WO2020118887A1 - 基板及制备方法 - Google Patents
基板及制备方法 Download PDFInfo
- Publication number
- WO2020118887A1 WO2020118887A1 PCT/CN2019/074959 CN2019074959W WO2020118887A1 WO 2020118887 A1 WO2020118887 A1 WO 2020118887A1 CN 2019074959 W CN2019074959 W CN 2019074959W WO 2020118887 A1 WO2020118887 A1 WO 2020118887A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- optical film
- film
- sio
- array unit
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133514—Colour filters
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13394—Gaskets; Spacers; Sealing of cells spacers regularly patterned on the cell subtrate, e.g. walls, pillars
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1339—Gaskets; Spacers; Sealing of cells
- G02F1/13396—Spacers having different sizes
Definitions
- the present disclosure relates to the field of display technology, in particular to a substrate and a preparation method.
- LEDs Light Emitting Diodes
- the backlight module of the display is composed of many devices such as substrates, filters, polarizers, etc.
- the thin film transistor (Thin Film Transistor, TFT) array has a certain effect on light.
- Polarizers and color filters will also absorb part of the light, making the light transmittance smaller.
- These polarizers and color filters reduce the light transmittance and absorb light, so that the backlight Part of the light emitted by the board is lost during the transmission process.
- the polarizer and color filter in the existing display will absorb most of the light, which reduces the light transmittance, causes a large loss of light, and further increases the power consumption of the product.
- the present disclosure provides a substrate and a preparation method to solve the problems of low light transmittance and large light loss of devices such as CF substrates in the backlight module of the existing display device.
- a substrate including:
- the pixel array unit frame is arranged on the base substrate;
- An optical film, a color filter, and an indium tin oxide film provided on the base substrate and sequentially arranged from bottom to top;
- the pixel array unit frame is disposed between the optical film and the base substrate.
- the pixel array unit frame is disposed on the indium tin oxide film.
- the substrate further includes an RGB color resistive pixel layer, and the RGB color resistive pixel layer is disposed between the pixel array unit frame and the optical film.
- the substrate further includes a support post.
- the support pillar is disposed on the indium tin oxide film.
- the optical film is composed of SiN x and SiO x .
- the optical film is a SiO x.
- the optical film is a SiO 2 antireflection film, and the thickness of the SiO 2 antireflection film is
- the present disclosure provides a substrate, the substrate includes:
- a pixel array unit frame provided on the base substrate
- An optical film, a color filter, and an indium tin oxide film provided on the base substrate and sequentially arranged from bottom to top.
- the pixel array unit frame is disposed between the optical film and the base substrate.
- the pixel array unit frame is disposed on the indium tin oxide film.
- it further includes an RGB color-resistance pixel layer, and the RGB color-resistance pixel layer is disposed between the pixel array unit frame and the optical film.
- the substrate further includes a support post.
- the support pillar is disposed on the indium tin oxide film.
- the optical film is composed of SiN x and SiO x .
- the optical film is a SiO x.
- the optical film is a SiO 2 antireflection film, and the thickness of the SiO 2 antireflection film is
- the present disclosure also provides a method for manufacturing a substrate, including:
- Step S100 a pixel array unit frame is prepared on the base substrate through the black matrix process
- Step S110 an optical film with a certain thickness of SiO x or SiO x and SiN x structure is prepared on the basis of step S100, and a color filter and an indium tin oxide film are prepared on the optical film,
- step S120 the main and auxiliary supporting columns are prepared on the basis of step S110.
- step S100 and the step S110 further include:
- step S200 an RGB color resist pixel layer is prepared on the basis of step S100.
- the preparation order of the step S100 and the step S110 can be interchanged.
- optical film can improve the light transmittance and reduce the light
- the loss in the backlight module reduces the heat generated by the display, so that more light is reflected from the display, thereby reducing the power consumption of the product and saving costs.
- FIG. 1 is a schematic diagram of the substrate structure of the disclosed embodiment
- FIG. 2 is a schematic view of the structure of the film system of the disclosed embodiment
- FIG. 3 is a schematic cross-sectional view of the substrate structure of the second embodiment of the present disclosure.
- FIG. 4 is a schematic cross-sectional view of the substrate structure of the third embodiment of the present disclosure.
