WO2020118798A1 - 一种冷原子团快速陷俘和高频相向抛射的控制方法 - Google Patents

一种冷原子团快速陷俘和高频相向抛射的控制方法 Download PDF

Info

Publication number
WO2020118798A1
WO2020118798A1 PCT/CN2018/125557 CN2018125557W WO2020118798A1 WO 2020118798 A1 WO2020118798 A1 WO 2020118798A1 CN 2018125557 W CN2018125557 W CN 2018125557W WO 2020118798 A1 WO2020118798 A1 WO 2020118798A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
dimensional
atomic
optical trap
dimensional magneto
Prior art date
Application number
PCT/CN2018/125557
Other languages
English (en)
French (fr)
Inventor
陈福胜
毛海岑
程俊
黄晨
王斌
刘康琦
周嘉鹏
Original Assignee
中国船舶重工集团公司第七一七研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国船舶重工集团公司第七一七研究所 filed Critical 中国船舶重工集团公司第七一七研究所
Publication of WO2020118798A1 publication Critical patent/WO2020118798A1/zh
Priority to US17/307,987 priority Critical patent/US11361875B2/en

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/006Manipulation of neutral particles by using radiation pressure, e.g. optical levitation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/26Automatic control of frequency or phase; Synchronisation using energy levels of molecules, atoms, or subatomic particles as a frequency reference
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/55Quantum effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration

Definitions

  • the present application relates to the technical field of cold atom trapping, and in particular, to a method for controlling the rapid trapping of cold atomic clusters and high-frequency opposing ejection.
  • the working process of cold atom interferometer can be divided into four stages: trapping stage, ejection stage, interference stage and interference signal detection stage. Due to the characteristics of the cold atom interferometer, the requirements for light and magnetic field are different in each stage. Therefore, in order to achieve non-interference in each stage, the existing cold atom interferometer is after the ejection of a group of cold atoms. Then trap the next group of cold atoms. Considering that the larger the number of cold atoms participating in the interference, the more obvious the cold atom interference phenomenon and the more accurate the measurement result. Therefore, the time of the trapping phase will be extended as long as possible, so that the measurement accuracy of the interferometer reaches a higher level.
  • the frequency of cold atom cluster ejection can be increased to achieve dead zone-free measurement, that is, when a cold atom cluster ejected first just completes a complete interference loop, the next cold atom cluster ejected next is about to enter the interference loop.
  • the purpose of the present application is to improve the measurement accuracy of the cold atom interferometer and the ejection frequency of the cold atom group, and reduce the possibility that the cold atom interferometer has a measurement dead zone.
  • the technical solution of the present application is to provide a control method for rapid trapping of cold atomic clusters and high-frequency opposing ejection, which is suitable for cold atom interferometers.
  • the cold atom interferometer has two sets of cold atomic mass ejection mechanisms and two sets of cold atomic mass ejection mechanisms Cold atom group ejection is performed relative to each other.
  • Each group of cold atom ejection mechanisms includes: an atomic generator, a two-dimensional magneto-optical trap, and a three-dimensional magneto-optical trap. The two are arranged opposite to each other.
  • the control method includes: using an atomizer to generate an atomic beam, and The atomic beam is sent to the two-dimensional magneto-optical trap, and the atoms in the atomic beam are cooled by the two-dimensional magneto-optical trap, characterized in that the control method further includes: Step 01, a three-component optical device in two three-dimensional magneto-optical traps Three sets of diaphragms are provided on the top, the three sets of diaphragms are used to form a light-shielding area, the first component optical device forms a predetermined angle with the atomic beam path, and its two beam splitters respectively face the trapping area in the atomic beam path, the first The group diaphragm is disposed at the edge of the first component optical device and downstream of the atomic beam path.
  • the first group diaphragm blocks the laser beam split by the first component optical device, and the second component optical device is orthogonal to the first component optical device
  • the second group diaphragm is located at the edge of the second component optical device and downstream of the atomic beam path.
  • the second group diaphragm blocks the laser beam split by the second component optical device.
  • the third component optical device and the second group diaphragm The beam splitter and the third component optical device are arranged orthogonally.
  • the third group diaphragm is arranged at the edge of the third component optical device and downstream of the atomic beam path.
  • the third group diaphragm blocks the laser beam split by the third component optical device , Where the lasers separated by the three-component optical device are irradiated in the form orthogonal to each other, and the intersection area of the three groups of lasers is recorded as the trapping area; Step 02, from the first three-dimensional magneto-optical trap, along the movement trajectory to the second The three-dimensional magneto-optical trap projects cold atomic clusters, wherein the movement trajectory passes through the light-shielding regions of the three-dimensional magneto-optical traps on both sides; Step 03, when it is determined that the cold atomic clusters enter the light-shielding region of the first three-dimensional magneto-optical trap, the first three-dimensional magneto-optical trap is turned on 3D cooling light and 3D back pumping light to capture the next cold radical.
  • step 02 specifically includes: step 02a, when it is determined that the number of cold atoms in the cold atomic group is greater than or equal to the preset number, turning off the current in the magnetic field coil in the three-dimensional magneto-optical trap; Step 02b, adjust the light intensity of the three-dimensional cooling light and the light intensity of the three-dimensional pumping light in the three-dimensional magneto-optical trap according to the movement trajectory; Step 02c, when it is determined that the cold atomic group can move along the movement trajectory, turn off the three-dimensional magneto-optical trap's three-dimensional Cooling light and 3D back pumping light.
  • step 02 specifically includes: ejecting cold atomic clusters from the first three-dimensional magneto-optical trap to the second three-dimensional magneto-optical trap at a preset speed, wherein the cold atomic clusters are ejected at a preset speed At this time, before the three-dimensional cooling light and the three-dimensional pumping light of the second three-dimensional magneto-optical trap are turned off, they enter the trapping area of the second three-dimensional magneto-optical trap.
  • the beneficial effect of the present application is: by setting a diaphragm on the beam splitter of the three-dimensional magneto-optical trap, a shading area is formed in the trapping area, reducing the waiting time for cold radicals flying out of the trapping area, and then determining that the cold radicals enter the shading In the area, the three-dimensional cooling light and the three-dimensional pumping light of the three-dimensional magneto-optical trap are turned on, which increases the ejection frequency of the cold atom interferometer and realizes the dead zone-free measurement of the cold atom interferometer.
  • FIG. 1 is a schematic diagram of a cold atom interferometer according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a two-dimensional magneto-optical trap according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for controlling rapid trapping of cold radicals and high-frequency phase ejection according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a three-dimensional magneto-optical trap according to an embodiment of the present application.
  • FIG. 5 is a control timing diagram of a cold atom interferometer according to an embodiment of the present application.
  • this embodiment provides a control method for rapid trapping of cold atomic clusters and high-frequency opposing ejection, which is suitable for cold atom interferometers.
  • the cold atom interferometer has two sets of cold atomic group ejection mechanisms, and two sets of cold atomic groups The ejection mechanisms perform cold atom group ejection relative to each other.
  • the cold atom interferometer includes: a first two-dimensional magneto-optical trap 1, a second two-dimensional magneto-optical trap 2, a first three-dimensional magneto-optical trap 5, a second three-dimensional magneto-optical trap 6,
  • the first pipe 7, the second pipe 8, the outer shield 10, the inner shield 11 and the interference cavity 12, and the cold radicals ejected by the three-dimensional magneto-optical trap move along the movement trajectory 9 in the interference cavity 12.
  • the control method includes: generating an atomic beam with an atom generator, and sending the atomic beam to a two-dimensional magneto-optical trap, and cooling the atoms in the atomic beam with a two-dimensional magneto-optical trap.
  • the two-dimensional magneto-optical trap is used to provide cold atoms to the three-dimensional magneto-optical trap.
  • the process of the first two-dimensional magneto-optical trap 1 emitting cold atoms to the first three-dimensional magneto-optical trap 5 is shown in Figure 2.
