WO2020119262A1 - 一种宽带紧凑型射频功率分配器 - Google Patents
一种宽带紧凑型射频功率分配器 Download PDFInfo
- Publication number
- WO2020119262A1 WO2020119262A1 PCT/CN2019/112624 CN2019112624W WO2020119262A1 WO 2020119262 A1 WO2020119262 A1 WO 2020119262A1 CN 2019112624 W CN2019112624 W CN 2019112624W WO 2020119262 A1 WO2020119262 A1 WO 2020119262A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- transmission line
- output port
- network
- inductor
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H7/00—Multiple-port networks comprising only passive electrical elements as network components
- H03H7/01—Frequency selective two-port networks
- H03H7/17—Structural details of sub-circuits of frequency selective networks
- H03H7/1716—Comprising foot-point elements
- H03H7/1725—Element to ground being common to different shunt paths, i.e. Y-structure
Definitions
- the invention relates to a power distributor, in particular to a broadband compact radio frequency power distributor.
- Wilkinson and power splitters use quarter-wavelength microstrip lines.
- the size of the power splitter is larger, which is not conducive to integration.
- the frequency band of quarter-wavelength microstrip lines is relatively narrow. Broadband power splitters need to be cascaded using multiple quarter-quarter microstrip lines, further increasing the area of the power splitter.
- the object of the invention is to provide a broadband compact radio frequency power splitter, which can solve the problem of "larger power splitter size" in the prior art.
- the broadband compact RF power distributor of the present invention includes an input port, a first output port and a second output port, the input port is connected to the first output port through the first transmission line, and the input port is connected to the second through the second transmission line
- the output port, the first transmission line and the second transmission line all include a gain compensation network and a transmission line fitting network, and the structures of the first transmission line and the second transmission line are completely the same.
- the first output port is connected to the second output port through the isolation network .
- the first transmission line, the second transmission line and the isolation network all use lumped devices.
- the entire power divider has a compact structure, insertion loss pins, small parasitic parameters, and frequency bandwidth. And this does not distinguish between the transmission line and the isolation network.
- the isolation network includes a third inductor L3, one end of the third inductor L3 is connected to the first output port, the other end of the third inductor L3 is connected to one end of the seventh capacitor C7, and the other end of the seventh capacitor C7 is connected to the third resistor One end of R3, the other end of the third resistor R3 is connected to one end of the eighth capacitor C8, the other end of the eighth capacitor C8 is connected to one end of the fourth inductor L4, and the other end of the fourth inductor L4 is connected to the second output port;
- the inductance value of the third inductor L3 is equal to the inductance value of the fourth inductor L4, and the capacitance value of the seventh capacitor C7 is equal to the capacitance value of the eighth capacitor C8.
- the circuit structure of the isolation network is completely symmetrical, which can improve the isolation at the non-center frequency point, thereby increasing the isolation bandwidth, so that the power divider has capacitive and inductive compensation in a wide frequency band.
- the traditional Wilkinson power divider in the prior art uses pure resistance as the isolation network, and its isolation at the non-center frequency point is not good.
- the gain compensation network in the first transmission line includes a first capacitor C1 and a first resistor R1, one end of the first capacitor C1 and one end of the first resistor R1 are connected to the input port, and the other end of the first capacitor C1 and The other ends of the first resistor R1 are connected to the transmission line fitting network in the first transmission line.
- the gain compensation network in the second transmission line includes a second capacitor C2 and a second resistor R2, one end of the second capacitor C2 and one end of the second resistor R2 are connected to the input port, and the other end of the second capacitor C2 and The other ends of the second resistor R2 are connected to the transmission line fitting network in the second transmission line.
- the transmission line fitting network in the first transmission line includes a third capacitor C3.
- One end of the third capacitor C3 is connected to one end of the first inductor L1 and the gain compensation network in the first transmission line.
- the other end is respectively connected to one end of the fifth capacitor C5, the first output port and the isolation network, and the other end of the third capacitor C3 and the other end of the fifth capacitor C5 are both grounded.
