WO2020116367A1 - Polybutadiene and method for producing same - Google Patents

Polybutadiene and method for producing same Download PDF

Info

Publication number
WO2020116367A1
WO2020116367A1 PCT/JP2019/046938 JP2019046938W WO2020116367A1 WO 2020116367 A1 WO2020116367 A1 WO 2020116367A1 JP 2019046938 W JP2019046938 W JP 2019046938W WO 2020116367 A1 WO2020116367 A1 WO 2020116367A1
Authority
WO
WIPO (PCT)
Prior art keywords
polybutadiene
component
molecular weight
butadiene
average molecular
Prior art date
Application number
PCT/JP2019/046938
Other languages
French (fr)
Japanese (ja)
Inventor
将 山垣
恭芳 岡部
洸 神林
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018226769A external-priority patent/JP2022024204A/en
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Publication of WO2020116367A1 publication Critical patent/WO2020116367A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/70Iron group metals, platinum group metals or compounds thereof

Definitions

  • the present invention relates to polybutadiene having high linearity.
  • the present invention also relates to a method for producing highly linear polybutadiene in a high yield.
  • polybutadiene has been widely used in various fields as a thermally and mechanically excellent rubber material, but with the recent sophistication of resource and energy saving needs, polybutadiene also has durability (breaking property and resistance). Further improvement in abrasion resistance and energy loss (low loss) is required.
  • the development of a polymerization catalyst is the realization of a molecular design satisfying that the molecular structure of polybutadiene has a narrow molecular weight distribution, a small degree of branching of the molecular chain, and a high content of cis-1,4 bonds.
  • catalysts obtained from cobalt compounds, ionic compounds of non-coordinating anions and cations, and organoaluminum compounds are known (Patent Documents 1 to 5).
  • Japanese Unexamined Patent Publication No. 10-182726 JP-A-2000-17012 Japanese Patent Laid-Open No. 2000-17013 JP, 2016-148015, A JP, 2017-179117, A
  • An object of the first invention is to provide a polybutadiene having high linearity and a method for producing polybutadiene having high linearity, capable of obtaining a rubber composition having improved processability and wear resistance. To do.
  • the second invention is a method for producing a polybutadiene having a high cis-1,4 bond content in a microstructure analysis (high cis) and a high linearity and a polybutadiene having a high cis and a high linearity in a high yield.
  • the purpose is to provide.
  • a method for producing polybutadiene which comprises polymerizing 1,3-butadiene in two steps, A first polymerization step of polymerizing 1,3-butadiene using a cobalt compound (C1), a non-coordinating anion and a ionic compound (D) of a cation; A method for producing polybutadiene, comprising a second polymerization step in which the mixture obtained in the first polymerization step and a cobalt compound (C2) are mixed to polymerize 1,3-butadiene.
  • a cobalt compound C1
  • D ionic compound
  • the conversion of 1,3-butadiene at the end of the first polymerization step is 20 to 50%
  • the ratio (Tcp/ML 1+4,100° C. ) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.2 to 4.0, ML 1+4,100° C.
  • the stress relaxation time (T80) until the value decreases by 80% is 2.0 to 7.0 seconds
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2.40 to 4.00
  • the polybutadiene according to [6] which has a 5 wt% toluene solution viscosity (Tcp) of 100 to 300.
  • the step of polymerizing 1,3-polybutadiene When the amount of the component (B1) used is b1 mol and the amount of the component (B2) used is b2 mol, 0.10 ⁇ b2/(b1+b2) ⁇ 0.60 A method for producing polybutadiene that satisfies the above conditions.
  • the step of polymerizing the 1,3-polybutadiene is 1,3-Butadiene, water (A), non-halogenated organometallic compound (B1) of elements of Groups 1, 2, and 13 of the periodic table, and halogenation of elements of Groups 1, 2, and 13 of the periodic table
  • the non-halogenated organometallic compound (B1) is a non-halogenated organoaluminum compound
  • the halogenated organometallic compound (B2) is a halogenated organoaluminum compound [4], [5].
  • the ionic compound (D) of a nonionic anion and a cation is triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′-
  • Polybutadiene obtained by the method for producing polybutadiene according to [1] to [5] or [10] to [13].
  • the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) in terms of polystyrene by GPC is 2.0 to 2.5
  • the ratio (Tcp/ML) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.5 to 6.0
  • the cis-1,4 bond content in the microstructure analysis is 98.5 mol% or more
  • the polybutadiene according to [15] which has a Mooney viscosity (ML 1+4,100° C. ) of 30 to 100.
  • Effect of the First Invention it is possible to provide a polybutadiene having a high linearity and a method for producing a polybutadiene having a high linearity, which makes it possible to obtain a rubber composition having improved processability and abrasion resistance.
  • Effect of the Second Invention According to the second invention, a method for producing a polybutadiene having a high cis-1,4 bond content in a microstructure analysis (high cis) and a high linearity and a polybutadiene having a high cis and a high linearity in a high yield is provided. Can be provided.
  • 3 is a graph showing the relationship between the Mooney viscosity (Polymer ML) of polybutadiene and the INDEX value of the Mooney viscosity (Compound ML) of a rubber composition in the results of Examples and Comparative Examples.
  • 7 is a graph showing the relationship between the Mooney viscosity (Polymer ML) of polybutadiene and the INDEX value of tan ⁇ of the rubber composition in the results of Examples and Comparative Examples.
  • 3 is a graph showing the relationship between the Mooney viscosity (Polymer ML) of polybutadiene and the INDEX value of the Lambourn abrasion coefficient of the rubber composition in the results of Examples and Comparative Examples.
  • the first invention relates to the following.
  • a method for producing polybutadiene which comprises polymerizing 1,3-butadiene in two steps, A first polymerization step of polymerizing 1,3-butadiene using a cobalt compound (C1), a non-coordinating anion and a ionic compound (D) of a cation;
  • a method for producing polybutadiene, comprising a second polymerization step in which the mixture obtained in the first polymerization step and a cobalt compound (C2) are mixed to polymerize 1,3-butadiene.
  • the conversion of 1,3-butadiene at the end of the first polymerization step is 20 to 50%
  • the ionic compound (D) of a nonionic anion and a cation is triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′-
  • Polybutadiene obtained by the method for producing polybutadiene according to [1] to [6].
  • the ratio (Tcp/ML 1+4,100° C. ) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.2 to 4.0, ML 1+4,100° C.
  • the stress relaxation time (T80) until the value decreases by 80% is 2.0 to 7.0 seconds
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2.40 to 4.00
  • 1,3-butadiene is polymerized in two stages. More specifically, polybutadiene having high linearity is produced by the first-stage polymerization (first polymerization step), and the polybutadiene obtained in the first-polymerization step by the second-stage polymerization (second polymerization step). While maintaining the linearity of, it is branched into a comb shape. By doing so, it is possible to obtain a polybutadiene having a high linearity, which is capable of obtaining a rubber composition having improved processability and abrasion resistance.
  • the method for producing polybutadiene of the present invention comprises a first polymerization step of polymerizing 1,3-butadiene using a cobalt compound (C1), an ionic compound (D) of a non-coordinating anion and a cation, The method has a second polymerization step of mixing the mixture obtained in the first polymerization step and a cobalt compound (C2) to polymerize 1,3-butadiene.
  • the method for producing polybutadiene of the present invention further comprises a step of mixing 1,3-butadiene, water (A1), and an organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table.
  • Is preferred, and a step of mixing (I) 1,3-butadiene and an organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table, (II) First polymerization in which the mixture obtained in step (I), the cobalt compound (C1), and the ionic compound (D) of a non-coordinating anion and a cation are mixed to polymerize 1,3-butadiene Process, (III) It is preferable to have a second polymerization step in which the mixture obtained in step (II) (first polymerization step) and the cobalt compound (C2) are mixed to polymerize 1,3-butadiene.
  • the method for producing polybutadiene of the present invention comprises: (I) 1,3-butadiene in the presence of water (A1) and an organometallic compound (B1) of Group 1, 2, or 13 of the periodic table.
  • a step of mixing (II) By adding the cobalt compound (C1) and the ionic compound (D) of the non-coordinating anion and the cation to the mixture obtained in the step (I) at the same time or at intervals of less than 3 minutes.
  • Polymerizing 1,3-butadiene (III) To the mixture obtained in the step (II), water (A2), an organometallic compound (B2) of Group 1, 2, and 13 elements of the periodic table, and a cobalt compound (C2) are added. Therefore, it is preferable to have a step of polymerizing 1,3-butadiene.
  • the elements of Groups 1, 2, and 13 of the Periodic Table are elements of Groups I to III of the Periodic Table in the old IUPAC.
  • First polymerization step In the present invention, first, water (A1), an organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table, a cobalt compound (C1), and an ionic compound (D) of a non-coordinating anion and a cation.
  • Polybutadiene having high linearity can be produced by polymerizing 1,3-butadiene with a catalyst containing
  • water As the water as the component (A1), ion-exchanged water or pure water can be used.
  • Component (B1) Organometallic compound of Group 1, 2 and 13 elements of the periodic table
  • the halogenated organometallic compound (B1b) of Group 1, 2, and 13 elements of the table can be used, but it is preferable to use the component (B1a) and the component (B1b) together. By doing so, the yield of polybutadiene can be significantly improved, and the linearity of the polybutadiene obtained can be increased.
  • non-halogenated organometallic compound of Group 1, 2 and 13 elements of the periodic table of the component (B1a) As the non-halogenated organometallic compound of Group 1, 2 and 13 elements of the periodic table of the component (B1a), non-halogenated organolithium compounds, non-halogenated organomagnesium compounds, non-halogenated organoaluminum compounds and the like are used. .. Of these, non-halogenated organoaluminum compounds are preferable.
  • non-halogenated organoaluminum compound trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, tridecylaluminum; diethylaluminum hydride, diisobutylaluminum hydride, sesquiethylaluminum hydride, etc. Alkyl aluminum hydride is mentioned.
  • the non-halogenated organometallic compounds of the elements of Groups 1, 2, and 13 of the Periodic Table may be used alone or in combination of two or more.
  • a halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table of the component (B1b) As the halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table of the component (B1b), a halogenated organolithium compound, a halogenated organomagnesium compound, a halogenated organoaluminum compound, or the like is used. Of these, halogenated organoaluminum compounds are preferable.
  • halogenated organoaluminum compound examples include dialkyl aluminum chlorides such as dimethyl aluminum chloride and diethyl aluminum chloride; dialkyl aluminum bromides such as dimethyl aluminum bromide and diethyl aluminum bromide; alkyl aluminum sesquichlorides such as methyl aluminum sesquichloride and ethyl aluminum sesquichloride; Examples thereof include alkylaluminum sesquibromide and methylaluminum sesquibromide.
  • the halogenated organometallic compounds of Group 1, 2, and 13 elements of the periodic table may be used alone or in combination of two or more.
  • b1 b /(b1 a +b1 b ) is preferably 0.14 or more, more preferably 0.17 or more, still more preferably 0.20 or more.
  • b1 b /(b1 a +b1 b ) is preferably 0.50 or less, more preferably 0.40 or less, and further preferably 0.30 or more.
  • a salt or complex of cobalt is preferably used.
  • Examples thereof include ester cobalt, organic base complexes such as cobalt pyridine complex and picoline complex, and cobalt ethyl alcohol complex.
  • the cobalt compounds may be used alone or in combination of two or more.
  • Component (D) ionic compound of non-coordinating anion and cation
  • the non-coordinating anion constituting the ionic compound of the non-coordinating anion and the cation of the component (D) include tetra(phenyl)borate, tetra(fluorophenyl)borate, tetrakis(difluorophenyl)borate, Tetrakis(trifluorophenyl)borate, Tetrakis(tetrafluorophenyl)borate, Tetrakis(pentafluorophenyl)borate, Tetrakis(tetrafluoromethylphenyl)borate, Tetrakis(3,5-bistrifluoromethylphenyl)borate, Tetra(toluyl) Examples thereof include borate, tetra(xylyl)borate, (triphenyl, pentafluorophenyl)borate, [tris(pentafluorophenyl),
  • the cation constituting the ionic compound of the non-coordinating anion and the cation of the component (D) has a carbenium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a transition metal.
  • Examples thereof include ferrocenium cation.
  • carbenium cation examples include trisubstituted carbenium cations such as triphenyl carbenium cation and tri-substituted phenyl carbenium cation.
  • tri-substituted phenylcarbenium cation examples include a tri(methylphenyl)carbenium cation and a tri(dimethylphenyl)carbenium cation.
  • ammonium cation examples include trimethylammonium cation, triethylammonium cation, tripropylammonium cation, tributylammonium cation, tri(n-butyl)ammonium cation and other trialkylammonium cations, N,N-dimethylanilinium cations, N ,N-diethylanilinium cation, N,N-dialkylanilinium cation such as N,N-2,4,6-pentamethylanilinium cation, di(i-propyl)ammonium cation, dialkylammonium such as dicyclohexylammonium cation Examples include cations.
  • phosphonium cation examples include triarylphosphonium cations such as triphenylphosphonium cation, tri(methylphenyl)phosphonium cation, and tri(dimethylphenyl)phosphonium cation.
  • the ionic compound can be preferably used by arbitrarily selecting and combining from the non-coordinating anions and cations exemplified above.
  • the ionic compound triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, 1,1′-dimethylferrocenium tetrakis(pentafluorophenyl) Borate and the like are preferable, and consist of triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′-dimethylferrocenium tetrakis(pentafluorophenyl)borate. It is more preferable to include at least one selected from the group.
  • the ionic compounds may be used
  • the blending ratio of the components (A1) to (D) may be appropriately set according to various conditions.
  • the molar ratio of the component (C1) to the component (D) is preferably 1:0.1 to 10, more preferably 1:0.2 to 5.
  • the molar ratio of the component (C1) to the component (B1) is preferably 1:0.5 to 5000, more preferably 1:5 to 2500.
  • the molar ratio of the component (B1) to the component (A1) is preferably 1:0.01 to 2, more preferably 1:0.01 to 1.5, and further preferably 1:0.1 to 1.5. ..
  • first, 1,3-butadiene is mixed with the organometallic compound (B1) of the elements of Groups 1, 2, and 13 of the periodic table (first mixing step).
  • first mixing step it is preferable to mix water (A1) and the organometallic compound (B1) of the elements of Groups 1, 2, and 13 of the periodic table in the presence of 1,3-butadiene.
  • second mixing step the obtained mixture, the cobalt compound (C1), and the ionic compound (D) of a non-coordinating anion and a cation are mixed (second mixing step).
  • the second mixing step it is preferable to add the cobalt compound (C1) and the ionic compound (D) of a non-coordinating anion and a cation to the obtained mixture.
  • the cobalt compound (C1) and the ionic compound (D) of a non-coordinating anion and a cation to the obtained mixture.
  • the co-catalyst for polymerizing 1,3-butadiene is formed by adding the (A1) component and the (B1) component in the presence of 1,3-butadiene.
  • the component (A1) and the component (B1) may be added simultaneously or may be added at intervals, but it is more preferable to add the component (B1) after adding the component (A1).
  • the addition order of the component (B1a) and the component (B1b) is arbitrary.
  • the aging temperature is preferably ⁇ 50 to 80° C., more preferably ⁇ 10 to 50° C.
  • the aging time is preferably 0.01 to 24 hours, more preferably 0.05 to 5 hours, and even more preferably 0.1 to 3 hours.
  • 1,3-butadiene is polymerized by adding the component (C1) and the component (D) to the mixture obtained in the first mixing step.
  • the component (C1) and the component (D) may be added at the same time. You may add at intervals.
  • a cocatalyst for polymerizing 1,3-butadiene is formed. This is because when the C1) component comes into contact, an effective and homogeneous active species is first formed.
  • the component (C1) when the component (C1) is added prior to the component (D), it is preferable to add the component (C1) and the component (D) at the same time or at intervals of less than 3 minutes, and preferably 2 minutes or less. It is more preferable to add them at intervals, and it is more preferable to add them at intervals of 1 minute or less. If an interval of 3 minutes or more is provided, an inhomogeneous active species is formed and an ultrahigh molecular weight component is produced, and it becomes difficult to obtain a polybutadiene having a desired Mw/Mn.
  • Each component can be used while being supported by an inorganic compound or an organic polymer compound.
  • solvent can be used during the polymerization of 1,3-butadiene.
  • the solvent include aromatic hydrocarbon solvents such as toluene, benzene and xylene, saturated aliphatic hydrocarbon solvents such as n-hexane, butane, heptane and pentane, alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane, 1- Olefinic hydrocarbon solvents such as C4 fractions such as butene, cis-2-butene, trans-2-butene, petroleum hydrocarbon solvents such as mineral spirits, solvent naphtha and kerosene, halogenated hydrocarbons such as methylene chloride A solvent etc. are mentioned.
  • 1,3-butadiene itself may be used as the polymerization solvent.
  • benzene, cyclohexane, a mixture of cis-2-butene and trans-2-butene, etc. are preferably used.
  • a molecular weight modifier can be used during the polymerization of 1,3-butadiene.
  • the molecular weight modifier non-conjugated dienes such as cyclooctadiene and allene, and ⁇ -olefins such as ethylene, propylene and butene-1 can be used. Cyclooctadiene is particularly preferable, and the amount thereof used is preferably 30 mmol or less, and more preferably 5 mmol or less per mol of 1,3-butadiene. If the amount of the molecular weight regulator exceeds this range, the problem of ML viscosity shift may occur.
  • the polymerization temperature is preferably in the range of -30 to 100°C, particularly preferably in the range of 30 to 80°C.
  • the polymerization time is preferably in the range of 10 minutes to 12 hours.
  • the polymerization pressure is normal pressure or pressure up to about 10 atm (gauge pressure).
  • the conversion rate of 1,3-butadiene at the end of the first polymerization step is preferably 20 to 50%. If the conversion rate is too low, the abrasion resistance of the rubber composition using the obtained polybutadiene tends to decrease, and if the conversion rate is too high, the processability of the rubber composition using the obtained polybutadiene decreases. There is a tendency.
  • the conversion rate of 1,3-butadiene at the time of completion of the first polymerization step is more preferably 25 to 48%, further preferably 30 to 41%.
  • the mixture obtained in the first polymerization step is mixed with the cobalt compound (C2) to polymerize 1,3-polybutadiene.
  • the mixture obtained in the first polymerization step, the cobalt catalyst (C2), water (A2), and the organometallic compound (B2) of the elements of Groups 1, 2, and 13 of the periodic table are mixed.
  • 1,3-polybutadiene may be polymerized.
  • a cobalt compound (C2) is added to the mixture obtained in the first polymerization step, or water (A2) and an organometallic compound of an element of Groups 1, 2 and 13 of the periodic table are added. It is preferable to add (B2) and polymerize 1,3-butadiene. By doing so, it is possible to branch in a comb shape while maintaining the linearity of the polybutadiene obtained in the first polymerization step.
  • the same water as the water (A1) used in the first polymerization step can be used.
  • the organometallic compound (B2) of the elements 1, 2 and 13 of the periodic table the same as the organometallic compound (B1) of the elements 1, 2 and 13 of the periodic table used in the first polymerization step.
  • the non-halogenated organometallic compound (B1a) of the elements of Groups 1, 2, and 13 of the Periodic Table is used as the organometallic compound of the elements of Groups 1, 2, and 13 of the Periodic Table (B2).
  • a halogenated organometallic compound (B1b) of Group 1, 2, or 13 elements of the periodic table can be used.
  • the component (B1a) may be used, only the component (B1b) may be used, or the component (B1a) and the component (B1b) may be used in combination.
  • the cobalt compound (C2) the same one as the cobalt compound (C1) used in the first polymerization step can be used.
  • the non-coordinating anion and cation ionic compound (D) used in the first polymerization step.
  • the blending ratio of the components (A2) to (C2) may be appropriately set according to various conditions.
  • the molar ratio of the component (C2) to the component (B2) is preferably 1:0.5 to 5000, more preferably 1:5 to 2500.
  • the molar ratio of the component (B2) and the component (A2) is preferably 1:0.01 to 2, more preferably 1:0.01 to 1.5, and further preferably 1:0.1 to 1.5. ..
  • the reaction mixture obtained in the first polymerization step may be mixed with the cobalt compound (C2), and further, water (A2) and the periodic table first You may mix with the organometallic compound (B2) of a 2nd, 13th group element.
  • the component (A2) and the component (B2) By adding the component (A2) and the component (B2), a new co-catalyst for polymerizing 1,3-butadiene is formed, and the co-catalyst is effective and homogeneous because the (C2) component is in contact with the co-catalyst. This is because active species are formed.
  • the components (A1) and (B1) mixed in the first polymerization step are (A2) component and (B2) component. Function as.
  • Each component can be used while being supported by an inorganic compound or an organic polymer compound.
  • the same solvent as in the first polymerization step can be used, and the same molecular weight modifier as in the first polymerization step can be used.
  • the polymerization temperature, the polymerization time, and the polymerization pressure can be the same as in the first polymerization step.
  • the final conversion rate of 1,3-butadiene at the time of completion of the second polymerization step is preferably 75% or less, and more preferably less than 75%. If the final conversion rate is too high, the abrasion resistance of the obtained polybutadiene tends to decrease, and if the final conversion rate is too low, the processability of the obtained polybutadiene tends to decrease.
  • the final conversion rate of 1,3-butadiene at the time of completion of the second polymerization step is more preferably 50 to 73%, particularly preferably 53 to 70%.
  • the polybutadiene according to the present invention which is preferably obtained by the above production method, satisfies the following conditions.
  • the Mooney viscosity (ML 1+4,100° C. ) is 43-80 .
  • the Mooney viscosity (ML 1+4,100° C. ) is 43 or more, abrasion resistance is further improved.
  • the Mooney viscosity (ML 1+4,100° C. ) is 80 or less, the workability is further improved.
  • the Mooney viscosity (ML 1+4,100° C. ) is more preferably 45 to 75, further preferably 48 to 73, and particularly preferably 50 to 70.
  • the Mooney viscosity (ML 1+4,100° C. ) can be measured by the method described in Examples below.
  • the polybutadiene according to the present invention preferably has a 5 wt% toluene solution viscosity (Tcp) of 100 to 300. If the 5 wt% toluene solution viscosity (Tcp) is 100 or more, the abrasion resistance is further improved. On the other hand, if the 5 wt% toluene solution viscosity (Tcp) is 300 or less, the workability is further improved.
  • the 5 wt% toluene solution viscosity (Tcp) is more preferably 120 to 270, further preferably 130 to 210.
  • the 5 wt% toluene solution viscosity (Tcp) can be measured by the method described in Examples below.
  • the ratio (Tcp/ML) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.2 to 4.0.
  • Tcp/ML is an index of the degree of branching (linearity).
  • Tcp/ML is 2.2 or more, the degree of branching is low (high linearity), and the low loss property and the wear resistance are further improved.
  • Tcp/ML is 4.0 or less, cold flow caused by a high degree of branching (low linearity) can be suppressed, and the storage stability of the product is further improved.
  • the Tcp/ML is more preferably 2.4 to 3.7, further preferably 2.6 to 3.1.
  • the stress relaxation time (T80) until the value is attenuated by 80% is 2.0 to 7.0 seconds. is there.
  • T80 is 2.0 seconds or more, the retention of the shear stress due to the entanglement of rubber molecules becomes sufficient, and a good filler dispersion state is easily obtained.
  • T80 is 7.0 seconds or less, the residual stress at the time of molding is reduced, so that the dimensional stability is excellent and the workability is further improved.
  • the stress relaxation time (T80) is more preferably 2.3 to 6.0 seconds, further preferably 2.5 to 5.3 seconds.
  • the stress relaxation time (T80) can be measured by the method described in Examples below.
  • the transition of the stress relaxation of rubber is determined by the combination of the elastic component and the viscous component. Slow stress relaxation indicates that there are many elastic components, and fast stress relaxation indicates that there are many viscous components.
  • the number average molecular weight (Mn) is preferably 15.0 ⁇ 10 4 to 30.0 ⁇ 10 4 .
  • the number average molecular weight (Mn) is more preferably 16.0 ⁇ 10 4 to 27.0 ⁇ 10 4 , and further preferably 17.0 ⁇ 10 4 to 25.0 ⁇ 10 4 .
  • the number average molecular weight (Mn) can be measured by the method described in Examples below.
  • the weight average molecular weight (Mw) is preferably 40.0 ⁇ 10 4 to 75.0 ⁇ 10 4 .
  • the weight average molecular weight (Mw) is 40.0 ⁇ 10 4 or more, abrasion resistance is further improved.
  • the weight average molecular weight (Mw) is 75.0 ⁇ 10 4 or less, workability is further improved.
  • the weight average molecular weight (Mw) is more preferably 45.0 ⁇ 10 4 to 70.0 ⁇ 10 4 , and further preferably 50.0 ⁇ 10 4 to 65.0 ⁇ 10 4 .
  • the weight average molecular weight (Mw) can be measured by the method described in Examples below.
  • the ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2.40 to 4.00. If Mw/Mn is 2.40 or more, workability is further improved. On the other hand, when Mw/Mn is 4.00 or less, wear resistance is further improved.
  • the molecular weight distribution (Mw/Mn) is more preferably 2.40 to 3.50, further preferably 2.50 to 3.20.
  • the z-average molecular weight (Mz) is preferably 100.0 ⁇ 10 4 to 180.0 ⁇ 10 4 .
  • the z-average molecular weight (Mz) is 100.0 ⁇ 10 4 or more, abrasion resistance is further improved.