  • the light 201 is irradiated to the two-dimensional magneto-optical trap region 202 along the positive direction of the y-axis, and pushes the cold atoms in the two-dimensional magneto-optical trap region 202 into the first three-dimensional magneto-optical trap along path 3 (the direction of cold atom movement) 5.
  • the cold atom interferometer also includes a laser generator and a multi-component optical device.
  • the laser generator is used to split the laser to the beam splitter, and the beam splitter is used to provide the laser light required by the two-dimensional magneto-optical trap and the three-dimensional magneto-optical trap ( (Such as cooling light, back pumping light).
  • a control method for rapid trapping of cold atomic clusters and high-frequency opposing ejection in this embodiment includes:
  • Step 01 Set three sets of diaphragms on the three-component optical traps in the two three-dimensional magneto-optical traps.
  • the three sets of diaphragms are used to form a light-shielding area.
  • the first set of optical traps forms a predetermined angle with the path of the atomic beam.
  • the beam splitters respectively face the trapping area in the path of the atomic beam.
  • the first set of apertures is located at the edge of the first component optical beam and downstream of the atomic beam path. The first set of apertures splits the laser light emitted by the first component optical beam.
  • the second component optical device is arranged orthogonally to the first component optical device, the second group diaphragm is arranged at the edge of the second component optical device and downstream of the atomic beam path, and the second group diaphragm faces the second component optical device
  • the separated laser is blocked
  • the third component optical device is arranged orthogonally to the second component optical device and the third component optical device, the third group diaphragm is arranged at the edge of the third component optical device, downstream of the atomic beam path,
  • the three sets of apertures block the laser light split by the third-component optical device, wherein the laser lights split by the three-component optical device are irradiated in a form orthogonal to each other, and the intersection area of the three groups of lasers is recorded as the trapping area;
  • a xyz space triangular coordinate system is introduced, and the direction indicated by the dotted arrow in FIG. 4(A) is the direction of the atomic beam path, That is, the atomic beam path is set along the y axis, and at this time, the downstream of the atomic beam path is the positive direction of the y axis.
  • the first component optical device and the second component optical device are arranged on the yz plane, the third component optical device is arranged along the x-axis, and the center of the trapping region 31 is located at the origin of the triangular coordinate system in the xyz space, shading The area 32 is located above the xy plane.
  • the angle between the first component optical device and the negative direction of the y-axis satisfies the preset angle C, where the value range of the predetermined angle C is 10° to 40°, and the second component optical device and the first component optical device are positive Intersection setting, that is, the first component optical device and the second component optical device are perpendicular to the yz plane, the third component optical device is orthogonal to the first component optical device and the second component optical device, and the three-dimensional cooling light emitted by the three component optical device intersects In the trapping region 31 of the first three-dimensional magneto-optical trap 5, in order to increase the emission frequency of the cold atomic group under the premise of ensuring a certain number of cold atoms in the cold atomic group, and realize the dead zone-free measurement of the cold atom interferometer, there are three groups A diaphragm 34 is provided on the beam splitter, wherein the first group diaphragm is disposed above the first group optical splitter, the second group diaphragm is disposed
  • the three-dimensional cooling light and the three-dimensional pumping light of the three-dimensional magneto-optical trap are turned on, thereby reducing the cold radicals flying out
  • the waiting time of 31 in the trapping area turns on the three-dimensional cooling light and the three-dimensional pumping light in the three-dimensional magneto-optical trap in advance, which increases the ejection frequency of the cold atomic group, and ensures the effective trapping area volume of the three-dimensional magneto-optical trap. It is beneficial to increase the number of cold atoms trapped in the cold atom group, and realize the dead zone-free measurement of the cold atom interferometer.
  • the three groups of apertures block the three-component optical device with the same blocking width, and the calculation formula of the blocking width is:
  • L is the occlusion width
  • D1 is the diameter of the collimator head of the beam splitter
  • D2 is the diameter of the cold radical
  • n is a preset coefficient
  • the diameter of the collimator head of the beam splitter 33 is set to D1
  • the diameter of the cold atom group trapped by the three-dimensional magneto-optical trap is D2
  • the calculation formula of the blocking width L is:
  • Step 02 The first three-dimensional magneto-optical trap projects cold clusters along the movement trajectory toward the second three-dimensional magneto-optical trap, wherein the movement trajectory passes through the shading areas of the three-dimensional magneto-optical traps on both sides;
  • This step 02 specifically includes:
  • Step 02a when it is determined that the number of cold atoms in the cold atomic group is greater than or equal to the preset number, the current in the magnetic field coil in the three-dimensional magneto-optical trap is turned off;
  • the adjustment of the two-dimensional magneto-optical trap and the three-dimensional magneto-optical trap in the cold atom interferometer can be divided into four preset time periods: trapping stage t1, magnetic field turn-off stage t2, adjustment stage t3 and the projectile waiting phase t4.
  • step 20 specifically includes:
  • the cold atomic cluster is ejected from the first three-dimensional magneto-optical trap to the second three-dimensional magneto-optical trap at a preset speed, wherein, when the cold atomic cluster is ejected at a preset speed, the three-dimensional cooling light and the three-dimensional pumping light in the second three-dimensional magneto-optical trap Before turning off, enter the trapping area of the second three-dimensional magneto-optical trap.
  • the magneto-optical trap control device is configured to turn off the magnetic field coil of the three-dimensional magneto-optical trap when it is determined that the number of cold atoms is greater than or equal to the preset number.
  • the magneto-optical trap control device puts both the two-dimensional magneto-optical trap and the three-dimensional magneto-optical trap into working state.
  • the two-dimensional magneto-optical trap emits cooled atoms to the three-dimensional magneto-optical trap, and the cold atoms are trapped by the three-dimensional magneto-optical trap.
  • Cold atom cluster A is formed, and during the cold atom interference operation, the cold atom interferometer ejects the cold atom cluster from the first three-dimensional magneto-optical trap 5 to the second three-dimensional magneto-optical trap 6 at a preset speed, so that after the cold atom cluster is ejected, In the trapping stage t1, the trapping area of the second three-dimensional magneto-optical trap 6 is entered, that is, the first three-dimensional magneto-optical trap 5 can also receive the cold radicals B emitted by the second three-dimensional magneto-optical trap 6.
  • the first three-dimensional magneto-optical trap 5 also recaptures the cold atomic group B, fusing the cold atomic group A and the cold atomic group B to form a cold atomic group C.
  • the value of the trapping stage t1 is usually determined by the number of atoms in the cold radical C.
  • the cold atom interferometer turns off the current in the anti-Helmholtz magnetic field coil (magnetic field coil) in the three-dimensional magneto-optical trap, so that the magnetic field in the three-dimensional magneto-optical trap gradually decreases .