- FIG. 5 is a flowchart of a substrate preparation method according to an embodiment of the disclosure.
- FIG. 1 is a schematic structural diagram of the disclosed substrate.
- the substrate structure includes a base substrate 101, an optical film 102, a color filter 103, an indium tin oxide (ITO) thin film layer 104, main and auxiliary support columns 105, and a pixel array unit frame 106.
- the optical film 102, the color filter 103, and the ITO film layer 104 are sequentially disposed on the base substrate 101 from bottom to top.
- the pixel array unit frame 106 and the main and auxiliary support pillars 105 are both disposed on the ITO film layer 104.
- the main and auxiliary support pillars 105 support the devices on the support pillars. The heights of the main and auxiliary support pillars 105 are different.
- the device plays the role of secondary protection, and a color resistive pixel layer may be arranged on the pixel array unit frame 106.
- the traditional CF substrate has only the color filter 103 and the ITO film layer 104.
- the optical film 102, the color filter 103, and the ITO film layer 104 provided by the present disclosure can reduce the loss of light when the light passes through and increase the transmittance, thereby achieving the effect of increasing the transparency.
- FIG. 2 is a schematic diagram of the film structure of the present disclosure.
- the film structure includes an optical film 202, a color filter 203, and an indium tin oxide thin film ITO film layer 204, wherein the optical film 202, the color filter 203, and the ITO film layer 204 are sequentially distributed from bottom to top.
- the optical film 202 may be composed of SiO x or SiN x and SiO x together.
- the optical film 202 is respectively SiO x and SiN x +SiO x
- the comparison group is an existing ordinary CF substrate with a thickness of 135 nm.
- the optical film is SiO2
- SiO 2 film experiments with different thicknesses are conducted.
- the SiO 2 film thickness is The entire transmittance band of the substrate moves to the long wave direction, and the transmittance of the long wave is higher than that of the short wave; the film thickness The entire transmittance band of the substrate moves in the short-wave direction, and the waveform is deformed. This shows that the transmittance has changed periodically.
- the increase in substrate transmittance is the largest.
- the reflectance of light in the backlight module substrate of the present disclosure is 7-9% higher than that of the ordinary backlight module substrate, and the light transmittance is improved: 1.4 % ⁇ 2.31%, and in a stable state.
- FIG. 3 is a schematic structural cross-sectional view of a second embodiment of the disclosed substrate.
- the substrate structure includes a base substrate 301, an optical film 302, a color filter 303, an indium tin oxide thin film ITO film layer 304, main and auxiliary support pillars 305, and a pixel array unit frame 306.
- the pixel array unit frame 306 is first set on the base substrate 301, and then the optical film 302, the color filter 303, and the ITO film layer 304 are sequentially prepared from bottom to top.
- the light is reflected, it will still pass through the optical film 302, the color filter 303, and the ITO film layer 304. It can be known from the above experiments that the light transmittance will be improved and the transmittance will be increased.
- FIG. 4 is a schematic structural cross-sectional view of a third embodiment of the disclosed substrate.
- the substrate structure includes a base substrate 401, an optical film 402, a color filter 403, an indium tin oxide thin film ITO film layer 404, main and auxiliary support columns 405, and a pixel array unit frame 406.
- the pixel array unit frame 406 is first arranged on the base substrate 401, and then R, G, and B color resistive pixel layers are prepared between the pixel array unit frames 406, and then sequentially on the color resistive pixel layer
- An optical film 402, a color filter 403, and an ITO film layer 404 with a certain thickness are provided from bottom to top, and finally, a main and auxiliary support column 405 is provided on the ITO film layer 404.
- FIG. 5 is a flowchart of a method for manufacturing a substrate of the present disclosure.
- Step S100 a pixel array unit frame is prepared on the base substrate through the black matrix process
- Step S110 an optical film with a certain thickness of SiO x or SiO x and SiN x structure is prepared on the basis of step S100, and a color filter and an indium tin oxide film are prepared on the optical film,
- step S120 the main and auxiliary supporting columns are prepared on the basis of step S110.
- step S200 between step S100 and step S110, which is prepared on the basis of step S100 RGB color resistive pixel layer.
