WO2020010602A1 - Procédé et système de reconnaissance et de construction faciales basés sur une décomposition de matrice non-négative non linéaire, et support d'informations - Google Patents

Procédé et système de reconnaissance et de construction faciales basés sur une décomposition de matrice non-négative non linéaire, et support d'informations Download PDF

Info

Publication number
WO2020010602A1
WO2020010602A1 PCT/CN2018/095554 CN2018095554W WO2020010602A1 WO 2020010602 A1 WO2020010602 A1 WO 2020010602A1 CN 2018095554 W CN2018095554 W CN 2018095554W WO 2020010602 A1 WO2020010602 A1 WO 2020010602A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
negative
function
kernel
face recognition
Prior art date
Application number
PCT/CN2018/095554
Other languages
English (en)
Chinese (zh)
Inventor
陈文胜
刘敬敏
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2018/095554 priority Critical patent/WO2020010602A1/fr
Publication of WO2020010602A1 publication Critical patent/WO2020010602A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition

Definitions

  • the present invention relates to the technical field of data processing, and in particular, to a method, system, and storage medium for constructing face recognition based on non-linear non-negative matrix factorization.
  • biometric technology that uses the inherent physiological and behavioral characteristics of the human body for personal identification has become one of the most active research fields.
  • face recognition is non-invasive, non-mandatory, non-contact And concurrency.
  • Face recognition technology includes two stages.
  • the first stage is feature extraction, that is, the extraction of facial feature information in the face image. This stage directly determines the quality of face recognition technology.
  • the second stage is identification. Personal identification is performed based on the extracted feature information.
  • Principal component analysis (PCA) and singular value decomposition (SVD) are more classic feature extraction methods, but the feature vectors proposed by these two methods usually contain negative elements, so these methods do not have the original sample with non-negative data. Rationality and interpretability.
  • Non-negative matrix factorization is a feature extraction method for processing non-negative data. It is widely used in applications such as hyperspectral data processing and face image recognition.
  • the NMF algorithm has non-negative restrictions on the extracted features during the non-negative data matrix decomposition of the original sample, that is, all components after the decomposition are non-negative, so non-negative sparse features can be extracted.
  • the essence of the NMF algorithm is to approximately decompose the non-negative matrix X into the product of the base image matrix W and the coefficient matrix H, that is, X ⁇ WH, and W and H are both non-negative matrices.
  • each column of the matrix X can be represented as a non-negative linear combination of the matrix W column vectors, which also conforms to the construction basis of the NMF algorithm-the perception of the whole is composed of the perception of the parts that make up the whole (pure additive) .
  • NMF local NMF algorithm
  • DNMF discriminative NMF algorithm
  • SNMF symmetric NMF algorithm
  • the kernel method is an effective method. It extends the linear algorithm to a non-linear algorithm and provides a beautiful theoretical framework.
  • the basic idea of the kernel method is to use a non-linear mapping function to map the original data into a high-dimensional feature space, so that the mapped data is linearly separable, and then apply a linear algorithm to the mapped data.
  • the kernel method the most critical part is the use of kernel techniques. By using the kernel function to replace the inner product of the mapped data, there is no need to know the specific analytical formula of the non-linear mapping function.
  • the use of nuclear techniques reduces the difficulty of extending the mapping to the functional space, the regenerating nuclear Hilbert space (RKHS).
  • NMF nonlinear NMF algorithm
  • NLNMF algorithms include polynomial kernel non-negative matrix factorization (PNMF) and Gaussian kernel non-negative matrix factorization (RBFNMF), and their loss functions are constructed based on the square of the F-norm.
  • PNMF polynomial kernel non-negative matrix factorization
  • RBFNMF Gaussian kernel non-negative matrix factorization
  • ⁇ x 1 , x 2 , ..., x n ⁇ be a set of data in the original sample space.
  • the main idea of the kernel method is to map the samples from the original space to a higher-dimensional feature space through a non-linear mapping function ⁇ ( ⁇ ), so that the samples are linearly separable in this feature space, and as long as the original space is finite-dimensional , Then there must be such a high-dimensional feature space.
  • non-linear mapping function
  • the inner product of x i and x j in the feature space can be calculated by using their function k ( ⁇ , ⁇ ) in the original sample space. This not only solves these problems, but also simplifies the calculation process.
  • NLNMF The main purpose of NLNMF is to use kernel methods to solve the application of NMF in nonlinear problems.
  • the NMF algorithm is used to process the mapped data in the high-dimensional feature space, and ⁇ (X) is approximately decomposed into the product of two matrices ⁇ (W) and H, that
  • the kernel function k ( ⁇ , ⁇ ) implicitly defines a high-dimensional feature space. If the kernel function is not selected properly, it means that the sample data is mapped to an inappropriate feature Space is likely to cause poor performance.
  • Another major factor is the construction of the loss function F (W, H).