  • the magnetic field binding force of the atoms in the cold atomic group C gradually decreases, and the cold atomic group C will diffuse, and due to the collision between the atoms, the cold atomic group C will heat up. Therefore, the smaller the value of the magnetic field off phase t2, the more it is good.
  • the two-dimensional magneto-optical trap After turning off the magnetic field generated by the anti-Helmholtz magnetic field coil, the two-dimensional magneto-optical trap is switched from the working state to the dormant state, and the two-dimensional cooling light, the two-dimensional pumping light and the two-dimensional in the two-dimensional magneto-optical trap are turned off. ⁇ 201.
  • Step 02b Adjust the light intensity of the three-dimensional cooling light and the light intensity of the three-dimensional pump light according to the movement trajectory;
  • the adjustment stage t3 when it is determined that the magnetic field generated by the magnetic field coil is zero, the light intensity of the three-dimensional cooling light and the three-dimensional pumping light in the three-dimensional magneto-optical trap is gradually reduced according to a preset ratio, and the two-dimensional magneto-optical light is reduced.
  • the trap transitions to the sleep state.
  • the cold atom interferometer gradually reduces the light intensity of the three-dimensional cooling light and the three-dimensional pumping light in the three-dimensional magneto-optical trap, so that the cold atomic group C can obtain a certain moving speed, and the cold atomic group C can enter the light during the ejection waiting period t4 according to the moving speed
  • the light shielding area 32 formed by the stop 34 flies into the first pipe 7 or the second pipe 8 according to the movement trajectory 9, wherein the preset ratio may be one of a polyline function, a proportionally decreasing function or a linear function.
  • Step 02c when it is determined that the cold atomic group can move along the movement trajectory, the three-dimensional cooling light and the three-dimensional pumping light of the three-dimensional magneto-optical trap are turned off.
  • the three-dimensional magneto-optical trap enters the ejection waiting phase t4, and the cold atom interferometer is also configured to turn off the three-dimensional cooling when it is determined that the cold atomic cluster can move along the trajectory 9 Light and three-dimensional pumping light, turn on the magnetic field coil.
  • v is the speed obtained by the cold radical C in the adjustment stage t3.
  • Step 03 when it is determined that the cold atomic group enters the shading area of the first three-dimensional magneto-optical trap, the three-dimensional cooling light and the three-dimensional pump-back light in the first three-dimensional magneto-optical trap are turned on to capture the next cold atomic group.
  • the three-dimensional cooling light and the three-dimensional pump-back light in the first three-dimensional magneto-optical trap 5 are turned on. , So that the first three-dimensional magneto-optical trap 5 enters the trapping cycle of the next cold atomic group and increases the ejection frequency of the cold atomic group.
  • the diaphragm 34 By setting the diaphragm 34 in the three-dimensional magneto-optical trap, when it is determined that the cold radical C enters the shading region 32 of the trapping region 31 without leaving the trapping region 31, the three-dimensional cooling light and the three-dimensional pumping light of the three-dimensional magneto-optical trap are turned on.
  • the cold atom and the cold atomic group B can be brought into the trapping state in advance, and the duration of the projectile waiting period t4 is reduced, that is, the waiting time of the cold atomic group 31 flying out of the trapping region is reduced, and the ejection frequency of the cold atomic group C is increased to achieve
  • the dead zone measurement of the cold atomic interferometer is introduced. At the same time, it can also improve the fault tolerance of the cold atom interferometer timing control.
  • control method further includes: Step 04, adjusting the specifications of the interference cavity according to the ejection time of the cold atomic group from the first light-shielding region to the second light-shielding region.
  • the preset multiple m is a positive integer
  • S is the displacement (movement trajectory 9) of the cold radical C during the ejection process
  • v is the velocity of the cold radical C
  • f(S, v) is the calculation formula of the ejection time t p .
  • the cold atom interferometer in this application By applying the cold atom interferometer in this application to a navigation gyro, on the premise of ensuring the accuracy of the navigation gyro, that is, the number of cold atoms in the interfering cold atomic cluster meets a certain number, the ejection frequency of the cold atomic cluster is increased, and the The cold-atom interferometer's dead-zone-free measurement is conducive to the navigation gyro's non-measurement operation in the empty window period.
  • the present application proposes a control method for rapid trapping of cold atomic clusters and high-frequency opposing ejection, which is suitable for cold atom interferometers.
  • the cold atom interferometer has two sets of cold atomic group ejections Mechanism, two groups of cold atom projectiles perform cold atom group ejection relative to each other, each group of cold atom projectiles includes: an atom generator, a two-dimensional magneto-optical trap, and a three-dimensional magneto-optical trap. The two are arranged opposite each other, and the control method includes: using atoms
  • the generator generates an atomic beam and sends the atomic beam to a two-dimensional magneto-optical trap.
  • the two-dimensional magneto-optical trap is used to cool the atoms in the atomic beam.
  • the method is characterized in that the control method further includes: Step 01. Three groups of diaphragms are set on the three-component optical device in the optical trap, and the three groups of diaphragms are used to form a light-shielding area.
  • the first component optical device and the atomic beam path form a predetermined angle, and the two beam splitters respectively face the atomic beam path In the trapping area, the first set of diaphragms is located at the edge of the first component optical device and downstream of the atomic beam path.
  • the first set of diaphragms shields the laser light emitted by the first component optical device, and the second component optical device It is arranged orthogonally to the first component optical device.
  • the second set of diaphragms is set at the edge of the second component optical device and downstream of the atomic beam path.
  • the second group of diaphragms blocks the laser beam split by the second component optical device.
  • the three-component optical device is arranged orthogonally to the second-component optical device and the third-component optical device, the third group of diaphragms is arranged at the edge of the third component optical device, downstream of the atomic beam path, and the third group of diaphragms faces the third group
  • the laser beam split by the beam splitter is blocked, wherein the laser beams split by the three-component beam splitter are irradiated in the form orthogonal to each other, and the intersection area of the three sets of laser beams is recorded as the trapping area;
  • Step 02 the first three-dimensional magneto-optical A trap, projecting cold atomic clusters along the movement trajectory toward the second three-dimensional magneto-optical trap, wherein the movement trajectory passes through the shading areas of the three-dimensional magneto-optical traps on both sides;
  • step 03 when it is determined that the cold radicals enter the shading area of the first three-dimensional magneto-optical trap, Turn on the three-dimensional cooling light and the three-dimensional pumping
  • the units in the device of the present application can be merged, divided and deleted according to actual needs.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种冷原子团快速陷俘和高频相向抛射的控制方法,该控制方法包括:步骤01,在三维磁光阱中的三组分光器(33)上设置三组光阑(34),三组光阑(34)用于形成遮光区域(32);步骤02,由第一三维磁光阱(5)沿运动轨迹向第二三维磁光阱(6)抛射冷原子团,其中,运动轨迹通过两侧三维磁光阱的遮光区域(32);步骤03,当判定冷原子团进入第一三维磁光阱(5)的遮光区域(32)时,开启第一三维磁光阱(5)中的三维冷却光和三维回泵光以俘获下一冷原子团。