- step S100 and step S110 can be interchanged. After the interchange, the light transmittance is not affected.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Liquid Crystal (AREA)
Abstract
本揭示涉及一种基板及制备方法,包括衬底基板、像素阵列单元框、自下而上设置的光学膜、彩色滤光片和氧化铟锡薄膜;还提供基板制备方法,在衬底基板上制备出像素阵列单元框,制备出光学膜,并在光学膜上制备彩色滤光片、氧化铟锡薄膜以及主副支撑柱。本揭示的基板提高光的透过率,减小显示器的发热与功耗,节约成本。
Description
本揭示涉及显示技术领域,尤其涉及一种基板及制备方法。
随着显示面板技术的不断发展,各种有机发光二极管(Light Emitting Diode,LED)也越来越多的融入生活之中,应用的领域也更加的广泛。
在传统的液晶显示器行业中,显示器的背光模组由基板、滤光片、偏光片等许多器件组成,在这些组成的器件中,由于薄膜晶体管(Thin Film Transistor,TFT)阵列会对光有一定的阻挡,偏光片和彩色滤光片也会吸收部分光线,使得光线的透过率变小,这些偏光片以及彩色滤光片减小了光线的透过率并且对光的吸收,使得由背光板发出的光有一部分在传输过程中就被损耗掉,统计发现,最终只有大约5%的光能透过显示器,普通的彩色滤光片(Color Filter,CF)基板对光的透过率较低,传统的单层掺锡氧化铟薄膜(Indium Tin Oxide,ITO)对光的透过率也较低,这样,就造成了极大的资源浪费,不利于产品功耗的降低以及使用成本的节约。
现有的显示器中的偏光片及彩色滤光片会吸收大部分光线,使得光线的透过率减小,造成了光线大程度的损耗,进一步增大了产品的功耗。
为解决上述问题,本揭示提供一种基板及制备方法,以解决现有显示装置中背光模组内的CF基板等器件对光的透光率低,光线损耗大的问题。
本揭示提供的技术方案如下:根据本公开实施例的第一方面,提供了一种基板,包括:
衬底基板;
像素阵列单元框,设置在所述衬底基板上;
设置在所述衬底基板上且自下而上依次设置的光学膜、彩色滤光片和氧化铟锡薄膜;
所述像素阵列单元框设置在所述光学膜和所述衬底基板之间。
于一实施例中,所述像素阵列单元框设置在所述氧化铟锡薄膜之上。
于一实施例中,所述基板还包括RGB色阻像素层,所述RGB色阻像素层设置在所述像素阵列单元框与所述光学膜之间。
于一实施例中,所述基板还包括支撑柱。
于一实施例中,所述支撑柱设置在所述氧化铟锡薄膜上。
于一实施例中,所述光学膜由SiN
x和SiO
x构成。
于一实施例中,所述光学膜为SiO
x。
为解决上述问题,本揭示提供一种基板,所述基板包括:
衬底基板;
设置在所述衬底基板上的像素阵列单元框;
设置在所述衬底基板上且自下而上依次设置的光学膜、彩色滤光片和氧化铟锡薄膜。
于一实施例中,所述像素阵列单元框设置在所述光学膜和所述衬底基板之间。
于一实施例中,所述像素阵列单元框设置在所述氧化铟锡薄膜之上。
于一实施例中,还包括RGB色阻像素层,所述RGB色阻像素层设置在所述像素阵列单元框与所述光学膜之间。
于一实施例中,所述基板还包括支撑柱。
于一实施例中,所述支撑柱设置在所述氧化铟锡薄膜上。
于一实施例中,所述光学膜由SiN
x和SiO
x构成。
于一实施例中,所述光学膜为SiO
x。
为解决上述问题,本揭示还提供一种基板的制作方法,包括:
步骤S100,通过黑色矩阵工艺制程,在衬底基板上制备出像素阵列单元框,
步骤S110,在步骤S100基础上制备出一定厚度的SiO
x或者SiO
x和SiN
x结构的光学膜,并在所述光学膜上制备出彩色滤光片和氧化铟锡薄膜,
步骤S120,在步骤S110基础上制备主副支撑柱。
于一实施例中,所述步骤S100与所述步骤S110之间还包括:
步骤S200,在步骤S100的基础上制备出RGB色阻像素层。
于一实施例中,所述步骤S100与所述步骤S110的制备顺序可互换。
综上所述,通过对现有的基板以及CF基板膜层进行改进,在CF基板膜系结构上再增加一定厚度的光学膜,所述光学膜能够提升光的透过率,减小光在背光模组内的损耗,减小显示器的发热情况,使得反射出显示器的光变多,从而减小产品的功耗,节约成本。
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是揭示的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本揭示实施例的基板结构示意图;
图2为本揭示实施例的膜系结构示意图;
图3为本揭示第二种实施例的基板结构的截面示意图;
图4为本揭示第三种实施例的基板结构的截面示意图;
图5为本揭示实施例的基板制备方法流程图。
下面将结合本揭示实施例中的附图,对本揭示实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本揭示一部分实施例,而不是全部的实施例。