- both the third capacitor C3 and the fifth capacitor C5 adopt a structure of directly back hole to ground. This can reduce the parasitic inductances of the third capacitor C3 and the fifth capacitor C5, and expand the operating frequency band.
- the transmission line fitting network in the second transmission line includes a fourth capacitor C4, and one end of the fourth capacitor C4 is connected to one end of the second inductor L2 and the gain compensation network in the second transmission line, respectively.
- the other end is respectively connected to one end of the sixth capacitor C6, the second output port and the isolation network, and the other end of the fourth capacitor C4 and the other end of the sixth capacitor C6 are both grounded.
- both the fourth capacitor C4 and the sixth capacitor C6 are directly back-to-ground structures. In this way, the parasitic inductance of the fourth capacitor C4 and the sixth capacitor C6 can be reduced, and the operating frequency band can be expanded.
- the input port, the first output port and the second output port all use pads of the GSG structure; among the pads of the GSG structure, the aspect ratio of the signal pad is greater than 2:1.
- the selection of the signal pad size can compensate for the inductive influence of the gold wire bonding wire, thereby reducing the difference between the chip test and the system assembly test.
- the invention uses the gain compensation network in the two-way transmission line to combine the functions of the power divider and the equalizer into one, which greatly reduces the area of the entire power divider and reduces the production cost; and, the gain compensation network has Larger loss can improve input port matching.
- Figure 1 is a circuit diagram of a Wilkinson power divider in the prior art
- FIG. 2 is a circuit diagram of a power distributor in a specific embodiment of the present invention.
- FIG. 3 is a schematic diagram of a power distributor chip in a specific embodiment of the present invention.
- FIG. 8 is a simulation result of the echo of the input port of the power distributor in the specific embodiment of the present invention.
- the specific embodiment discloses a broadband compact RF power distributor, including an input port, a first output port and a second output port, the input port is connected to the first output port through a first transmission line, and the input port is connected through a second transmission line Connected to the second output port, the first transmission line and the second transmission line both include a gain compensation network and a transmission line fitting network, and the structure of the first transmission line and the second transmission line are completely the same.
- the first output port is connected to the Two output ports.
- the first transmission line, the second transmission line and the isolation network all use lumped devices.
- the input port is represented by Port1 in FIGS. 2 and 3
- the first output port is represented by Port2 in FIGS. 2 and 3
- the second output port is represented by Port3 in FIGS. 2 and 3.
- the isolation network includes a third inductor L3. As shown in FIG. 1, one end of the third inductor L3 is connected to the first output port, the other end of the third inductor L3 is connected to one end of the seventh capacitor C7, and the other end of the seventh capacitor C7 is connected to the first One end of the three resistors R3, the other end of the third resistor R3 is connected to one end of the eighth capacitor C8, the other end of the eighth capacitor C8 is connected to one end of the fourth inductor L4, and the other end of the fourth inductor L4 is connected to the second output port;
- the inductance value of the third inductor L3 is equal to the inductance value of the fourth inductor L4, and the seventh capacitor C7 is equal to the eighth capacitor C8.
- the circuit structure of the isolation network is completely symmetrical, which can improve the isolation at non-center frequency points, thereby increasing the isolation bandwidth.
- the third inductance L3 and the fourth inductance L4 connected in series use a high-impedance transmission line, which is effective in the case of a small inductance value.
- the traditional Wilkinson power divider in the prior art uses pure resistance as the isolation network, and its isolation at the non-center frequency point is not good.
- the gain compensation network in the first transmission line includes a first capacitor C1 and a first resistor R1. As shown in FIG. 1, one end of the first capacitor C1 and one end of the first resistor R1 are connected to the input port, and the other of the first capacitor C1 One end and the other end of the first resistor R1 are both connected to the transmission line fitting network in the first transmission line.
- the gain compensation network in the second transmission line includes a second capacitor C2 and a second resistor R2. As shown in FIG. 1, one end of the second capacitor C2 and one end of the second resistor R2 are connected to the input port, and the other of the second capacitor C2 One end and the other end of the second resistor R2 are connected to the transmission line fitting network in the second transmission line.