Description

一种冷原子团快速陷俘和高频相向抛射的控制方法
相关申请
本申请主张于2018年12月12日提交的、名称为“一种冷原子团快速陷俘和高频相向抛射的控制方法”的中国发明专利申请:2018115203204的优先权。
技术领域
本申请涉及冷原子陷俘的技术领域,具体而言,涉及一种冷原子团快速陷俘和高频相向抛射的控制方法。
背景技术
由于在超冷状态下原子的波动性逐渐显现,因此通过将原子制备在超冷状态下使原子物质波产生干涉,进而对原子物质波在抛射路径之中所携带的物理信息进行测量,随着冷原子技术的发展,冷原子干涉仪已经被用来对物理常数、重力加速度、重力梯度、旋转等物理量进行高精度测量。
冷原子干涉仪的工作流程可以分为四个阶段:陷俘阶段,抛射阶段,干涉阶段和干涉信号的探测阶段。由于冷原子干涉仪的特性,在各个阶段对光和磁场的需求均不相同,因此,为了实现各个阶段互不干扰,现有的冷原子干涉仪都是在完成一团冷原子的抛射之后,再进行下一团冷原子的陷俘。考虑到参与干涉的冷原子数量越多,冷原子干涉现象越明显,测量结果也就越精确,因此,会尽量延长陷俘阶段的时间,使干涉仪的测量精度达到较高水准。
而现有技术中,结合冷原子干涉仪的检测效率和检测精度,导致冷 原子干涉仪在运行时间段内,一团冷原子完成干涉阶段后,下一团冷原子仍处于陷俘阶段或抛射阶段,这个时间段称为测量死区。理论上可以通过提高冷原子团抛射频率以实现无死区测量,即一个先抛射出来的冷原子团刚完成一个完整的干涉环路时,下一团随后抛射出的冷原子团正要进入干涉环路,但是,此时抛射的冷原子团中原子数量较少,无法提供足够的测量信息,导致冷原子干涉仪的测量精度偏低,同时,考虑到冷原子干涉仪的结构限制,因此,无法通过单纯地提高冷原子团的抛射频率,来实现冷原子干涉仪的无死区测量。
发明内容
本申请的目的在于:提高了冷原子干涉仪的测量精度和冷原子团的抛射频率,降低了冷原子干涉仪存在测量死区的可能性。
本申请的技术方案是:提供了一种冷原子团快速陷俘和高频相向抛射的控制方法,适用于冷原子干涉仪,冷原子干涉仪具有两组冷原子团抛射机构,两组冷原子团抛射机构彼此相对进行冷原子团抛射,每组冷原子抛射机构包括:原子发生器、二维磁光阱以及三维磁光阱,二者彼此相对设置,控制方法包括:利用原子发生器生成原子束,并将原子束发送至二维磁光阱,利用二维磁光阱对原子束中的原子进行冷却,其特征在于,控制方法还包括:步骤01,在两个三维磁光阱中的三组分光器上设置三组光阑,三组光阑用于形成遮光区域,第一组分光器与原子束路径成预定夹角,其两个分光器分别对向原子束路径中的陷俘区域,第一组光阑设置于第一组分光器的边缘、原子束路径的下游,第一组光阑对第一组分光器所分出激光进行遮挡,第二组分光器与第一组分光器正交设置,第二组光阑设置于第二组分光器的边缘、原子束路径的下游,第二组光阑对第二组分光器所分出激光进行遮挡,第三组分光器与第二组分光器和第三组分光器正交设置,第三组光阑设置于第三组分光器的边缘、原子束路径的下游,第三组光阑对第三组分光器所分出激光进行 遮挡,其中,三组分光器分出的激光以彼此正交的形式进行照射,将三组激光的相交区域记作陷俘区域;步骤02,由第一三维磁光阱,沿运动轨迹向第二三维磁光阱抛射冷原子团,其中,运动轨迹通过两侧三维磁光阱的遮光区域;步骤03,当判定冷原子团进入第一三维磁光阱的遮光区域时,开启第一三维磁光阱中的三维冷却光和三维回泵光以俘获下一冷原子团。
上述任一项技术方案中,进一步地,步骤02,具体包括:步骤02a,当判定冷原子团中的冷原子数量大于或等于预设数量时,关断三维磁光阱中磁场线圈中的电流;步骤02b,根据运动轨迹,调整三维磁光阱中三维冷却光的光照强度和三维回泵光的光照强度;步骤02c,当判定冷原子团能够沿运动轨迹运动时,关断三维磁光阱的三维冷却光和三维回泵光。
上述任一项技术方案中,进一步地,步骤02,具体还包括:以预设速度由第一三维磁光阱向第二三维磁光阱抛射冷原子团,其中,冷原子团以预设速度被抛射时,在第二三维磁光阱的三维冷却光和三维回泵光关断前,进入第二三维磁光阱的陷俘区域。
本申请的有益效果是:通过在三维磁光阱的分光器上设置光阑,在陷俘区域中形成遮光区域,减少了冷原子团飞出陷俘区域的等待时间,再通过判定冷原子团进入遮光区域时,开启三维磁光阱的三维冷却光和三维回泵光,提高了冷原子干涉仪的抛射频率,实现了冷原子干涉仪的无死区测量。
附图说明
本申请的上述和/或附加方面的优点在结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请的一个实施例的冷原子干涉仪的示意图;
图2是根据本申请的一个实施例的二维磁光阱的示意图;
图3是根据本申请的一个实施例的一种冷原子团快速陷俘和高频相向抛射的控制方法的示意流程图;
图4是根据本申请的一个实施例的三维磁光阱的示意图;
图5是根据本申请的一个实施例的冷原子干涉仪的控制时序图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互结合。
在下面的描述中,阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
如图1所示,本实施例提供了一种冷原子团快速陷俘和高频相向抛射的控制方法,适用于冷原子干涉仪,冷原子干涉仪具有两组冷原子团抛射机构,两组冷原子团抛射机构彼此相对进行冷原子团抛射,该冷原子干涉仪包括:第一二维磁光阱1,第二二维磁光阱2,第一三维磁光阱5,第二三维磁光阱6,第一管道7,第二管道8,外层屏蔽罩10,内层屏蔽罩11和干涉腔12,三维磁光阱抛射的冷原子团在干涉腔12内沿着运动轨迹9运动。
控制方法包括:利用原子发生器生成原子束,并将原子束发送至二维磁光阱,利用二维磁光阱对原子束中的原子进行冷却。
二维磁光阱用于向三维磁光阱提供冷原子,其中,第一二维磁光阱1向第一三维磁光阱5发射冷原子的过程,如图2所示,二维推载光201沿y轴正方向,向二维磁光阱陷俘区域202照射,推动二维磁光阱陷俘区域202中的冷原子沿路径3(冷原子运动方向)进入第一三维磁光阱5。相应的,第二二维磁光阱2陷俘的冷原子沿路径4(冷原子运动方向)进入第二三维磁光阱6。冷原子干涉仪还包括一个激光发生器和多组分光器,激光发生器用于向分光器分出激光,由分光器进行分光,以提供二维磁光阱和三维磁光阱所需的激光(如冷却光、回泵光)。
如图3所示,本实施例一种冷原子团快速陷俘和高频相向抛射的控制方法,包括:
步骤01,在两个三维磁光阱中的三组分光器上设置三组光阑,三组光阑用于形成遮光区域,第一组分光器与原子束路径成预定夹角,其两个分光器分别对向原子束路径中的陷俘区域,第一组光阑设置于第一组分光器的边缘、原子束路径的下游,第一组光阑对第一组分光器所分出激光进行遮挡,第二组分光器与第一组分光器正交设置,第二组光阑设置于第二组分光器的边缘、原子束路径的下游,第二组光阑对第二组分光器所分出激光进行遮挡,第三组分光器与第二组分光器和第三组分光器正交设置,第三组光阑设置于第三组分光器的边缘、原子束路径的下游,第三组光阑对第三组分光器所分出激光进行遮挡,其中,三组分光器分出的激光以彼此正交的形式进行照射,将三组激光的相交区域记作陷俘区域;
具体地,以冷原子干涉仪中第一三维磁光阱5为例,如图4所示,引入xyz空间三角坐标系,图4(A)中虚线箭头所指方向为原子束路径的方向,即原子束路径沿y轴设置,此时,原子束路径的下游为y轴正方向。第一三维磁光阱5中第一组分光器和第二组分光器设置在yz平面,第三组分光器沿x轴设置,陷俘区域31的中心位于xyz空间三角坐标系的原点,遮光区域32位于xy平面的上方。第一组分光器与y轴负方向之间的夹角满足预设角度C,其中,预设角度C的取值范围为10°至40°,第二组分光器与第一组分光器正交设置,即第一组分光器与第二组分光器在yz平面垂直,第三组分光器与第一组分光器和第二组分光器正交,三组分光器发出的三维冷却光相交于第一三维磁光阱5的陷俘区域31,为了在保证冷原子团中冷原子数量一定的前提下,提高冷原子团的发射频率,实现冷原子干涉仪的无死区测量,分别在三组分光器上设置光阑34,其中,第一组光阑设置在第一组分光器的上方,第二组光阑设置在第二组分光器的下方,第三组光阑设置在第三组分光器的右侧,即三组光阑位于原子束路径的下游(靠近y轴正方向)。通过设置光阑34, 对分光器分出的冷却光进行遮挡,以便于在陷俘区域31中形成遮光区域32。