  • the loss function determines the accuracy of the NLNMF algorithm to a certain extent. Different loss functions have different emphasis, and not all loss functions can be used in the feature space. Therefore, the selection of the loss function is also important.
  • the commonly used loss function is F F (W, H) constructed according to the F-norm, that is,
  • Nonlinear non-negative matrix factorization algorithm PNMF based on polynomial kernel
  • the loss function of the polynomial kernel non-negative matrix factorization algorithm is F F (W, H). It solves the optimization problem (1) based on the polynomial kernel function.
  • the updated iterative formulas for W and H are:
  • is a diagonal matrix whose diagonal elements are
  • the loss functions of current non-linear non-negative matrix factorization algorithms are all based on the F-norm.
  • the F-norm has two major shortcomings, namely its sensitivity to outliers and poor sparsity. This makes the algorithm Has poor stability and cannot well resist changes in pose and illumination in face recognition;
  • the power exponent of the polynomial kernel function in polynomial kernel non-negative matrix factorization (PNMF) can only be an integer, when the power exponent is a fraction There is no guarantee that it is still a kernel function, and the discriminative ability of the kernel function is weakened when the power exponent is an integer.
  • the invention provides a method for constructing face recognition based on nonlinear non-negative matrix factorization, which includes the following steps:
  • Loss characterization step use the l 2, p -norm of the matrix to characterize the loss degree after matrix decomposition;
  • Sparsity enhancement step Use the l 1 -norm of the matrix to enhance the sparse representation of features, and add a regular term about the matrix H to the loss function;
  • Steps to obtain the updated iterative formula for the non-negative matrix factorization of the fractional power inner product kernel Use the fractional power inner product kernel function to form the optimization problem to be solved. Solve H by using the gradient descent method and W by the exponential gradient descent method, so that An updated iterative formula for the fractional power inner product kernel non-negative matrix factorization is obtained.
  • the construction method further includes a convergence verification step.
  • the convergence verification step the convergence of the algorithm is proved by constructing an auxiliary function.
  • the updated iterative formula of the fractional power inner product kernel non-negative matrix factorization is:
  • the non-negative non-negative matrix factorization face recognition method provided by the present invention further includes a training step.
  • the training step includes:
  • the first step transform the training sample image into a training sample matrix X, set an error threshold ⁇ , a maximum number of iterations I max , and initialize the base image matrix W and the coefficient matrix H;
  • the second step update the iteration formula of the non-negative matrix factorization of the inner product kernel of fractional powers to update W and H;
  • the non-linear non-negative matrix factorization face recognition method further includes performing a testing step after the training step, the testing step includes:
  • Step Six If Then the sample y is classified into the l class.
  • the updated iteration formula of the non-negative matrix factorization of the fractional power inner product kernel in the training step is:
  • the present invention also provides a non-linear non-negative matrix factorization face recognition system, which includes a memory, a processor, and a computer program stored on the memory.
  • the computer program is configured to implement all functions when called by the processor. The steps of the method are described.
  • the invention also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program configured to implement the steps of the method when called by a processor.
  • the beneficial effects of the present invention are: 1. By using 1, 2, p -norm instead of F-norm to measure the loss of matrix factorization, the problem of singular value sensitivity in the existing kernel non-negative matrix factorization algorithm is solved, and the enhancement The stability of the kernel non-negative matrix factorization algorithm proposed by the present invention; 2. The sparseness of the feature representation of the algorithm of the present invention is enhanced by adding a regularization restriction on the coefficient matrix H to the objective function; 3.
  • the kernel non-negative matrix factorization with a new objective function is integrated with the fractional power inner product kernel function to obtain a sparse fractional inner product nonlinear non-negative matrix factorization algorithm with efficient recognition performance, which solves the hyperparameters of the polynomial kernel function Problems that can only be integers improve the discriminative ability of the algorithm.
  • FIG. 1 is a flowchart of an algorithm construction process of the present invention
  • FIG. 3 is a comparison diagram of the recognition rate of the proposed algorithm and related algorithms (KLPP, LNMF, PNMF) on the CMU PIE face database;
  • FIG. 4 is a convergence curve diagram of the algorithm of the present invention.
  • the present invention discloses a method for constructing non-linear non-negative matrix factorization face recognition, and specifically discloses a method for constructing non-linear non-negative matrix factorization face recognition based on l 2, p modules. .
  • the method for constructing non-linear non-negative matrix factorization face recognition includes the following steps:
  • Loss characterization step use the l 2, p -norm of the matrix to characterize the loss degree after matrix decomposition;
  • Sparsity enhancement step Use the l 1 -norm of the matrix to enhance the sparse representation of features, and add a regular term about the matrix H to the loss function;
  • Steps to obtain the updated iterative formula for the non-negative matrix factorization of the fractional power inner product kernel Use the fractional power inner product kernel function to form the optimization problem to be solved. Solve H by using the gradient descent method and W by the exponential gradient descent method, An updated iterative formula for the fractional power inner product kernel non-negative matrix factorization is obtained.
  • the construction method also includes a convergence verification step.
  • the convergence verification step the convergence of the algorithm is proved by constructing an auxiliary function.
  • the present invention discloses a non-linear non-negative matrix factorization face recognition method, which includes a training step.
  • the training step includes:
  • the first step transform the training sample image into a training sample matrix X, set an error threshold ⁇ , a maximum number of iterations I max , and initialize the base image matrix W and the coefficient matrix H;
  • the second step update the iteration formula of the non-negative matrix factorization of the inner product kernel of fractional powers to update W and H;
  • the nonlinear non-negative matrix factorization face recognition method further includes performing a testing step after the training step.
  • the testing step includes:
  • Step Six If Then the sample y is classified into the l class.
  • the updated iterative formula of the non-negative matrix factorization of the fractional power inner product kernel in the training step of the non-linear non-negative matrix factorization face recognition method is:
  • the invention also discloses a non-linear non-negative matrix factorization face recognition system, which includes: a memory, a processor, and a computer program stored on the memory.
  • the computer program is configured to implement all functions when called by the processor. The steps of the method are described.
  • the invention also discloses a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program configured to implement the steps of the method when called by a processor.
  • Keyword interpretation (note: roughly explain the concepts of some key words related to the present invention)
  • l 2 p -norm contains F-norm.
  • NMF Non-negative Matrix Factorization
  • the base image matrix and the coefficient matrix, respectively.
  • the loss function is defined based on the F-norm, as:
  • be the input space
  • k ( ⁇ , ⁇ ) be a symmetric function defined on ⁇ ⁇ ⁇
  • the kernel matrix K is always positive semidefinite:
  • the present invention introduces a fractional power inner product kernel function. Assume Is an m-dimensional column vector, and is defined in the present invention d> 0.
  • Theorem 1 For arbitrary vectors And positive real numbers The function k is defined as:
  • k is a kernel function. We call this function a fractional power inner product kernel function.
  • the present invention uses l 2, p -norm (0 ⁇ p ⁇ 2) to characterize the loss function, that is:
  • ⁇ 0 is a regular term parameter
  • problem (2) also evolved into two sub-problems, namely:
  • the gradient descent method is used to solve the coefficient matrix H, which includes:
  • the selection step vector is:
  • This updated iterative formula can be transformed into a matrix form with the following theorem.
  • Theorem 2 Fixed matrix W.
  • the objective function f 1 (H) is non-increasing.
  • the coefficient matrix H in subproblem (3) is updated in the following iterative manner:
  • Non-linear generalized exponential gradient descent methods using gradient descent methods are:
  • the selection step size is:
  • Extending it to the matrix form can get the updated iterative formula of W, such as the following theorem.
  • Theorem 3 The fixed matrix H, the objective function f 2 (H) is non-increasing.
  • the base image matrix W in the subproblem (4) is updated in the following iterative manner:
  • Definition 1 For any matrices H and H (t) , if the conditions are met
  • G (H, H (t) ) is called an auxiliary function of function f (H).
  • Theorem 4 Is a diagonal matrix with diagonal elements as Then
  • G 1 (H, H (t) ) is the auxiliary function of f 1 (H), which is proved.
  • Theorem 5 Let Is a symmetric matrix with elements
  • maps it into the feature space
  • ⁇ (y) can be expressed as a linear combination of the column vectors of the mapped base image matrix ⁇ (W) as
  • the beneficial effects of the present invention are: 1. By using 1, 2, p -norm instead of F-norm to measure the loss of matrix factorization, the problem of singular value sensitivity in the existing kernel non-negative matrix factorization algorithm is solved, and the enhancement The stability of the kernel non-negative matrix factorization algorithm proposed by the present invention; 2. The sparseness of the feature representation of the algorithm of the present invention is enhanced by adding a regularization restriction on the coefficient matrix H to the objective function; 3.
  • the kernel non-negative matrix factorization with a new objective function is integrated with the fractional power inner product kernel function to obtain a sparse fractional inner product nonlinear non-negative matrix factorization algorithm with efficient recognition performance, which solves the hyperparameters of the polynomial kernel function Problems that can only be integers improve the discriminative ability of the algorithm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Complex Calculations (AREA)