- the transmission line fitting network in the first transmission line includes a third capacitor C3, one end of the third capacitor C3 is respectively connected to one end of the first inductor L1 and the gain compensation network in the first transmission line, and the other end of the first inductor L1 is respectively connected One end of the fifth capacitor C5, the first output port and the isolation network, the other end of the third capacitor C3 and the other end of the fifth capacitor C5 are both grounded.
- the transmission line fitting network in the second transmission line includes a fourth capacitor C4, one end of the fourth capacitor C4 is respectively connected to one end of the second inductor L2 and the gain compensation network in the second transmission line, and the other end of the second inductor L2 is respectively connected One end of the sixth capacitor C6, the second output port and the isolation network, the other end of the fourth capacitor C4 and the other end of the sixth capacitor C6 are both grounded.
- the third capacitor C3, the fourth capacitor C4, the fifth capacitor C5 and the sixth capacitor C6 all adopt a direct back hole to ground structure.
- the joint design of the isolation network and the gain compensation network enables the power divider of this specific embodiment to cover a bandwidth of 3 octave with a ratio of high frequency to low frequency, such as 6-18 GHz, 2-6 GHz, and so on.
- the input port, the first output port, and the second output port all use pads of the GSG structure; among the pads of the GSG structure, the aspect ratio of the signal pad is 2:1.
- FIG. 3 shows the signal pad 3 and the ground pad 2 of the input port.
- the size of the signal pad 3 is 100 ⁇ 140um
- the size of the ground pad 2 is 100 ⁇ 100um.
- the ground pad of the input port and the ground pad of the first output port share a via to ground
- the ground pad of the input port and the ground pad of the second output port also share a via to ground, which can save chip area .
- the distance between the center position of the pad and the pitch of the GSG tip of the RF probe is the same to facilitate wafer-level on-chip testing.
- Both gain compensation networks use RC parallel structure, which can greatly improve the echo characteristics of the input port at low frequency, as shown in Figure 7.
- the resistance mainly plays a role, which causes loss to low frequencies; when the frequency is high, the capacitance mainly plays a role. Therefore, choosing the appropriate capacitance and resistance, and adjusting the inductance and capacitance values of the transmission line fitting network can achieve different degrees of gain compensation in the required frequency band.
- the gain compensation is set to 1.5dB.
- Figures 4 to 8 are the electromagnetic simulation results of one of the 3 octave bands taken in this specific embodiment: the electromagnetic simulation results using 6-18 GHz as an example, it can be seen that the power divider of this specific embodiment can cover high frequency and low frequency The ratio is the bandwidth of 3 octave bands (such as 6-18GHz).
- the transmission coefficient is -5.4 dB
- the transmission coefficient is -3.7 GHz
- the entire frequency band has a positive slope of 0.14 dB/GHz.
- the insertion loss at the highest frequency of 18 GHz is 0.7 dB.
- the echo coefficient of the output port is less than -13dB.
- the output port isolation is greater than 11dB.
- the input echo coefficient is less than -15dB.
- the chip size is only 600 ⁇ 700um (0.07 ⁇ 0.08 ⁇ ), and the size of the Wilkinson power divider in the prior art is 1500 ⁇ 1500um 2 . It can be seen that this specific embodiment effectively reduces the size of the power divider.
- the specific embodiment can be widely used in a multi-channel active phased array system, with small size, low loss, low cost, and good port consistency.