通过设置遮光区域32,在判定冷原子团进入陷俘区域31的遮光区域32而未离开陷俘区域31时,开启三维磁光阱的三维冷却光和三维回泵光,减小了冷原子团飞出陷俘区域的31的等待时间,提前开启三维磁光阱中的三维冷却光和三维回泵光,提高了冷原子团的抛射频率,并且,保证了三维磁光阱的有效陷俘区域体积,有利于提高冷原子团中陷俘的冷原子的数量,实现冷原子干涉仪的无死区测量。
进一步地,三组光阑遮挡三组分光器的遮挡宽度相同,遮挡宽度的计算公式为:
Figure PCTCN2018125557-appb-000001
其中,L为遮挡宽度,D1为分光器的准直头直径,D2为冷原子团直径,n为预设系数。
具体地,如图4(B)所示,设定分光器33的准直头直径为D1,三维磁光阱陷俘的冷原子团的冷原子团直径为D2,遮挡宽度L的计算公式为:
Figure PCTCN2018125557-appb-000002
其中,预设系数n一般为4,为了保证三维陷俘区域31的体积,对遮挡宽度L的计算结果进行向下取整,例如,设定准直头直径D1=22μm,冷原子团直径为D2=4.5μm,则计算出的遮挡宽度L=4μm。
步骤02,由第一三维磁光阱,沿运动轨迹向第二三维磁光阱抛射冷原子团,其中,运动轨迹通过两侧三维磁光阱的遮光区域;
该步骤02中具体包括:
步骤02a,当判定冷原子团中的冷原子数量大于或等于预设数量时,关断三维磁光阱中磁场线圈中的电流;
具体地,如图5所示,冷原子干涉仪中对二维磁光阱和三维磁光阱的调节可以分为四个预设时间段:陷俘阶段t1,磁场关断阶段t2,调整阶段t3以及抛射等待阶段t4。
进一步地,该步骤20中具体还包括:
以预设速度由第一三维磁光阱向第二三维磁光阱抛射冷原子团,其中,冷原子团以预设速度被抛射时,在第二三维磁光阱的三维冷却光和三维回泵光关断前,进入第二三维磁光阱的陷俘区域。
在陷俘阶段t1中,磁光阱控制装置被配置为,当判定冷原子数目大于或等于预设数目时,关断三维磁光阱的磁场线圈。磁光阱控制装置将二维磁光阱和三维磁光阱均置于工作状态,二维磁光阱将冷却的原子发射至三维磁光阱,由三维磁光阱对冷原子进行陷俘,形成冷原子团A,且冷原子干涉运行过程中,冷原子干涉仪以预设速度,由第一三维磁光阱5向第二三维磁光阱6抛射冷原子团,使得冷原子团被抛射后,能够在陷俘阶段t1内,进入第二三维磁光阱6的陷俘区域,即第一三维磁光阱5还能够接收到第二三维磁光阱6发射的冷原子团B,因此,在陷俘阶段t1,第一三维磁光阱5还对冷原子团B进行再陷俘,将冷原子团A和冷原子团B进行融合,形成冷原子团C。陷俘阶段t1的取值通常是由冷原子团C中的原子数量决定的。
在磁场关断阶段t2,形成冷原子团C后,冷原子干涉仪关断三维磁光阱中的反亥姆霍兹磁场线圈(磁场线圈)中的电流,使得三维磁光阱中的磁场逐渐降低,冷原子团C中的原子受到的磁场束缚力逐渐减小,冷原子团C会发生扩散,并且由于原子间发生碰撞,会导致冷原子团C升温,因此,磁场关断阶段t2的取值越小越好。关断反亥姆霍兹磁场线圈产生的磁场后,将二维磁光阱由工作状态切换至休眠状态,关断二维磁光阱中的二维冷却光、二维回泵光和二维推载光201。
步骤02b,根据运动轨迹,调整三维磁光阱中三维冷却光的光照强度和三维回泵光的光照强度;
具体地,在调整阶段t3,当判定磁场线圈产生的磁场为零时,按照预设比例,逐渐减小三维磁光阱中三维冷却光和三维回泵光的光照强度,且将二维磁光阱转换为休眠状态。冷原子干涉仪逐渐降低三维磁光阱中的三维冷却光和三维回泵光的光强,使得冷原子团C能够获得一定的移 动速度,冷原子团C按照该移动速度能够在抛射等待阶段t4进入光阑34形成的遮光区域32,按照运动轨迹9飞入第一管道7或第二管道8,其中,预设比例可以为折线函数、等比例递减函数或一次函数中的一种。
步骤02c,当判定冷原子团能够沿运动轨迹运动时,关断三维磁光阱的三维冷却光和三维回泵光。
具体地,当判定冷原子团能够沿运动轨迹9运动时,三维磁光阱进入抛射等待阶段t4,冷原子干涉仪还被配置为,当判定冷原子团能够沿运动轨迹9运动时,关断三维冷却光和三维回泵光,开启磁场线圈。
其中,调整阶段t3以及抛射等待阶段t4满足的计算公式为:
v×(t 2+t 4)=D1-L,
式中,v为冷原子团C在调整阶段t3内获得的速度。
步骤03,当判定冷原子团进入第一三维磁光阱的遮光区域时,开启第一三维磁光阱中的三维冷却光和三维回泵光以俘获下一冷原子团。
具体地,当经过抛射等待阶段t4,判定冷原子团C沿运动轨迹9进入第一三维磁光阱5的遮光区域32时,开启第一三维磁光阱5中的三维冷却光和三维回泵光,以便于第一三维磁光阱5进入下一冷原子团的陷俘循环,提高冷原子团的抛射频率。
通过在三维磁光阱中设置光阑34,在判定冷原子团C进入陷俘区域31的遮光区域32而未离开陷俘区域31时,开启三维磁光阱的三维冷却光和三维回泵光,能够提前让冷原子和冷原子团B进入陷俘状态,减小抛射等待阶段t4的时长,即减小了冷原子团飞出陷俘区域的31的等待时间,提高了冷原子团C的抛射频率,实现了冷原子干涉仪的无死区测量。同时,也能够提高冷原子干涉仪时序控制的容错性。
更进一步地,该控制方法还包括:步骤04,根据冷原子团从第一遮光区域到第二遮光区域的抛射时间,调整干涉腔的规格。
具体地,为了保证冷原子团C由第一三维磁光阱5,沿运动轨迹9到达第二三维磁光阱6的抛射时间t p处于陷俘阶段t1内,以便于完成冷原子干涉仪的结构设计。抛射时间t p应满足的关系式为:
Figure PCTCN2018125557-appb-000003
式中,预设倍数m为正整数,S为冷原子团C抛射过程中的位移(运动轨迹9),v为冷原子团C的速度,f(S,v)为抛射时间t p的计算公式。
通过将本申请中的冷原子干涉仪应用于导航陀螺中,在保证导航陀螺精度的前提下,即进行干涉的冷原子团中冷原子的数量满足一定数量,提高了冷原子团的抛射频率,实现了冷原子干涉仪的无死区测量,有利于导航陀螺实现无测量空窗期运行。
以上结合附图详细说明了本申请的技术方案,本申请提出了一种冷原子团快速陷俘和高频相向抛射的控制方法,适用于冷原子干涉仪,冷原子干涉仪具有两组冷原子团抛射机构,两组冷原子团抛射机构彼此相对进行冷原子团抛射,每组冷原子抛射机构包括:原子发生器、二维磁光阱以及三维磁光阱,二者彼此相对设置,控制方法包括:利用原子发生器生成原子束,并将原子束发送至二维磁光阱,利用二维磁光阱对原子束中的原子进行冷却,其特征在于,控制方法还包括:步骤01,在两个三维磁光阱中的三组分光器上设置三组光阑,三组光阑用于形成遮光区域,第一组分光器与原子束路径成预定夹角,其两个分光器分别对向原子束路径中的陷俘区域,第一组光阑设置于第一组分光器的边缘、原子束路径的下游,第一组光阑对第一组分光器所分出激光进行遮挡,第二组分光器与第一组分光器正交设置,第二组光阑设置于第二组分光器的边缘、原子束路径的下游,第二组光阑对第二组分光器所分出激光进行遮挡,第三组分光器与第二组分光器和第三组分光器正交设置,第三组光阑设置于第三组分光器的边缘、原子束路径的下游,第三组光阑对第三组分光器所分出激光进行遮挡,其中,三组分光器分出的激光以彼此正交的形式进行照射,将三组激光的相交区域记作陷俘区域;步骤02,由第一三维磁光阱,沿运动轨迹向第二三维磁光阱抛射冷原子团,其中,运动轨迹通过两侧三维磁光阱的遮光区域;步骤03,当判定冷原子团进 入第一三维磁光阱的遮光区域时,开启第一三维磁光阱中的三维冷却光和三维回泵光以俘获下一冷原子团。通过本申请中的技术方案,有利于减小等待冷原子团飞出陷俘区域的时间,提高了冷原子团的抛射频率和冷原子干涉仪的测量精度,实现了冷原子干涉仪测量过程中的无死区测量。
本领域技术人员应该能够理解,如果冷原子干涉仪存在测量死区,但该测量死区能够忽略不计,仍属于本申请中提及的无死区测量。
本申请中的步骤可根据实际需求进行顺序调整、合并和删减。
本申请装置中的单元可根据实际需求进行合并、划分和删减。
尽管参考附图详地公开了本申请,但应理解的是,这些描述仅仅是示例性的,并非用来限制本申请的应用。本申请的保护范围由附加权利要求限定,并可包括在不脱离本申请保护范围和精神的情况下针对发明所作的各种变型、改型及等效方案。

