WO2020118708A1 - Procédé et système de reconnaissance faciale à factorisation de matrice semi-non-négative basés sur une fonction e auxiliaire, et support de stockage - Google Patents

Procédé et système de reconnaissance faciale à factorisation de matrice semi-non-négative basés sur une fonction e auxiliaire, et support de stockage Download PDF

Info

Publication number
WO2020118708A1
WO2020118708A1 PCT/CN2018/121289 CN2018121289W WO2020118708A1 WO 2020118708 A1 WO2020118708 A1 WO 2020118708A1 CN 2018121289 W CN2018121289 W CN 2018121289W WO 2020118708 A1 WO2020118708 A1 WO 2020118708A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
module
iterations
training sample
base image
Prior art date
Application number
PCT/CN2018/121289
Other languages
English (en)
Chinese (zh)
Inventor
陈文胜
陈海涛
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2018/121289 priority Critical patent/WO2020118708A1/fr
Publication of WO2020118708A1 publication Critical patent/WO2020118708A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the present invention relates to the field of data processing technology, and in particular, to a face recognition method, system, and storage medium based on semi-negative matrix factorization of E auxiliary functions.
  • biometrics using personal physiological and behavioral characteristics for personal identification has become one of the most active research areas.
  • biometrics using personal physiological and behavioral characteristics for personal identification has become one of the most active research areas.
  • one of the most easily accepted technologies is facial recognition technology, which is because compared with other biometrics technologies, facial recognition is non-invasive, non-mandatory, and non-contact. And concurrency.
  • Face recognition technology consists of two stages.
  • the first stage is feature extraction, which is to extract face feature information in the face image. This stage directly determines the quality of face recognition technology; the second stage is identity authentication.
  • Personal identification based on the extracted feature information.
  • Principal component analysis (PCA) and singular value decomposition (SVD) are more classic feature extraction methods, but the feature vectors proposed by these two methods usually contain negative elements, so these methods do not have the original sample is non-negative data Rationality and interpretability.
  • Non-negative matrix factorization is a feature extraction method for processing non-negative data. It is widely used, such as hyperspectral data processing and face image recognition.
  • the NMF algorithm has a non-negative limitation on the extracted features during the decomposition of the original sample non-negative data matrix, that is, all components after decomposition are non-negative, so non-negative sparse features can be extracted.
  • the essence of the NMF algorithm is to approximately decompose the non-negative matrix X into the product of the base image matrix W and the coefficient matrix H, that is, X ⁇ WH, and both W and H are non-negative matrices.
  • each column of the matrix X can be represented as a non-negative linear combination of the vectors of the columns of the matrix W, which is also consistent with the construction basis of the NMF algorithm-the perception of the whole is composed of the perception of the parts that make up the whole (pure additive) .
  • NMF requires that the original samples are non-negative data, which limits the application of the algorithm to a certain extent.
  • technologies have proposed many algorithms for deforming NMF, such as semi-negative matrix factorization (Semi-NMF) and convex nonnegative matrix factorization (Convex-NMF). These two algorithms can be used for both non-negative data and other data.
  • Si-NMF semi-negative matrix factorization
  • Convex-NMF convex nonnegative matrix factorization
  • the auxiliary function is a commonly used tool to prove the convergence of the algorithm, and its definition and properties are as follows:
  • Definition 1 For any matrix H and H (t) , if the condition is met
  • G(H,H (t) ) is called an auxiliary function of function f(H).
  • Semi-Negative Matrix Factorization does not limit the sign of the sample matrix, thereby expanding the application range of NMF.
  • matrix factorization X ⁇ WH the optimization problem that Semi-NMF needs to solve is:
  • Convex non-negative matrix factorization Convex-NMF
  • Convex-NMF The main idea of Convex-NMF is to restrict the columns in the base image matrix to be a convex combination of the columns in the original sample matrix.
  • the optimization problem that Convex-NMF needs to solve is:
  • NMF non-negative matrix factorization algorithm
  • the invention provides a face recognition method based on semi-negative matrix factorization of E auxiliary function, which includes a training step, and the training step includes the following steps:
  • the first step convert the training sample image into a training sample matrix X, set the error threshold ⁇ , the maximum number of iterations I max , and enter the training sample matrix X, the error threshold ⁇ and the maximum number of iterations I max
  • the second step initialize the base image matrix W and coefficient matrix H;
  • the fourth step update the base image matrix W and coefficient matrix H according to formula (6);
  • the sixth step determine whether the objective function F(W,H) ⁇ or the number of iterations n reaches the maximum number of iterations I max , if it is, then output the base image matrix W and the coefficient matrix H, otherwise perform the fourth step;
  • W represents the base image matrix
  • H represents the coefficient matrix
  • X represents the training sample matrix
  • the face recognition method further includes performing a recognition step after the training step, the recognition step including:
  • Step 9 Calculate the distance between the feature vector h y of the face image to be recognized and the average feature vector m j of each class. If the distance between h y and m j is the smallest, then classify the face image y to be recognized into class P;
  • Step 10 Output category P.
  • the invention also provides a face recognition system based on the semi-negative matrix factorization of the E auxiliary function, which includes a training module, and the training module includes:
  • Input module used to convert the training sample image into the training sample matrix X, set the error threshold ⁇ , the maximum number of iterations I max , and input the training sample matrix X, the error threshold ⁇ and the maximum number of iterations I max ;
  • Initialization module used to initialize the base image matrix W and coefficient matrix H;
  • Update module used to update the base image matrix W and coefficient matrix H according to formula (6);
  • Judgment module judge whether the objective function F(W,H) ⁇ or the number of iterations n reaches the maximum number of iterations I max , if it is, then output the base image matrix W and coefficient matrix H, otherwise execute the update module;
  • W represents the base image matrix
  • H represents the coefficient matrix
  • X represents the training sample matrix
  • the face recognition system further includes a recognition module executed after the training module, the recognition module includes:
  • Distance calculation module Calculate the distance between the feature vector h y of the face image to be recognized and the average feature vector m j of each class. If the distance between h y and m j is the smallest, then classify the face image y to be recognized into category P;
  • Output module used to output category P.
  • the invention also discloses a computer-readable storage medium which stores a computer program which is configured to implement the steps of the method described in the claims when called by a processor.
  • the face recognition method of the present invention has the advantages of high recognition performance and low computational complexity. Through the experimental comparison with related algorithms in the public face database, the results show that the method developed by this patent has certain Superiority.
  • Figure 3 is the method and related algorithms (Convex-NMF and Semi-NMF) proposed by the present invention
  • FIG. 4 is a comparison diagram of the convergence curves of the method of the present invention and the Semi-NMF algorithm, where FSNMF represents the method of the present invention.
  • the present invention first proposes a new concept of the E auxiliary function of the objective function, and accordingly proposes a new basic theory and framework for constructing auxiliary functions, which greatly expands the selection range of auxiliary functions and also flexibly constructs auxiliary functions for us
  • auxiliary functions greatly expands the selection range of auxiliary functions and also flexibly constructs auxiliary functions for us
  • FSNMF fast semi-negative matrix factorization
  • Non-negative matrix factorization Non-negative Matrix Factorization, NMF
  • NMF non-negative sample matrix Approximate decomposition into the product of two non-negative matrices, namely:
  • the base image matrix and the coefficient matrix, respectively.
  • the loss function is usually defined based on the F-norm, written as:
  • the main objectives of the present invention are:
  • E(H,H (t) ) is called an E auxiliary function of function f(H).
  • Theorem 1 gives a theoretical framework and method for constructing new auxiliary functions based on E auxiliary functions, which greatly expands the selection range of auxiliary functions, and also flexibly constructs auxiliary functions for us to design new high-performance non-negative feature algorithms Provides a powerful tool.
  • FSNMF fast semi-negative matrix factorization algorithm
  • question (3) has evolved into two sub-problems, namely:
  • Is -tr ((W T W) - HH T) is an auxiliary function.