Landscapes
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Amplifiers (AREA)
Abstract
本发明公开了一种宽带紧凑型射频功率分配器,包括输入端口、第一输出端口和第二输出端口,输入端口通过第一路传输线连接第一输出端口,输入端口通过第二路传输线连接第二输出端口,第一路传输线和第二路传输线均包括增益补偿网络和传输线拟合网络,且第一路传输线和第二路传输线的结构完全相同,第一输出端口通过隔离网络连接第二输出端口。本发明通过两路传输线中的增益补偿网络使得功分器与均衡器的功能合二为一,极大地减小了整个功分器的面积,降低了生产成本;并且,增益补偿网络在低频具有较大损耗,能够提高输入端口的匹配。
Description
本发明涉及功率分配器,特别是涉及一种宽带紧凑型射频功率分配器。
随着有源相控阵雷达的不断发展,功率分配器作为超宽带多通道工作模式的关键器件得到了广泛的研究。传统的威尔金斯功分器的特点是电路制作工艺简单,成本低廉,隔离端口无接地要求,电路结构完全对称可以进一步保证功分信号的一致性。但是wilkinson、功分器采用四分之一波长微带线,对于频率比较低的应用,功分器尺寸较大,不利于集成;四分之一波长微带线的频段比较窄,若要实现宽带功分器,需要使用多段四分之一微带线进行级联,进一步增加了功分器的面积。
因此十分有必要研究出一种减小电路面积的紧凑型的宽带射频功率分配器。
发明目的:本发明的目的是提供一种宽带紧凑型射频功率分配器,能够解决现有技术中存在的“功率分配器尺寸较大”的问题。
本发明所述的宽带紧凑型射频功率分配器,包括输入端口、第一输出端口和第二输出端口,输入端口通过第一路传输线连接第一输出端口,输入端口通过第二路传输线连接第二输出端口,第一路传输线和第二路传输线均包括增益补偿网络和传输线拟合网络,且第一路传输线和第二路传输线的结构完全相同,第一输出端口通过隔离网络连接第二输出端口。
进一步,所述第一路传输线、第二路传输线和隔离网络均采用集总器件。这样整个功率分配器的结构紧凑,插入损耗销,寄生参数小,频带宽。并且这样就不区分传输线和隔离网络的区隔。
进一步,所述隔离网络包括第三电感L3,第三电感L3的一端连接第一输出端口,第三电感L3的另一端连接第七电容C7的一端,第七电容C7的另一端连接第三电阻R3的一端,第三电阻R3的另一端连接第八电容C8的一端,第八电容C8的另一端连接第四电感L4的一端,第四电感L4的另一端连接第二输出端口;其中,第三电感L3的电感值等于第四电感L4的电感值,第七电容C7的电容值等于第八电容C8的电容值。这样隔离网络的电路结构就完全对称,能够提高在非中心频点的隔离度,从而增加隔离带宽,使得功率分配器在很宽的频带内具有容性和感性补偿作用。而现有技术中传统的威尔金森功分器采用纯电阻作为隔离网络,它在非中心频点的隔离度并不好。
进一步,所述第一路传输线中的增益补偿网络包括第一电容C1和第一电阻R1,第一电容C1的一端和第一电阻R1的一端均连接输入端口,第一电容C1的另一端和第一电阻R1的另一端均连接第一路传输线中的传输线拟合网络。
进一步,所述第二路传输线中的增益补偿网络包括第二电容C2和第二电阻R2,第二电容C2的一端和第二电阻R2的一端均连接输入端口,第二电容C2的另一端和第二电阻R2的另一端均连接第二路传输线中的传输线拟合网络。
进一步,所述第一路传输线中的传输线拟合网络包括第三电容C3,第三电容C3的一端分别连接第一电感L1的一端和第一路传输线中的增益补偿网络,第一电感L1的另一端分别连接第五电容C5的一端、第一输出端口和隔离网络,第三电容C3的另一端和第五电容C5的另一端均接地。
进一步,所述第三电容C3和第五电容C5均采用直接背孔到地的结构。这样能够减小第三电容C3和第五电容C5的寄生电感,扩展工作频带。
进一步,所述第二路传输线中的传输线拟合网络包括第四电容C4,第四电容C4的一端分别连接第二电感L2的一端和第二路传输线中的增益补偿网络,第二电感L2的另一端分别连接第六电容C6的一端、第二输出端口和隔离网络,第四电容C4的另一端和第六电容C6的另一端均接地。
进一步,所述第四电容C4和第六电容C6均采用直接背孔到地的结构。这样能够减小第四电容C4和第六电容C6的寄生电感,扩展工作频带。
进一步,所述输入端口、第一输出端口和第二输出端口均采用GSG结构的焊盘;GSG结构的焊盘中,信号焊盘的长宽比大于2:1。信号焊盘尺寸的选择能够补偿金丝键合线的感性影响,从而减小在片测试与系统组装测试之间的差异。
本发明通过两路传输线中的增益补偿网络使得功分器与均衡器的功能合二为一,极大地减小了整个功分器的面积,降低了生产成本;并且,增益补偿网络在低频具有较大损耗,能够提高输入端口的匹配。