Abstract

L'invention concerne un procédé et un système de reconnaissance et de construction faciales basés sur une décomposition de matrice non-négative non linéaire, ainsi qu'un support d'informations. Le procédé comprend les étapes consistant : à représenter le degré de perte après décomposition de matrice à l'aide d'une norme l 2,p-norm ; à améliorer la représentation de dispersion d'une caractéristique en utilisant la norme l 1-norm d'une matrice, et à ajouter un terme de régularisation concernant une matrice H dans une fonction de perte ; à construire une fonction cible F(W,H) au moyen d'un degré d'étape de représentation de perte et d'une étape d'amélioration de la dispersion ; et à obtenir une formule d'itération de mise à jour pour la décomposition de matrice non négative de noyau du produit interne de puissance fractionnaire. Le procédé peut résoudre le problème selon lequel un algorithme de décomposition de matrice non négative de noyau est sensible à une valeur singulière, peut améliorer la dispersion de l'algorithme en une représentation de caractéristiques, et résout également le problème selon lequel des super-paramètres d'une fonction de noyau polynomial peuvent uniquement être des nombres entiers.
PCT/CN2018/095554 2018-07-13 2018-07-13 Procédé et système de reconnaissance et de construction faciales basés sur une décomposition de matrice non-négative non linéaire, et support d'informations WO2020010602A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095554 WO2020010602A1 (fr) 2018-07-13 2018-07-13 Procédé et système de reconnaissance et de construction faciales basés sur une décomposition de matrice non-négative non linéaire, et support d'informations

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095554 WO2020010602A1 (fr) 2018-07-13 2018-07-13 Procédé et système de reconnaissance et de construction faciales basés sur une décomposition de matrice non-négative non linéaire, et support d'informations

Publications (1)

Publication Number Publication Date
WO2020010602A1 true WO2020010602A1 (fr) 2020-01-16

Family

ID=69143019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095554 WO2020010602A1 (fr) 2018-07-13 2018-07-13 Procédé et système de reconnaissance et de construction faciales basés sur une décomposition de matrice non-négative non linéaire, et support d'informations

Country Status (1)

Country Link
WO (1) WO2020010602A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967499A (zh) * 2020-07-21 2020-11-20 电子科技大学 基于自步学习的数据降维方法
CN112116017A (zh) * 2020-09-25 2020-12-22 西安电子科技大学 基于核保持的数据降维方法
CN112598130A (zh) * 2020-12-09 2021-04-02 华东交通大学 基于自编码器和奇异值阈值的土壤湿度数据重构方法和计算机可读存储介质
CN112966735A (zh) * 2020-11-20 2021-06-15 扬州大学 一种基于谱重建的监督多集相关特征融合方法
CN113705674A (zh) * 2021-08-27 2021-11-26 西安交通大学 一种非负矩阵分解聚类方法、装置及可读存储介质
CN114936597A (zh) * 2022-05-20 2022-08-23 电子科技大学 一种局部信息增强子空间真假目标特征提取方法
CN116189760A (zh) * 2023-04-19 2023-05-30 中国人民解放军总医院 基于矩阵补全的抗病毒药物筛选方法、系统及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120041906A1 (en) * 2010-08-11 2012-02-16 Huh Seung-Il Supervised Nonnegative Matrix Factorization
CN105469034A (zh) * 2015-11-17 2016-04-06 西安电子科技大学 基于加权式鉴别性稀疏约束非负矩阵分解的人脸识别方法
CN106897685A (zh) * 2017-02-17 2017-06-27 深圳大学 基于核非负矩阵分解的字典学习和稀疏特征表示的人脸识别方法及系统
CN107480636A (zh) * 2017-08-15 2017-12-15 深圳大学 基于核非负矩阵分解的人脸识别方法、系统及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120041906A1 (en) * 2010-08-11 2012-02-16 Huh Seung-Il Supervised Nonnegative Matrix Factorization
CN105469034A (zh) * 2015-11-17 2016-04-06 西安电子科技大学 基于加权式鉴别性稀疏约束非负矩阵分解的人脸识别方法
CN106897685A (zh) * 2017-02-17 2017-06-27 深圳大学 基于核非负矩阵分解的字典学习和稀疏特征表示的人脸识别方法及系统
CN107480636A (zh) * 2017-08-15 2017-12-15 深圳大学 基于核非负矩阵分解的人脸识别方法、系统及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, JINGMIN ET AL.: "Nonlinear Non-Negative Matrix Factorization with Fractional Power Inner-Product Kernel for Face Recognition", 2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS, 15 December 2017 (2017-12-15), pages 406 - 411, XP033325403 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111967499A (zh) * 2020-07-21 2020-11-20 电子科技大学 基于自步学习的数据降维方法
CN111967499B (zh) * 2020-07-21 2023-04-07 电子科技大学 基于自步学习的数据降维方法
CN112116017A (zh) * 2020-09-25 2020-12-22 西安电子科技大学 基于核保持的数据降维方法
CN112116017B (zh) * 2020-09-25 2024-02-13 西安电子科技大学 基于核保持的图像数据降维方法
CN112966735B (zh) * 2020-11-20 2023-09-12 扬州大学 一种基于谱重建的监督多集相关特征融合方法
CN112966735A (zh) * 2020-11-20 2021-06-15 扬州大学 一种基于谱重建的监督多集相关特征融合方法
CN112598130A (zh) * 2020-12-09 2021-04-02 华东交通大学 基于自编码器和奇异值阈值的土壤湿度数据重构方法和计算机可读存储介质
CN112598130B (zh) * 2020-12-09 2024-04-09 华东交通大学 基于自编码器和奇异值阈值的土壤湿度数据重构方法和计算机可读存储介质
CN113705674A (zh) * 2021-08-27 2021-11-26 西安交通大学 一种非负矩阵分解聚类方法、装置及可读存储介质
CN113705674B (zh) * 2021-08-27 2024-04-05 西安交通大学 一种非负矩阵分解聚类方法、装置及可读存储介质
CN114936597B (zh) * 2022-05-20 2023-04-07 电子科技大学 一种局部信息增强子空间真假目标特征提取方法
CN114936597A (zh) * 2022-05-20 2022-08-23 电子科技大学 一种局部信息增强子空间真假目标特征提取方法
CN116189760B (zh) * 2023-04-19 2023-07-07 中国人民解放军总医院 基于矩阵补全的抗病毒药物筛选方法、系统及存储介质
CN116189760A (zh) * 2023-04-19 2023-05-30 中国人民解放军总医院 基于矩阵补全的抗病毒药物筛选方法、系统及存储介质