  • the z-average molecular weight (Mz) is 180.0 ⁇ 10 4 or less, the workability is further improved.
  • the z-average molecular weight (Mz) is more preferably 110.0 ⁇ 10 4 to 170.0 ⁇ 10 4 , and further preferably 114.0 ⁇ 10 4 to 160.0 ⁇ 10 4 .
  • the z-average molecular weight (Mz) can be measured by the method described in Examples below.
  • the ratio (Mz/Mw) of the z average molecular weight (Mz) and the weight average molecular weight (Mw) is 1.80 to 3.00. If Mz/Mw is 1.80 or more, workability is further improved. On the other hand, when Mz/Mw is 3.00 or less, wear resistance is further improved.
  • the Mz/Mw is more preferably 1.90 to 2.70, further preferably 2.00 to 2.60.
  • the proportion of 1,4-cis structure in microstructure analysis is preferably 95.0% or more.
  • the ratio of the 1,4-cis structure is preferably 97.0% or more, more preferably 98.0% or more.
  • the ratio of 1,4-cis structure is usually 99.0% or less.
  • the proportion of the 1,4-trans structure in the microstructure analysis is preferably 1.5% or less, more preferably 1.0% or less.
  • the ratio of 1,4-trans structure is usually 0.5% or more.
  • the ratio of the 1,2-vinyl structure in the microstructure analysis is preferably 1.5% or less, more preferably 1.2% or less.
  • the proportion of 1,2-vinyl structure is usually 0.5% or more.
  • the proportions of the 1,4-cis structure, the 1,4-trans structure and the 1,2-vinyl structure in the microstructure analysis can be measured by the method described in Examples below.
  • the polybutadiene according to the present invention has a ratio (Tcp/ML 1+4,100° C. ) of 5 wt% toluene solution viscosity (Tcp) to Mooney viscosity (ML 1+4,100° C. ) and a stress relaxation time (T80).
  • Tcp weight average molecular weight
  • Mw/Mn number average molecular weight
  • Mz z average molecular weight
  • the polybutadiene of the present invention may or may not be modified with disulfur dichloride, monosulfur monochloride, other sulfur compounds, organic peroxides, t-butyl chloride, or the like.
  • the rubber composition contains the polybutadiene obtained by the production method or the polybutadiene.
  • a rubber composition can be obtained by mixing the polybutadiene according to the present invention with other components.
  • the rubber composition contains the polybutadiene according to the present invention.
  • the polybutadiene according to the present invention is oil-extended with a process oil if necessary, and then a reinforcing agent such as carbon black or silica, a process oil, an antioxidant, It is vulcanized by adding vulcanizing agents, vulcanization aids, and other compounding agents, such as industrial products such as tires, anti-vibration rubbers, belts, hoses, and seismic isolation rubbers, and footwear such as men's shoes, women's shoes and sports shoes Used for various rubber applications. In that case, it is preferable that the rubber component contains at least 10% by weight of the polybutadiene according to the present invention.
  • a vulcanizable rubber is preferable, and specifically, ethylene propylene diene rubber (EPDM), nitrile rubber (NBR), butyl rubber (IIR), chloroprene rubber (CR), Examples thereof include polyisoprene, high cis polybutadiene rubber, low cis polybutadiene rubber (BR), styrene-butadiene rubber (SBR), butyl rubber, chlorinated butyl rubber, brominated butyl rubber and acrylonitrile-butadiene rubber. Derivatives of these rubbers, for example, polybutadiene modified with a tin compound, rubber modified with epoxy, silane, or maleic acid can also be used. Other synthetic rubbers may be used alone or in combination of two or more.
  • carbon black As the reinforcing agent, carbon black, silica, activated calcium carbonate, inorganic reinforcing agents such as ultrafine magnesium silicate, syndiotactic 1.2 polybutadiene resin, polyethylene resin, polypropylene resin, high styrene resin, phenol resin, lignin, modified Organic reinforcing agents such as melamine resin, coumarone indene resin, petroleum resin and the like can be mentioned. Of these, carbon black is preferable. As the carbon black, carbon black having a particle size of 90 nm or less and a dibutyl phthalate (DBP) oil absorption of 70 ml/100 g or more is preferable. As the type of carbon black, for example, FEF, FF, GPF, SAF, ISAF, SRF, HAF and the like are preferably used.
  • inorganic reinforcing agents such as ultrafine magnesium silicate, syndiotactic 1.2 polybutadiene resin, polyethylene resin, polypropy
  • the process oil may be any of aromatic, naphthenic and paraffinic.
  • Aging examples include amine/ketone-based, imidazole-based, amine-based, phenol-based, sulfur-based and phosphorus-based antioxidants.
  • vulcanizing agent known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents, and metal oxides such as magnesium oxide are used.
  • vulcanization aid known vulcanization aids such as aldehydes, ammonias, amines, guanidines, thioureas, thiazoles, thiurams, dithiocarbamates and xanthates can be used.
  • fillers include inorganic fillers such as calcium carbonate, basic magnesium carbonate, clay, Lissajous and diatomaceous earth, and organic fillers such as recycled rubber and powdered rubber.
  • the silane coupling agent which is also one of the other compounding agents, includes an organosilicon compound represented by the general formula R7 n SiX 4-n , and R7 is a vinyl group, an acyl group, an allyl group, an allyloxy group.
  • X is a hydrolyzable group selected from a chloro group, an alkoxy group, an acetoxy group, an isopropenoxy group, an amino group, and the like, and n represents an integer of 1 to 3.
  • R7 of the above silane coupling agent preferably contains a vinyl group and/or a chloro group.
  • Specific silane coupling agents include, but are not limited to, the following. Bis(3-triethoxysilylpropyl) tetrasulfide, bis(3-triethoxysilylpropyl) trisulfide, bis(3-triethoxysilylpropyl) disulfide, bis(2-triethoxysilylpropyl) tetrasulfide, bis(3 -Trimethoxysilylpropyl) tetrasulfide, bis(2-trimethoxysilylpropyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethoxysilane 3-triethoxysilylpropyl-N,N-d
  • the amount of the silane coupling agent added is preferably 0.2 to 20% by weight, more preferably 5 to 15% by weight, based on the amount of the filler. If the added amount of the silane coupling agent is less than the above range, it may cause scorch. On the other hand, if the amount exceeds the above range, the tensile properties and the elongation may decrease.
  • the above rubber composition can be obtained by kneading with a mixer such as an ordinary Banbury mixer or kneader.
  • the polybutadiene according to the present invention can also be used as a modifier for plastics such as high impact polystyrene. That is, the rubber-modified impact-resistant polystyrene resin composition containing the polybutadiene according to the present invention can be produced.
  • the rubber-modified impact-resistant polystyrene-based resin composition for example, a method of polymerizing a styrene-based monomer in the presence of a rubber-like polymer is adopted, and a bulk polymerization method or a bulk suspension polymerization method is economical. This is an advantageous method.
  • styrene-based monomer for example, styrene; alkyl-substituted styrene such as ⁇ -methylstyrene and p-methylstyrene; halogen-substituted styrene such as chlorostyrene, etc., which are conventionally known for producing rubber-modified impact-resistant polystyrene-based resin composition.
  • styrene alkyl-substituted styrene such as ⁇ -methylstyrene and p-methylstyrene
  • halogen-substituted styrene such as chlorostyrene, etc.
  • styrene is preferable.
  • the rubber-modified impact-resistant polystyrene resin composition if necessary, in addition to the rubber-like polymer, styrene-butadiene copolymer, ethylene-propylene, ethylene-vinyl acetate, acrylic rubber, etc.
  • the rubber-like polymer may be used in combination in an amount of, for example, 50% by weight or less.
  • polystyrene-based resin containing no rubber-modified polystyrene-based resin composition produced by these methods may be mixed.
  • a rubber-like polymer (1 to 25% by weight) is dissolved in a styrene monomer (99 to 75% by weight), and in some cases, a solvent, a molecular weight modifier, a polymerization initiator, etc. Is added to convert the rubbery polymer to particles dispersed in a styrene monomer conversion of 10 to 40%.
  • the rubber phase forms a continuous phase until the rubber particles are generated.
  • phase conversion particle forming step
  • a dispersed phase as rubber particles to polymerize up to a conversion rate of 50 to 99% to produce a rubber-modified impact-resistant polystyrene resin composition.
  • Dispersed particles of rubber-like polymer are particles dispersed in a resin and consist of a rubber-like polymer and a polystyrene resin.
  • the polystyrene-based resin may or may not be graft-bonded to the rubber-like polymer. It is stored.
  • the diameter of the dispersed particles of the rubber-like polymer referred to in the present invention is preferably 0.5 to 7.0 ⁇ m (preferably 1.0 to 3.0 ⁇ m).
  • a graft ratio in the range of 150 to 350 can be suitably manufactured.
  • the production may be batch type or continuous type, and is not particularly limited.
  • the raw material solution mainly composed of the styrene-based monomer and the rubber-like polymer is polymerized in the complete mixing type reactor, but as the complete mixing type reactor, the raw material solution maintains a uniform mixed state in the reactor.
  • Any one may be used, and preferable examples include a stirring blade of a type such as a helical ribbon, a double helical ribbon, and an anchor. It is preferable to attach a draft tube to the helical ribbon type stirring blade to further strengthen the vertical circulation in the reactor.
  • the rubber-modified impact-resistant polystyrene-based resin composition may include an antioxidant, a stabilizer such as an ultraviolet absorber, a release agent, a lubricant, a colorant, various fillers, and various fillers as needed during or after the production.
  • Known additives such as plasticizers, higher fatty acids, organic polysiloxanes, silicone oils, flame retardants, antistatic agents and foaming agents may be added.
  • the rubber-modified impact-resistant polystyrene-based resin composition can be used for various known molded products, but it is excellent in flame resistance, impact resistance, and tensile strength, and therefore suitable for injection molding used in the fields of electrical and industrial applications. It is suitable.
  • a color television a radio-cassette recorder, a word processor, a typewriter, a facsimile, a VTR cassette, a housing of a housing such as a telephone, and home electric appliances/industrial applications.
  • applications such as a color television, a radio-cassette recorder, a word processor, a typewriter, a facsimile, a VTR cassette, a housing of a housing such as a telephone, and home electric appliances/industrial applications.
  • the second invention relates to the following. .. [1] A non-halogenated organometallic compound (B1) of the elements of Groups 1, 2, and 13 of the periodic table and a halogenated organometallic compound (B2) of the elements of Groups 1, 2, and 13 of the periodic table are used in combination.
  • the step of polymerizing 1,3-polybutadiene When the amount of the component (B1) used is b1 mol and the amount of the component (B2) used is b2 mol, 0.10 ⁇ b2/(b1+b2) ⁇ 0.60 A method for producing polybutadiene that satisfies the above conditions.
  • the step of polymerizing the 1,3-polybutadiene is 1,3-Butadiene, water (A), non-halogenated organometallic compound (B1) of elements of Groups 1, 2, and 13 of the periodic table, and halogenation of elements of Groups 1, 2, and 13 of the periodic table
  • the non-halogenated organometallic compound (B1) is a non-halogenated organoaluminum compound
  • the halogenated organometallic compound (B2) is a halogenated organoaluminum compound [1] or [2].
  • the ionic compound (D) of a nonionic anion and a cation is triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′-
  • Polybutadiene obtained by the method for producing polybutadiene according to [1] to [4].
  • the ratio of weight average molecular weight to number average molecular weight (Mw/Mn) in terms of polystyrene by GPC is 2.0 to 2.5
  • the ratio (Tcp/ML) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.5 to 6.0
  • the cis-1,4 bond content in the microstructure analysis is 98.5 mol% or more
  • Polybutadiene having a halogen content of 1 to 60 ⁇ g/g.
  • the polybutadiene according to [6] having a Mooney viscosity (ML 1+4,100° C. ) of 30 to 100.
  • ⁇ Method for producing polybutadiene> water (A), an organometallic compound (B) of the elements of Groups 1, 2, and 13 of the periodic table, a cobalt compound (C), and an ionic compound (D) of a non-coordinating anion and a cation are included.
  • Polybutadiene can be produced by polymerizing 1,3-butadiene with a catalyst.
  • the method for producing polybutadiene of the present invention comprises the steps of polymerizing 1,3-polybutadiene, A non-halogenated organometallic compound of the elements of Groups 1, 2 and 13 of the periodic table (B1) and a halogenated organometallic compound of the elements of Groups 1, 2 and 13 of the periodic table (B2) are used in combination,
  • B1 non-halogenated organometallic compound of the elements of Groups 1, 2 and 13 of the periodic table
  • B2 a halogenated organometallic compound of the elements of Groups 1, 2 and 13 of the periodic table
  • the step of polymerizing the 1,3-polybutadiene is carried out in the presence of 1,3-butadiene, with water (A) and an element of Group 1, 2, or 13 of the periodic table.
  • the elements of Groups 1, 2, and 13 of the Periodic Table are elements of Groups I to III of the Periodic Table in the old IUPAC.
  • ((A) component water
  • component (A) water ion-exchanged water or pure water can be used.
  • the non-halogenated organometallic compound (B1) of the elements of Groups 1, 2, and 13 of the periodic table is used as the organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table of the component (B), and A halogenated organometallic compound (B2) of Group 1, 2 and 13 elements of the Periodic Table is used in combination.
  • Component (B1) Non-halogenated organometallic compound of Group 1, 2 and 13 elements of the periodic table
  • non-halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table of the component (B1) non-halogenated organolithium compounds, non-halogenated organomagnesium compounds, non-halogenated organoaluminum compounds, etc. are used. .. Of these, non-halogenated organoaluminum compounds are preferable.
  • non-halogenated organoaluminum compound trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, tridecylaluminum; diethylaluminum hydride, diisobutylaluminum hydride, sesquiethylaluminum hydride, etc. Alkyl aluminum hydride is mentioned.
  • the non-halogenated organometallic compounds of the elements of Groups 1, 2, and 13 of the Periodic Table may be used alone or in combination of two or more.
  • Component (B2) Halogenated organometallic compound of Group 1, 2 and 13 elements of the periodic table
  • a halogenated organolithium compound, a halogenated organomagnesium compound, a halogenated organoaluminum compound or the like is used as the halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table of the component (B2).
  • halogenated organoaluminum compounds are preferable.
  • halogenated organoaluminum compound examples include dialkyl aluminum chlorides such as dimethyl aluminum chloride and diethyl aluminum chloride; dialkyl aluminum bromides such as dimethyl aluminum bromide and diethyl aluminum bromide; alkyl aluminum sesquichlorides such as methyl aluminum sesquichloride and ethyl aluminum sesquichloride; Examples thereof include alkylaluminum sesquibromide and methylaluminum sesquibromide.
  • the halogenated organometallic compounds of Group 1, 2, and 13 elements of the periodic table may be used alone or in combination of two or more.
  • a cobalt salt or complex is preferably used as the cobalt compound as the component (C). Particularly preferred are cobalt chloride, cobalt bromide, cobalt nitrate, cobalt octylate, cobalt naphthenate, cobalt acetate, cobalt malonate and other cobalt salts, cobalt bisacetylacetonate and trisacetylacetonate, ethyl acetoacetate. Examples thereof include ester cobalt, organic base complexes such as cobalt pyridine complex and picoline complex, and cobalt ethyl alcohol complex.
  • the cobalt compounds may be used alone or in combination of two or more.
  • Component (D) ionic compound of non-coordinating anion and cation
  • the non-coordinating anion constituting the ionic compound of the non-coordinating anion and the cation of the component (D) include tetra(phenyl)borate, tetra(fluorophenyl)borate, tetrakis(difluorophenyl)borate, Tetrakis(trifluorophenyl)borate, Tetrakis(tetrafluorophenyl)borate, Tetrakis(pentafluorophenyl)borate, Tetrakis(tetrafluoromethylphenyl)borate, Tetrakis(3,5-bistrifluoromethylphenyl)borate, Tetra(toluyl) Examples thereof include borate, tetra(xylyl)borate, (triphenyl, pentafluorophenyl)borate, [tris(pentafluorophenyl),
  • the cation constituting the ionic compound of the non-coordinating anion and the cation of the component (D) has a carbenium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a transition metal.
  • Examples thereof include ferrocenium cation.
  • carbenium cation examples include trisubstituted carbenium cations such as triphenyl carbenium cation and tri-substituted phenyl carbenium cation.
  • tri-substituted phenylcarbenium cation examples include a tri(methylphenyl)carbenium cation and a tri(dimethylphenyl)carbenium cation.
  • ammonium cation examples include trimethylammonium cation, triethylammonium cation, tripropylammonium cation, tributylammonium cation, tri(n-butyl)ammonium cation and other trialkylammonium cations, N,N-dimethylanilinium cations, N ,N-diethylanilinium cation, N,N-dialkylanilinium cation such as N,N-2,4,6-pentamethylanilinium cation, di(i-propyl)ammonium cation, dialkylammonium such as dicyclohexylammonium cation Examples include cations.
  • phosphonium cation examples include triarylphosphonium cations such as triphenylphosphonium cation, tri(methylphenyl)phosphonium cation, and tri(dimethylphenyl)phosphonium cation.
  • the ionic compound can be preferably used by arbitrarily selecting and combining from the non-coordinating anions and cations exemplified above.
  • the ionic compound triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, 1,1′-dimethylferrocenium tetrakis(pentafluorophenyl) Borate and the like are preferable, and consist of triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′-dimethylferrocenium tetrakis(pentafluorophenyl)borate. It is more preferable to include at least one selected from the group.
  • the ionic compounds may be used
  • the blending ratio of the component (B1) and the component (B2) is 0.10 ⁇ b2/(b1+b2) ⁇ when the amount of the component (B1) used is b1 mol and the amount of the component (B2) used is b2 mol. It is important to satisfy 0.60. If the blending ratio of the component (B1) is too low, the yield of polybutadiene will be low, and if the blending ratio of the component (B2) is too high, the linearity of the polybutadiene obtained will be low. The yield of polybutadiene can be significantly improved, and the linearity of the polybutadiene obtained can be increased.
  • b2/(b1+b2) is preferably 0.14 or more, more preferably 0.17 or more, still more preferably 0.20 or more.
  • 0.50 or less is preferable, 0.40 or less is more preferable, and 0.30 or more is further preferable.
  • the mixing ratios of the components (A) to (D) may be appropriately set according to various conditions.
  • the molar ratio of the component (C) to the component (D) is preferably 1:0.1 to 10, more preferably 1:0.2 to 5.
  • the molar ratio of the component (C) to the component (B) is preferably 1:0.5 to 5000, more preferably 1:5 to 2500.
  • the molar ratio of the component (B) to the component (A) is preferably 1:0.01 to 2, more preferably 1:0.01 to 1.5, and further preferably 1:0.1 to 1.5. ..
  • the obtained mixture, the cobalt compound (C), and the ionic compound (D) of a non-coordinating anion and a cation are mixed (second step).
  • the second step it is preferable to add the cobalt compound (C) and the ionic compound (D) of a non-coordinating anion and a cation to the obtained mixture.
  • a cocatalyst is formed.
  • the component (A) and the component (B) may be added simultaneously or at intervals, but it is more preferable to add the component (B) after adding the component (A).
  • the order of adding the component (B1) and the component (B2) is arbitrary.
  • the aging temperature is preferably ⁇ 50 to 80° C., more preferably ⁇ 10 to 50° C.
  • the aging time is preferably 0.01 to 24 hours, more preferably 0.05 to 5 hours, and even more preferably 0.1 to 3 hours.
  • the mixture obtained in the first step, the component (C) and the component (D) are mixed to polymerize 1,3-butadiene.
  • the component (C) and the component (D) may be added at the same time or at intervals.
  • a cocatalyst for polymerizing 1,3-butadiene is formed. This is because the contact of the components first forms an effective and homogeneous active species.
  • the component (C) when the component (C) is added before the component (D), it is preferable to add the component (C) and the component (D) at the same time or at intervals of less than 3 minutes, preferably 2 minutes or less. It is more preferable to add at intervals, and it is more preferable to add at intervals of 1 minute or less. If an interval of 3 minutes or more is provided, an inhomogeneous active species is formed and an ultrahigh molecular weight component is produced, and it becomes difficult to obtain a polybutadiene having a desired Mw/Mn.
  • Each component can be used while being supported by an inorganic compound or an organic polymer compound.
  • solvent can be used during the polymerization of 1,3-butadiene.
  • the solvent include aromatic hydrocarbon solvents such as toluene, benzene and xylene, saturated aliphatic hydrocarbon solvents such as n-hexane, butane, heptane and pentane, alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane, 1- Olefinic hydrocarbon solvents such as C4 fractions such as butene, cis-2-butene, trans-2-butene, petroleum hydrocarbon solvents such as mineral spirits, solvent naphtha and kerosene, halogenated hydrocarbons such as methylene chloride A solvent etc. are mentioned.
  • 1,3-butadiene itself may be used as the polymerization solvent.
  • benzene, cyclohexane, a mixture of cis-2-butene and trans-2-butene, etc. are preferably used.
  • a molecular weight modifier can be used during the polymerization of 1,3-butadiene.
  • the molecular weight modifier non-conjugated dienes such as cyclooctadiene and allene, and ⁇ -olefins such as ethylene, propylene and butene-1 can be used. Cyclooctadiene is particularly preferable, and the amount thereof used is preferably 30 mmol or less, and more preferably 5 mmol or less per mol of 1,3-butadiene. If the amount of the molecular weight regulator exceeds this range, the problem of ML viscosity shift may occur.
  • the polymerization temperature is preferably in the range of -30 to 100°C, particularly preferably in the range of 30 to 80°C.
  • the polymerization time is preferably in the range of 10 minutes to 12 hours.
  • the polymerization pressure is normal pressure or pressure up to about 10 atm (gauge pressure).
  • the polybutadiene according to the present invention obtained by the above production method has a ratio (Mw/Mn) of weight average molecular weight to number average molecular weight of 2.0 to 2.5 in terms of polystyrene by GPC.
  • the ratio (Tcp/ML) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.5 to 6.0,
  • the cis-1,4 bond content in the microstructure analysis is 98.5 mol% or more,
  • the content of halogen is 1 to 60 ⁇ g/g.
  • Mw/Mn weight average molecular weight to number average molecular weight
  • Mw/Mn polystyrene-reduced weight average molecular weight to number average molecular weight
  • GPC gel permeation chromatography
  • the z-average molecular weight (Mz) is preferably 80.0 ⁇ 10 4 to 150.0 ⁇ 10 4 .
  • the z-average molecular weight (Mz) is 80.0 ⁇ 10 4 or more, abrasion resistance is further improved.
  • the z-average molecular weight (Mz) is 150.0 ⁇ 10 4 or less, the workability is further improved.
  • the z-average molecular weight (Mz) is more preferably 90.0 ⁇ 10 4 to 140.0 ⁇ 10 4 , and further preferably 95.0 ⁇ 10 4 to 130.0 ⁇ 10 4 .
  • the ratio (Mz/Mw) of the z average molecular weight (Mz) and the weight average molecular weight (Mw) is preferably 1.60 or more and less than 2.00.
  • Mz/Mw is 1.60 or more, workability is further improved.
  • Mz/Mw is less than 2.00, wear resistance is further improved.
  • Mz/Mw is more preferably 1.60 to 1.95, further preferably 1.70 to 1.90.
  • Tcp/ML The ratio (abbreviated as Tcp/ML) of the 5 wt% toluene solution (Tcp) to the Mooney viscosity (ML 1+4,100° C. ) is 2.5 to 6.0, preferably 3.0 to 5.5, It is more preferably 4.0 to 5.0. If Tcp/ML is too small, the degree of branching of the molecular chain increases, and wear resistance and low loss tend to decrease. Further, it may be difficult to produce Tcp/ML larger than the above range under the condition of obtaining a desired Mw/Mn.
  • the Mooney viscosity (ML 1+4,100° C. ) is preferably 30 to 100, more preferably 40 to 90, and further preferably 50 to 80. If the Mooney viscosity is too high, the processability tends to decrease, and if the Mooney viscosity is too low, the abrasion resistance and low loss property tend to decrease.
  • the 1,4-cis bond content in the microstructure analysis is 98.5 mol% or more.
  • the wear resistance is further improved.
  • the halogen content is 1 to 60 ⁇ g/g, preferably 5 to 55 ⁇ g/g, more preferably 7 to 50 ⁇ g/g, and further preferably 10 to 45 ⁇ g/g.
  • the rubber composition contains the polybutadiene obtained by the production method or the polybutadiene. Since the embodiment of the rubber composition is the same as the embodiment described in the section of the rubber composition of ⁇ polybutadiene (1)>>, the description thereof will be omitted.
  • Mooney viscosity (ML 1+4,100°C ) The Mooney viscosity (ML 1+4,100° C. ) of polybutadiene was measured according to JIS K6300 using a Mooney viscometer (trade name: SMV-200) manufactured by Shimadzu Corporation for 1 minute at 100° C. and then measured for 4 minutes. ..
  • Viscosity of 5 wt% toluene solution (Tcp) The viscosity (Tcp) of a 5 wt% toluene solution of polybutadiene was measured by dissolving 2.28 g of the polymer in 50 ml of toluene and then measuring the viscosity of a Canon Fenske viscometer No. 400 was used and measured at 25°C. A standard solution for calibrating viscometer (JIS Z8809) was used as the standard solution.