图1为现有技术中威尔金森功分器的电路图;
图2为本发明具体实施方式中功率分配器的电路图;
图3为本发明具体实施方式中功率分配器芯片的示意图;
图4为本发明具体实施方式中功率分配器传输系数的仿真结果;
图5为本发明具体实施方式中功率分配器插入损耗的仿真结果;
图6为本发明具体实施方式中功率分配器输出端口隔离度的仿真结果;
图7为本发明具体实施方式中功率分配器输出端口回波的仿真结果;
图8为本发明具体实施方式中功率分配器输入端口回波的仿真结果。
本具体实施方式公开了一种宽带紧凑型射频功率分配器,包括输入端口、第一输出端口和第二输出端口,输入端口通过第一路传输线连接第一输出端口,输入端口通过第二路传输线连接第二输出端口,第一路传输线和第二路传输线均包括增益补偿网络和传输线拟合网络,且第一路传输线和第二路传输线的结构完全相同,第一输出端口通过隔离网络连接第二输出端口。第一路传输线、第二路传输线和隔离网络均采用集总器件。输入端口在图2和图3中用Port1表示,第一输出端口在图2和图3中用Port2表示,第二输出端口在图2和图3中用Port3表示。
隔离网络包括第三电感L3,如图1所示,第三电感L3的一端连接第一输出端口,第三电感L3的另一端连接第七电容C7的一端,第七电容C7的另一端连接第三电阻R3的一端,第三电阻R3的另一端连接第八电容C8的一端,第八电容C8的另一端连接第四电感L4的一端,第四电感L4的另一端连接第二输出端口;其中,第三电感L3的电感值等于第四电感L4的电感值,第七电容C7的电容值等于第八电容C8的电容值。这样隔离网络的电路结构就完全对称,能够提高在非中心频点的隔离度,从而增加隔离带宽。其中串联的第三电感L3和第四电感L4采用了高阻传输线,这在较小感值的情况下是有效的。而现有技术中传统的威尔金森功分器采用纯电阻作为隔离网络,它在非中心频点的隔离度并不好。
第一路传输线中的增益补偿网络包括第一电容C1和第一电阻R1,如图1所示,第一电容C1的一端和第一电阻R1的一端均连接输入端口,第一电容C1的另一端和第一电阻R1的另一端均连接第一路传输线中的传输线拟合网络。第二路传输线中的增益补偿网络包括第二电容C2和第二电阻R2,如图1所示,第二电容C2的一端和第二电阻R2的一端均连接输入端口,第二电容C2的另一端和第二电阻R2的另一端均连接第二路传输线中的传输线拟合网络。
第一路传输线中的传输线拟合网络包括第三电容C3,第三电容C3的一端分别连接第一电感L1的一端和第一路传输线中的增益补偿网络,第一电感L1的另一端分别连接第五电容C5的一端、第一输出端口和隔离网络,第三电容C3的另一端和第五电容C5的另一端均接地。第二路传输线中的传输线拟合网络包括第四电容C4,第四电容C4的一端分别连接第二电感L2的一端和第二路传输线中的增益补偿网络,第二电感L2的另一端分别连接第六电容C6的一端、第二输出端口和隔离网络,第四电容C4的另一端和第六电容C6的另一端均接地。第三电容C3、第四电容C4、第五电容C5和第六电容C6均采用直接背孔到地结构。
隔离网络和增益补偿网络的联合设计,使得本具体实施方式的功率分配器能够覆盖高频与低频比例为3倍频程的带宽,例如6-18GHz、2-6GHz等。
输入端口、第一输出端口和第二输出端口均采用GSG结构的焊盘;GSG结构的焊盘中,信号焊盘的长宽比为2:1。图3示出了输入端口的信号焊盘3和接地焊盘2,信号焊盘3的尺寸为100 ×140um,接地焊盘2的尺寸为100×100um。输入端口的接地焊盘与第一输出端口的接地焊盘共用一个过孔到地,输入端口的接地焊盘与第二输出端口的接地焊盘也共用一个过孔到地,这样能够节约芯片面积。焊盘的中心位置间距大小与射频探针的GSG针尖间距保持一致,以便晶圆级在片测试。
两个增益补偿网络都采用RC并联结构,能够极大地改善输入端口在低频的回波特性,如图7所示。RC并联结构在频率低的时候,电阻主要起作用,对低频产生损耗;在频率高的时候,电容主要起作用。因此选择合适的电容和电阻,并调节传输线拟合网络的电感和电容值,就可以实现所需频带内不同程度的增益补偿。本具体实施方式中,增益补偿设置为1.5dB。
图4至图8为本具体实施方式取其中一个3倍频程的电磁仿真结果:以6-18GHz为例进行的电磁仿真结果,可见,本具体实施方式的功率分配器能够覆盖高频与低频比例为3倍频程(如6-18GHz)的带宽。如图4所示,在6GHz频点,传输系数为-5.4dB,在18GHz频点,传输系数为-3.7GHz,整个频带内具有0.14dB/GHz的正斜率。如图5所示,最高频率18GHz的插入损耗为0.7dB。如图7所示,输出端口的回波系数小于-13dB。如图6所示,输出端口隔离度大于11dB。如图8所示,输入回波系数小于-15dB。该芯片尺寸仅为600×700um(0.07λ×0.08λ),而现有技术中威尔金森功分器的尺寸为1500×1500um