在本揭示的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本揭示和简化描述,由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本揭示的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。此外,本揭示提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
如图1所示,图1为本揭示基板的结构示意图。基板结构包括衬底基板101、光学膜102、彩色滤光片103、氧化铟锡(ITO)薄膜层104、主副支撑柱105、像素阵列单元框106。本实施例中,光学膜102、彩色滤光片103和ITO膜层104三者自下而上依次设置在衬底基板101上。像素阵列单元框106以及主副支撑柱105都设置在ITO膜层104上面,主副支撑柱105对支撑柱上面的器件起到了支撑的作用,主副支撑柱105的高低长度不同,这样能够对器件起到二次保护的作用,在像素阵列单元框106上面可以布置色阻像素层。传统的CF基板中只有彩色滤光片103和ITO膜层104,当LED灯发射的光经 过反射到达彩色滤光片103和ITO膜层104时,由于上述两者的透光率低以及对光线的吸收和遮挡,使得透射出的光减少。本揭示提供的光学膜102、彩色滤光片103和ITO膜层104,能够使得光线在透过时光线的损耗减小,透过率提高,从而达到增透的效果。
如图2所示,图2为本揭示的膜系结构示意图。膜系结构包括光学膜202、彩色滤光片203、氧化铟锡薄膜ITO膜层204,其中,光学膜202、彩色滤光片203,ITO膜层204自下而上依次分布。
所述光学膜202可以由SiO
x构成或者由SiN
x和SiO
x一同构成。在本实施例中,以光学膜202增透膜为例,光学膜202分别为SiO
x以及SiN
x+SiO
x,对比组为现有的普通135nm厚度的CF基板。通过对波长在500nm~650nm范围内的可见光的透过率进行测试,得到的实验对比数据如下表1所示:
表1.普通基板与本揭示基板透过率对比
可知当基板在加入了本揭示的光学膜202后,当光的波长在500nm~650nm范围内时,这些光均为可见光,当光透过本揭示的基板时光的透过率都得到了增强,这样,透过显示器屏幕的光也相应的增强,进而提高了设备的性能。
当光学膜为SiO2时,在进行不同厚度的SiO
2膜实验,当SiO
2膜厚
基板的透过率波段整体向长波方向移动,长波的的透过率比短波高;膜厚
基板的透过率波段整体向短波方向移动,并出现波形变形,此时表明透过率出现了周期变化,在SiO
2膜厚范围为:
基板透过率提高的幅度最大。
同时,当光学膜为SiO
2膜层时,本揭示的背光模组基板中光的反射率要比普通背光模组基板中光的反射率高7~9%,光的透过率提高:1.4%~2.31%,并处于稳定的状态。
如图3所示,图3本揭示基板的第二种实施例的结构截面示意图。在图3中,基板结构包括衬底基板301、光学膜302、彩色滤光片303、氧化铟锡薄膜ITO膜层304、主副支撑柱305、像素阵列单元框306。此时,首先将像素阵列单元框306设置在衬底基板301上,然后再自下而上依次制备光学膜302、彩色滤光片303、ITO膜层304。当光线经过反射进来后,依然会穿过光学膜302、彩色滤光片303、ITO膜层304,通过上述实验可知,光的透过率也会得到提高,增透率变高。
如图4所示,图4为本揭示基板的第三种实施例的结构截面示意图。基板结构包括衬底基板401、光学膜402、彩色滤光片403,氧化铟锡薄膜ITO膜层404、主副支撑柱405、像素阵列单元框406。在制备时,首先将像素阵列单元框406布置在衬底基板401上,然后再在像素阵列单元框406之间制备出R、G、B色阻像素层,然后再在色阻像素层上依次自下而上设置一定厚度的光学膜402、彩色滤光片403、ITO膜层404,最后,再在ITO膜层404上设置主副支撑柱 405。这样,不同的光在经过色阻像素层后依然会通过本揭示的膜系,在经过膜系后,光的增透性得到增强,光的透过率也会得到提高。
如图5所示,本揭示还提供了一种基板的制备方法,图5为本揭示基板制备方法流程图。
步骤S100,通过黑色矩阵工艺制程,在衬底基板上制备出像素阵列单元框,
步骤S110,在步骤S100基础上制备出一定厚度的SiO
x或者SiO
x和SiN
x结构的光学膜,并在所述光学膜上制备出彩色滤光片和氧化铟锡薄膜,
步骤S120,在步骤S110基础上制备主副支撑柱。
在上述的制造流程中,由于光的增透性主要是在经过本揭示的光学膜后才得到增强,因此步骤S100与所述步骤S110之间还可以有步骤S200,在步骤S100的基础上制备出RGB色阻像素层。同时,所述步骤S100与所述步骤S110的制备顺序可互换,互换后,并不影响光的增透性。
以上对本揭示实施例所提供的一种基板及基板的制备方法进行了详细介绍,本文中应用了具体个例对本揭示的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本揭示的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本揭示各实施例的技术方案的范围。