  • Stress relaxation time (T80) The stress relaxation time (T80) of polybutadiene was calculated by the stress relaxation measurement according to ASTM D1646-7. Specifically, under the measurement conditions of ML 1+4 , 100° C. at 100° C. measured according to JIS K6300, the torque when the rotor is stopped (0 seconds) after 4 minutes of measurement is 100%, and the value is 80%. The time (unit: second) until relaxation (that is, until it attenuated to 20%) was measured as stress relaxation time T80.
  • the z-average molecular weight (Mz), weight-average molecular weight (Mw), number average molecular weight (Mn) of polybutadiene were obtained by gel permeation chromatography (GPC, manufactured by Tosoh Corp.) at a temperature of 40° C. using tetrahydrofuran as a solvent. It was calculated from a molecular weight distribution curve using a calibration curve prepared using standard polystyrene as a standard substance. Note that two KF-805L (trade name) manufactured by Shodex were connected in series to the column, and a suggestive refractometer (RI) was used as a detector.
  • GPC gel permeation chromatography
  • Example 1A The inside of an autoclave having an internal capacity of 1.5 L was replaced with nitrogen, 550 ml of dehydrated cyclohexane and 350 ml of butadiene were charged, and the butadiene concentration in the mixed solution was set to 4.4M.
  • the temperature of the obtained mixed solution was set to 65° C., (A2) component: 14.0 ⁇ l of water (0.86 mM) and (B2) component: diethylaluminum chloride (DEAC) 1.51 mmol (1.68 mM) were added, The mixture was stirred at 500 rpm for 2 minutes. The temperature was lowered to 60° C., 2.25 ml (10 ⁇ M) of a cyclohexane solution (4 mM) of component (C2): cobalt octenoate (Co(Oct) 2 ) was added, and polymerization was performed at 60° C. for 5 minutes (second polymerization step). ). The conversion rate of 1,3-butadiene at the time when the second polymerization step was completed was 65.4%.
  • Example 2A The amount of cyclooctadiene (COD) added in the first polymerization step was 1.0 ml (9.0 mM), and the amount of component (A2):water added in the second polymerization step was 6.0 ⁇ l (0.37 mM).
  • component (B2): diethylaluminum chloride (DEAC) added in the second polymerization step was 0.68 mmol (0.75 mM)
  • component (C2) added in the second polymerization step cobalt octenoate (Co Polybutadiene was obtained in the same manner as in Example 1A, except that the amount of the (Oct) 2 ) cyclohexane solution (4 mM) was 1.35 ml (6 ⁇ M).
  • Table 1 shows the monomer conversion rate after each step and the physical properties of the obtained polybutadiene.
  • Example 3A The amount of cyclooctadiene (COD) added in the first polymerization step was 0.88 ml (7.9 mM), and the amount of component (A2):water added in the second polymerization step was 10.0 ⁇ l (0.62 mM).
  • component (B2): diethylaluminum chloride (DEAC) added in the second polymerization step was 1.13 mmol (1.25 mM)
  • component (C2) added in the second polymerization step cobalt octenoate (Co Polybutadiene was obtained in the same manner as in Example 1A, except that the amount of the (Oct) 2 ) cyclohexane solution (12 mM) was 1.05 ml (14 ⁇ M).
  • Table 1 shows the monomer conversion rate after each step and the physical properties of the obtained polybutadiene.
  • Example 4A The inside of an autoclave having an internal volume of 1.5 L was replaced with nitrogen, 450 ml of dehydrated cyclohexane and 450 ml of butadiene were charged, and the butadiene concentration in the mixed solution was adjusted to 5.3M.
  • component (B2) diethylaluminum chloride (DEAC) 0.54 mmol (0.60 mM) was added, and the mixture was stirred at 500 rpm for 2 minutes.
  • component (C2): cobalt octenoate (Co(Oct) 2) was added, and polymerization was performed at 60° C. for 20 minutes (second polymerization step).
  • the conversion rate of 1,3-butadiene at the time when the second polymerization step was completed was 42.6%.
  • Example 5A The inside of an autoclave having an internal volume of 1.5 L was replaced with nitrogen, 450 ml of dehydrated cyclohexane and 450 ml of butadiene were charged, and the butadiene concentration in the mixed solution was adjusted to 5.3M.
  • the temperature of the obtained mixed solution was set to 60° C., 1.35 ml (6 ⁇ M) of a cyclohexane solution (4 mM) of component (C2): cobalt octenoate (Co(Oct) 2 ) was added, and polymerization was performed at 60° C. for 20 minutes. (Second polymerization step).
  • the conversion rate of 1,3-butadiene at the end of the second polymerization step was 50.3%.
  • the first polymerization step was carried out in the same manner as in Example 1A except that the polymerization time was 20 minutes. Then, 1.5 ml of an ethanol solution of an antioxidant was added to the obtained mixed solution to terminate the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour. Table 1 shows the monomer conversion rate after the first polymerization step and the physical properties of the obtained polybutanediene.
  • the first polymerization step was carried out in the same manner as in Example 2A except that the polymerization time was 20 minutes. Then, 1.5 ml of an ethanol solution of an antioxidant was added to the obtained mixed solution to terminate the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour. Table 1 shows the monomer conversion rate after the first polymerization step and the physical properties of the obtained polybutanediene.
  • the first polymerization step was carried out in the same manner as in Example 3A except that the polymerization time was 20 minutes. Then, 1.5 ml of an ethanol solution of an antioxidant was added to the obtained mixed solution to terminate the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour. Table 1 shows the monomer conversion rate after the first polymerization step and the physical properties of the obtained polybutanediene.
  • Table 1 shows the physical properties of commercially available polybutadiene (trade name: BR150L manufactured by Ube Industries).
  • the processability was evaluated by measuring the Mooney viscosity (ML 1+4,100° C. ) of the obtained rubber composition. Further, the obtained rubber composition was press-vulcanized at a temperature of 150° C., and tan ⁇ and Lambourn abrasion coefficient of the obtained vulcanized test piece were measured to evaluate low loss property and abrasion resistance. The results are shown in Table 2.
  • the INDEX value (workability) of the Mooney viscosity of the rubber composition with respect to the Mooney viscosity (Polymer ML) of polybutadiene, the INDEX value of tan ⁇ at 50° C. (low loss property), and the INDEX value of the Lambourn abrasion coefficient ( Graphs of (wear resistance) are shown in FIGS. 1 to 3, respectively.
  • Examples 1A to 3A in which the first polymerization step and the second polymerization step were performed based on the commercially available product (Comparative Example 1A) had lower loss property. It can be seen that the workability can be improved while maintaining the same, and the wear resistance is excellent.
  • Yield The yield of polybutadiene (Yield) was calculated by measuring the weight of the obtained polybutadiene and calculating the ratio (g/L) to the volume of the polymerization solution.
  • Mooney viscosity (ML 1+4,100°C ) The Mooney viscosity (ML 1+4,100° C. ) of polybutadiene was measured according to JIS K6300 using a Mooney viscometer (trade name: SMV-200) manufactured by Shimadzu Corporation for 1 minute at 100° C. and then measured for 4 minutes. ..
  • Viscosity of 5 wt% toluene solution (Tcp) The viscosity (Tcp) of a 5 wt% toluene solution of polybutadiene was measured by dissolving 2.28 g of the polymer in 50 ml of toluene and then measuring the viscosity of a Canon Fenske viscometer No. 400 was used and measured at 25°C. A standard solution for calibrating viscometer (JIS Z8809) was used as the standard solution.
  • the weight average molecular weight (Mw), number average molecular weight (Mn) of polybutadiene are the standard polystyrene from the molecular weight distribution curve obtained by gel permeation chromatography (GPC, manufactured by Tosoh Corporation) at a temperature of 40° C. using tetrahydrofuran as a solvent.
  • GPC gel permeation chromatography
  • RI suggestive refractometer
  • Example 1B The inside of an autoclave having an internal capacity of 1.5 L was replaced with nitrogen, 550 ml of dehydrated cyclohexane and 350 ml of butadiene were charged, and the butadiene concentration in the mixed solution was set to 4.4M.
  • Example 2B to 7B Comparative Examples 1B to 2B
  • Polybutadiene was prepared in the same manner as in Example 1B except that the concentrations of the component (A), the types and concentrations of the components (B1) and (B2), and the concentration of COD were changed as shown in Table 3.
  • the polymerization results are shown in Table 3.
  • EASC ethyl aluminum sesquichloride
  • DEC diethyl aluminum chloride
  • the polymerization conditions were set so that the Mooney viscosity (ML 1+4,100° C.
  • Example 2B the polymerization conditions were set so that the polybutadiene had a Mooney viscosity (ML 1+4,100° C. ) of about 60.
  • Example 8B The inside of an autoclave having an internal volume of 1.5 L was replaced with nitrogen, 459 ml of cyclohexane, 339 ml of butadiene and 152 ml of C4 fraction were charged, and the butadiene concentration in the mixed solution was set to 3.8M. The water content of the mixed solution was 0.18 mM.
  • component (C) cobalt octenoate (Co(Oct) 2 ) 4.0 ⁇ mol and component (D): triphenylcarbonium tetrakis(pentaflurophenyl)borate (Ph 3 CB(C 6 F 5 ) 4 ) 6.1 ⁇ mol was added at the same time and polymerized at 65° C. for 20 minutes.
  • Example 9B Polybutadiene was produced in the same manner as in Example 8B, except that the concentrations of the components (A), (B1) and (B2) were changed as described in Table 3. The polymerization results are shown in Table 4.
  • Example 8B except that the concentration of the component (A), the types and concentrations of the components (B1) and (B2), and the concentration of COD were changed as shown in Table 3 and the polymerization time was 60 minutes. A polybutadiene was produced in the same manner as in. The polymerization results are shown in Table 4.
  • the polybutadiene according to the present invention has high linearity and has an improved balance of processability, wear resistance and low loss property. Therefore, by incorporating it into a rubber composition, including a tire, a vibration-proof rubber, a belt, It can be used for hoses, seismic isolation rubbers, rubber crawlers and footwear members.

Abstract

The present invention provides: a polybutadiene having high linearity, and improved workability and abrasion resistance; and a method for producing same This polybutadiene can be advantageously produced by means of a polybutadiene production method in which 1,3-butadiene is polymerized in two stages. The method includes: a first polymerization step for polymerizing 1,3-butadiene using a cobalt compound (C1) and an ionic compound (D) comprising a non-coordinating anion and cation; and a second polymerization step for mixing the mixture obtained in the first polymerization step with a cobalt compound (C2) and polymerizing 1,3-butadiene.

Description

ポリブタジエン、及びその製造方法Polybutadiene and method for producing the same
 本発明は、リニアリティの高いポリブタジエンに関する。また、本発明は、リニアリティの高いポリブタジエンを高収率で製造する方法に関する。 The present invention relates to polybutadiene having high linearity. The present invention also relates to a method for producing highly linear polybutadiene in a high yield.
 従来、ポリブタジエンは、熱的及び機械的に優れたゴム材料として様々な分野で広く用いられているが、近年の省資源・省エネルギーニーズの高度化に伴い、ポリブタジエンにも耐久性(破壊特性や耐摩耗性)やエネルギーロス(低ロス性)の更なる改善が求められている。こうした課題を解決するために、ポリブタジエンの分子構造として、分子量分布が狭い、分子鎖の分岐度が小さい、シス1,4結合含量が多い、ことを満足する分子設計の実現が、重合触媒の開発などを通して精力的に研究開発されている。 Conventionally, polybutadiene has been widely used in various fields as a thermally and mechanically excellent rubber material, but with the recent sophistication of resource and energy saving needs, polybutadiene also has durability (breaking property and resistance). Further improvement in abrasion resistance and energy loss (low loss) is required. In order to solve these problems, the development of a polymerization catalyst is the realization of a molecular design satisfying that the molecular structure of polybutadiene has a narrow molecular weight distribution, a small degree of branching of the molecular chain, and a high content of cis-1,4 bonds. Energetic research and development through
 このような分子設計を可能とする触媒として、コバルト化合物、非配位性アニオンとカチオンとのイオン性化合物、及び有機アルミニウム化合物から得られる触媒が知られている(特許文献1~5)。 As catalysts that enable such molecular design, catalysts obtained from cobalt compounds, ionic compounds of non-coordinating anions and cations, and organoaluminum compounds are known (Patent Documents 1 to 5).
特開平10-182726号公報Japanese Unexamined Patent Publication No. 10-182726 特開2000-17012号公報JP-A-2000-17012 特開2000-17013号公報Japanese Patent Laid-Open No. 2000-17013 特開2016-148015号公報JP, 2016-148015, A 特開2017-179117号公報JP, 2017-179117, A
 特許文献1~5に記載されているような非配位性アニオンとカチオンとのイオン性化合物を用いた触媒を用いて分子鎖の分岐度が小さい(リニアリティが高い)ポリブタジエンを製造することで、低ロス性は改善されるものの、その構造ゆえにゴム組成物の粘度が高くなって加工性が低下してしまい、さらに耐摩耗性も低下してしまう。また、特許文献1~5に記載の製造方法では分岐度が小さいポリブタジエンを高収率で製造することが出来ず、得られたポリブタジエンのシス含量も低かった。 By producing a polybutadiene having a small degree of branching of the molecular chain (high linearity) by using a catalyst using an ionic compound of a non-coordinating anion and a cation as described in Patent Documents 1 to 5, Although the low loss property is improved, the viscosity of the rubber composition is increased due to the structure, the processability is deteriorated, and the wear resistance is also deteriorated. Further, according to the production methods described in Patent Documents 1 to 5, polybutadiene having a small branching degree could not be produced in a high yield, and the obtained polybutadiene had a low cis content.
1.第1の発明の課題
 第1の発明は、加工性及び耐摩耗性が改善されたゴム組成物を得ることが可能なリニアリティが高いポリブタジエン及びリニアリティが高いポリブタジエンの製造方法を提供することを目的とする。
1. An object of the first invention is to provide a polybutadiene having high linearity and a method for producing polybutadiene having high linearity, capable of obtaining a rubber composition having improved processability and wear resistance. To do.
2.第2の発明の課題
 第2の発明は、ミクロ構造分析におけるシス1,4結合含量の割合が高く(ハイシス)、リニアリティが高いポリブタジエン及びハイシスでリニアリティが高いポリブタジエンを高収率で製造する方法を提供することを目的とする。
2. The second invention is a method for producing a polybutadiene having a high cis-1,4 bond content in a microstructure analysis (high cis) and a high linearity and a polybutadiene having a high cis and a high linearity in a high yield. The purpose is to provide.
 第1の発明及び第2の発明の課題を解決するための手段は以下に関する。
[1]1,3-ブタジエンを2段階で重合する、ポリブタジエンの製造方法であって、
 コバルト化合物(C1)と非配位アニオンとカチオンのイオン性化合物(D)とを用いて、1,3-ブタジエンを重合する第一重合工程と、
 第一重合工程で得られた混合物と、コバルト化合物(C2)とを混合し、1,3-ブタジエンを重合する第二重合工程とを有する、ポリブタジエンの製造方法。
[2]1,3-ブタジエンと、水(A1)と、周期律表第1、2、13族元素の有機金属化合物(B1)とを混合する工程を更に有する、[1]のポリブタジエンの製造方法。
[3]第一重合工程が終了した時点における1,3-ブタジエンの転化率が20~50%であり、
 第二重合工程が終了した時点における1,3-ブタジエンの最終転化率が75%以下である、[1]又は[2]のポリブタジエンの製造方法。
[4]成分(B1)として、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1a)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B1b)とを用いる、[2]又は[3]のポリブタジエンの製造方法。
[5](B1a)成分の使用量をb1モルとし、(B1b)成分の使用量をb1モルとしたとき、
 0.10≦b1/(b1+b1)≦0.60
を満たす、[4]のポリブタジエンの製造方法。
[6]ムーニー粘度(ML1+4,100℃)が、43~80であり、
 5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML1+4,100℃)が、2.2~4.0であり、
 ML1+4,100℃測定終了時のトルクを100%としたとき、その値が80%減衰するまでの応力緩和時間(T80)が、2.0~7.0秒であり、
重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、2.40~4.00であり、
 z平均分子量(Mz)と数平均分子量(Mw)の比(Mz/Mw)が、1.80~3.00である、ポリブタジエン。
[7]5重量%トルエン溶液粘度(Tcp)が、100~300である、[6]のポリブタジエン。
[8]重量平均分子量(Mw)が、40.0×10~75.0×10である、[6]又は[7]のポリブタジエン。
[9]数平均分子量(Mn)が、15.0×10~30.0×10である、[6]~[8]のポリブタジエンゴム。
[10]周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを併用して、1,3-ポリブタジエンを重合する工程を有し、
 (B1)成分の使用量をb1モルとし、(B2)成分の使用量をb2モルとしたとき、
 0.10≦b2/(b1+b2)≦0.60
を満たす、ポリブタジエンの製造方法。
[11]前記1,3-ポリブタジエンを重合する工程は、
 1,3-ブタジエンと、水(A)と、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを混合する工程と、
 得られた混合物と、コバルト化合物(C)と、非配位アニオンとカチオンのイオン性化合物(D)とを混合し、1,3-ブタジエンを重合する工程と
を有する、[10]のポリブタジエンの製造方法。
[12]前記非ハロゲン化有機金属化合物(B1)が、非ハロゲン化有機アルミニウム化合物であり、前記ハロゲン化有機金属化合物(B2)が、ハロゲン化有機アルミニウム化合物である、[4]、[5]、[10]又は[11]のポリブタジエンの製造方法。
[13]非イオン性アニオンとカチオンのイオン性化合物(D)が、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート及び1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレートからなる群より選ばれる1種以上を含む、[1]~[5]又は[10]~[12]のポリブタジエンの製造方法。
[14][1]~[5]又は[10]~[13]のポリブタジエンの製造方法により得られる、ポリブタジエン。
[15]GPCによるポリスチレン換算の、重量平均分子量と数平均分子量の比(Mw/Mn)が2.0~2.5であり、
 5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML)が2.5~6.0であり、
 ミクロ構造分析におけるシス1,4結合含量が98.5モル%以上であり、
 ハロゲン含量が1~60μg/gである、ポリブタジエン。
[16]ムーニー粘度(ML1+4,100℃)が30~100である、[15]のポリブタジエン。
[17]z平均分子量(Mz)と数平均分子量(Mw)の比(Mz/Mw)が、1.60以上、2.00未満である、[15]又は[16]のポリブタジエン。
[18][6]~[9]又は[14]~[17]のポリブタジエンを含む、ゴム組成物。
[19][18]のゴム組成物を用いたタイヤ。
Means for solving the problems of the first invention and the second invention relate to the following.
[1] A method for producing polybutadiene, which comprises polymerizing 1,3-butadiene in two steps,
A first polymerization step of polymerizing 1,3-butadiene using a cobalt compound (C1), a non-coordinating anion and a ionic compound (D) of a cation;
A method for producing polybutadiene, comprising a second polymerization step in which the mixture obtained in the first polymerization step and a cobalt compound (C2) are mixed to polymerize 1,3-butadiene.
[2] Production of polybutadiene of [1], further including a step of mixing 1,3-butadiene, water (A1), and an organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table Method.
[3] The conversion of 1,3-butadiene at the end of the first polymerization step is 20 to 50%,
The method for producing polybutadiene according to [1] or [2], wherein the final conversion rate of 1,3-butadiene at the time of completion of the second polymerization step is 75% or less.
[4] As the component (B1), a non-halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table (B1a) and a halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table ( B1b) and the manufacturing method of polybutadiene of [2] or [3].
[5] (B1a) the amount of components and b1 a molar, when the b1 b molar usage (B1b) component,
0.10≦b1 b /(b1 a +b1 b )≦0.60
[4] The method for producing polybutadiene according to [4].
[6] The Mooney viscosity (ML 1+4,100° C. ) is 43 to 80,
The ratio (Tcp/ML 1+4,100° C. ) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.2 to 4.0,
ML 1+4,100° C. When the torque at the end of measurement is set to 100%, the stress relaxation time (T80) until the value decreases by 80% is 2.0 to 7.0 seconds,
The ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2.40 to 4.00,
A polybutadiene having a ratio (Mz/Mw) of z-average molecular weight (Mz) to number-average molecular weight (Mw) of 1.80 to 3.00.
[7] The polybutadiene according to [6], which has a 5 wt% toluene solution viscosity (Tcp) of 100 to 300.
[8] The polybutadiene according to [6] or [7], which has a weight average molecular weight (Mw) of 40.0×10 4 to 75.0×10 4 .
[9] The polybutadiene rubber according to [6] to [8], which has a number average molecular weight (Mn) of 15.0×10 4 to 30.0×10 4 .
[10] A non-halogenated organometallic compound (B1) of elements of Groups 1, 2, and 13 of the periodic table and a halogenated organometallic compound (B2) of elements of Groups 1, 2, and 13 of the periodic table are used in combination. The step of polymerizing 1,3-polybutadiene,
When the amount of the component (B1) used is b1 mol and the amount of the component (B2) used is b2 mol,
0.10≦b2/(b1+b2)≦0.60
A method for producing polybutadiene that satisfies the above conditions.
[11] The step of polymerizing the 1,3-polybutadiene is
1,3-Butadiene, water (A), non-halogenated organometallic compound (B1) of elements of Groups 1, 2, and 13 of the periodic table, and halogenation of elements of Groups 1, 2, and 13 of the periodic table A step of mixing with the organometallic compound (B2),
Of the polybutadiene of [10], which comprises a step of mixing the obtained mixture, a cobalt compound (C), an ionic compound (D) of a non-coordinating anion and a cation, and polymerizing 1,3-butadiene. Production method.
[12] The non-halogenated organometallic compound (B1) is a non-halogenated organoaluminum compound, and the halogenated organometallic compound (B2) is a halogenated organoaluminum compound [4], [5]. The method for producing polybutadiene according to [10] or [11].
[13] The ionic compound (D) of a nonionic anion and a cation is triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′- The method for producing polybutadiene according to [1] to [5] or [10] to [12], containing at least one member selected from the group consisting of dimethylferrocenium tetrakis(pentafluorophenyl)borate.
[14] Polybutadiene obtained by the method for producing polybutadiene according to [1] to [5] or [10] to [13].
[15] The ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) in terms of polystyrene by GPC is 2.0 to 2.5,
The ratio (Tcp/ML) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.5 to 6.0,
The cis-1,4 bond content in the microstructure analysis is 98.5 mol% or more,
Polybutadiene having a halogen content of 1 to 60 μg/g.
[16] The polybutadiene according to [15], which has a Mooney viscosity (ML 1+4,100° C. ) of 30 to 100.
[17] The polybutadiene according to [15] or [16], which has a ratio (Mz/Mw) of z average molecular weight (Mz) to number average molecular weight (Mw) of 1.60 or more and less than 2.00.
[18] A rubber composition containing the polybutadiene of [6] to [9] or [14] to [17].
[19] A tire using the rubber composition according to [18].
1.第1の発明の効果
 第1の発明により、加工性及び耐摩耗性が改善されたゴム組成物を得ることが可能なリニアリティが高いポリブタジエン及びリニアリティが高いポリブタジエンの製造方法を提供することができる。
2.第2の発明の効果
 第2の発明により、ミクロ構造分析におけるシス1,4結合含量の割合が高く(ハイシス)、リニアリティが高いポリブタジエン及びハイシスでリニアリティが高いポリブタジエンを高収率で製造する方法を提供することができる。
1. Effect of the First Invention According to the first invention, it is possible to provide a polybutadiene having a high linearity and a method for producing a polybutadiene having a high linearity, which makes it possible to obtain a rubber composition having improved processability and abrasion resistance.
2. Effect of the Second Invention According to the second invention, a method for producing a polybutadiene having a high cis-1,4 bond content in a microstructure analysis (high cis) and a high linearity and a polybutadiene having a high cis and a high linearity in a high yield is provided. Can be provided.
実施例及び比較例の結果において、ポリブタジエンのムーニー粘度(Polymer ML)とゴム組成物のムーニー粘度(Compound ML)のINDEX値との関係を示すグラフである。3 is a graph showing the relationship between the Mooney viscosity (Polymer ML) of polybutadiene and the INDEX value of the Mooney viscosity (Compound ML) of a rubber composition in the results of Examples and Comparative Examples. 実施例及び比較例の結果において、ポリブタジエンのムーニー粘度(Polymer ML)とゴム組成物のtanδのINDEX値との関係を示すグラフである。7 is a graph showing the relationship between the Mooney viscosity (Polymer ML) of polybutadiene and the INDEX value of tan δ of the rubber composition in the results of Examples and Comparative Examples. 実施例及び比較例の結果において、ポリブタジエンのムーニー粘度(Polymer ML)とゴム組成物のランボーン摩耗係数のINDEX値との関係を示すグラフである。3 is a graph showing the relationship between the Mooney viscosity (Polymer ML) of polybutadiene and the INDEX value of the Lambourn abrasion coefficient of the rubber composition in the results of Examples and Comparative Examples. 実施例及び比較例の結果に基づくb2/(b1+b2)と収率の関係を示すグラフである。It is a graph which shows the relationship of b2/(b1+b2) and the yield based on the result of an Example and a comparative example. 実施例及び比較例の結果に基づくb2/(b1+b2)とTcp/MLの関係を示すグラフである。It is a graph which shows the relationship of b2/(b1+b2) and Tcp/ML based on the result of an Example and a comparative example.