Claims (3)

  1. 一种冷原子团快速陷俘和高频相向抛射的控制方法,适用于冷原子干涉仪,所述冷原子干涉仪具有两组冷原子团抛射机构,两组所述冷原子团抛射机构彼此相对进行冷原子团抛射,每组所述冷原子抛射机构包括:原子发生器、二维磁光阱以及三维磁光阱,二者彼此相对设置,所述控制方法包括:利用所述原子发生器生成原子束,并将所述原子束发送至所述二维磁光阱,利用所述二维磁光阱对所述原子束中的原子进行冷却,其特征在于,所述控制方法还包括:
    步骤01,在两个三维磁光阱中的三组分光器上设置三组光阑,所述三组光阑用于形成遮光区域,
    第一组分光器与所述原子束路径成预定夹角,其两个分光器分别对向所述原子束路径中的陷俘区域,第一组光阑设置于所述第一组分光器的边缘、所述原子束路径的下游,所述第一组光阑对所述第一组分光器所分出激光进行遮挡,
    第二组分光器与所述第一组分光器正交设置,第二组光阑设置于所述第二组分光器的边缘、所述原子束路径的下游,所述第二组光阑对所述第二组分光器所分出激光进行遮挡,
    第三组分光器与所述第二组分光器和所述第三组分光器正交设置,第三组光阑设置于所述第三组分光器的边缘、所述原子束路径的下游,所述第三组光阑对所述第三组分光器所分出激光进行遮挡,
    其中,三组所述分光器分出的激光以彼此正交的形式进行照射,将三组所述激光的相交区域记作所述陷俘区域;
    步骤02,由第一三维磁光阱,沿运动轨迹向第二三维磁光阱抛射冷原子团,其中,所述运动轨迹通过两侧所述三维磁光阱的所述遮光区域;
    步骤03,当判定所述冷原子团进入所述第一三维磁光阱的所述遮光区域时,开启所述第一三维磁光阱中的三维冷却光和三维回泵光以俘获下一冷原子团。
  2. 如权利要求1所述的冷原子团快速陷俘和高频相向抛射的控制方法,其特征在于,所述步骤02,具体包括:
    步骤02a,当判定所述冷原子团中的冷原子数量大于或等于预设数量时,关断所述三维磁光阱中磁场线圈中的电流;
    步骤02b,根据所述运动轨迹,调整所述三维磁光阱中所述三维冷却光的光照强度和所述三维回泵光的光照强度;
    步骤02c,当判定所述冷原子团能够沿所述运动轨迹运动时,关断所述三维磁光阱的所述三维冷却光和所述三维回泵光。
  3. 如权利要求1所述的冷原子团快速陷俘和高频相向抛射的控制方法,其特征在于,所述步骤02,具体还包括:
    以预设速度由第一三维磁光阱向第二三维磁光阱抛射所述冷原子团,其中,所述冷原子团以所述预设速度被抛射时,在所述第二三维磁光阱的所述三维冷却光和所述三维回泵光关断前,进入所述第二三维磁光阱的所述陷俘区域。
PCT/CN2018/125557 2018-12-12 2018-12-29 一种冷原子团快速陷俘和高频相向抛射的控制方法 WO2020118798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/307,987 US11361875B2 (en) 2018-12-12 2021-05-04 Control method for fast trapping and high-frequency mutual ejection of cold atom groups

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811520320.4 2018-12-12
CN201811520320.4A CN109708674B (zh) 2018-12-12 2018-12-12 一种冷原子团快速陷俘和高频相向抛射的控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/307,987 Continuation US11361875B2 (en) 2018-12-12 2021-05-04 Control method for fast trapping and high-frequency mutual ejection of cold atom groups

Publications (1)

Publication Number Publication Date
WO2020118798A1 true WO2020118798A1 (zh) 2020-06-18

Family

ID=66256502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125557 WO2020118798A1 (zh) 2018-12-12 2018-12-29 一种冷原子团快速陷俘和高频相向抛射的控制方法

Country Status (3)