  • G(H,H (t) ) is an auxiliary function of f 2 (H).
  • the updated iteration formula can be directly derived from the auxiliary function.
  • the formula derived from the auxiliary function G(H, H (t) ) here does not satisfy non-negativity, so we need to use the E auxiliary function to reconstruct a new auxiliary function.
  • Theorem 4 Define the functions G(H,H (t) ) and E(H,H (t) ) as follows:
  • function G(H,H (t) ) is an auxiliary function of function f 2 (H)
  • function E(H,H (t) ) is function f 2 (H)
  • the updated iterative formula (6) proposed in this patent not only greatly improves the convergence speed and calculation speed, but also has a better recognition effect.
  • the present invention provides a face recognition method based on semi-negative matrix factorization of E auxiliary function, which includes a training step, and the training step includes the following steps:
  • the first step transform the training sample image into a training sample matrix X, set the error threshold ⁇ , the maximum number of iterations I max , and input the training sample matrix X, the error threshold ⁇ and the maximum number of iterations I max ;
  • the second step initialize the base image matrix W and coefficient matrix H;
  • the fourth step update the base image matrix W and coefficient matrix H according to formula (6);
  • the sixth step determine whether the objective function F(W,H) ⁇ or the number of iterations n reaches the maximum number of iterations I max , if it is, then output the base image matrix W and the coefficient matrix H, otherwise perform the fourth step;
  • W represents the base image matrix
  • H represents the coefficient matrix
  • X represents the training sample matrix
  • T represents the transpose of the matrix
  • the face recognition method further includes performing a recognition step after the training step.
  • the recognition step includes:
  • Step 9 Calculate the distance between the feature vector h y of the face image to be recognized and the average feature vector m j of each class. If the distance between h y and m j is the smallest, then classify the face image y to be recognized into class P;
  • Step 10 Output category P.
  • the output category P indicates that the face image y to be recognized is recognized as the Pth personal face category, so after the category P is output, face recognition is completed.
  • the invention also provides a face recognition system based on semi-negative matrix factorization of E auxiliary function, which includes a training module, and the training module includes:
  • Input module used to convert the training sample image into the training sample matrix X, set the error threshold ⁇ , the maximum number of iterations I max , and input the training sample matrix X, the error threshold ⁇ and the maximum number of iterations I max ;
  • Initialization module used to initialize the base image matrix W and coefficient matrix H;
  • Update module used to update the base image matrix W and coefficient matrix H according to formula (6);
  • Judgment module judge whether the objective function F(W,H) ⁇ or the number of iterations n reaches the maximum number of iterations I max , if it is, then output the base image matrix W and coefficient matrix H, otherwise execute the update module;
  • W represents the base image matrix
  • H represents the coefficient matrix
  • X represents the training sample matrix
  • T represents the transpose of the matrix
  • the face recognition system also includes a recognition module that is executed after the training module.
  • the recognition module includes:
  • Distance calculation module Calculate the distance between the feature vector h y of the face image to be recognized and the average feature vector m j of each class. If the distance between h y and m j is the smallest, then classify the face image y to be recognized into category P;
  • Output module used to output category P.
  • the invention also discloses a computer-readable storage medium which stores a computer program which is configured to implement the steps of the method described in the claims when called by a processor.
  • Table 1 compares the recognition rate (%) of the method proposed in this patent (Our Method) with convex non-negative matrix factorization (Convex-NMF) and semi-non-negative matrix factorization (Semi-NMF) on the ORL face database
  • Table 2 compares the recognition speed (seconds) of the method proposed in this patent (Our Method) with convex non-negative matrix factorization (Convex-NMF) and semi-non-negative matrix factorization (Semi-NMF) on the ORL face database
  • the present invention allows the input matrix to contain negative numbers, expanding the application range of NMF.
  • the face recognition method of the present invention has the advantages of high recognition performance and low computational complexity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Collating Specific Patterns (AREA)