1.第1の発明《ポリブタジエン(1)》
 第1の発明は以下に関する。
[1]1,3-ブタジエンを2段階で重合する、ポリブタジエンの製造方法であって、
 コバルト化合物(C1)と非配位アニオンとカチオンのイオン性化合物(D)とを用いて、1,3-ブタジエンを重合する第一重合工程と、
 第一重合工程で得られた混合物と、コバルト化合物(C2)とを混合し、1,3-ブタジエンを重合する第二重合工程とを有する、ポリブタジエンの製造方法。
[2]1,3-ブタジエンと、水(A1)と、周期律表第1、2、13族元素の有機金属化合物(B1)とを混合する工程を更に有する、[1]のポリブタジエンの製造方法。
[3]第一重合工程が終了した時点における1,3-ブタジエンの転化率が20~50%であり、
 第二重合工程が終了した時点における1,3-ブタジエンの最終転化率が75%以下である、[1]又は[2]のポリブタジエンの製造方法。
[4]成分(B1)として、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1a)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B1b)とを用いる、[2]又は[3]のポリブタジエンの製造方法。
[5](B1a)成分の使用量をb1モルとし、(B1b)成分の使用量をb1モルとしたとき、
 0.10≦b1/(b1+b1)≦0.60
を満たす、[4]のポリブタジエンの製造方法。
[6]非イオン性アニオンとカチオンのイオン性化合物(D)が、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート及び1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレートからなる群より選ばれる1種以上を含む、[1]~[5]のポリブタジエンの製造方法。
[7][1]~[6]のポリブタジエンの製造方法により得られる、ポリブタジエン。
[8]ムーニー粘度(ML1+4,100℃)が、43~80であり、
 5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML1+4,100℃)が、2.2~4.0であり、
ML1+4,100℃測定終了時のトルクを100%としたとき、その値が80%減衰するまでの応力緩和時間(T80)が、2.0~7.0秒であり、
重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、2.40~4.00であり、
z平均分子量(Mz)と数平均分子量(Mw)の比(Mz/Mw)が、1.80~3.00である、ポリブタジエン。
[9] 5重量%トルエン溶液粘度(Tcp)が、100~300である、[8]のポリブタジエン。
[10]重量平均分子量(Mw)が、40.0×10~75.0×10である、[8]又は[9]のポリブタジエン。
[11]数平均分子量(Mn)が、15.0×10~30.0×10である、[8]~[10]のポリブタジエンゴム。
[12][7]~[11]のポリブタジエンを含む、ゴム組成物。
[13][12]のゴム組成物を用いたタイヤ。
1. First invention <<Polybutadiene (1)>>
The first invention relates to the following.
[1] A method for producing polybutadiene, which comprises polymerizing 1,3-butadiene in two steps,
A first polymerization step of polymerizing 1,3-butadiene using a cobalt compound (C1), a non-coordinating anion and a ionic compound (D) of a cation;
A method for producing polybutadiene, comprising a second polymerization step in which the mixture obtained in the first polymerization step and a cobalt compound (C2) are mixed to polymerize 1,3-butadiene.
[2] Production of polybutadiene of [1], further including a step of mixing 1,3-butadiene, water (A1), and an organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table Method.
[3] The conversion of 1,3-butadiene at the end of the first polymerization step is 20 to 50%,
The method for producing polybutadiene according to [1] or [2], wherein the final conversion rate of 1,3-butadiene at the time of completion of the second polymerization step is 75% or less.
[4] As the component (B1), a non-halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table (B1a) and a halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table ( B1b) and the manufacturing method of polybutadiene of [2] or [3].
[5] (B1a) the amount of components and b1 a molar, when the b1 b molar usage (B1b) component,
0.10≦b1 b /(b1 a +b1 b )≦0.60
[4] The method for producing polybutadiene according to [4].
[6] The ionic compound (D) of a nonionic anion and a cation is triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′- The method for producing polybutadiene according to [1] to [5], which comprises at least one member selected from the group consisting of dimethylferrocenium tetrakis(pentafluorophenyl)borate.
[7] Polybutadiene obtained by the method for producing polybutadiene according to [1] to [6].
[8] Mooney viscosity (ML 1+4,100° C. ) is 43 to 80,
The ratio (Tcp/ML 1+4,100° C. ) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.2 to 4.0,
ML 1+4,100° C. When the torque at the end of measurement is set to 100%, the stress relaxation time (T80) until the value decreases by 80% is 2.0 to 7.0 seconds,
The ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2.40 to 4.00,
A polybutadiene having a ratio (Mz/Mw) of z-average molecular weight (Mz) to number-average molecular weight (Mw) of 1.80 to 3.00.
[9] The polybutadiene according to [8], which has a 5 wt% toluene solution viscosity (Tcp) of 100 to 300.
[10] The polybutadiene according to [8] or [9], which has a weight average molecular weight (Mw) of 40.0×10 4 to 75.0×10 4 .
[11] The polybutadiene rubber according to [8] to [10], which has a number average molecular weight (Mn) of 15.0×10 4 to 30.0×10 4 .
[12] A rubber composition containing the polybutadiene of [7] to [11].
[13] A tire using the rubber composition according to [12].
 <ポリブタジエンの製造方法>
 本発明では、1,3-ブタジエンを2段階で重合する。より具体的には、第1段目の重合(第一重合工程)によりリニアリティの高いポリブタジエンを製造し、第2段目の重合(第二重合工程)により、第一重合工程で得られたポリブタジエンのリニアリティを維持しつつ、櫛形に分岐させる。こうすることで、加工性及び耐摩耗性が改善されたゴム組成物を得ることが可能なリニアリティが高いポリブタジエンを得ることができる。
 本発明のポリブタジエンの製造方法は、コバルト化合物(C1)と非配位アニオンとカチオンのイオン性化合物(D)と用いて、1,3-ブタジエンを重合する第一重合工程と、
 第一重合工程で得られた混合物と、コバルト化合物(C2)とを混合し、1,3-ブタジエンを重合する第二重合工程とを有する。
 本発明のポリブタジエンの製造方法は、更に、1,3-ブタジエンと、水(A1)と、周期律表第1、2、13族元素の有機金属化合物(B1)とを混合する工程を有することが好ましく、(I)1,3-ブタジエンと、周期律表第1、2、13族元素の有機金属化合物(B1)とを混合する工程と、
(II)工程(I)で得られた混合物と、コバルト化合物(C1)と、非配位アニオンとカチオンのイオン性化合物(D)とを混合し、1,3-ブタジエンを重合する第一重合工程と、
(III)工程(II)(第一重合工程)で得られた混合物と、コバルト化合物(C2)とを混合し、1,3-ブタジエンを重合する第二重合工程と
を有することが好ましい。
 特に、本発明のポリブタジエンの製造方法は、(I)1,3-ブタジエンの存在下に、水(A1)と、周期律表第1、2、13族元素の有機金属化合物(B1)とを混合する工程と、
(II)工程(I)で得られた混合物に、コバルト化合物(C1)と、非配位アニオンとカチオンのイオン性化合物(D)とを同時に又は3分間未満の間隔をあけて添加することで、1,3-ブタジエンを重合する工程と、
(III)工程(II)で得られた混合物に、さらに、水(A2)と、周期律表第1、2、13族元素の有機金属化合物(B2)と、コバルト化合物(C2)とを添加することで、1,3-ブタジエンを重合する工程と
を有することが好ましい。
 なお、周期律表第1、2、13族元素は、旧IUPACにおける周期律表第I~III族元素である。
<Method for producing polybutadiene>
In the present invention, 1,3-butadiene is polymerized in two stages. More specifically, polybutadiene having high linearity is produced by the first-stage polymerization (first polymerization step), and the polybutadiene obtained in the first-polymerization step by the second-stage polymerization (second polymerization step). While maintaining the linearity of, it is branched into a comb shape. By doing so, it is possible to obtain a polybutadiene having a high linearity, which is capable of obtaining a rubber composition having improved processability and abrasion resistance.
The method for producing polybutadiene of the present invention comprises a first polymerization step of polymerizing 1,3-butadiene using a cobalt compound (C1), an ionic compound (D) of a non-coordinating anion and a cation,
The method has a second polymerization step of mixing the mixture obtained in the first polymerization step and a cobalt compound (C2) to polymerize 1,3-butadiene.
The method for producing polybutadiene of the present invention further comprises a step of mixing 1,3-butadiene, water (A1), and an organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table. Is preferred, and a step of mixing (I) 1,3-butadiene and an organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table,
(II) First polymerization in which the mixture obtained in step (I), the cobalt compound (C1), and the ionic compound (D) of a non-coordinating anion and a cation are mixed to polymerize 1,3-butadiene Process,
(III) It is preferable to have a second polymerization step in which the mixture obtained in step (II) (first polymerization step) and the cobalt compound (C2) are mixed to polymerize 1,3-butadiene.
In particular, the method for producing polybutadiene of the present invention comprises: (I) 1,3-butadiene in the presence of water (A1) and an organometallic compound (B1) of Group 1, 2, or 13 of the periodic table. A step of mixing,
(II) By adding the cobalt compound (C1) and the ionic compound (D) of the non-coordinating anion and the cation to the mixture obtained in the step (I) at the same time or at intervals of less than 3 minutes. Polymerizing 1,3-butadiene,
(III) To the mixture obtained in the step (II), water (A2), an organometallic compound (B2) of Group 1, 2, and 13 elements of the periodic table, and a cobalt compound (C2) are added. Therefore, it is preferable to have a step of polymerizing 1,3-butadiene.
The elements of Groups 1, 2, and 13 of the Periodic Table are elements of Groups I to III of the Periodic Table in the old IUPAC.
 〔第一重合工程〕
 本発明では、まず、水(A1)、周期律表第1、2、13族元素の有機金属化合物(B1)、コバルト化合物(C1)、及び非配位アニオンとカチオンのイオン性化合物(D)を含む触媒により、1,3-ブタジエンを重合することで、リニアリティの高いポリブタジエンを製造することができる。
[First polymerization step]
In the present invention, first, water (A1), an organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table, a cobalt compound (C1), and an ionic compound (D) of a non-coordinating anion and a cation. Polybutadiene having high linearity can be produced by polymerizing 1,3-butadiene with a catalyst containing
 ((A1)成分:水)
 (A1)成分の水としては、イオン交換水や純水を用いることができる。
((A1) component: water)
As the water as the component (A1), ion-exchanged water or pure water can be used.
 ((B1)成分:周期律表第1、2、13族元素の有機金属化合物)
 本発明では、(B1)成分の周期律表第1、2、13族元素の有機金属化合物として、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1a)や、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B1b)を用いることができるが、(B1a)成分と(B1b)成分とを併用することが好ましい。こうすることで、ポリブタジエンの収率を大幅に向上させることができ、得られるポリブタジエンのリニアリティが高くなる。
(Component (B1): Organometallic compound of Group 1, 2 and 13 elements of the periodic table)
In the present invention, the non-halogenated organometallic compound (B1a) of the elements of Groups 1, 2, and 13 of the Periodic Table as the organometallic compound of the elements of Groups 1, 2, and 13 of the Periodic Table of the component (B1) The halogenated organometallic compound (B1b) of Group 1, 2, and 13 elements of the table can be used, but it is preferable to use the component (B1a) and the component (B1b) together. By doing so, the yield of polybutadiene can be significantly improved, and the linearity of the polybutadiene obtained can be increased.
 ((B1a)成分:周期律表第1、2、13族元素の非ハロゲン化有機金属化合物)
 (B1a)成分の周期律表第1、2、13族元素の非ハロゲン化有機金属化合物としては、非ハロゲン化有機リチウム化合物、非ハロゲン化有機マグネシウム化合物、非ハロゲン化有機アルミニウム化合物等が用いられる。中でも、非ハロゲン化有機アルミニウム化合物が好ましい。非ハロゲン化有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム等のトリアルキルアルミニウム;ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、セスキエチルアルミニウムハイドライド等のアルキルアルミニウムハイドライドが挙げられる。周期律表第1、2、13族元素の非ハロゲン化有機金属化合物は、単独で用いてもよく、二種以上組合せて用いてもよい。
(Component (B1a): Nonhalogenated Organometallic Compound of Group 1, 2 and 13 Elements of the Periodic Table)
As the non-halogenated organometallic compound of Group 1, 2 and 13 elements of the periodic table of the component (B1a), non-halogenated organolithium compounds, non-halogenated organomagnesium compounds, non-halogenated organoaluminum compounds and the like are used. .. Of these, non-halogenated organoaluminum compounds are preferable. As the non-halogenated organoaluminum compound, trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, tridecylaluminum; diethylaluminum hydride, diisobutylaluminum hydride, sesquiethylaluminum hydride, etc. Alkyl aluminum hydride is mentioned. The non-halogenated organometallic compounds of the elements of Groups 1, 2, and 13 of the Periodic Table may be used alone or in combination of two or more.
 ((B1b)成分:周期律表第1、2、13族元素のハロゲン化有機金属化合物)
 (B1b)成分の周期律表第1、2、13族元素のハロゲン化有機金属化合物としては、ハロゲン化有機リチウム化合物、ハロゲン化有機マグネシウム化合物、ハロゲン化有機アルミニウム化合物等が用いられる。中でも、ハロゲン化有機アルミニウム化合物が好ましい。ハロゲン化有機アルミニウム化合物としては、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド等のジアルキルアルミニウムクロライド;ジメチルアルミニウムブロマイド、ジエチルアルミニウムブロマイド等のジアルキルアルミニウムブロマイド;メチルアルミニウムセスキクロライド、エチルアルミニウムセスキクロライド等のアルキルアルミニウムセスキクロライド;メチルアルミニウムセスキブロマイド、エチルアルミニウムセスキブロマイド等のアルキルアルミニウムセスキブロマイドが挙げられる。周期律表第1、2、13族元素のハロゲン化有機金属化合物は、単独で用いてもよく、二種以上組合せて用いてもよい。
(Component (B1b): Halogenated Organometallic Compound of Group 1, 2 and 13 Elements of the Periodic Table)
As the halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table of the component (B1b), a halogenated organolithium compound, a halogenated organomagnesium compound, a halogenated organoaluminum compound, or the like is used. Of these, halogenated organoaluminum compounds are preferable. Examples of the halogenated organoaluminum compound include dialkyl aluminum chlorides such as dimethyl aluminum chloride and diethyl aluminum chloride; dialkyl aluminum bromides such as dimethyl aluminum bromide and diethyl aluminum bromide; alkyl aluminum sesquichlorides such as methyl aluminum sesquichloride and ethyl aluminum sesquichloride; Examples thereof include alkylaluminum sesquibromide and methylaluminum sesquibromide. The halogenated organometallic compounds of Group 1, 2, and 13 elements of the periodic table may be used alone or in combination of two or more.
 ((B1a)成分と(B1b)成分のモル比)
 (B1a)成分と(B1b)成分とを併用する場合の配合割合は、(B1a)成分の使用量をb1モルとし、(B1b)成分の使用量をb1モルとしたとき、0.10≦b1/(b1+b1)≦0.60を満たすことが好ましい。(B1a)成分の配合割合が少なすぎると、ポリブタジエンの収率が低くなり、(B1a)成分の配合割合が多すぎると、得られるポリブタジエンのリニアリティが低くなるが、上記条件を満たすことで、ポリブタジエンの収率を大幅に向上させることができ、得られるポリブタジエンのリニアリティが高くなる。b1/(b1+b1)は、0.14以上が好ましく、0.17以上がより好ましく、0.20以上がさらに好ましい。b1/(b1+b1)は、0.50以下が好ましく、0.40以下がより好ましく、0.30以上がさらに好ましい。
(Molar ratio of component (B1a) and component (B1b))
Proportion of Using and (B1a) component and (B1b) component, the amount of (B1a) component and b1 a molar, when the b1 b molar usage (B1b) component, 0.10 It is preferable to satisfy ≦b1 b /(b1 a +b1 b )≦0.60. If the blending ratio of the component (B1a) is too small, the yield of polybutadiene will be low, and if the blending ratio of the component (B1a) is too large, the linearity of the polybutadiene obtained will be low. The yield of polybutadiene can be significantly improved, and the linearity of the polybutadiene obtained can be increased. b1 b /(b1 a +b1 b ) is preferably 0.14 or more, more preferably 0.17 or more, still more preferably 0.20 or more. b1 b /(b1 a +b1 b ) is preferably 0.50 or less, more preferably 0.40 or less, and further preferably 0.30 or more.
 ((C1)成分:コバルト化合物)
 (C1)成分であるコバルト化合物としては、コバルトの塩や錯体が好ましく用いられる。特に好ましいものとしては、塩化コバルト、臭化コバルト、硝酸コバルト、オクチル酸コバルト、ナフテン酸コバルト、酢酸コバルト、マロン酸コバルト等のコバルト塩、コバルトのビスアセチルアセトネートやトリスアセチルアセトネート、アセト酢酸エチルエステルコバルト、コバルトのピリジン錯体やピコリン錯体等の有機塩基錯体、コバルトのエチルアルコール錯体などが挙げられる。コバルト化合物は、単独で用いてもよく、二種以上組合せて用いてもよい。
((C1) component: cobalt compound)
As the cobalt compound as the component (C1), a salt or complex of cobalt is preferably used. Particularly preferred are cobalt chloride, cobalt bromide, cobalt nitrate, cobalt octylate, cobalt naphthenate, cobalt acetate, cobalt malonate and other cobalt salts, cobalt bisacetylacetonate and trisacetylacetonate, ethyl acetoacetate. Examples thereof include ester cobalt, organic base complexes such as cobalt pyridine complex and picoline complex, and cobalt ethyl alcohol complex. The cobalt compounds may be used alone or in combination of two or more.
 ((D)成分:非配位アニオンとカチオンのイオン性化合物)
 (D)成分の非配位性アニオンとカチオンとのイオン性化合物を構成する非配位性アニオンとしては、例えば、テトラ(フェニル)ボレート、テトラ(フルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、テトラ(トルイル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレートなどが挙げられる。
(Component (D): ionic compound of non-coordinating anion and cation)
Examples of the non-coordinating anion constituting the ionic compound of the non-coordinating anion and the cation of the component (D) include tetra(phenyl)borate, tetra(fluorophenyl)borate, tetrakis(difluorophenyl)borate, Tetrakis(trifluorophenyl)borate, Tetrakis(tetrafluorophenyl)borate, Tetrakis(pentafluorophenyl)borate, Tetrakis(tetrafluoromethylphenyl)borate, Tetrakis(3,5-bistrifluoromethylphenyl)borate, Tetra(toluyl) Examples thereof include borate, tetra(xylyl)borate, (triphenyl, pentafluorophenyl)borate, [tris(pentafluorophenyl),phenyl]borate, and tridecahydride-7,8-dicarbaundecaborate.
 一方、(D)成分の非配位性アニオンとカチオンとのイオン性化合物を構成するカチオンとしては、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。 On the other hand, the cation constituting the ionic compound of the non-coordinating anion and the cation of the component (D) has a carbenium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a transition metal. Examples thereof include ferrocenium cation.
 カルベニウムカチオンの具体例としては、トリフェニルカルベニウムカチオン、トリ置換フェニルカルベニウムカチオンなどの三置換カルベニウムカチオンが挙げられる。トリ置換フェニルカルベニウムカチオンの具体例としては、トリ(メチルフェニル)カルベニウムカチオン、トリ(ジメチルフェニル)カルベニウムカチオンが挙げられる。 Specific examples of the carbenium cation include trisubstituted carbenium cations such as triphenyl carbenium cation and tri-substituted phenyl carbenium cation. Specific examples of the tri-substituted phenylcarbenium cation include a tri(methylphenyl)carbenium cation and a tri(dimethylphenyl)carbenium cation.
 アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン、ジ(i-プロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンが挙げられる。 Specific examples of the ammonium cation include trimethylammonium cation, triethylammonium cation, tripropylammonium cation, tributylammonium cation, tri(n-butyl)ammonium cation and other trialkylammonium cations, N,N-dimethylanilinium cations, N ,N-diethylanilinium cation, N,N-dialkylanilinium cation such as N,N-2,4,6-pentamethylanilinium cation, di(i-propyl)ammonium cation, dialkylammonium such as dicyclohexylammonium cation Examples include cations.
 ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンが挙げられる。 Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri(methylphenyl)phosphonium cation, and tri(dimethylphenyl)phosphonium cation.
 該イオン性化合物は、上記で例示した非配位性アニオン及びカチオンの中から、それぞれ任意に選択して組み合わせたものを好ましく用いることができる。中でも、イオン性化合物としては、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレートなどが好ましく、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート及び1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレートからなる群より選ばれる1種以上を含むことがより好ましい。イオン性化合物は、単独で用いてもよく、二種以上組合せて用いてもよい。 The ionic compound can be preferably used by arbitrarily selecting and combining from the non-coordinating anions and cations exemplified above. Among them, as the ionic compound, triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, 1,1′-dimethylferrocenium tetrakis(pentafluorophenyl) Borate and the like are preferable, and consist of triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′-dimethylferrocenium tetrakis(pentafluorophenyl)borate. It is more preferable to include at least one selected from the group. The ionic compounds may be used alone or in combination of two or more.
 ((A1)成分~(D)成分のモル比)
 (A1)成分~(D)成分の配合割合は、各種条件により適宜設定すればよい。(C1)成分と(D)成分とのモル比は、1:0.1~10が好ましく、1:0.2~5がより好ましい。(C1)成分と(B1)成分とのモル比は、1:0.5~5000が好ましく、1:5~2500がより好ましい。(B1)成分と(A1)成分とのモル比は、1:0.01~2が好ましく、1:0.01~1.5がより好ましく、1:0.1~1.5がさらに好ましい。
(Molar ratio of component (A1) to component (D))
The blending ratio of the components (A1) to (D) may be appropriately set according to various conditions. The molar ratio of the component (C1) to the component (D) is preferably 1:0.1 to 10, more preferably 1:0.2 to 5. The molar ratio of the component (C1) to the component (B1) is preferably 1:0.5 to 5000, more preferably 1:5 to 2500. The molar ratio of the component (B1) to the component (A1) is preferably 1:0.01 to 2, more preferably 1:0.01 to 1.5, and further preferably 1:0.1 to 1.5. ..
 (各成分の混合又は添加順序)
 各成分の混合又は添加順序に関しては、まず、1,3-ブタジエンと、周期律表第1、2、13族元素の有機金属化合物(B1)とを混合する(第一混合工程)。第一混合工程においては、1,3-ブタジエンの存在下に、水(A1)と、周期律表第1、2、13族元素の有機金属化合物(B1)とを混合することが好ましい。そして、得られた混合物と、コバルト化合物(C1)と、非配位アニオンとカチオンのイオン性化合物(D)とを混合する(第二混合工程)。第二混合工程においては、得られた混合物に、コバルト化合物(C1)と、非配位アニオンとカチオンのイオン性化合物(D)とを添加することが好ましい。このような工程によりポリブタジエンを製造することで、得られるポリブタジエンのリニアリティが高くなる。
(Mixing or adding order of each component)
Regarding the order of mixing or adding each component, first, 1,3-butadiene is mixed with the organometallic compound (B1) of the elements of Groups 1, 2, and 13 of the periodic table (first mixing step). In the first mixing step, it is preferable to mix water (A1) and the organometallic compound (B1) of the elements of Groups 1, 2, and 13 of the periodic table in the presence of 1,3-butadiene. Then, the obtained mixture, the cobalt compound (C1), and the ionic compound (D) of a non-coordinating anion and a cation are mixed (second mixing step). In the second mixing step, it is preferable to add the cobalt compound (C1) and the ionic compound (D) of a non-coordinating anion and a cation to the obtained mixture. By producing polybutadiene by such a process, the linearity of the obtained polybutadiene becomes high.
 第一混合工程では、1,3-ブタジエンの存在下に(A1)成分と(B1)成分を添加することで、1,3-ブタジエンを重合するための助触媒が形成される。(A1)成分と(B1)成分は同時に添加してもよく、間隔をあけて添加してもよいが、(A1)成分を添加した後に(B1)成分を添加することがより好ましい。(B1a)成分と(B1b)成分とを併用する場合の、(B1a)成分と(B1b)成分の添加順は任意である。 In the first mixing step, the co-catalyst for polymerizing 1,3-butadiene is formed by adding the (A1) component and the (B1) component in the presence of 1,3-butadiene. The component (A1) and the component (B1) may be added simultaneously or may be added at intervals, but it is more preferable to add the component (B1) after adding the component (A1). When the component (B1a) and the component (B1b) are used in combination, the addition order of the component (B1a) and the component (B1b) is arbitrary.
 第一混合工程において、1,3-ブタジエンの存在下に(A1)成分と(B1)成分を添加した後、熟成することが好ましい。熟成温度は、-50~80℃が好ましく、-10~50℃がより好ましい。熟成時間は、0.01~24時間が好ましく、0.05~5時間がより好ましく、0.1~3時間がさらに好ましい。 In the first mixing step, it is preferable to add the (A1) component and the (B1) component in the presence of 1,3-butadiene and then to age. The aging temperature is preferably −50 to 80° C., more preferably −10 to 50° C. The aging time is preferably 0.01 to 24 hours, more preferably 0.05 to 5 hours, and even more preferably 0.1 to 3 hours.