Similar Documents

Publication Publication Date Title
WO2020010602A1 (fr) Procédé et système de reconnaissance et de construction faciales basés sur une décomposition de matrice non-négative non linéaire, et support d'informations
Xue et al. Deep low-rank subspace ensemble for multi-view clustering
Zhang et al. Robust low-rank kernel multi-view subspace clustering based on the schatten p-norm and correntropy
Arora et al. Stochastic optimization for PCA and PLS
Xie et al. Implicit block diagonal low-rank representation
Li et al. Learning low-rank and discriminative dictionary for image classification
WO2020082315A2 (fr) Extraction de caractéristique non négative et procédé d'application de reconnaissance faciale, système et support d'enregistrement
CN109002794B (zh) 一种非线性非负矩阵分解人脸识别构建方法、系统及存储介质
Fang et al. Graph-based learning via auto-grouped sparse regularization and kernelized extension
WO2020118708A1 (fr) Procédé et système de reconnaissance faciale à factorisation de matrice semi-non-négative basés sur une fonction e auxiliaire, et support de stockage
CN110717519A (zh) 训练、特征提取、分类方法、设备及存储介质
Jin et al. Multiple graph regularized sparse coding and multiple hypergraph regularized sparse coding for image representation
WO2021003637A1 (fr) Système, dispositif et procédé de reconnaissance de face de factorisation matricielle non négative de noyau faisant appel à un noyau gaussien additif, et support d'informations
Ge et al. Stacked denoising extreme learning machine autoencoder based on graph embedding for feature representation
Chen et al. Semi-supervised dictionary learning with label propagation for image classification
Song et al. MPPCANet: A feedforward learning strategy for few-shot image classification
Garratt et al. Two methods for the numerical detection of Hopf bifurcations
Bernstein et al. Manifold learning in regression tasks
Zhou et al. Face recognition based on the improved MobileNet
CN111325275A (zh) 基于低秩二维局部鉴别图嵌入的鲁棒图像分类方法及装置
Wei et al. Adaptive graph convolutional subspace clustering
Zhang et al. Adaptive graph regularization discriminant nonnegative matrix factorization for data representation
Yao A compressed deep convolutional neural networks for face recognition
CN110378262B (zh) 基于加性高斯核的核非负矩阵分解人脸识别方法、装置、系统及存储介质
Ziyaden et al. Long-context transformers: A survey

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18925921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18925921

Country of ref document: EP

Kind code of ref document: A1