Country Link
US (1) US11361875B2 (zh)
CN (1) CN109708674B (zh)
WO (1) WO2020118798A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808774A (zh) * 2021-08-02 2021-12-17 西南科技大学 基于磁光阱的相干电子源获取装置
CN114153134A (zh) * 2021-11-10 2022-03-08 中国科学院上海光学精密机械研究所 基于原子输运的小型空间冷原子钟的装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108302B (zh) * 2019-05-21 2023-01-17 华中光电技术研究所(中国船舶重工集团有限公司第七一七研究所) 一种提高原子团对抛精度的方法
CN111045071B (zh) * 2020-01-03 2022-10-28 中国船舶重工集团公司第七0七研究所 一种基于多维平衡探测技术的冷原子多参数测量装置
CN114414540B (zh) * 2021-12-09 2023-10-13 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) 一种冷原子团荧光信号相干探测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105066983A (zh) * 2015-08-07 2015-11-18 中国船舶重工集团公司第七一七研究所 原子团冷却温度、飞行速度及运动轨迹的探测方法及装置
CN105066991A (zh) * 2015-08-07 2015-11-18 中国船舶重工集团公司第七一七研究所 基于冷原子干涉原理的惯性测量设备
CN105674982A (zh) * 2014-11-17 2016-06-15 中国航空工业第六八研究所 一种六参数量子惯性传感器及其测量方法
US20170219852A1 (en) * 2016-02-02 2017-08-03 Seiko Epson Corporation Quantum interference device, atomic oscillator, electronic apparatus, and moving object
CN108279441A (zh) * 2017-12-25 2018-07-13 中国科学技术大学 一种适用于小型化原子干涉仪的真空结构
CN108333909A (zh) * 2018-02-05 2018-07-27 中国科学院上海光学精密机械研究所 冷原子全光选态装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102969038B (zh) * 2011-08-29 2016-02-24 香港科技大学 用于中性原子的二维磁光阱
US9134450B2 (en) * 2013-01-07 2015-09-15 Muquans Cold atom gravity gradiometer
US9086429B1 (en) * 2013-05-29 2015-07-21 Sandia Corporation High data rate atom interferometric device
CN103472495B (zh) * 2013-09-22 2016-01-20 中国科学院武汉物理与数学研究所 基于原子干涉效应的垂向重力梯度测量传感器
CN103700417B (zh) * 2013-12-20 2015-12-09 北京航天时代光电科技有限公司 一种二维磁光阱系统
US9897448B2 (en) * 2014-10-31 2018-02-20 The Charles Stark Draper Laboratory, Inc. Systems and methods for multiple species atom interferometry
CN106842347B (zh) * 2016-12-26 2018-09-04 华中科技大学 一种阵列式原子干涉重力梯度张量全分量的测量系统
FR3063141B1 (fr) 2017-02-23 2021-02-12 Ixblue Systeme et procede hybride de mesure inertielle base sur un interferometre a atomes froids et a impulsions lumineuses
CN106959473B (zh) * 2017-03-06 2019-02-19 浙江工业大学 一种可移动冷原子绝对重力加速度传感器
WO2019040817A2 (en) 2017-08-24 2019-02-28 The Charles Stark Draper Laboratory, Inc. COLD ATOM INTERFEROMETRY
CN108592783B (zh) * 2018-06-29 2024-03-19 中国科学院武汉物理与数学研究所 用于原子干涉仪的集成光学系统
US11221268B2 (en) * 2018-07-23 2022-01-11 The University of British Coumbia Quantum pressure standard and methods for determining and using same
CN109631751B (zh) * 2018-12-12 2021-05-14 中国船舶重工集团公司第七一七研究所 一种高频率输出的无死区冷原子干涉仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105674982A (zh) * 2014-11-17 2016-06-15 中国航空工业第六八研究所 一种六参数量子惯性传感器及其测量方法
CN105066983A (zh) * 2015-08-07 2015-11-18 中国船舶重工集团公司第七一七研究所 原子团冷却温度、飞行速度及运动轨迹的探测方法及装置
CN105066991A (zh) * 2015-08-07 2015-11-18 中国船舶重工集团公司第七一七研究所 基于冷原子干涉原理的惯性测量设备
US20170219852A1 (en) * 2016-02-02 2017-08-03 Seiko Epson Corporation Quantum interference device, atomic oscillator, electronic apparatus, and moving object
CN108279441A (zh) * 2017-12-25 2018-07-13 中国科学技术大学 一种适用于小型化原子干涉仪的真空结构
CN108333909A (zh) * 2018-02-05 2018-07-27 中国科学院上海光学精密机械研究所 冷原子全光选态装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808774A (zh) * 2021-08-02 2021-12-17 西南科技大学 基于磁光阱的相干电子源获取装置
CN114153134A (zh) * 2021-11-10 2022-03-08 中国科学院上海光学精密机械研究所 基于原子输运的小型空间冷原子钟的装置
CN114153134B (zh) * 2021-11-10 2023-02-10 中国科学院上海光学精密机械研究所 基于原子输运的小型空间冷原子钟的装置

Also Published As

Publication number Publication date
CN109708674B (zh) 2021-05-18
US20210265072A1 (en) 2021-08-26
CN109708674A (zh) 2019-05-03
US11361875B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2020118798A1 (zh) 一种冷原子团快速陷俘和高频相向抛射的控制方法
WO2020118799A1 (zh) 一种高频率输出的无死区冷原子干涉仪
US9497840B2 (en) System and method for creating and utilizing dual laser curtains from a single laser in an LPP EUV light source
US10330459B1 (en) Light pulse atom interferometer velocity reference
JP7046417B2 (ja) 極端紫外光源におけるターゲットの移動特性の決定
US20160278196A1 (en) Radiation source
TWI821839B (zh) 量測目標之移動屬性的方法及光學設備
CN112236833A (zh) 冷原子束生成方法、冷原子束生成装置、原子干涉仪
CN110133853A (zh) 可调散斑图案的调节方法及其投射方法
CN105066983B (zh) 原子团冷却温度、飞行速度及运动轨迹的探测方法及装置
WO2021033479A1 (ja) 測距装置、情報処理方法、および情報処理装置
CN104132676B (zh) 一种基于双fp腔的同轴分幅高速成像和干涉测量方法
CN109596047B (zh) 测量原子喷泉冷原子黏团的尺寸和温度的方法
JP7082404B2 (ja) 距離計測装置
CN112945144B (zh) 一种多mems振镜结构光三维扫描系统
CN112485822B (zh) 原子干涉仪中原子团轨迹的测量方法及测量装置
CN207300540U (zh) 光学检测设备
CN108227407B (zh) 一种基于相干图像反馈的数字光成型方法
CN116381767A (zh) 一种超短电子束团的测量方法、装置及系统
CN110108302A (zh) 一种提高原子团对抛精度的方法
JPH11211743A (ja) 速度場計測装置
CN114152249A (zh) 一种窄速度分布的高通量冷原子束流制备装置及方法
KR102010172B1 (ko) 레이저 펄스의 비행시간 검출을 이용하는 단차 높이 측정 시스템
CN208155564U (zh) 反射型光束分割延迟器
Carlson et al. Target tracking and engagement for Inertial Fusion Energy-a tabletop demonstration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943021

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943021

Country of ref document: EP

Kind code of ref document: A1