 第一重合工程では、第一混合工程で得られた混合物に(C1)成分と(D)成分を添加することで、1,3-ブタジエンを重合する。(C1)成分と(D)成分は同時に添加してもよい。間隔をあけて添加してもよい。第一混合工程で1,3-ブタジエンの存在下に(A1)成分と(B1)成分を添加することで、1,3-ブタジエンを重合するための助触媒が形成され、その助触媒が(C1)成分が接触することで、最初に有効で均質な活性種が形成されるためである。 In the first polymerization step, 1,3-butadiene is polymerized by adding the component (C1) and the component (D) to the mixture obtained in the first mixing step. The component (C1) and the component (D) may be added at the same time. You may add at intervals. By adding the component (A1) and the component (B1) in the presence of 1,3-butadiene in the first mixing step, a cocatalyst for polymerizing 1,3-butadiene is formed. This is because when the C1) component comes into contact, an effective and homogeneous active species is first formed.
 ただし、(C1)成分を(D)成分よりも先に添加する場合、(C1)成分と(D)成分とを同時に又は3分間未満の間隔をあけて添加することが好ましく、2分以下の間隔をあけて添加することがより好ましく、1分以下の間隔をあけて添加することがさらに好ましい。3分以上の間隔をあけてしまうと、不均質な活性種が形成し、超高分子量成分が生成してしまい、所望のMw/Mnを持つポリブタジエンが得られにくくなる。逆に、(C1)成分と(D)成分とを同時に又は3分間未満の間隔をあけて添加すれば、所望のMw/Mnを持つポリブタジエンが得られ、破壊強力、耐摩耗性及び低ロス性のバランスが改良できるポリブタジエンが得られやすくなる。 However, when the component (C1) is added prior to the component (D), it is preferable to add the component (C1) and the component (D) at the same time or at intervals of less than 3 minutes, and preferably 2 minutes or less. It is more preferable to add them at intervals, and it is more preferable to add them at intervals of 1 minute or less. If an interval of 3 minutes or more is provided, an inhomogeneous active species is formed and an ultrahigh molecular weight component is produced, and it becomes difficult to obtain a polybutadiene having a desired Mw/Mn. On the contrary, by adding the component (C1) and the component (D) at the same time or at intervals of less than 3 minutes, polybutadiene having a desired Mw/Mn can be obtained, and the fracture strength, abrasion resistance and low loss property can be obtained. It becomes easier to obtain polybutadiene that can improve the balance of
 各成分は、無機化合物又は有機高分子化合物に担持された状態で用いることができる。 Each component can be used while being supported by an inorganic compound or an organic polymer compound.
 (溶媒)
 1,3-ブタジエンの重合時には、溶媒を用いることができる。溶媒としては、トルエン、ベンゼン、キシレン等の芳香族炭化水素溶媒、n-ヘキサン、ブタン、ヘプタン、ペンタン等の飽和脂肪族炭化水素溶媒、シクロペンタン、シクロヘキサン等の脂環式炭化水素溶媒、1-ブテン、シス-2-ブテン、トランス-2-ブテン等のC4留分などのオレフィン系炭化水素溶媒、ミネラルスピリット、ソルベントナフサ、ケロシン等の石油系炭化水素溶媒、塩化メチレン等のハロゲン化炭化水素系溶媒等が挙げられる。また、1,3-ブタジエンそのものを重合溶媒としてもよい。中でも、ベンゼン、シクロヘキサン、シス-2-ブテンとトランス-2-ブテンとの混合物などが好適に用いられる。
(solvent)
A solvent can be used during the polymerization of 1,3-butadiene. Examples of the solvent include aromatic hydrocarbon solvents such as toluene, benzene and xylene, saturated aliphatic hydrocarbon solvents such as n-hexane, butane, heptane and pentane, alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane, 1- Olefinic hydrocarbon solvents such as C4 fractions such as butene, cis-2-butene, trans-2-butene, petroleum hydrocarbon solvents such as mineral spirits, solvent naphtha and kerosene, halogenated hydrocarbons such as methylene chloride A solvent etc. are mentioned. Further, 1,3-butadiene itself may be used as the polymerization solvent. Among them, benzene, cyclohexane, a mixture of cis-2-butene and trans-2-butene, etc. are preferably used.
 (分子量調節剤)
 1,3-ブタジエンの重合時には、分子量調節剤を用いることができる。分子量調節剤としては、シクロオクタジエン、アレンなどの非共役ジエン類、エチレン、プロピレン、ブテン-1などのα-オレフィン類を使用することができる。特に好ましくはシクロオクタジエンであり、その使用量は、1,3-ブタジエン1モル当たり30ミリモル以下が好ましく、5ミリモル以下がより好ましい。この範囲を超える量の分子量調節剤を用いると、ML粘度のずれの問題が生ずる場合がある。
(Molecular weight regulator)
A molecular weight modifier can be used during the polymerization of 1,3-butadiene. As the molecular weight modifier, non-conjugated dienes such as cyclooctadiene and allene, and α-olefins such as ethylene, propylene and butene-1 can be used. Cyclooctadiene is particularly preferable, and the amount thereof used is preferably 30 mmol or less, and more preferably 5 mmol or less per mol of 1,3-butadiene. If the amount of the molecular weight regulator exceeds this range, the problem of ML viscosity shift may occur.
 (重合温度と重合時間)
 重合温度は-30~100℃の範囲が好ましく、30~80℃の範囲が特に好ましい。重合時間は10分~12時間の範囲が好ましい。また、重合圧は、常圧又は10気圧(ゲージ圧)程度までの加圧下に行われる。
(Polymerization temperature and polymerization time)
The polymerization temperature is preferably in the range of -30 to 100°C, particularly preferably in the range of 30 to 80°C. The polymerization time is preferably in the range of 10 minutes to 12 hours. The polymerization pressure is normal pressure or pressure up to about 10 atm (gauge pressure).
 (転化率)
 第一重合工程が終了した時点における1,3-ブタジエンの転化率は、20~50%であることが好ましい。転化率が低すぎると、得られるポリブタジエンを用いたゴム組成物の耐摩耗性が低下する傾向がみられ、転化率が高すぎると、得られるポリブタジエンを用いたゴム組成物の加工性が低下する傾向がみられる。第一重合工程が終了した時点における1,3-ブタジエンの転化率は、25~48%であることがより好ましく、30~41%であることがさらに好ましい。
(Conversion rate)
The conversion rate of 1,3-butadiene at the end of the first polymerization step is preferably 20 to 50%. If the conversion rate is too low, the abrasion resistance of the rubber composition using the obtained polybutadiene tends to decrease, and if the conversion rate is too high, the processability of the rubber composition using the obtained polybutadiene decreases. There is a tendency. The conversion rate of 1,3-butadiene at the time of completion of the first polymerization step is more preferably 25 to 48%, further preferably 30 to 41%.
 〔第二重合工程〕
 本発明では、第一重合工程を行った後、第一重合工程で得られた混合物と、コバルト化合物(C2)とを混合し、1,3-ポリブタジエンを重合する。第二重合工程では、第一重合工程で得られた混合物と、コバルト触媒(C2)と、水(A2)、周期律表第1、2、13族元素の有機金属化合物(B2)とを混合し、1,3―ポリブタジエンを重合してもよい。
 第二重合工程においては、第一重合工程で得られた混合物に、コバルト化合物(C2)を添加するか、更に、水(A2)、周期律表第1、2、13族元素の有機金属化合物(B2)を添加して、1,3-ブタジエンを重合することが好ましい。こうすることで、第一重合工程で得られたポリブタジエンのリニアリティを維持しつつ、櫛形に分岐させることができる。
[Second polymerization step]
In the present invention, after performing the first polymerization step, the mixture obtained in the first polymerization step is mixed with the cobalt compound (C2) to polymerize 1,3-polybutadiene. In the second polymerization step, the mixture obtained in the first polymerization step, the cobalt catalyst (C2), water (A2), and the organometallic compound (B2) of the elements of Groups 1, 2, and 13 of the periodic table are mixed. Alternatively, 1,3-polybutadiene may be polymerized.
In the second polymerization step, a cobalt compound (C2) is added to the mixture obtained in the first polymerization step, or water (A2) and an organometallic compound of an element of Groups 1, 2 and 13 of the periodic table are added. It is preferable to add (B2) and polymerize 1,3-butadiene. By doing so, it is possible to branch in a comb shape while maintaining the linearity of the polybutadiene obtained in the first polymerization step.
 水(A2)としては、第一重合工程で使用する水(A1)と同様のものを使用することができる。周期律表第1、2、13族元素の有機金属化合物(B2)としては、第一重合工程で使用する周期律表第1、2、13族元素の有機金属化合物(B1)と同様のものを使用することができる。より具体的には、周期律表第1、2、13族元素の有機金属化合物(B2)として、前述の、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1a)や、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B1b)を用いることができる。(B1a)成分のみを用いてもよく、(B1b)成分のみを用いてもよく、(B1a)成分と(B1b)成分とを併用してもよい。コバルト化合物(C2)としては、第一重合工程で使用するコバルト化合物(C1)と同様のものを使用することができる。ただし、第二重合工程においては、第一重合工程で使用する非配位アニオンとカチオンのイオン性化合物(D)を使用しないことが好ましい。 As the water (A2), the same water as the water (A1) used in the first polymerization step can be used. As the organometallic compound (B2) of the elements 1, 2 and 13 of the periodic table, the same as the organometallic compound (B1) of the elements 1, 2 and 13 of the periodic table used in the first polymerization step. Can be used. More specifically, the non-halogenated organometallic compound (B1a) of the elements of Groups 1, 2, and 13 of the Periodic Table is used as the organometallic compound of the elements of Groups 1, 2, and 13 of the Periodic Table (B2). Alternatively, a halogenated organometallic compound (B1b) of Group 1, 2, or 13 elements of the periodic table can be used. Only the component (B1a) may be used, only the component (B1b) may be used, or the component (B1a) and the component (B1b) may be used in combination. As the cobalt compound (C2), the same one as the cobalt compound (C1) used in the first polymerization step can be used. However, in the second polymerization step, it is preferable not to use the non-coordinating anion and cation ionic compound (D) used in the first polymerization step.
 ((A2)成分~(C2)成分のモル比)
 (A2)成分~(C2)成分の配合割合は、各種条件により適宜設定すればよい。(C2)成分と(B2)成分とのモル比は、1:0.5~5000が好ましく、1:5~2500がより好ましい。(B2)成分と(A2)成分とのモル比は、1:0.01~2が好ましく、1:0.01~1.5がより好ましく、1:0.1~1.5がさらに好ましい。
(Molar ratio of component (A2) to component (C2))
The blending ratio of the components (A2) to (C2) may be appropriately set according to various conditions. The molar ratio of the component (C2) to the component (B2) is preferably 1:0.5 to 5000, more preferably 1:5 to 2500. The molar ratio of the component (B2) and the component (A2) is preferably 1:0.01 to 2, more preferably 1:0.01 to 1.5, and further preferably 1:0.1 to 1.5. ..
 (各成分の混合又は添加順序)
 各成分の混合又は添加順序に関しては、例えば、第一重合工程で得られた反応混合物と、コバルト化合物(C2)とを混合してもよく、更に、水(A2)と、周期律表第1、2、13族元素の有機金属化合物(B2)とを混合してもよい。(A2)成分と(B2)成分を添加することで、1,3-ブタジエンを重合するためのあらたな助触媒が形成され、その助触媒が(C2)成分が接触することで有効で均質な活性種が形成されるためである。第一重合工程で得られた反応混合物にコバルト化合物(C2)のみを混合した場合には、第一重合工程で混合した(A1)成分及び(B1)成分が(A2)成分及び(B2)成分として機能する。
(Mixing or adding order of each component)
Regarding the order of mixing or adding each component, for example, the reaction mixture obtained in the first polymerization step may be mixed with the cobalt compound (C2), and further, water (A2) and the periodic table first You may mix with the organometallic compound (B2) of a 2nd, 13th group element. By adding the component (A2) and the component (B2), a new co-catalyst for polymerizing 1,3-butadiene is formed, and the co-catalyst is effective and homogeneous because the (C2) component is in contact with the co-catalyst. This is because active species are formed. When only the cobalt compound (C2) is mixed in the reaction mixture obtained in the first polymerization step, the components (A1) and (B1) mixed in the first polymerization step are (A2) component and (B2) component. Function as.
 各成分は、無機化合物又は有機高分子化合物に担持された状態で用いることができる。1,3-ブタジエンの重合時には、第一重合工程と同様の溶媒を用いることができ、第一重合工程と同様の分子量調節剤を用いることもできる。重合温度、重合時間、及び重合圧も第一重合工程と同様とすることができる。 Each component can be used while being supported by an inorganic compound or an organic polymer compound. During the polymerization of 1,3-butadiene, the same solvent as in the first polymerization step can be used, and the same molecular weight modifier as in the first polymerization step can be used. The polymerization temperature, the polymerization time, and the polymerization pressure can be the same as in the first polymerization step.
 (転化率)
 第二重合工程が終了した時点における1,3-ブタジエンの最終転化率は、75%以下であることが好ましく、75%未満であることがより好ましい。最終転化率が高すぎると、得られるポリブタジエンの耐摩耗性が低下する傾向がみられ、最終転化率が低すぎると、得られるポリブタジエンの加工性が低下する傾向がみられる。第二重合工程が終了した時点における1,3-ブタジエンの最終転化率は、50~73%であることがさらに好ましく、53~70%であることが特に好ましい。
(Conversion rate)
The final conversion rate of 1,3-butadiene at the time of completion of the second polymerization step is preferably 75% or less, and more preferably less than 75%. If the final conversion rate is too high, the abrasion resistance of the obtained polybutadiene tends to decrease, and if the final conversion rate is too low, the processability of the obtained polybutadiene tends to decrease. The final conversion rate of 1,3-butadiene at the time of completion of the second polymerization step is more preferably 50 to 73%, particularly preferably 53 to 70%.
 <ポリブタジエン>
 上記の製造方法により好適に得られる本発明に係るポリブタジエンは、以下の条件を満たす。
<Polybutadiene>
The polybutadiene according to the present invention, which is preferably obtained by the above production method, satisfies the following conditions.
 本発明に係るポリブタジエンにおいて、ムーニー粘度(ML1+4,100℃)は、43~80である。ムーニー粘度(ML1+4,100℃)が43以上であれば、耐摩耗性がより向上する。一方、ムーニー粘度(ML1+4,100℃)が80以下であれば、加工性がより向上する。ムーニー粘度(ML1+4,100℃)は、45~75であることがより好ましく、48~73であることがさらに好ましく、50~70であることが特に好ましい。なお、ムーニー粘度(ML1+4,100℃)は、後述する実施例に記載された方法により測定することができる。 In the polybutadiene according to the present invention, the Mooney viscosity (ML 1+4,100° C. ) is 43-80 . When the Mooney viscosity (ML 1+4,100° C. ) is 43 or more, abrasion resistance is further improved. On the other hand, when the Mooney viscosity (ML 1+4,100° C. ) is 80 or less, the workability is further improved. The Mooney viscosity (ML 1+4,100° C. ) is more preferably 45 to 75, further preferably 48 to 73, and particularly preferably 50 to 70. The Mooney viscosity (ML 1+4,100° C. ) can be measured by the method described in Examples below.
 本発明に係るポリブタジエンにおいて、5重量%トルエン溶液粘度(Tcp)は、100~300であることが好ましい。5重量%トルエン溶液粘度(Tcp)が100以上であれば、耐摩耗性がより向上する。一方、5重量%トルエン溶液粘度(Tcp)が300以下であれば、加工性がより向上する。5重量%トルエン溶液粘度(Tcp)は、120~270であることがより好ましく、130~210であることがさらに好ましい。なお、5重量%トルエン溶液粘度(Tcp)は、後述する実施例に記載された方法により測定することができる。 The polybutadiene according to the present invention preferably has a 5 wt% toluene solution viscosity (Tcp) of 100 to 300. If the 5 wt% toluene solution viscosity (Tcp) is 100 or more, the abrasion resistance is further improved. On the other hand, if the 5 wt% toluene solution viscosity (Tcp) is 300 or less, the workability is further improved. The 5 wt% toluene solution viscosity (Tcp) is more preferably 120 to 270, further preferably 130 to 210. The 5 wt% toluene solution viscosity (Tcp) can be measured by the method described in Examples below.
 本発明に係るポリブタジエンにおいて、5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML)は、2.2~4.0である。なお、Tcp/MLは分岐度(リニアリティ)の指標となるものである。Tcp/MLが2.2以上であれば、分岐度が低く(リニアリティが高く)、低ロス性及び耐摩耗性がより向上する。一方、Tcp/MLが4.0以下であれば、分岐度が高い(リニアリティが低い)ことで生じるコールドフローを抑制することできき、製品の保存安定性がより向上する。Tcp/MLは、2.4~3.7であることがより好ましく、2.6~3.1であることがさらに好ましい。 In the polybutadiene according to the present invention, the ratio (Tcp/ML) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.2 to 4.0. It should be noted that Tcp/ML is an index of the degree of branching (linearity). When Tcp/ML is 2.2 or more, the degree of branching is low (high linearity), and the low loss property and the wear resistance are further improved. On the other hand, when Tcp/ML is 4.0 or less, cold flow caused by a high degree of branching (low linearity) can be suppressed, and the storage stability of the product is further improved. The Tcp/ML is more preferably 2.4 to 3.7, further preferably 2.6 to 3.1.
 本発明に係るポリブタジエンにおいて、ML1+4,100℃測定終了時のトルクを100%としたとき、その値が80%減衰するまでの応力緩和時間(T80)は、2.0~7.0秒である。T80が2.0秒以上であれば、ゴム分子の絡み合いによる剪断応力の保持力が十分となり、良好なフィラーの分散状態が得られやすくなる。一方、T80が7.0秒以下であれば、成形加工時の残留応力が低下するため、寸法安定性に優れ加工性がより向上する。応力緩和時間(T80)は、2.3~6.0秒であることがより好ましく、2.5~5.3秒であることがさらに好ましい。なお、応力緩和時間(T80)は、後述する実施例に記載された方法により測定することができる。ゴムの応力緩和の推移は、弾性成分と粘性成分の組み合わせにより決まるものであり、応力緩和が遅いことは弾性成分が多いことを示し、応力緩和が速いことは粘性成分が多いことを示す。 In the polybutadiene according to the present invention, when the torque at the end of measurement of ML 1+4,100° C. is 100%, the stress relaxation time (T80) until the value is attenuated by 80% is 2.0 to 7.0 seconds. is there. When T80 is 2.0 seconds or more, the retention of the shear stress due to the entanglement of rubber molecules becomes sufficient, and a good filler dispersion state is easily obtained. On the other hand, when T80 is 7.0 seconds or less, the residual stress at the time of molding is reduced, so that the dimensional stability is excellent and the workability is further improved. The stress relaxation time (T80) is more preferably 2.3 to 6.0 seconds, further preferably 2.5 to 5.3 seconds. The stress relaxation time (T80) can be measured by the method described in Examples below. The transition of the stress relaxation of rubber is determined by the combination of the elastic component and the viscous component. Slow stress relaxation indicates that there are many elastic components, and fast stress relaxation indicates that there are many viscous components.
 本発明のポリブタジエンにおいて、数平均分子量(Mn)は、15.0×10~30.0×10であることが好ましい。数平均分子量(Mn)が15.0×10以上であれば、耐摩耗性がより向上する。一方、数平均分子量(Mn)が30.0×10以下であれば、加工性がより向上する。数平均分子量(Mn)は、16.0×10~27.0×10であることがより好ましく、17.0×10~25.0×10であることがさらに好ましい。なお、数平均分子量(Mn)は、後述する実施例に記載された方法により測定することができる。 In the polybutadiene of the present invention, the number average molecular weight (Mn) is preferably 15.0×10 4 to 30.0×10 4 . When the number average molecular weight (Mn) is 15.0×10 4 or more, abrasion resistance is further improved. On the other hand, when the number average molecular weight (Mn) is 30.0×10 4 or less, workability is further improved. The number average molecular weight (Mn) is more preferably 16.0×10 4 to 27.0×10 4 , and further preferably 17.0×10 4 to 25.0×10 4 . The number average molecular weight (Mn) can be measured by the method described in Examples below.
 本発明のポリブタジエンにおいて、重量平均分子量(Mw)は、40.0×10~75.0×10であることが好ましい。重量平均分子量(Mw)が40.0×10以上であれば、耐摩耗性がより向上する。一方、重量平均分子量(Mw)が75.0×10以下であれば、加工性がより向上する。重量平均分子量(Mw)は、45.0×10~70.0×10であることがより好ましく、50.0×10~65.0×10であることがさらに好ましい。なお、重量平均分子量(Mw)は、後述する実施例に記載された方法により測定することができる。 In the polybutadiene of the present invention, the weight average molecular weight (Mw) is preferably 40.0×10 4 to 75.0×10 4 . When the weight average molecular weight (Mw) is 40.0×10 4 or more, abrasion resistance is further improved. On the other hand, when the weight average molecular weight (Mw) is 75.0×10 4 or less, workability is further improved. The weight average molecular weight (Mw) is more preferably 45.0×10 4 to 70.0×10 4 , and further preferably 50.0×10 4 to 65.0×10 4 . The weight average molecular weight (Mw) can be measured by the method described in Examples below.
 本発明のポリブタジエンにおいて、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)は、2.40~4.00である。Mw/Mnが2.40以上であれば、加工性がより向上する。一方、Mw/Mnが4.00以下であれば、耐摩耗性がより向上する。分子量分布(Mw/Mn)は、2.40~3.50であることがより好ましく、2.50~3.20であることがさらに好ましい。 In the polybutadiene of the present invention, the ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2.40 to 4.00. If Mw/Mn is 2.40 or more, workability is further improved. On the other hand, when Mw/Mn is 4.00 or less, wear resistance is further improved. The molecular weight distribution (Mw/Mn) is more preferably 2.40 to 3.50, further preferably 2.50 to 3.20.
 本発明のポリブタジエンにおいて、z平均分子量(Mz)は、100.0×10~180.0×10であることが好ましい。z平均分子量(Mz)が100.0×10以上であれば、耐摩耗性がより向上する。一方、z平均分子量(Mz)が180.0×10以下であれば、加工性がより向上する。z平均分子量(Mz)は、110.0×10~170.0×10であることがより好ましく、114.0×10~160.0×10であることがさらに好ましい。なお、z平均分子量(Mz)は、後述する実施例に記載された方法により測定することができる。 In the polybutadiene of the present invention, the z-average molecular weight (Mz) is preferably 100.0×10 4 to 180.0×10 4 . When the z-average molecular weight (Mz) is 100.0×10 4 or more, abrasion resistance is further improved. On the other hand, if the z-average molecular weight (Mz) is 180.0×10 4 or less, the workability is further improved. The z-average molecular weight (Mz) is more preferably 110.0×10 4 to 170.0×10 4 , and further preferably 114.0×10 4 to 160.0×10 4 . The z-average molecular weight (Mz) can be measured by the method described in Examples below.
 本発明のポリブタジエンにおいて、z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は、1.80~3.00である。Mz/Mwが1.80以上であれば、加工性がより向上する。一方、Mz/Mwが3.00以下であれば、耐摩耗性がより向上する。Mz/Mwは、1.90~2.70であることがより好ましく、2.00~2.60であることがさらに好ましい。 In the polybutadiene of the present invention, the ratio (Mz/Mw) of the z average molecular weight (Mz) and the weight average molecular weight (Mw) is 1.80 to 3.00. If Mz/Mw is 1.80 or more, workability is further improved. On the other hand, when Mz/Mw is 3.00 or less, wear resistance is further improved. The Mz/Mw is more preferably 1.90 to 2.70, further preferably 2.00 to 2.60.
 本発明に係るポリブタジエンにおいて、ミクロ構造分析における1,4-シス構造の割合は、95.0%以上であることが好ましい。1,4-シス構造の割合が95.0%以上であれば、耐摩耗性がより向上する。1,4-シス構造の割合は、97.0%以上が好ましく、98.0%以上がより好ましい。1,4-シス構造の割合は、通常99.0%以下である。ミクロ構造分析における1,4-トランス構造の割合は、1.5%以下であることが好ましく、1.0%以下であることがより好ましい。1,4-トランス構造の割合は、通常0.5%以上である。ミクロ構造分析における1,2-ビニル構造の割合は、1.5%以下であることが好ましく、1.2%以下であることがより好ましい。1,2-ビニル構造の割合は、通常0.5%以上である。なお、ミクロ構造分析における1,4-シス構造、1,4-トランス構造及び1,2-ビニル構造の割合は、後述する実施例に記載された方法により測定することができる。 In the polybutadiene according to the present invention, the proportion of 1,4-cis structure in microstructure analysis is preferably 95.0% or more. When the ratio of the 1,4-cis structure is 95.0% or more, the wear resistance is further improved. The ratio of the 1,4-cis structure is preferably 97.0% or more, more preferably 98.0% or more. The ratio of 1,4-cis structure is usually 99.0% or less. The proportion of the 1,4-trans structure in the microstructure analysis is preferably 1.5% or less, more preferably 1.0% or less. The ratio of 1,4-trans structure is usually 0.5% or more. The ratio of the 1,2-vinyl structure in the microstructure analysis is preferably 1.5% or less, more preferably 1.2% or less. The proportion of 1,2-vinyl structure is usually 0.5% or more. The proportions of the 1,4-cis structure, the 1,4-trans structure and the 1,2-vinyl structure in the microstructure analysis can be measured by the method described in Examples below.