2。可见,本具体实施方式有效缩小了功率分配器的尺寸。本具体实施方式可以广泛应用于多通道有源相控阵系统中,尺寸小,损耗低,成本低,端口一致性好。
Claims (10)
- 一种宽带紧凑型射频功率分配器,其特征在于:包括输入端口、第一输出端口和第二输出端口,输入端口通过第一路传输线连接第一输出端口,输入端口通过第二路传输线连接第二输出端口,第一路传输线和第二路传输线均包括增益补偿网络和传输线拟合网络,且第一路传输线和第二路传输线的结构完全相同,第一输出端口通过隔离网络连接第二输出端口。
- 根据权利要求1所述的宽带紧凑型射频功率分配器,其特征在于:所述第一路传输线、第二路传输线和隔离网络均采用集总器件。
- 3、根据权利要求1所述的宽带紧凑型射频功率分配器,其特征在于:所述隔离网络包括第三电感L3,第三电感L3的一端连接第一输出端口,第三电感L3的另一端连接第七电容C7的一端,第七电容C7的另一端连接第三电阻R3的一端,第三电阻R3的另一端连接第八电容C8的一端,第八电容C8的另一端连接第四电感L4的一端,第四电感L4的另一端连接第二输出端口;其中,第三电感L3的电感值等于第四电感L4的电感值,第七电容C7的电容值等于第八电容C8的电容值。
- 根据权利要求1所述的宽带紧凑型射频功率分配器,其特征在于:所述第一路传输线中的增益补偿网络包括第一电容C1和第一电阻R1,第一电容C1的一端和第一电阻R1的一端均连接输入端口,第一电容C1的另一端和第一电阻R1的另一端均连接第一路传输线中的传输线拟合网络。
- 根据权利要求1所述的宽带紧凑型射频功率分配器,其特征在于:所述第二路传输线中的增益补偿网络包括第二电容C2和第二电阻R2,第二电容C2的一端和第二电阻R2的一端均连接输入端口,第二电容C2的另一端和第二电阻R2的另一端均连接第二路传输线中的传输线拟合网络。
- 根据权利要求1所述的宽带紧凑型射频功率分配器,其特征在于:所述第一路传输线中的传输线拟合网络包括第三电容C3,第三电容C3的一端分别连接第一电感L1的一端和第一路传输线中的增益补偿网络,第一电感L1的另一端分别连接第五电容C5的一端、第一输出端口和隔离网络,第三电容C3的另一端和第五电容C5的另一端均接地。
- 根据权利要求6所述的宽带紧凑型射频功率分配器,其特征在于:所述第三电容C3和第五电容C5均采用直接背孔到地的结构。
- 根据权利要求1所述的宽带紧凑型射频功率分配器,其特征在于:所述第二路传输线中的传输线拟合网络包括第四电容C4,第四电容C4的一端分别连接第二电感L2的一端和第二路传输线中的增益补偿网络,第二电感L2的另一端分别连接第六电容C6的一端、第二输出端口和隔离网络,第四电容C4的另一端和第六电容C6的另一端均接地。
- 根据权利要求8所述的宽带紧凑型射频功率分配器,其特征在于:所述第四电容C4和第六电容C6均采用直接背孔到地的结构。
- 根据权利要求1所述的宽带紧凑型射频功率分配器,其特征在于:所述输入端口、第一输出端口和第二输出端口均采用GSG结构的焊盘;GSG结构的焊盘中,信号焊盘的长宽比大于2:1。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811514090.0A CN109546280B (zh) | 2018-12-12 | 2018-12-12 | 一种宽带紧凑型射频功率分配器 |
CN201811514090.0 | 2018-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020119262A1 true WO2020119262A1 (zh) | 2020-06-18 |
Family
ID=65854643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/112624 WO2020119262A1 (zh) | 2018-12-12 | 2019-10-22 | 一种宽带紧凑型射频功率分配器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109546280B (zh) |