Abstract

La présente invention concerne un procédé et un système de reconnaissance faciale à factorisation de matrice semi-non-négative basés sur une fonction E auxiliaire, et un support de stockage. Le procédé de reconnaissance faciale comprend une première étape consistant à : convertir une image d'échantillon d'apprentissage en une matrice d'échantillon d'apprentissage X, régler un seuil d'erreur ε et le nombre maximum Imax d'itérations, et entrer la matrice d'échantillon d'apprentissage X, le seuil d'erreur ε et le nombre maximum Imax d'itérations ; une deuxième étape consistant à : initialiser une matrice d'image de base W et une matrice de coefficient H ; une quatrième étape consistant à : mettre à jour la matrice d'image de base W et la matrice de coefficient H en fonction d'une formule (6) ; et une sixième étape consistant à : déterminer si une fonction cible F(W,H)≤ε ou si le nombre d'itérations atteint le nombre maximum Imax d'itérations, et si tel est le cas, délivrer la matrice d'image de base W et la matrice de coefficient H ; dans le cas contraire, exécuter la quatrième étape. Les effets bénéfiques de la présente invention sont les suivants : le procédé de reconnaissance faciale présente une performance de reconnaissance élevée et une faible complexité de calcul ; et par comparaison expérimentale avec un algorithme associé dans une base de données faciale divulguée, le résultat indique que le procédé présente certains avantages.
PCT/CN2018/121289 2018-12-14 2018-12-14 Procédé et système de reconnaissance faciale à factorisation de matrice semi-non-négative basés sur une fonction e auxiliaire, et support de stockage WO2020118708A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121289 WO2020118708A1 (fr) 2018-12-14 2018-12-14 Procédé et système de reconnaissance faciale à factorisation de matrice semi-non-négative basés sur une fonction e auxiliaire, et support de stockage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121289 WO2020118708A1 (fr) 2018-12-14 2018-12-14 Procédé et système de reconnaissance faciale à factorisation de matrice semi-non-négative basés sur une fonction e auxiliaire, et support de stockage

Publications (1)

Publication Number Publication Date
WO2020118708A1 true WO2020118708A1 (fr) 2020-06-18

Family

ID=71075289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121289 WO2020118708A1 (fr) 2018-12-14 2018-12-14 Procédé et système de reconnaissance faciale à factorisation de matrice semi-non-négative basés sur une fonction e auxiliaire, et support de stockage

Country Status (1)

Country Link
WO (1) WO2020118708A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043269A (zh) * 2020-09-27 2020-12-08 中国科学技术大学 一种手势动作过程中肌肉空间激活模式提取和识别方法
CN113378664A (zh) * 2021-05-26 2021-09-10 辽宁工程技术大学 基于半非负矩阵分解的高光谱图像变化检测方法和系统
CN114118094A (zh) * 2021-11-12 2022-03-01 国网天津市电力公司 一种基于非负矩阵分解的语义社团发现方法
CN116883226A (zh) * 2023-07-21 2023-10-13 中国国土勘测规划院 基于nmf分解的dem零水印方法、装置及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366182A (zh) * 2013-07-05 2013-10-23 西安电子科技大学 基于全监督非负矩阵分解的人脸识别方法
CN104463084A (zh) * 2013-09-24 2015-03-25 江南大学 一种基于非负矩阵分解的离线手写签名识别
CN106897685A (zh) * 2017-02-17 2017-06-27 深圳大学 基于核非负矩阵分解的字典学习和稀疏特征表示的人脸识别方法及系统
WO2017166933A1 (fr) * 2016-03-30 2017-10-05 深圳大学 Procédé et système de reconnaissance facile par factorisation de matrice non négative sur la base d'un apprentissage automatique de noyau
CN107480636A (zh) * 2017-08-15 2017-12-15 深圳大学 基于核非负矩阵分解的人脸识别方法、系统及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103366182A (zh) * 2013-07-05 2013-10-23 西安电子科技大学 基于全监督非负矩阵分解的人脸识别方法
CN104463084A (zh) * 2013-09-24 2015-03-25 江南大学 一种基于非负矩阵分解的离线手写签名识别
WO2017166933A1 (fr) * 2016-03-30 2017-10-05 深圳大学 Procédé et système de reconnaissance facile par factorisation de matrice non négative sur la base d'un apprentissage automatique de noyau
CN106897685A (zh) * 2017-02-17 2017-06-27 深圳大学 基于核非负矩阵分解的字典学习和稀疏特征表示的人脸识别方法及系统
CN107480636A (zh) * 2017-08-15 2017-12-15 深圳大学 基于核非负矩阵分解的人脸识别方法、系统及存储介质