 特に、本発明に係るポリブタジエンは、上記のうち、5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML1+4,100℃)、応力緩和時間(T80)、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)、及びz平均分子量(Mz)と数平均分子量(Mw)の比(Mz/Mw)の条件を組み合わせて満たすことが好ましく、5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML1+4,100℃)、応力緩和時間(T80)、重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)、及びz平均分子量(Mz)と数平均分子量(Mw)の比(Mz/Mw)、ムーニー粘度(ML1+4,100℃)の条件を組み合わせて満たすことがより好ましい。 In particular, the polybutadiene according to the present invention has a ratio (Tcp/ML 1+4,100° C. ) of 5 wt% toluene solution viscosity (Tcp) to Mooney viscosity (ML 1+4,100° C. ) and a stress relaxation time (T80). , The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw/Mn), and the ratio of the z average molecular weight (Mz) to the number average molecular weight (Mw) (Mz/Mw) are satisfied in combination. 5% by weight toluene solution viscosity (Tcp) to Mooney viscosity (ML 1+4,100° C. ) (Tcp/ML 1+4,100° C. ), stress relaxation time (T80), weight average molecular weight (Mw) and number average The conditions of the ratio of molecular weight (Mn) (Mw/Mn), the ratio of z-average molecular weight (Mz) to the number-average molecular weight (Mw) (Mz/Mw), and the Mooney viscosity (ML 1+4, 100° C. ) are satisfied in combination. Is more preferable.
 本発明のポリブタジエンにおいて、ポリブタジエンは、二塩化二硫黄、一塩化一硫黄、その他硫黄化合物、有機過酸化物、t-ブチルクロライド等で変性されていてもよく、変性されていなくてもよい。 In the polybutadiene of the present invention, the polybutadiene may or may not be modified with disulfur dichloride, monosulfur monochloride, other sulfur compounds, organic peroxides, t-butyl chloride, or the like.
 <ゴム組成物>
 ゴム組成物は、前記製造方法により得られるポリブタジエン又は前記ポリブタジエンを含む。
 上記の本発明に係るポリブタジエンに、他の成分を混合することでゴム組成物とすることができる。ゴム組成物は、本発明に係るポリブタジエンを含むものである。本発明に係るポリブタジエンは、単独で、又は他の合成ゴム若しくは天然ゴムとブレンドされ、必要であればプロセスオイルで油展し、次いでカーボンブラックやシリカ等の補強剤、プロセスオイル、老化防止剤、加硫剤、加硫助剤、その他の配合剤を加えて加硫し、タイヤ・防振ゴム・ベルト・ホース・免震ゴムなどの工業用品や紳士靴・婦人靴・スポーツシューズなどの履物といった各種のゴム用途に使用される。その場合、ゴム成分中に本発明に係るポリブタジエンを少なくとも10重量%含有するように配合することが好ましい。
<Rubber composition>
The rubber composition contains the polybutadiene obtained by the production method or the polybutadiene.
A rubber composition can be obtained by mixing the polybutadiene according to the present invention with other components. The rubber composition contains the polybutadiene according to the present invention. The polybutadiene according to the present invention, alone or blended with another synthetic rubber or natural rubber, is oil-extended with a process oil if necessary, and then a reinforcing agent such as carbon black or silica, a process oil, an antioxidant, It is vulcanized by adding vulcanizing agents, vulcanization aids, and other compounding agents, such as industrial products such as tires, anti-vibration rubbers, belts, hoses, and seismic isolation rubbers, and footwear such as men's shoes, women's shoes and sports shoes Used for various rubber applications. In that case, it is preferable that the rubber component contains at least 10% by weight of the polybutadiene according to the present invention.
 ゴム組成物に含まれる他の合成ゴムとしては、加硫可能なゴムが好ましく、具体的にはエチレンプロピレンジエンゴム(EPDM)、ニトリルゴム(NBR)、ブチルゴム(IIR)、クロロプレンゴム(CR)、ポリイソプレン、ハイシスポリブタジエンゴム、ローシスポリブタジエンゴム(BR)、スチレン-ブタジエンゴム(SBR)、ブチルゴム、塩素化ブチルゴム、臭素化ブチルゴム、アクリロニトリル-ブタジエンゴム等が挙げられる。また、これらゴムの誘導体、例えば錫化合物で変性されたポリブタジエンや、エポキシ変性、シラン変性、マレイン酸変性されたゴムなども用いることができる。他の合成ゴムは、単独で用いてもよく、二種以上組合せて用いてもよい。 As the other synthetic rubber contained in the rubber composition, a vulcanizable rubber is preferable, and specifically, ethylene propylene diene rubber (EPDM), nitrile rubber (NBR), butyl rubber (IIR), chloroprene rubber (CR), Examples thereof include polyisoprene, high cis polybutadiene rubber, low cis polybutadiene rubber (BR), styrene-butadiene rubber (SBR), butyl rubber, chlorinated butyl rubber, brominated butyl rubber and acrylonitrile-butadiene rubber. Derivatives of these rubbers, for example, polybutadiene modified with a tin compound, rubber modified with epoxy, silane, or maleic acid can also be used. Other synthetic rubbers may be used alone or in combination of two or more.
 補強剤としては、カーボンブラック、シリカ、活性化炭酸カルシウム、超微粒子珪酸マグネシウム等の無機補強剤、シンジオタクチック1.2ポリブタジエン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ハイスチレン樹脂、フェノール樹脂、リグニン、変性メラミン樹脂、クマロンインデン樹脂、石油樹脂等の有機補強剤が挙げられる。中でも、カーボンブラックが好ましい。カーボンブラックとしては、粒子径が90nm以下で、ジブチルフタレート(DBP)吸油量が70ml/100g以上のカーボンブラックが好ましい。カーボンブラックの種類としては、例えば、FEF、FF、GPF、SAF、ISAF、SRF、HAF等が好ましく使用される。 As the reinforcing agent, carbon black, silica, activated calcium carbonate, inorganic reinforcing agents such as ultrafine magnesium silicate, syndiotactic 1.2 polybutadiene resin, polyethylene resin, polypropylene resin, high styrene resin, phenol resin, lignin, modified Organic reinforcing agents such as melamine resin, coumarone indene resin, petroleum resin and the like can be mentioned. Of these, carbon black is preferable. As the carbon black, carbon black having a particle size of 90 nm or less and a dibutyl phthalate (DBP) oil absorption of 70 ml/100 g or more is preferable. As the type of carbon black, for example, FEF, FF, GPF, SAF, ISAF, SRF, HAF and the like are preferably used.
 プロセスオイルとしては、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい。 The process oil may be any of aromatic, naphthenic and paraffinic.
 老化防止剤としては、アミン・ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。 Aging examples include amine/ketone-based, imidazole-based, amine-based, phenol-based, sulfur-based and phosphorus-based antioxidants.
 加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤、酸化マグネシウムなどの金属酸化物などが用いられる。 As the vulcanizing agent, known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents, and metal oxides such as magnesium oxide are used.
 加硫助剤としては、公知の加硫助剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、チウラム類、ジチオカーバメイト類、キサンテート類などが用いられる。 As the vulcanization aid, known vulcanization aids such as aldehydes, ammonias, amines, guanidines, thioureas, thiazoles, thiurams, dithiocarbamates and xanthates can be used.
 その他の配合剤の一つである充填剤としては、炭酸カルシウム、塩基性炭酸マグネシウム、クレー、リサージュ、珪藻土等の無機充填剤、再生ゴム、粉末ゴム等の有機充填剤が挙げられる。 As one of the other compounding agents, fillers include inorganic fillers such as calcium carbonate, basic magnesium carbonate, clay, Lissajous and diatomaceous earth, and organic fillers such as recycled rubber and powdered rubber.
 また同じくその他の配合剤の一つであるシランカップリング剤としては、一般式R7SiX4-nで表される有機珪素化合物が挙げられ、R7は、ビニル基、アシル基、アリル基、アリルオキシ基、アミノ基、エポキシ基、メルカプト基、クロル基、アルキル基、フェニル基、水素、スチリル基、メタクリル基、アクリル基、ウレイド基などから選ばれる反応基を有する炭素数1~20の有機基であり、Xは、クロル基、アルコキシ基、アセトキシ基、イソプロペノキシ基、アミノ基などから選ばれる加水分解基であり、nは1~3の整数を示す。 The silane coupling agent, which is also one of the other compounding agents, includes an organosilicon compound represented by the general formula R7 n SiX 4-n , and R7 is a vinyl group, an acyl group, an allyl group, an allyloxy group. An organic group having 1 to 20 carbon atoms having a reactive group selected from a group, an amino group, an epoxy group, a mercapto group, a chloro group, an alkyl group, a phenyl group, hydrogen, a styryl group, a methacrylic group, an acryl group and a ureido group. X is a hydrolyzable group selected from a chloro group, an alkoxy group, an acetoxy group, an isopropenoxy group, an amino group, and the like, and n represents an integer of 1 to 3.
 上記のシランカップリング剤のR7は、ビニル基及び/又はクロル基を含有するものが好ましい。具体的なシランカップリング剤には、例えば以下のものが含まれるが、決してこれらに限定されるものではない。
ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルプロピル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエトキシシラン、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾールテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビニルトリクロロシラン、メチルビニルジクロロシラン、ジビニルジクロロシラン、ジメチルビニルクロロシラン、クロロメチルジメチルビニルシラン、メトキシジメチルビニルシラン、トリメトキシビニルシラン、ジメチルジビニルシラン、エトキシジメチルビニルシラン、ジアセトキシメチルジニルシラン、アリルオキシジメチルビニルシラン、ジエトキシメチルビニルシラン、ビス(ジメチルアミノ)メチルビニルシラン、フェニルビニルジクロロシラン、トリアセトキシビニルシラン、3-クロロプロピルメチルジビニルシラン、ジエトキシジビニルシラン、ジメチルエチルメチルケトキムビニルシラン、ジメチルイソブトキシビニルシラン、トリエトキシビニルシラン、メチルフェニルビニルクロロシラン、メチルフェニルビニルシラン、ジメチルイソペンチルオキシビニルシラン、4-ブロモフェニルジメチルビニルシラン、3-アミノフェノキシジメチルビニルシラン、4-アミノフェノキシジメチルビニルシラン、ジメチルピペリヂノメチルビニルシラン、ジメチル-2-[(2-エトキシエトキシ)エトキシ]ビニルシラン、ジビニルメチルフェノキシシラン、ジメチル-P-アニシルビニルシラン、トリス(1-メチルビニロキシ)ビニルシラン、トリイソプロポキシビニルシラン、ジエトキシ-2-ピペリヂノエトキシビニルシラン、ジフェニルビニルクロロシラン、3-ジメチルビニルフェニルN,N-ジエチルカルボメイト、トリフェノキシビニルシラン、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3-ジビニル-1,1,3,3-テトラメチルジシラザン、1-(4-メチルピペリヂノメチル)-1,1,3,3-テトラメチル-3-ビニルジシロキサン、1,4-ビス(ジメチルビニルシリル)ベンゼン、1,4-ビス(ジメチルビニルシロキシ)ベンゼン、1,3-ビス(ジメチルビニルシロキシ)ベンゼン、1,1,3,3-テトラフェニルー、3-ジビニルジシロキサン、1,3,5-トリメチル-1,3,5-トリビニルサイクロトリシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルサイクロテトラシロキサン、テトラキス(ジメチルビニルシロキシメチル)メタン、3-クロロプロピルトリメトキシシラン。
R7 of the above silane coupling agent preferably contains a vinyl group and/or a chloro group. Specific silane coupling agents include, but are not limited to, the following.
Bis(3-triethoxysilylpropyl) tetrasulfide, bis(3-triethoxysilylpropyl) trisulfide, bis(3-triethoxysilylpropyl) disulfide, bis(2-triethoxysilylpropyl) tetrasulfide, bis(3 -Trimethoxysilylpropyl) tetrasulfide, bis(2-trimethoxysilylpropyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethoxysilane 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N,N-dimethylthiocarbamoyl tetrasulfide, 2-triethoxysilylethyl-N,N-dimethylthiocarbamoyl tetrasulfide Sulfide, 3-trimethoxysilylpropyl benzothiazole tetrasulfide, 3-triethoxysilylpropyl benzothiazole tetrasulfide, 3-triethoxysilylpropyl methacrylate monosulfide, 3-trimethoxysilylpropyl methacrylate monosulfide, vinyl trichlorosilane, methyl vinyl Dichlorosilane, divinyldichlorosilane, dimethylvinylchlorosilane, chloromethyldimethylvinylsilane, methoxydimethylvinylsilane, trimethoxyvinylsilane, dimethyldivinylsilane, ethoxydimethylvinylsilane, diacetoxymethyldinylsilane, allyloxydimethylvinylsilane, diethoxymethylvinylsilane, bis (Dimethylamino)methylvinylsilane, phenylvinyldichlorosilane, triacetoxyvinylsilane, 3-chloropropylmethyldivinylsilane, diethoxydivinylsilane, dimethylethylmethylketokimvinylsilane, dimethylisobutoxyvinylsilane, triethoxyvinylsilane, methylphenylvinylchlorosilane, Methylphenylvinylsilane, dimethylisopentyloxyvinylsilane, 4-bromophenyldimethylvinylsilane, 3-aminophenoxydimethylvinylsilane, 4-aminophenoxydimethylvinylsilane, dimethylpiperidinomethylvinylsilane, dimethyl-2-[(2-ethoxyethoxy)ethoxy ] Vinylsilane, divinylmethylphenoxysilane, dimethyl-P-anisylvinylsilane, tris(1-methyl) Rubinyloxy) vinylsilane, triisopropoxyvinylsilane, diethoxy-2-piperidinoethoxyvinylsilane, diphenylvinylchlorosilane, 3-dimethylvinylphenyl N,N-diethylcarbomate, triphenoxyvinylsilane, 1,3-divinyl-1,1, 3,3-tetramethyldisiloxane, 1,3-divinyl-1,1,3,3-tetramethyldisilazane, 1-(4-methylpiperidinomethyl)-1,1,3,3-tetramethyl -3-Vinyldisiloxane, 1,4-bis(dimethylvinylsilyl)benzene, 1,4-bis(dimethylvinylsiloxy)benzene, 1,3-bis(dimethylvinylsiloxy)benzene, 1,1,3,3 -Tetraphenyl-, 3-divinyldisiloxane, 1,3,5-trimethyl-1,3,5-trivinylcyclotrisiloxane, 1,3,5,7-tetramethyl-1,3,5,7- Tetravinylcyclotetrasiloxane, tetrakis(dimethylvinylsiloxymethyl)methane, 3-chloropropyltrimethoxysilane.
 シランカップリング剤の添加量としては、充填剤の量に対して0.2~20重量%が好ましく、5~15重量%がより好ましい。シランカップリング剤の添加量が上記の範囲よりも少ないと、スコーチの原因となる場合がある。また、上記の範囲よりも多いと引張り特性、伸びの低下の原因となる場合がある。 The amount of the silane coupling agent added is preferably 0.2 to 20% by weight, more preferably 5 to 15% by weight, based on the amount of the filler. If the added amount of the silane coupling agent is less than the above range, it may cause scorch. On the other hand, if the amount exceeds the above range, the tensile properties and the elongation may decrease.
 上記ゴム組成物は、通常のバンバリーミキサーやニーダーなどの混合機によって混練することで得られる。 The above rubber composition can be obtained by kneading with a mixer such as an ordinary Banbury mixer or kneader.
 また、本発明に係るポリブタジエンは、プラスチック、例えば耐衝撃性ポリスチレンの改質剤として使用することもできる。すなわち、本発明に係るポリブタジエンを含むゴム変性耐衝撃性ポリスチレン系樹脂組成物を製造することもできる。 The polybutadiene according to the present invention can also be used as a modifier for plastics such as high impact polystyrene. That is, the rubber-modified impact-resistant polystyrene resin composition containing the polybutadiene according to the present invention can be produced.
 上記のゴム変性耐衝撃性ポリスチレン系樹脂組成物の製造方法としては、例えばゴム状ポリマーの存在下にスチレン系モノマーの重合を行う方法が採用され、塊状重合法や塊状懸濁重合法が経済的に有利な方法である。スチレン系モノマーとしては、例えば、スチレン;α-メチルスチレン、p-メチルスチレン等のアルキル置換スチレン;クロルスチレン等のハロゲン置換スチレンなど、従来ゴム変性耐衝撃性ポリスチレン系樹脂組成物製造用として知られているスチレン系モノマーの1種又は2種以上の混合物が用いられる。中でもスチレンが好ましい。 As a method for producing the rubber-modified impact-resistant polystyrene-based resin composition, for example, a method of polymerizing a styrene-based monomer in the presence of a rubber-like polymer is adopted, and a bulk polymerization method or a bulk suspension polymerization method is economical. This is an advantageous method. As the styrene-based monomer, for example, styrene; alkyl-substituted styrene such as α-methylstyrene and p-methylstyrene; halogen-substituted styrene such as chlorostyrene, etc., which are conventionally known for producing rubber-modified impact-resistant polystyrene-based resin composition. One or a mixture of two or more of the styrenic monomers described above is used. Of these, styrene is preferable.
 上記のゴム変性耐衝撃性ポリスチレン系樹脂組成物の製造時に、必要に応じて上記ゴム状ポリマーの他に、スチレン-ブタジエン共重合体、エチレン-プロピレン、エチレン-酢酸ビニル、アクリル系ゴムなどを、上記ゴム状ポリマーに対して例えば50重量%以内となるように併用することができる。また、これらの方法によって製造された樹脂組成物を混合してもよい。さらに、これらの方法によって製造されたゴム変性ポリスチレン系樹脂組成物を含まないポリスチレン系樹脂を混合してもよい。 In the production of the rubber-modified impact-resistant polystyrene resin composition, if necessary, in addition to the rubber-like polymer, styrene-butadiene copolymer, ethylene-propylene, ethylene-vinyl acetate, acrylic rubber, etc. The rubber-like polymer may be used in combination in an amount of, for example, 50% by weight or less. Moreover, you may mix the resin composition manufactured by these methods. Further, polystyrene-based resin containing no rubber-modified polystyrene-based resin composition produced by these methods may be mixed.
 上記の塊状重合法について一例を挙げて説明すると、スチレンモノマー(99~75重量%)にゴム状ポリマー(1~25重量%)を溶解させ、場合によっては溶剤、分子量調節剤、重合開始剤などを添加して、10~40%のスチレンモノマー転化率までゴム状ポリマーを分散した粒子に転化させる。このゴム粒子が生成するまではゴム相が連続相を形成している。さらに重合を継続してゴム粒子として分散相になる相の転換(粒子化工程)を経て50~99%の転化率まで重合して、ゴム変性耐衝撃性ポリスチレン系樹脂組成物が製造される。 Explaining the above-mentioned bulk polymerization method with an example, a rubber-like polymer (1 to 25% by weight) is dissolved in a styrene monomer (99 to 75% by weight), and in some cases, a solvent, a molecular weight modifier, a polymerization initiator, etc. Is added to convert the rubbery polymer to particles dispersed in a styrene monomer conversion of 10 to 40%. The rubber phase forms a continuous phase until the rubber particles are generated. Further, the polymerization is continued to undergo a phase conversion (particle forming step) as a dispersed phase as rubber particles to polymerize up to a conversion rate of 50 to 99% to produce a rubber-modified impact-resistant polystyrene resin composition.
 ゴム状ポリマーの分散粒子(ゴム粒子)は、樹脂中に分散された粒子で、ゴム状ポリマーとポリスチレン系樹脂よりなり、ポリスチレン系樹脂はゴム状ポリマーにグラフト結合したり、或いはグラフト結合せずに吸蔵されている。この発明で言うゴム状ポリマーの分散粒子の径として0.5~7.0μmの範囲(好ましくは1.0~3.0μmの範囲)のものが好適に製造できる。 Dispersed particles of rubber-like polymer (rubber particles) are particles dispersed in a resin and consist of a rubber-like polymer and a polystyrene resin. The polystyrene-based resin may or may not be graft-bonded to the rubber-like polymer. It is stored. The diameter of the dispersed particles of the rubber-like polymer referred to in the present invention is preferably 0.5 to 7.0 μm (preferably 1.0 to 3.0 μm).
 グラフト率として、150~350の範囲のものが好適に製造できる。製造は、バッチ式でも連続式でもよく、特に限定されない。上記のスチレン系モノマーとゴム状ポリマーとを主体とする原料溶液は、完全混合型反応器において重合されるが、完全混合型反応器としては、原料溶液が反応器において均一な混合状態を維持するものであればよく、好ましいものとしてはヘリカルリボン、ダブルヘリカルリボン、アンカーなどの型の攪拌翼が挙げられる。ヘリカルリボンタイプの攪拌翼にはドラフトチューブを取り付けて、反応器内の上下循環を一層強化することが好ましい。 A graft ratio in the range of 150 to 350 can be suitably manufactured. The production may be batch type or continuous type, and is not particularly limited. The raw material solution mainly composed of the styrene-based monomer and the rubber-like polymer is polymerized in the complete mixing type reactor, but as the complete mixing type reactor, the raw material solution maintains a uniform mixed state in the reactor. Any one may be used, and preferable examples include a stirring blade of a type such as a helical ribbon, a double helical ribbon, and an anchor. It is preferable to attach a draft tube to the helical ribbon type stirring blade to further strengthen the vertical circulation in the reactor.
 ゴム変性耐衝撃性ポリスチレン系樹脂組成物には、製造時や製造後に適宜必要に応じて酸化防止剤、紫外線吸収剤などの安定剤、離型剤、滑剤、着色剤、各種充填剤及び各種の可塑剤、高級脂肪酸、有機ポリシロキサン、シリコーンオイル、難燃剤、帯電防止剤や発泡剤などの公知添加剤を添加してもよい。ゴム変性耐衝撃性ポリスチレン系樹脂組成物は、公知の各種成形品に用いることはできるが、難燃性、耐衝撃強度、引張強度に優れるために電気・工業用途分野で使用される射出成形に好適である。例えばカラーテレビ、ラジカセ、ワープロ、タイプライター、ファクシミリ、VTRカセット、電話器などのハウジングの家電・工業用などの広範な用途に用いることができる。 The rubber-modified impact-resistant polystyrene-based resin composition may include an antioxidant, a stabilizer such as an ultraviolet absorber, a release agent, a lubricant, a colorant, various fillers, and various fillers as needed during or after the production. Known additives such as plasticizers, higher fatty acids, organic polysiloxanes, silicone oils, flame retardants, antistatic agents and foaming agents may be added. The rubber-modified impact-resistant polystyrene-based resin composition can be used for various known molded products, but it is excellent in flame resistance, impact resistance, and tensile strength, and therefore suitable for injection molding used in the fields of electrical and industrial applications. It is suitable. For example, it can be used in a wide range of applications such as a color television, a radio-cassette recorder, a word processor, a typewriter, a facsimile, a VTR cassette, a housing of a housing such as a telephone, and home electric appliances/industrial applications.
2.第2の発明《ポリブタジエン(2)》
 第2の発明は、以下に関する。

[1]周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを併用して、1,3-ポリブタジエンを重合する工程を有し、
 (B1)成分の使用量をb1モルとし、(B2)成分の使用量をb2モルとしたとき、
 0.10≦b2/(b1+b2)≦0.60
を満たす、ポリブタジエンの製造方法。
[2]前記1,3-ポリブタジエンを重合する工程は、
 1,3-ブタジエンと、水(A)と、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを混合する工程と、
 得られた混合物と、コバルト化合物(C)と、非配位アニオンとカチオンのイオン性化合物(D)とを混合し、1,3-ブタジエンを重合する工程と
を有する、[1]のポリブタジエンの製造方法。
[3]前記非ハロゲン化有機金属化合物(B1)が、非ハロゲン化有機アルミニウム化合物であり、前記ハロゲン化有機金属化合物(B2)が、ハロゲン化有機アルミニウム化合物である、[1]又は[2]のポリブタジエンの製造方法。
[4]非イオン性アニオンとカチオンのイオン性化合物(D)が、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート及び1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレートからなる群より選ばれる1種以上を含む、[1]~[3]のポリブタジエンの製造方法。
[5][1]~[4]のポリブタジエンの製造方法により得られる、ポリブタジエン。
[6]GPCによるポリスチレン換算の、重量平均分子量と数平均分子量の比(Mw/Mn)が2.0~2.5であり、
 5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML)が2.5~6.0であり、
 ミクロ構造分析におけるシス1,4結合含量が98.5モル%以上であり、
 ハロゲン含量が1~60μg/gである、ポリブタジエン。
[7]ムーニー粘度(ML1+4,100℃)が30~100である、[6]のポリブタジエン。
[8]z平均分子量(Mz)と数平均分子量(Mw)の比(Mz/Mw)が、1.60以上、2.00未満である、[6]又は[7]のポリブタジエン。
[9][5]~[8]のポリブタジエンを含む、ゴム組成物。
[10][9]のゴム組成物を用いたタイヤ。
2. Second invention <<Polybutadiene (2)>>
The second invention relates to the following.
..
[1] A non-halogenated organometallic compound (B1) of the elements of Groups 1, 2, and 13 of the periodic table and a halogenated organometallic compound (B2) of the elements of Groups 1, 2, and 13 of the periodic table are used in combination. The step of polymerizing 1,3-polybutadiene,
When the amount of the component (B1) used is b1 mol and the amount of the component (B2) used is b2 mol,
0.10≦b2/(b1+b2)≦0.60
A method for producing polybutadiene that satisfies the above conditions.
[2] The step of polymerizing the 1,3-polybutadiene is
1,3-Butadiene, water (A), non-halogenated organometallic compound (B1) of elements of Groups 1, 2, and 13 of the periodic table, and halogenation of elements of Groups 1, 2, and 13 of the periodic table A step of mixing with the organometallic compound (B2),
Of the polybutadiene of [1], which comprises a step of mixing the obtained mixture, a cobalt compound (C), an ionic compound (D) of a non-coordinating anion and a cation, and polymerizing 1,3-butadiene. Production method.
