮像装置
WO2022179632A1 (zh) 长焦镜头、摄像头模组及电子设备
TWI774823B (zh) 光學成像模組
CN114185166A (zh) 一种潜望式摄像模组及终端设备
JP2006098972A (ja) ズームレンズユニット及びカメラ
CN113933963B (zh) 光学变焦系统、摄像模组及电子设备
CN216291127U (zh) 液态镜头、摄像头模组及电子设备
CN113341541B (zh) 光学镜头、摄像头模组及电子设备
JP2003161874A (ja) 撮像装置
JP5067589B2 (ja) 撮影レンズ及び撮像装置
CN219302747U (zh) 一种透镜系统、接收模组及深度相机
US20220404580A1 (en) Lens group, related device, and related system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19897502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019897502

Country of ref document: EP

Effective date: 20210618