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112043269A (zh) * 2020-09-27 2020-12-08 中国科学技术大学 一种手势动作过程中肌肉空间激活模式提取和识别方法
CN112043269B (zh) * 2020-09-27 2021-10-19 中国科学技术大学 一种手势动作过程中肌肉空间激活模式提取和识别方法
CN113378664A (zh) * 2021-05-26 2021-09-10 辽宁工程技术大学 基于半非负矩阵分解的高光谱图像变化检测方法和系统
CN114118094A (zh) * 2021-11-12 2022-03-01 国网天津市电力公司 一种基于非负矩阵分解的语义社团发现方法
CN114118094B (zh) * 2021-11-12 2024-05-24 国网天津市电力公司 一种基于非负矩阵分解的语义社团发现方法
CN116883226A (zh) * 2023-07-21 2023-10-13 中国国土勘测规划院 基于nmf分解的dem零水印方法、装置及介质
CN116883226B (zh) * 2023-07-21 2024-01-02 中国国土勘测规划院 Dem零水印嵌入与提取方法、装置及介质

Similar Documents

Publication Publication Date Title
WO2020118708A1 (fr) Procédé et système de reconnaissance faciale à factorisation de matrice semi-non-négative basés sur une fonction e auxiliaire, et support de stockage
CN109508697B (zh) 基于e辅助函数的半非负矩阵分解的人脸识别方法、系统及存储介质
Arora et al. Stochastic optimization for PCA and PLS
WO2018149133A1 (fr) Procédé et système de reconnaissance faciale au moyen d'un apprentissage par dictionnaire basé sur une factorisation matricielle non négative de noyau, et représentation de caractéristiques éparses
Zhang et al. Robust low-rank kernel multi-view subspace clustering based on the schatten p-norm and correntropy
Xiao et al. Robust kernel low-rank representation
WO2020082315A2 (fr) Extraction de caractéristique non négative et procédé d'application de reconnaissance faciale, système et support d'enregistrement
WO2020010602A1 (fr) Procédé et système de reconnaissance et de construction faciales basés sur une décomposition de matrice non-négative non linéaire, et support d'informations
Chakraborty et al. Statistics on the Stiefel manifold: Theory and applications
Samworth et al. Independent component analysis via nonparametric maximum likelihood estimation
Wu et al. Random warping series: A random features method for time-series embedding
CN110070028B (zh) 基于共轭梯度法的人脸图像非负特征表示与识别方法、系统及存储介质
Trendafilov Stepwise estimation of common principal components
Gaidhane et al. An efficient approach for face recognition based on common eigenvalues
WO2021003637A1 (fr) Système, dispositif et procédé de reconnaissance de face de factorisation matricielle non négative de noyau faisant appel à un noyau gaussien additif, et support d'informations
Tang et al. Tensor multi-elastic kernel self-paced learning for time series clustering
Anderson et al. An effective decoupling method for matrix optimization and its application to the ICA problem
CN109002794A (zh) 一种非线性非负矩阵分解人脸识别构建方法、系统及存储介质
Shi Convergence of Laplacian spectra from random samples
Li et al. Unsupervised active learning via subspace learning
Zhang et al. Learning semi-Riemannian metrics for semisupervised feature extraction
Lee et al. Incremental $ n $-mode SVD for large-scale multilinear generative models
Yan et al. A parameter-free framework for general supervised subspace learning
Chen et al. A Lie group approach to Riemannian batch normalization
CN110378262B (zh) 基于加性高斯核的核非负矩阵分解人脸识别方法、装置、系统及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DATED 04.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18942970

Country of ref document: EP

Kind code of ref document: A1