WO (1) | WO2020119262A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114188687A (zh) * | 2022-01-12 | 2022-03-15 | 深圳振华富电子有限公司 | 一种功分器、功分器芯片及电子设备 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109546280B (zh) * | 2018-12-12 | 2023-10-27 | 南京米乐为微电子科技有限公司 | 一种宽带紧凑型射频功率分配器 |
CN109802216B (zh) * | 2019-03-29 | 2021-06-01 | 哈尔滨工业大学 | 基于薄膜集成无源器件工艺的宽带小型化威尔金森功分器及其制备方法 |
CN114846744A (zh) * | 2019-12-31 | 2022-08-02 | 华为技术有限公司 | 一种功分器、功分装置及无线通信装置 |
CN111193090B (zh) * | 2020-01-07 | 2021-10-26 | 上海科技大学 | 带有隔离阻带的+/-45°相移双频带通响应集总元件功分器 |
CN113410600A (zh) * | 2021-06-28 | 2021-09-17 | 江苏微远芯微系统技术有限公司 | 用于毫米波芯片的功率合成系统 |
CN114285388A (zh) * | 2021-12-08 | 2022-04-05 | 清华大学 | 毫米波功率分配网络 |
CN117595833B (zh) * | 2024-01-16 | 2024-04-26 | 南京迈矽科微电子科技有限公司 | 功率分配器及电子设备 |
CN118315383B (zh) * | 2024-04-08 | 2024-09-13 | 材料科学姑苏实验室 | 射频开关电路版图结构 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105379152A (zh) * | 2013-03-15 | 2016-03-02 | 多康公司 | 用于siso和mimo应用的转向天线、cpl天线和一个或更多个接收对数检测器放大器的组合 |
US20170077892A1 (en) * | 2015-09-15 | 2017-03-16 | Karl L. Thorup | High isolation power combiner/splitter and coupler |
CN106972232A (zh) * | 2017-03-28 | 2017-07-21 | 石家庄创天电子科技有限公司 | 功率分配器 |
CN109546280A (zh) * | 2018-12-12 | 2019-03-29 | 南京米乐为微电子科技有限公司 | 一种宽带紧凑型射频功率分配器 |
CN209374648U (zh) * | 2018-12-12 | 2019-09-10 | 南京米乐为微电子科技有限公司 | 一种宽带紧凑型射频功率分配器 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100529581B1 (ko) * | 2002-12-09 | 2005-11-22 | 한국전자통신연구원 | 초고주파 윌켄슨 전력분배기 |
CN102832433B (zh) * | 2012-08-21 | 2015-01-28 | 华南理工大学 | 集成带通滤波功能的非等分功率分配器 |
CN104393389A (zh) * | 2014-11-14 | 2015-03-04 | 电子科技大学 | 一种具有幅度和相位补偿功能的宽带移相功分器 |
KR101761300B1 (ko) * | 2016-05-12 | 2017-08-04 | 충남대학교산학협력단 | 저손실 소형 전력 분배기 |
CN107634299A (zh) * | 2017-08-21 | 2018-01-26 | 天津大学 | 一种紧凑型威尔金森功率分配器 |
-
2018
- 2018-12-12 CN CN201811514090.0A patent/CN109546280B/zh active Active
-
2019
- 2019-10-22 WO PCT/CN2019/112624 patent/WO2020119262A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105379152A (zh) * | 2013-03-15 | 2016-03-02 | 多康公司 | 用于siso和mimo应用的转向天线、cpl天线和一个或更多个接收对数检测器放大器的组合 |