Claims (20)
- 一种基板,包括:衬底基板;像素阵列单元框,设置在所述衬底基板上;设置在所述衬底基板上且自下而上依次设置的光学膜、彩色滤光片和氧化铟锡薄膜;所述像素阵列单元框设置在所述光学膜和所述衬底基板之间。
- 根据权利要求1所述的基板,其中所述像素阵列单元框设置在所述氧化铟锡薄膜之上。
- 根据权利要求2述的基板,其中所述基板还包括RGB色阻像素层,所述RGB色阻像素层设置在所述像素阵列单元框与所述光学膜之间。
- 根据权利要求1所述的基板,其中所述基板还包括支撑柱。
- 根据权利要求4所述的基板,其中所述支撑柱设置在所述氧化铟锡薄膜上。
- 根据权利要求1所述的基板,其中所述光学膜由SiN x和SiO x构成。
- 根据权利要求1所述的基板,其中所述光学膜为SiO x。
- 一种基板,包括:衬底基板;设置在所述衬底基板上的像素阵列单元框;设置在所述衬底基板上且自下而上依次设置的光学膜、彩色滤光片和 氧化铟锡薄膜。
- 根据权利要求9所述的基板,其中所述像素阵列单元框设置在所述光学膜和所述衬底基板之间。
- 根据权利要求9所述的基板,其中所述像素阵列单元框设置在所述氧化铟锡薄膜之上。
- 根据权利要求10所述的基板,其中还包括RGB色阻像素层,所述RGB色阻像素层设置在所述像素阵列单元框与所述光学膜之间。
- 根据权利要求9所述的基板,其中所述基板还包括支撑柱。
- 根据权利要求13所述的基板,其中所述支撑柱设置在所述氧化铟锡薄膜上。
- 根据权利要求9所述的基板,其中所述光学膜由SiN x和SiO x构成。
- 根据权利要求9所述的基板,其中所述光学膜为SiO x。
- 一种基板的制作方法,包括:步骤S100,通过黑色矩阵工艺制程,在衬底基板上制备出像素阵列单元框,步骤S110,在步骤S100基础上制备出一定厚度的SiO x或者SiO x和SiN x结构的光学膜,并在所述光学膜上制备出彩色滤光片和氧化铟锡薄膜,步骤S120,在步骤S110基础上制备主副支撑柱。
- 根据权利要求18所述的基板的制作方法,其中所述步骤S100与所述步骤S110之间还包括:步骤S200,在步骤S100的基础上制备出RGB色阻像素层。
- 根据权利要求18所述的基板制作方法,其中所述步骤S100与所述步骤S110的制备顺序可互换。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811510414.3 | 2018-12-11 | ||
CN201811510414.3A CN109656047B (zh) | 2018-12-11 | 2018-12-11 | 一种基板及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020118887A1 true WO2020118887A1 (zh) | 2020-06-18 |
Family
ID=66113786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/074959 WO2020118887A1 (zh) | 2018-12-11 | 2019-02-13 | 基板及制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109656047B (zh) |
WO (1) | WO2020118887A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114822282B (zh) * | 2021-01-29 | 2023-11-28 | 京东方科技集团股份有限公司 | 显示面板、显示装置和制备显示面板的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050140894A1 (en) * | 2003-12-31 | 2005-06-30 | Lg.Philips Lcd Co., Ltd. | Liquid crystal display device and fabricating method thereof |
CN102879948A (zh) * | 2012-09-29 | 2013-01-16 | 京东方科技集团股份有限公司 | 彩膜基板、液晶显示装置及制作方法 |
CN103151468A (zh) * | 2013-03-07 | 2013-06-12 | 深圳市华星光电技术有限公司 | 一种二极管及其制作方法、显示装置 |
CN105223724A (zh) * | 2015-10-08 | 2016-01-06 | 深圳市华星光电技术有限公司 | 量子点液晶显示装置 |
-
2018
- 2018-12-11 CN CN201811510414.3A patent/CN109656047B/zh active Active
-
2019