[3] The non-halogenated organometallic compound (B1) is a non-halogenated organoaluminum compound, and the halogenated organometallic compound (B2) is a halogenated organoaluminum compound [1] or [2]. The method for producing polybutadiene according to claim 1.
[4] The ionic compound (D) of a nonionic anion and a cation is triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′- The method for producing polybutadiene according to [1] to [3], which comprises at least one member selected from the group consisting of dimethylferrocenium tetrakis(pentafluorophenyl)borate.
[5] Polybutadiene obtained by the method for producing polybutadiene according to [1] to [4].
[6] The ratio of weight average molecular weight to number average molecular weight (Mw/Mn) in terms of polystyrene by GPC is 2.0 to 2.5,
The ratio (Tcp/ML) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.5 to 6.0,
The cis-1,4 bond content in the microstructure analysis is 98.5 mol% or more,
Polybutadiene having a halogen content of 1 to 60 μg/g.
[7] The polybutadiene according to [6], having a Mooney viscosity (ML 1+4,100° C. ) of 30 to 100.
[8] The polybutadiene according to [6] or [7], wherein the ratio (Mz/Mw) of the z-average molecular weight (Mz) and the number-average molecular weight (Mw) is 1.60 or more and less than 2.00.
[9] A rubber composition containing the polybutadiene of [5] to [8].
[10] A tire using the rubber composition according to [9].
 <ポリブタジエンの製造方法>
 本発明では、水(A)、周期律表第1、2、13族元素の有機金属化合物(B)、コバルト化合物(C)、及び非配位アニオンとカチオンのイオン性化合物(D)を含む触媒により、1,3-ブタジエンを重合することでポリブタジエンを製造することができる。
 本発明のポリブタジエンの製造方法は、1,3-ポリブタジエンを重合する工程において、
 周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを併用し、
 (B1)成分の使用量をb1モルとし、(B2)成分の使用量をb2モルとしたとき、
  0.10≦b2/(b1+b2)≦0.60
を満たす。
 また、本発明のポリブタジエンの製造方法では、前記1,3-ポリブタジエンを重合する工程は、1,3-ブタジエンの存在下に、水(A)と、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを混合する工程と、得られた混合物、コバルト化合物(C)と、非配位アニオンとカチオンのイオン性化合物(D)とを混合し、1,3-ブタジエンを重合する工程と
を有することが好ましい。
 なお、周期律表第1、2、13族元素は、旧IUPACにおける周期律表第I~III族元素である。
<Method for producing polybutadiene>
In the present invention, water (A), an organometallic compound (B) of the elements of Groups 1, 2, and 13 of the periodic table, a cobalt compound (C), and an ionic compound (D) of a non-coordinating anion and a cation are included. Polybutadiene can be produced by polymerizing 1,3-butadiene with a catalyst.
The method for producing polybutadiene of the present invention comprises the steps of polymerizing 1,3-polybutadiene,
A non-halogenated organometallic compound of the elements of Groups 1, 2 and 13 of the periodic table (B1) and a halogenated organometallic compound of the elements of Groups 1, 2 and 13 of the periodic table (B2) are used in combination,
When the amount of the component (B1) used is b1 mol and the amount of the component (B2) used is b2 mol,
0.10≦b2/(b1+b2)≦0.60
Meet
Further, in the method for producing polybutadiene of the present invention, the step of polymerizing the 1,3-polybutadiene is carried out in the presence of 1,3-butadiene, with water (A) and an element of Group 1, 2, or 13 of the periodic table. Mixing the non-halogenated organometallic compound (B1) with the halogenated organometallic compound (B2) of the elements of groups 1, 2, and 13 of the periodic table, and the obtained mixture and the cobalt compound (C). And mixing the non-coordinating anion and the cation ionic compound (D) to polymerize 1,3-butadiene.
The elements of Groups 1, 2, and 13 of the Periodic Table are elements of Groups I to III of the Periodic Table in the old IUPAC.
 ((A)成分:水)
 (A)成分の水としては、イオン交換水や純水を用いることができる。
((A) component: water)
As the component (A) water, ion-exchanged water or pure water can be used.
 ((B)成分:周期律表第1、2、13族元素の有機金属化合物)
 本発明では、(B)成分の周期律表第1、2、13族元素の有機金属化合物として、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを併用する。こうすることで、ポリブタジエンの収率を大幅に向上させることができ、得られるポリブタジエンのリニアリティが高くなる。
(Component (B): Organometallic compound of Group 1, 2 and 13 elements of the periodic table)
In the present invention, the non-halogenated organometallic compound (B1) of the elements of Groups 1, 2, and 13 of the periodic table is used as the organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table of the component (B), and A halogenated organometallic compound (B2) of Group 1, 2 and 13 elements of the Periodic Table is used in combination. By doing so, the yield of polybutadiene can be significantly improved, and the linearity of the polybutadiene obtained can be increased.
 ((B1)成分:周期律表第1、2、13族元素の非ハロゲン化有機金属化合物)
 (B1)成分の周期律表第1、2、13族元素の非ハロゲン化有機金属化合物としては、非ハロゲン化有機リチウム化合物、非ハロゲン化有機マグネシウム化合物、非ハロゲン化有機アルミニウム化合物等が用いられる。中でも、非ハロゲン化有機アルミニウム化合物が好ましい。非ハロゲン化有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム等のトリアルキルアルミニウム;ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、セスキエチルアルミニウムハイドライド等のアルキルアルミニウムハイドライドが挙げられる。周期律表第1、2、13族元素の非ハロゲン化有機金属化合物は、単独で用いてもよく、二種以上組合せて用いてもよい。
(Component (B1): Non-halogenated organometallic compound of Group 1, 2 and 13 elements of the periodic table)
As the non-halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table of the component (B1), non-halogenated organolithium compounds, non-halogenated organomagnesium compounds, non-halogenated organoaluminum compounds, etc. are used. .. Of these, non-halogenated organoaluminum compounds are preferable. As the non-halogenated organoaluminum compound, trialkylaluminum such as trimethylaluminum, triethylaluminum, triisobutylaluminum, trihexylaluminum, trioctylaluminum, tridecylaluminum; diethylaluminum hydride, diisobutylaluminum hydride, sesquiethylaluminum hydride, etc. Alkyl aluminum hydride is mentioned. The non-halogenated organometallic compounds of the elements of Groups 1, 2, and 13 of the Periodic Table may be used alone or in combination of two or more.
 ((B2)成分:周期律表第1、2、13族元素のハロゲン化有機金属化合物)
 (B2)成分の周期律表第1、2、13族元素のハロゲン化有機金属化合物としては、ハロゲン化有機リチウム化合物、ハロゲン化有機マグネシウム化合物、ハロゲン化有機アルミニウム化合物等が用いられる。中でも、ハロゲン化有機アルミニウム化合物が好ましい。ハロゲン化有機アルミニウム化合物としては、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド等のジアルキルアルミニウムクロライド;ジメチルアルミニウムブロマイド、ジエチルアルミニウムブロマイド等のジアルキルアルミニウムブロマイド;メチルアルミニウムセスキクロライド、エチルアルミニウムセスキクロライド等のアルキルアルミニウムセスキクロライド;メチルアルミニウムセスキブロマイド、エチルアルミニウムセスキブロマイド等のアルキルアルミニウムセスキブロマイドが挙げられる。周期律表第1、2、13族元素のハロゲン化有機金属化合物は、単独で用いてもよく、二種以上組合せて用いてもよい。
(Component (B2): Halogenated organometallic compound of Group 1, 2 and 13 elements of the periodic table)
As the halogenated organometallic compound of the elements of Groups 1, 2, and 13 of the periodic table of the component (B2), a halogenated organolithium compound, a halogenated organomagnesium compound, a halogenated organoaluminum compound or the like is used. Of these, halogenated organoaluminum compounds are preferable. Examples of the halogenated organoaluminum compound include dialkyl aluminum chlorides such as dimethyl aluminum chloride and diethyl aluminum chloride; dialkyl aluminum bromides such as dimethyl aluminum bromide and diethyl aluminum bromide; alkyl aluminum sesquichlorides such as methyl aluminum sesquichloride and ethyl aluminum sesquichloride; Examples thereof include alkylaluminum sesquibromide and methylaluminum sesquibromide. The halogenated organometallic compounds of Group 1, 2, and 13 elements of the periodic table may be used alone or in combination of two or more.
 ((C)成分:コバルト化合物)
 (C)成分であるコバルト化合物としては、コバルトの塩や錯体が好ましく用いられる。特に好ましいものとしては、塩化コバルト、臭化コバルト、硝酸コバルト、オクチル酸コバルト、ナフテン酸コバルト、酢酸コバルト、マロン酸コバルト等のコバルト塩、コバルトのビスアセチルアセトネートやトリスアセチルアセトネート、アセト酢酸エチルエステルコバルト、コバルトのピリジン錯体やピコリン錯体等の有機塩基錯体、コバルトのエチルアルコール錯体などが挙げられる。コバルト化合物は、単独で用いてもよく、二種以上組合せて用いてもよい。
(Component (C): cobalt compound)
As the cobalt compound as the component (C), a cobalt salt or complex is preferably used. Particularly preferred are cobalt chloride, cobalt bromide, cobalt nitrate, cobalt octylate, cobalt naphthenate, cobalt acetate, cobalt malonate and other cobalt salts, cobalt bisacetylacetonate and trisacetylacetonate, ethyl acetoacetate. Examples thereof include ester cobalt, organic base complexes such as cobalt pyridine complex and picoline complex, and cobalt ethyl alcohol complex. The cobalt compounds may be used alone or in combination of two or more.
 ((D)成分:非配位アニオンとカチオンのイオン性化合物)
 (D)成分の非配位性アニオンとカチオンとのイオン性化合物を構成する非配位性アニオンとしては、例えば、テトラ(フェニル)ボレート、テトラ(フルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、テトラ(トルイル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレートなどが挙げられる。
(Component (D): ionic compound of non-coordinating anion and cation)
Examples of the non-coordinating anion constituting the ionic compound of the non-coordinating anion and the cation of the component (D) include tetra(phenyl)borate, tetra(fluorophenyl)borate, tetrakis(difluorophenyl)borate, Tetrakis(trifluorophenyl)borate, Tetrakis(tetrafluorophenyl)borate, Tetrakis(pentafluorophenyl)borate, Tetrakis(tetrafluoromethylphenyl)borate, Tetrakis(3,5-bistrifluoromethylphenyl)borate, Tetra(toluyl) Examples thereof include borate, tetra(xylyl)borate, (triphenyl, pentafluorophenyl)borate, [tris(pentafluorophenyl),phenyl]borate, and tridecahydride-7,8-dicarbaundecaborate.
 一方、(D)成分の非配位性アニオンとカチオンとのイオン性化合物を構成するカチオンとしては、カルベニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが挙げられる。 On the other hand, the cation constituting the ionic compound of the non-coordinating anion and the cation of the component (D) has a carbenium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a transition metal. Examples thereof include ferrocenium cation.
 カルベニウムカチオンの具体例としては、トリフェニルカルベニウムカチオン、トリ置換フェニルカルベニウムカチオンなどの三置換カルベニウムカチオンが挙げられる。トリ置換フェニルカルベニウムカチオンの具体例としては、トリ(メチルフェニル)カルベニウムカチオン、トリ(ジメチルフェニル)カルベニウムカチオンが挙げられる。 Specific examples of the carbenium cation include trisubstituted carbenium cations such as triphenyl carbenium cation and tri-substituted phenyl carbenium cation. Specific examples of the tri-substituted phenylcarbenium cation include a tri(methylphenyl)carbenium cation and a tri(dimethylphenyl)carbenium cation.
 アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン、ジ(i-プロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンが挙げられる。 Specific examples of the ammonium cation include trimethylammonium cation, triethylammonium cation, tripropylammonium cation, tributylammonium cation, tri(n-butyl)ammonium cation and other trialkylammonium cations, N,N-dimethylanilinium cations, N ,N-diethylanilinium cation, N,N-dialkylanilinium cation such as N,N-2,4,6-pentamethylanilinium cation, di(i-propyl)ammonium cation, dialkylammonium such as dicyclohexylammonium cation Examples include cations.
 ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンが挙げられる。 Specific examples of the phosphonium cation include triarylphosphonium cations such as triphenylphosphonium cation, tri(methylphenyl)phosphonium cation, and tri(dimethylphenyl)phosphonium cation.
 該イオン性化合物は、上記で例示した非配位性アニオン及びカチオンの中から、それぞれ任意に選択して組み合わせたものを好ましく用いることができる。中でも、イオン性化合物としては、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレートなどが好ましく、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート及び1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレートからなる群より選ばれる1種以上を含むことがより好ましい。イオン性化合物は、単独で用いてもよく、二種以上組合せて用いてもよい。 The ionic compound can be preferably used by arbitrarily selecting and combining from the non-coordinating anions and cations exemplified above. Among them, as the ionic compound, triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, 1,1′-dimethylferrocenium tetrakis(pentafluorophenyl) Borate and the like are preferable, and consist of triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′-dimethylferrocenium tetrakis(pentafluorophenyl)borate. It is more preferable to include at least one selected from the group. The ionic compounds may be used alone or in combination of two or more.
 ((B1)成分と(B2)成分のモル比)
 (B1)成分と(B2)成分の配合割合は、(B1)成分の使用量をb1モルとし、(B2)成分の使用量をb2モルとしたとき、0.10≦b2/(b1+b2)≦0.60を満たすことが重要である。(B1)成分の配合割合が少なすぎると、ポリブタジエンの収率が低くなり、(B2)成分の配合割合が多すぎると、得られるポリブタジエンのリニアリティが低くなるが、上記条件を満たすことで、ポリブタジエンの収率を大幅に向上させることができ、得られるポリブタジエンのリニアリティが高くなる。b2/(b1+b2)は、0.14以上が好ましく、0.17以上がより好ましく、0.20以上がさらに好ましい。b2/(b1+b2)は、0.50以下が好ましく、0.40以下がより好ましく、0.30以上がさらに好ましい。
(Molar ratio of component (B1) and component (B2))
The blending ratio of the component (B1) and the component (B2) is 0.10≦b2/(b1+b2)≦ when the amount of the component (B1) used is b1 mol and the amount of the component (B2) used is b2 mol. It is important to satisfy 0.60. If the blending ratio of the component (B1) is too low, the yield of polybutadiene will be low, and if the blending ratio of the component (B2) is too high, the linearity of the polybutadiene obtained will be low. The yield of polybutadiene can be significantly improved, and the linearity of the polybutadiene obtained can be increased. b2/(b1+b2) is preferably 0.14 or more, more preferably 0.17 or more, still more preferably 0.20 or more. As for b2/(b1+b2), 0.50 or less is preferable, 0.40 or less is more preferable, and 0.30 or more is further preferable.
 ((A)成分~(D)成分のモル比)
 (A)成分~(D)成分の配合割合は、各種条件により適宜設定すればよい。(C)成分と(D)成分とのモル比は、1:0.1~10が好ましく、1:0.2~5がより好ましい。(C)成分と(B)成分とのモル比は、1:0.5~5000が好ましく、1:5~2500がより好ましい。(B)成分と(A)成分とのモル比は、1:0.01~2が好ましく、1:0.01~1.5がより好ましく、1:0.1~1.5がさらに好ましい。
(Molar ratio of component (A) to component (D))
The mixing ratios of the components (A) to (D) may be appropriately set according to various conditions. The molar ratio of the component (C) to the component (D) is preferably 1:0.1 to 10, more preferably 1:0.2 to 5. The molar ratio of the component (C) to the component (B) is preferably 1:0.5 to 5000, more preferably 1:5 to 2500. The molar ratio of the component (B) to the component (A) is preferably 1:0.01 to 2, more preferably 1:0.01 to 1.5, and further preferably 1:0.1 to 1.5. ..
 (各成分の混合又は添加順序)
 各成分の混合又は添加順序に関しては、まず、1,3-ブタジエンと、水(A)と、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを混合する(第一工程)。第一工程においては、1,3-ブタジエンの存在下に、水(A)と、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを混合することが好ましい。そして、得られた混合物と、コバルト化合物(C)と、非配位アニオンとカチオンのイオン性化合物(D)とを混合する(第二工程)。第二工程においては、得られた混合物に、コバルト化合物(C)と、非配位アニオンとカチオンのイオン性化合物(D)とを添加することが好ましい。このような工程によりポリブタジエンを製造することで、ポリブタジエンの収率を大幅に向上させることができ、得られるポリブタジエンのリニアリティが高くなる。
(Mixing or adding order of each component)
Regarding the order of mixing or adding each component, first, 1,3-butadiene, water (A), a non-halogenated organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table, and the periodic The halogenated organometallic compound (B2) of Group 1, 2 and 13 elements in the table is mixed (first step). In the first step, in the presence of 1,3-butadiene, water (A), a non-halogenated organometallic compound of an element of Groups 1, 2, and 13 of the periodic table (B1), and a first group of the periodic table It is preferable to mix with a halogenated organometallic compound (B2) of a Group 2 or 13 element. Then, the obtained mixture, the cobalt compound (C), and the ionic compound (D) of a non-coordinating anion and a cation are mixed (second step). In the second step, it is preferable to add the cobalt compound (C) and the ionic compound (D) of a non-coordinating anion and a cation to the obtained mixture. By producing polybutadiene by such a process, the yield of polybutadiene can be significantly improved and the linearity of the obtained polybutadiene can be increased.
 第一工程では、1,3-ブタジエンの存在下に(A)成分と(B)成分(=(B1)成分及び(B2)成分)を添加することで、1,3-ブタジエンを重合するための助触媒が形成される。(A)成分と(B)成分は同時に添加してもよく、間隔をあけて添加してもよいが、(A)成分を添加した後に(B)成分を添加することがより好ましい。(B1)成分と(B2)成分の添加順は任意である。 In the first step, 1,3-butadiene is polymerized by adding the component (A) and the component (B) (=the component (B1) and the component (B2)) in the presence of 1,3-butadiene. A cocatalyst is formed. The component (A) and the component (B) may be added simultaneously or at intervals, but it is more preferable to add the component (B) after adding the component (A). The order of adding the component (B1) and the component (B2) is arbitrary.
 第一工程において、1,3-ブタジエンの存在下に(A)成分と(B)成分を添加した後、熟成することが好ましい。熟成温度は、-50~80℃が好ましく、-10~50℃がより好ましい。熟成時間は、0.01~24時間が好ましく、0.05~5時間がより好ましく、0.1~3時間がさらに好ましい。 In the first step, it is preferable to add the (A) component and the (B) component in the presence of 1,3-butadiene and then to age. The aging temperature is preferably −50 to 80° C., more preferably −10 to 50° C. The aging time is preferably 0.01 to 24 hours, more preferably 0.05 to 5 hours, and even more preferably 0.1 to 3 hours.
 第二工程では、第一工程で得られた混合物と、(C)成分と、(D)成分とを混合し、1,3-ブタジエンを重合する。第二工程においては、第一工程で得られた混合物に(C)成分と(D)成分を添加することで、1,3-ブタジエンを重合することが好ましい。(C)成分と(D)成分は同時に添加してもよく、間隔をあけて添加してもよい。第一工程で1,3-ブタジエンの存在下に(A)成分と(B)成分を添加することで、1,3-ブタジエンを重合するための助触媒が形成され、その助触媒が(C)成分が接触することで、最初に有効で均質な活性種が形成されるためである。 In the second step, the mixture obtained in the first step, the component (C) and the component (D) are mixed to polymerize 1,3-butadiene. In the second step, it is preferable to polymerize 1,3-butadiene by adding the component (C) and the component (D) to the mixture obtained in the first step. The component (C) and the component (D) may be added at the same time or at intervals. In the first step, by adding the components (A) and (B) in the presence of 1,3-butadiene, a cocatalyst for polymerizing 1,3-butadiene is formed. This is because the contact of the components first forms an effective and homogeneous active species.
 ただし、(C)成分を(D)成分よりも先に添加する場合、(C)成分と(D)成分とを同時に又は3分間未満の間隔をあけて添加することが好ましく、2分以下の間隔をあけて添加することがより好ましく、1分以下の間隔をあけて添加することがさらに好ましい。3分以上の間隔をあけてしまうと、不均質な活性種が形成し、超高分子量成分が生成してしまい、所望のMw/Mnを持つポリブタジエンが得られにくくなる。逆に、(C)成分と(D)成分とを同時に又は3分間未満の間隔をあけて添加すれば、所望のMw/Mnを持つポリブタジエンが得られ、破壊強力、耐摩耗性及び低ロス性のバランスが改良できるポリブタジエンが得られやすくなる。 However, when the component (C) is added before the component (D), it is preferable to add the component (C) and the component (D) at the same time or at intervals of less than 3 minutes, preferably 2 minutes or less. It is more preferable to add at intervals, and it is more preferable to add at intervals of 1 minute or less. If an interval of 3 minutes or more is provided, an inhomogeneous active species is formed and an ultrahigh molecular weight component is produced, and it becomes difficult to obtain a polybutadiene having a desired Mw/Mn. On the contrary, when the component (C) and the component (D) are added at the same time or at intervals of less than 3 minutes, a polybutadiene having a desired Mw/Mn can be obtained, and the fracture strength, abrasion resistance and low loss property can be obtained. It becomes easier to obtain polybutadiene that can improve the balance of
 各成分は、無機化合物又は有機高分子化合物に担持された状態で用いることができる。 Each component can be used while being supported by an inorganic compound or an organic polymer compound.
 (溶媒)
 1,3-ブタジエンの重合時には、溶媒を用いることができる。溶媒としては、トルエン、ベンゼン、キシレン等の芳香族炭化水素溶媒、n-ヘキサン、ブタン、ヘプタン、ペンタン等の飽和脂肪族炭化水素溶媒、シクロペンタン、シクロヘキサン等の脂環式炭化水素溶媒、1-ブテン、シス-2-ブテン、トランス-2-ブテン等のC4留分などのオレフィン系炭化水素溶媒、ミネラルスピリット、ソルベントナフサ、ケロシン等の石油系炭化水素溶媒、塩化メチレン等のハロゲン化炭化水素系溶媒等が挙げられる。また、1,3-ブタジエンそのものを重合溶媒としてもよい。中でも、ベンゼン、シクロヘキサン、シス-2-ブテンとトランス-2-ブテンとの混合物などが好適に用いられる。
(solvent)
A solvent can be used during the polymerization of 1,3-butadiene. Examples of the solvent include aromatic hydrocarbon solvents such as toluene, benzene and xylene, saturated aliphatic hydrocarbon solvents such as n-hexane, butane, heptane and pentane, alicyclic hydrocarbon solvents such as cyclopentane and cyclohexane, 1- Olefinic hydrocarbon solvents such as C4 fractions such as butene, cis-2-butene, trans-2-butene, petroleum hydrocarbon solvents such as mineral spirits, solvent naphtha and kerosene, halogenated hydrocarbons such as methylene chloride A solvent etc. are mentioned. Further, 1,3-butadiene itself may be used as the polymerization solvent. Among them, benzene, cyclohexane, a mixture of cis-2-butene and trans-2-butene, etc. are preferably used.
 (分子量調節剤)
 1,3-ブタジエンの重合時には、分子量調節剤を用いることができる。分子量調節剤としては、シクロオクタジエン、アレンなどの非共役ジエン類、エチレン、プロピレン、ブテン-1などのα-オレフィン類を使用することができる。特に好ましくはシクロオクタジエンであり、その使用量は、1,3-ブタジエン1モル当たり30ミリモル以下が好ましく、5ミリモル以下がより好ましい。この範囲を超える量の分子量調節剤を用いると、ML粘度のずれの問題が生ずる場合がある。
(Molecular weight regulator)
A molecular weight modifier can be used during the polymerization of 1,3-butadiene. As the molecular weight modifier, non-conjugated dienes such as cyclooctadiene and allene, and α-olefins such as ethylene, propylene and butene-1 can be used. Cyclooctadiene is particularly preferable, and the amount thereof used is preferably 30 mmol or less, and more preferably 5 mmol or less per mol of 1,3-butadiene. If the amount of the molecular weight regulator exceeds this range, the problem of ML viscosity shift may occur.
 (重合温度と重合時間)
 重合温度は-30~100℃の範囲が好ましく、30~80℃の範囲が特に好ましい。重合時間は10分~12時間の範囲が好ましい。また、重合圧は、常圧又は10気圧(ゲージ圧)程度までの加圧下に行われる。
(Polymerization temperature and polymerization time)
The polymerization temperature is preferably in the range of -30 to 100°C, particularly preferably in the range of 30 to 80°C. The polymerization time is preferably in the range of 10 minutes to 12 hours. The polymerization pressure is normal pressure or pressure up to about 10 atm (gauge pressure).
 <ポリブタジエン>
 上記の製造方法により得られる本発明に係るポリブタジエンは、GPCによるポリスチレン換算の、重量平均分子量と数平均分子量の比(Mw/Mn)が2.0~2.5であり、
 5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML)が2.5~6.0であり、
 ミクロ構造分析におけるシス1,4結合含量が98.5モル%以上であり、
 ハロゲンの含有量が1~60μg/gである。
<Polybutadiene>
The polybutadiene according to the present invention obtained by the above production method has a ratio (Mw/Mn) of weight average molecular weight to number average molecular weight of 2.0 to 2.5 in terms of polystyrene by GPC.