US20170077892A1 (en) * | 2015-09-15 | 2017-03-16 | Karl L. Thorup | High isolation power combiner/splitter and coupler |
CN106972232A (zh) * | 2017-03-28 | 2017-07-21 | 石家庄创天电子科技有限公司 | 功率分配器 |
CN109546280A (zh) * | 2018-12-12 | 2019-03-29 | 南京米乐为微电子科技有限公司 | 一种宽带紧凑型射频功率分配器 |
CN209374648U (zh) * | 2018-12-12 | 2019-09-10 | 南京米乐为微电子科技有限公司 | 一种宽带紧凑型射频功率分配器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114188687A (zh) * | 2022-01-12 | 2022-03-15 | 深圳振华富电子有限公司 | 一种功分器、功分器芯片及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
CN109546280A (zh) | 2019-03-29 |
CN109546280B (zh) | 2023-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020119262A1 (zh) | 一种宽带紧凑型射频功率分配器 | |
CN107395148B (zh) | 一种tr组件的温补均衡电路 | |
CN103022616B (zh) | 基于低温共烧陶瓷技术的双频四路功率分配器 | |
WO2017128678A1 (zh) | 基于容性负载的超宽带定值移相器 | |
CN109639243B (zh) | 一种基于耦合环路谐振网络的f类功率放大器 | |
US6246299B1 (en) | High power broadband combiner having ferrite cores | |
CN111082759B (zh) | 一种电抗匹配式与分布式相融合的超宽带功率芯片电路 | |
CN112865725A (zh) | 一种超宽带大功率高效率的单片集成功率放大器电路结构 | |
CN109244616A (zh) | 基于耦合微带线的双频不等分滤波功分器 | |
CN209374648U (zh) | 一种宽带紧凑型射频功率分配器 | |
CN108011168B (zh) | 一种可端接复数阻抗的新型Wilkinson功率分配器 | |
CN110768642B (zh) | 一种具有平坦群时延特性的宽带负群时延微波电路 | |
CN113193322A (zh) | 一种改进型威尔金森功分器 | |
US8362849B2 (en) | Broadband balun | |
WO2023040473A1 (zh) | 一种应用于低频功率放大器的耦合电路 | |
CN114497952B (zh) | 一种具有高次谐波抑制特性的功率分配器及其设计方法 | |
CN113764851B (zh) | 基于ipd的小型化低插损宽带巴伦 | |
CN203300774U (zh) | 一种微带平衡滤波器 | |
Ojha et al. | A miniaturized lumped-distributed balun for modern wireless communication systems | |
CN111193090B (zh) | 带有隔离阻带的+/-45°相移双频带通响应集总元件功分器 | |
CN111162360B (zh) | 具有-/+45°相移的双频带通响应集总元件功分器 | |
CN108281743B (zh) | 一种片上集成紧凑型宽带功分器 | |
CN115313011B (zh) | 一种具有高功分比的双频Gysel功分滤波器 | |
CN219873998U (zh) | 滤波功分器的上层微带结构及新型Gysel滤波功分器 | |
CN117913492A (zh) | 一种相位补偿型的威尔金森功分器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19896510 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19896510 Country of ref document: EP Kind code of ref document: A1 |