- 2019-02-13 WO PCT/CN2019/074959 patent/WO2020118887A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050140894A1 (en) * | 2003-12-31 | 2005-06-30 | Lg.Philips Lcd Co., Ltd. | Liquid crystal display device and fabricating method thereof |
CN102879948A (zh) * | 2012-09-29 | 2013-01-16 | 京东方科技集团股份有限公司 | 彩膜基板、液晶显示装置及制作方法 |
CN103151468A (zh) * | 2013-03-07 | 2013-06-12 | 深圳市华星光电技术有限公司 | 一种二极管及其制作方法、显示装置 |
CN105223724A (zh) * | 2015-10-08 | 2016-01-06 | 深圳市华星光电技术有限公司 | 量子点液晶显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109656047A (zh) | 2019-04-19 |
CN109656047B (zh) | 2020-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11029570B2 (en) | Reflective LCD panel by disposing a white sub-pixel unit in the pixel unit and using the while sub-pixel unit in collaboration with the pixel electrode to increase brightness of the pixel unit | |
CN103823319B (zh) | 背光模组及用该背光模组的液晶显示装置 | |
KR101878878B1 (ko) | 디스플레이 장치 | |
US10288929B2 (en) | Display panels and liquid crystal display devices | |
WO2019127756A1 (zh) | 液晶模组以及液晶显示装置 | |
US9772531B2 (en) | Color liquid crystal display panel | |
WO2001033290A1 (fr) | Afficheur a cristaux liquides a reflexion, afficheur a cristaux liquides semi-emetteur et dispositif electronique | |
US20180107061A1 (en) | Reflective liquid crystal display panel | |
US12050336B2 (en) | Display panel and transparent display apparatus | |
US20200081303A1 (en) | Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device | |
JP6195398B2 (ja) | 画素構造 | |
CN107153300A (zh) | 一种tft‑lcd双面液晶显示模组 | |
WO2020133789A1 (zh) | 一种显示面板及其终端器件 | |
US20220107528A1 (en) | Liquid crystal display panel and manufacturing method thereof | |
WO2017101162A1 (zh) | 显示装置、反射式显示面板及其反射单元 | |
WO2016119404A1 (zh) | 显示装置及其制造方法 | |
WO2020118887A1 (zh) | 基板及制备方法 | |
WO2020062489A1 (zh) | 液晶显示模组、液晶显示器及显示设备 | |
WO2016082239A1 (zh) | 彩色滤光基板及液晶显示面板 | |
WO2017020364A1 (zh) | 用于液晶显示器的背光模块 | |
WO2020107537A1 (zh) | 显示面板及其制造方法和显示装置 | |
WO2015078027A1 (zh) | 彩色液晶显示面板 | |
WO2020107504A1 (zh) | 显示面板和显示装置 | |
WO2019085762A1 (zh) | 背光模组及显示装置 | |
WO2017092106A1 (zh) | 显示装置、反射式显示面板及其反射单元 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19894611 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19894611 Country of ref document: EP Kind code of ref document: A1 |