The ratio (Tcp/ML) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.5 to 6.0,
The cis-1,4 bond content in the microstructure analysis is 98.5 mol% or more,
The content of halogen is 1 to 60 μg/g.
 (重量平均分子量と数平均分子量の比(Mw/Mn))
 ゲル浸透クロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量と数平均分子量の比(Mw/Mnと略記)は、2.5以下であり、2.4以下であることが好ましく、2.3以下であることがより好ましい。Mw/Mnの値が大き過ぎると、超高分子量成分や低分子量成分の含有量が多くなるため、耐摩耗性や破壊強力、低ロス性の物性改善が低下する傾向が見られる。Mw/Mnの値は2.0以上であり、2.1以上であることが好ましく、2.2以上であることがより好ましい。
(Ratio of weight average molecular weight to number average molecular weight (Mw/Mn))
The ratio of polystyrene-reduced weight average molecular weight to number average molecular weight (abbreviated as Mw/Mn) by gel permeation chromatography (GPC) is 2.5 or less, preferably 2.4 or less, and preferably 2.3 or less. Is more preferable. If the value of Mw/Mn is too large, the contents of the ultra-high molecular weight component and the low-molecular weight component increase, and there is a tendency that the physical properties of abrasion resistance, fracture strength, and low loss tend to deteriorate. The value of Mw/Mn is 2.0 or more, preferably 2.1 or more, and more preferably 2.2 or more.
 (z平均分子量(Mz))
 z平均分子量(Mz)は、80.0×10~150.0×10であることが好ましい。z平均分子量(Mz)が80.0×10以上であれば、耐摩耗性がより向上する。一方、z平均分子量(Mz)が150.0×10以下であれば、加工性がより向上する。z平均分子量(Mz)は、90.0×10~140.0×10であることがより好ましく、95.0×10~130.0×10であることがさらに好ましい。
(Z average molecular weight (Mz))
The z-average molecular weight (Mz) is preferably 80.0×10 4 to 150.0×10 4 . When the z-average molecular weight (Mz) is 80.0×10 4 or more, abrasion resistance is further improved. On the other hand, if the z-average molecular weight (Mz) is 150.0×10 4 or less, the workability is further improved. The z-average molecular weight (Mz) is more preferably 90.0×10 4 to 140.0×10 4 , and further preferably 95.0×10 4 to 130.0×10 4 .
 (z平均分子量と重量平均分子量の比(Mz/Mw))
 z平均分子量(Mz)と重量平均分子量(Mw)の比(Mz/Mw)は、1.60以上、2.00未満であることが好ましい。Mz/Mwが1.60以上であれば、加工性がより向上する。一方、Mz/Mwが2.00未満であれば、耐摩耗性がより向上する。Mz/Mwは、1.60~1.95であることがより好ましく、1.70~1.90であることがさらに好ましい。
(Ratio of z-average molecular weight to weight-average molecular weight (Mz/Mw))
The ratio (Mz/Mw) of the z average molecular weight (Mz) and the weight average molecular weight (Mw) is preferably 1.60 or more and less than 2.00. When Mz/Mw is 1.60 or more, workability is further improved. On the other hand, if Mz/Mw is less than 2.00, wear resistance is further improved. Mz/Mw is more preferably 1.60 to 1.95, further preferably 1.70 to 1.90.
 (Tcp/ML)
 5重量%トルエン溶液(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/MLと略記する)は、2.5~6.0であり、3.0~5.5が好ましく、4.0~5.0がより好ましい。Tcp/MLが小さ過ぎると、分子鎖の分岐度が大きくなり、耐摩耗性や低ロス性が低下する傾向が見られる。また上記範囲より大きいTcp/MLは、所望のMw/Mnを得る条件下で製造することは難しい場合がある。
(Tcp/ML)
The ratio (abbreviated as Tcp/ML) of the 5 wt% toluene solution (Tcp) to the Mooney viscosity (ML 1+4,100° C. ) is 2.5 to 6.0, preferably 3.0 to 5.5, It is more preferably 4.0 to 5.0. If Tcp/ML is too small, the degree of branching of the molecular chain increases, and wear resistance and low loss tend to decrease. Further, it may be difficult to produce Tcp/ML larger than the above range under the condition of obtaining a desired Mw/Mn.
 (ムーニー粘度)
 ムーニー粘度(ML1+4,100℃)は、30~100が好ましく、40~90がより好ましく、50~80がさらに好ましい。ムーニー粘度が大きすぎると加工性が低下する傾向があり、ムーニー粘度が小さすぎると耐摩耗性や低ロス性が低下する傾向がある。
(Moonie viscosity)
The Mooney viscosity (ML 1+4,100° C. ) is preferably 30 to 100, more preferably 40 to 90, and further preferably 50 to 80. If the Mooney viscosity is too high, the processability tends to decrease, and if the Mooney viscosity is too low, the abrasion resistance and low loss property tend to decrease.
 (ミクロ構造分析における1,4-シス結合含量(モル%))
 ミクロ構造分析における1,4-シス結合含量は、98.5モル%以上である。1,4-シス構造の割合が98.5モル%以上であれば、耐摩耗性がより向上する。
(1,4-cis bond content (mol%) in microstructure analysis)
The 1,4-cis bond content in the microstructure analysis is 98.5 mol% or more. When the ratio of the 1,4-cis structure is 98.5 mol% or more, the wear resistance is further improved.
 (ハロゲン含量)
 ハロゲン含量は、1~60μg/gであり、5~55μg/gであることが好ましく、7~50μg/gであることがより好ましく、10~45μg/gであることがさらに好ましい。
(Halogen content)
The halogen content is 1 to 60 μg/g, preferably 5 to 55 μg/g, more preferably 7 to 50 μg/g, and further preferably 10 to 45 μg/g.
 <ゴム組成物>
 ゴム組成物は、前記製造方法により得られるポリブタジエン又は前記ポリブタジエンを含む。
 ゴム組成物の実施形態については、《ポリブタジエン(1)》のゴム組成物の欄で説明した実施形態と同様であるので、その説明を省略する。
<Rubber composition>
The rubber composition contains the polybutadiene obtained by the production method or the polybutadiene.
Since the embodiment of the rubber composition is the same as the embodiment described in the section of the rubber composition of <<polybutadiene (1)>>, the description thereof will be omitted.
 以下に、本発明に基づく実施例について具体的に記載する。
1.第1の発明《ポリブタジエン(1)》
Hereinafter, examples based on the present invention will be specifically described.
1. First invention <<Polybutadiene (1)>>
 (ムーニー粘度(ML1+4,100℃))
 ポリブタジエンのムーニー粘度(ML1+4,100℃)は、JIS K6300に従い、株式会社島津製作所製のムーニー粘度計(商品名:SMV-200)を使用して100℃で1分予熱したのち4分間測定した。
(Moonie viscosity (ML 1+4,100°C ))
The Mooney viscosity (ML 1+4,100° C. ) of polybutadiene was measured according to JIS K6300 using a Mooney viscometer (trade name: SMV-200) manufactured by Shimadzu Corporation for 1 minute at 100° C. and then measured for 4 minutes. ..
 (5重量%トルエン溶液粘度(Tcp))
 ポリブタジエンの5重量%トルエン溶液粘度(Tcp)は、ポリマー2.28gをトルエン50mlに溶解した後、キャノンフェンスケ粘度計No.400を使用して、25℃で測定した。なお、標準液としては、粘度計校正用標準液(JIS Z8809)を用いた。
(Viscosity of 5 wt% toluene solution (Tcp))
The viscosity (Tcp) of a 5 wt% toluene solution of polybutadiene was measured by dissolving 2.28 g of the polymer in 50 ml of toluene and then measuring the viscosity of a Canon Fenske viscometer No. 400 was used and measured at 25°C. A standard solution for calibrating viscometer (JIS Z8809) was used as the standard solution.
 (応力緩和時間(T80))
 ポリブタジエンの応力緩和時間(T80)は、ASTM D1646-7に準じた応力緩和測定により算出した。具体的には、JIS K6300に基づいて測定した100℃におけるML1+4,100℃の測定条件下、測定4分後にローターが停止した時(0秒)のトルクを100%とし、その値が80%緩和するまで(すなわち20%に減衰するまで)の時間(単位:秒)を応力緩和時間T80として測定した。
(Stress relaxation time (T80))
The stress relaxation time (T80) of polybutadiene was calculated by the stress relaxation measurement according to ASTM D1646-7. Specifically, under the measurement conditions of ML 1+4 , 100° C. at 100° C. measured according to JIS K6300, the torque when the rotor is stopped (0 seconds) after 4 minutes of measurement is 100%, and the value is 80%. The time (unit: second) until relaxation (that is, until it attenuated to 20%) was measured as stress relaxation time T80.
 (z平均分子量(Mz)、重量平均分子量(Mw)、数平均分子量(Mn))
 ポリブタジエンのz平均分子量(Mz)、重量平均分子量(Mw)及び数平均分子量(Mn)は、テトラヒドロフランを溶媒とした温度40℃でのゲルパーミエーションクロマトグラフィー(GPC、東ソー社製)により得られた分子量分布曲線から、標準ポリスチレンを標準物質として作成した検量線を用いて計算した。なお、カラムはShodex製KF-805L(商品名)を2本直列に接続し、検出器は示唆屈折計(RI)を用いた。
(Z average molecular weight (Mz), weight average molecular weight (Mw), number average molecular weight (Mn))
The z-average molecular weight (Mz), weight-average molecular weight (Mw) and number-average molecular weight (Mn) of polybutadiene were obtained by gel permeation chromatography (GPC, manufactured by Tosoh Corp.) at a temperature of 40° C. using tetrahydrofuran as a solvent. It was calculated from a molecular weight distribution curve using a calibration curve prepared using standard polystyrene as a standard substance. Note that two KF-805L (trade name) manufactured by Shodex were connected in series to the column, and a suggestive refractometer (RI) was used as a detector.
 (ミクロ構造)
 ポリブタジエンのミクロ構造の割合については、0.4重量%の二硫化炭素溶液を用いて赤外吸収スペクトル分析を行い、740cm-1(シス)、967cm-1(トランス)、910cm-1(ビニル)の吸収強度比から算出した。
(Micro structure)
The proportion of the microstructure of the polybutadiene, carried out by infrared absorption spectroscopy using a 0.4 wt% carbon disulfide solution, 740 cm -1 (cis), 967 cm -1 (trans), 910 cm -1 (vinyl) It was calculated from the absorption intensity ratio of.
 (加工性)
 ゴム組成物の加工性の指標として、上記の方法でムーニー粘度(ML1+4,100℃)を測定し、比較例4を100とした指数(INDEX)を算出した。この指数が大きいほど、加工性が良好であることを示す。
(Processability)
As an index of the processability of the rubber composition, the Mooney viscosity (ML 1+4,100° C. ) was measured by the above method, and the index (INDEX) with Comparative Example 4 as 100 was calculated. The larger the index, the better the workability.
 (低ロス性)
 ゴム組成物の低ロス性の指標として、GABO社製EPLEXOR 100N(商品名)を用い、温度50℃、周波数16Hz、動的歪み0.2%の条件での動的粘弾性測定により、50℃におけるtanδを測定し、比較例4を100とした指数(INDEX)を算出した。この指数が大きいほど、低ロス性が良好であることを示す。
(Low loss)
As an index for the low loss property of the rubber composition, EPO LEXOR 100N (trade name) manufactured by GABO was used, and the temperature was 50° C., the frequency was 16 Hz, and the dynamic strain was measured at a dynamic strain of 0.2%. Was measured, and an index (INDEX) with Comparative Example 4 as 100 was calculated. The larger this index is, the better the low loss property is.
 (耐摩耗性)
 ゴム組成物の耐摩耗性の指標として、JIS K6264に規定されている測定法に従ってスリップ率10%でランボーン摩耗係数を測定し、比較例4を100とした指数(INDEX)を算出した。この指数が大きいほど、耐摩耗性が良好であることを示す。
(Abrasion resistance)
As an index of abrasion resistance of the rubber composition, the Lambourn abrasion coefficient was measured at a slip ratio of 10% according to the measuring method defined in JIS K6264, and an index (INDEX) with Comparative Example 4 as 100 was calculated. The larger this index, the better the abrasion resistance.
 (実施例1A)
 内容量1.5Lのオートクレーブの内部を窒素置換し、脱水シクロヘキサン550ml及びブタジエン350mlを仕込み、混合溶液中のブタジエン濃度を4.4Mとした。
(Example 1A)
The inside of an autoclave having an internal capacity of 1.5 L was replaced with nitrogen, 550 ml of dehydrated cyclohexane and 350 ml of butadiene were charged, and the butadiene concentration in the mixed solution was set to 4.4M.
 この混合溶液の温度を25℃とし、(A1)成分:水46μl(2.8mM)を添加し、500rpmで30分間攪拌した。さらに、シクロオクタジエン(COD)1.2ml(10.8mM)と、(B1a)成分:トリエチルアルミニウム(TEA)2.1mmol(2.34mM)及び(B1b)成分:ジエチルアルミニウムクロライド(DEAC)0.73mmol(0.81mM)を添加し、1分半後に65℃へ昇温を開始した。(B1a)成分及び(B1b)成分の添加から5分後に、(C1)成分:オクテン酸コバルト(Co(Oct))のシクロヘキサン溶液(4mM)を1.35ml(6μM)添加し、10秒後に(D)成分:トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)のトルエン溶液(4mM)を2.03ml(9μM)添加して、65℃で10分間重合した(第一重合工程)。第一重合工程が終了した時点における1,3-ブタジエンの転化率は35.3%であった。 The temperature of this mixed solution was adjusted to 25° C., component (A1): water (46 μl, 2.8 mM) was added, and the mixture was stirred at 500 rpm for 30 minutes. Further, 1.2 ml (10.8 mM) of cyclooctadiene (COD), (B1a) component: triethylaluminum (TEA) 2.1 mmol (2.34 mM) and (B1b) component: diethylaluminum chloride (DEAC) 0. 73 mmol (0.81 mM) was added, and one and a half minutes later, the temperature started to rise to 65°C. Five minutes after the addition of the components (B1a) and (B1b), 1.35 ml (6 μM) of a cyclohexane solution (4 mM) of the component (C1): cobalt octenoate (Co(Oct) 2 ) was added, and after 10 seconds. Component (D): 2.03 ml (9 μM) of a toluene solution (4 mM) of triphenylcarbonium tetrakis(pentafluorophenyl)borate (Ph 3 CB(C 6 F 5 ) 4 ) was added, and the mixture was added at 65° C. for 10 minutes. Polymerized (first polymerization step). The conversion rate of 1,3-butadiene at the time when the first polymerization step was completed was 35.3%.
 得られた混合溶液の温度を65℃とし、(A2)成分:水14.0μl(0.86mM)と(B2)成分:ジエチルアルミニウムクロライド(DEAC)1.51mmol(1.68mM)を添加し、500rpmで2分間攪拌した。60℃へ降温し、(C2)成分:オクテン酸コバルト(Co(Oct))のシクロヘキサン溶液(4mM)を2.25ml(10μM)添加して、60℃で5分間重合した(第二重合工程)。第二重合工程が終了した時点における1,3-ブタジエンの転化率は65.4%であった。 The temperature of the obtained mixed solution was set to 65° C., (A2) component: 14.0 μl of water (0.86 mM) and (B2) component: diethylaluminum chloride (DEAC) 1.51 mmol (1.68 mM) were added, The mixture was stirred at 500 rpm for 2 minutes. The temperature was lowered to 60° C., 2.25 ml (10 μM) of a cyclohexane solution (4 mM) of component (C2): cobalt octenoate (Co(Oct) 2 ) was added, and polymerization was performed at 60° C. for 5 minutes (second polymerization step). ). The conversion rate of 1,3-butadiene at the time when the second polymerization step was completed was 65.4%.
 その後、得られた混合溶液に、老化防止剤のエタノール溶液1.5mlを添加して重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで、回収したポリブタジエンを100℃で1時間真空乾燥した。得られたポリブタンジエンの物性を表1に示す。 Then, 1.5 ml of an ethanol solution of an antioxidant was added to the obtained mixed solution to stop the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour. Table 1 shows the physical properties of the obtained polybutanediene.
 (実施例2A)
 第一重合工程で添加したシクロオクタジエン(COD)の量を1.0ml(9.0mM)とし、第二重合工程で添加した(A2)成分:水の量を6.0μl(0.37mM)とし、第二重合工程で添加した(B2)成分:ジエチルアルミニウムクロライド(DEAC)の量を0.68mmol(0.75mM)とし、第二重合工程で添加した(C2)成分:オクテン酸コバルト(Co(Oct))のシクロヘキサン溶液(4mM)の量を1.35ml(6μM)としたこと以外は、実施例1Aと同様の方法で、ポリブタジエンを得た。各工程後のモノマー転化率及び得られたポリブタジエンの物性を表1に示す。
(Example 2A)
The amount of cyclooctadiene (COD) added in the first polymerization step was 1.0 ml (9.0 mM), and the amount of component (A2):water added in the second polymerization step was 6.0 μl (0.37 mM). And the amount of component (B2): diethylaluminum chloride (DEAC) added in the second polymerization step was 0.68 mmol (0.75 mM), and component (C2) added in the second polymerization step: cobalt octenoate (Co Polybutadiene was obtained in the same manner as in Example 1A, except that the amount of the (Oct) 2 ) cyclohexane solution (4 mM) was 1.35 ml (6 μM). Table 1 shows the monomer conversion rate after each step and the physical properties of the obtained polybutadiene.
 (実施例3A)
 第一重合工程で添加したシクロオクタジエン(COD)の量を0.88ml(7.9mM)とし、第二重合工程で添加した(A2)成分:水の量を10.0μl(0.62mM)とし、第二重合工程で添加した(B2)成分:ジエチルアルミニウムクロライド(DEAC)の量を1.13mmol(1.25mM)とし、第二重合工程で添加した(C2)成分:オクテン酸コバルト(Co(Oct))のシクロヘキサン溶液(12mM)の量を1.05ml(14μM)としたこと以外は、実施例1Aと同様の方法で、ポリブタジエンを得た。各工程後のモノマー転化率及び得られたポリブタジエンの物性を表1に示す。
(Example 3A)
The amount of cyclooctadiene (COD) added in the first polymerization step was 0.88 ml (7.9 mM), and the amount of component (A2):water added in the second polymerization step was 10.0 μl (0.62 mM). And the amount of component (B2): diethylaluminum chloride (DEAC) added in the second polymerization step was 1.13 mmol (1.25 mM), and the component (C2) added in the second polymerization step: cobalt octenoate (Co Polybutadiene was obtained in the same manner as in Example 1A, except that the amount of the (Oct) 2 ) cyclohexane solution (12 mM) was 1.05 ml (14 μM). Table 1 shows the monomer conversion rate after each step and the physical properties of the obtained polybutadiene.
(実施例4A)
 内容量1.5Lのオートクレーブの内部を窒素置換し、脱水シクロヘキサン450ml及びブタジエン450mlを仕込み、混合溶液中のブタジエン濃度を5.3Mとした。
(Example 4A)
The inside of an autoclave having an internal volume of 1.5 L was replaced with nitrogen, 450 ml of dehydrated cyclohexane and 450 ml of butadiene were charged, and the butadiene concentration in the mixed solution was adjusted to 5.3M.
 この混合溶液の温度を25℃とし、(A1)成分:水42μl(2.6mM)を添加し、500rpmで30分間攪拌した。さらに、シクロオクタジエン(COD)1.1ml(10.0mM)と、(B1a)成分:トリエチルアルミニウム(TEA)2.09mmol(2.32mM)及び(B1b)成分:ジエチルアルミニウムクロライド(DEAC)0.69mmol(0.77mM)を添加し、5分後に60℃へ昇温を開始した。昇温後、(C1)成分:オクテン酸コバルト(Co(Oct))のシクロヘキサン溶液(4mM)を0.90ml(4μM)と(D)成分:トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)のトルエン溶液(4mM)を1.35ml(6μM)を同時に添加して、60℃で20分間重合した(第一重合工程)。第一重合工程が終了した時点における1,3-ブタジエンの転化率は27.0%であった。 The temperature of this mixed solution was adjusted to 25° C., component (A1): water 42 μl (2.6 mM) was added, and the mixture was stirred at 500 rpm for 30 minutes. Furthermore, 1.1 ml (10.0 mM) of cyclooctadiene (COD), (B1a) component: triethylaluminum (TEA) 2.09 mmol (2.32 mM) and (B1b) component: diethylaluminum chloride (DEAC) 0. 69 mmol (0.77 mM) was added, and after 5 minutes, the temperature was raised to 60°C. After heating, 0.90 ml (4 μM) of a cyclohexane solution (4 mM) of component (C1): cobalt octenoate (Co(Oct) 2 ) and component (D): triphenylcarbonium tetrakis(pentafluorophenyl)borate ( 1.35 ml (6 μM) of a toluene solution (4 mM) of Ph 3 CB(C 6 F 5 ) 4 ) was simultaneously added, and polymerization was carried out at 60° C. for 20 minutes (first polymerization step). The conversion rate of 1,3-butadiene at the end of the first polymerization step was 27.0%.
 得られた混合溶液の温度を60℃とし、(B2)成分:ジエチルアルミニウムクロライド(DEAC)0.54mmol(0.60mM)を添加し、500rpmで2分間攪拌した。60℃で、(C2)成分:オクテン酸コバルト(Co(Oct)2)のシクロヘキサン溶液(4mM)を1.35ml(6μM)添加して、60℃で20分間重合した(第二重合工程)。第二重合工程が終了した時点における1,3-ブタジエンの転化率は42.6%であった。 The temperature of the obtained mixed solution was adjusted to 60° C., component (B2): diethylaluminum chloride (DEAC) 0.54 mmol (0.60 mM) was added, and the mixture was stirred at 500 rpm for 2 minutes. At 60° C., 1.35 ml (6 μM) of a cyclohexane solution (4 mM) of component (C2): cobalt octenoate (Co(Oct) 2) was added, and polymerization was performed at 60° C. for 20 minutes (second polymerization step). The conversion rate of 1,3-butadiene at the time when the second polymerization step was completed was 42.6%.
 その後、得られた混合溶液に、老化防止剤のエタノール溶液1.5mlを添加して重合
を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブ
タジエンを回収した。次いで、回収したポリブタジエンを100℃で1時間真空乾燥し
た。
Then, 1.5 ml of an ethanol solution of an antioxidant was added to the obtained mixed solution to terminate the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour.
(実施例5A)
 内容量1.5Lのオートクレーブの内部を窒素置換し、脱水シクロヘキサン450ml及びブタジエン450mlを仕込み、混合溶液中のブタジエン濃度を5.3Mとした。
(Example 5A)
The inside of an autoclave having an internal volume of 1.5 L was replaced with nitrogen, 450 ml of dehydrated cyclohexane and 450 ml of butadiene were charged, and the butadiene concentration in the mixed solution was adjusted to 5.3M.
 この混合溶液の温度を25℃とし、(A1)成分:水42μl(2.6mM)を添加し、500rpmで30分間攪拌した。さらに、シクロオクタジエン(COD)1.1ml(10.0mM)と、(B1a)成分:トリエチルアルミニウム(TEA)2.09mmol(2.32mM)及び(B1b)成分:ジエチルアルミニウムクロライド(DEAC)0.69mmol(0.77mM)を添加し、5分後に60℃へ昇温を開始した。昇温後、(C1)成分:オクテン酸コバルト(Co(Oct))のシクロヘキサン溶液(4mM)を0.90ml(4μM)と(D)成分:トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)のトルエン溶液(4mM)を1.35ml(6μM)を同時に添加して、60℃で20分間重合した(第一重合工程)。第一重合工程が終了した時点における1,3-ブタジエンの転化率は27.0%であった。 The temperature of this mixed solution was adjusted to 25° C., component (A1): water 42 μl (2.6 mM) was added, and the mixture was stirred at 500 rpm for 30 minutes. Furthermore, 1.1 ml (10.0 mM) of cyclooctadiene (COD), (B1a) component: triethylaluminum (TEA) 2.09 mmol (2.32 mM) and (B1b) component: diethylaluminum chloride (DEAC) 0. 69 mmol (0.77 mM) was added, and after 5 minutes, the temperature was raised to 60°C. After heating, 0.90 ml (4 μM) of a cyclohexane solution (4 mM) of component (C1): cobalt octenoate (Co(Oct) 2 ) and component (D): triphenylcarbonium tetrakis(pentafluorophenyl)borate ( 1.35 ml (6 μM) of a toluene solution (4 mM) of Ph 3 CB(C 6 F 5 ) 4 ) was simultaneously added, and polymerization was carried out at 60° C. for 20 minutes (first polymerization step). The conversion rate of 1,3-butadiene at the end of the first polymerization step was 27.0%.
 得られた混合溶液の温度を60℃とし、(C2)成分:オクテン酸コバルト(Co(Oct))のシクロヘキサン溶液(4mM)を1.35ml(6μM)添加して、60℃で20分間重合した(第二重合工程)。第二重合工程が終了した時点における1,3-ブタジエンの転化率は50.3%であった。 The temperature of the obtained mixed solution was set to 60° C., 1.35 ml (6 μM) of a cyclohexane solution (4 mM) of component (C2): cobalt octenoate (Co(Oct) 2 ) was added, and polymerization was performed at 60° C. for 20 minutes. (Second polymerization step). The conversion rate of 1,3-butadiene at the end of the second polymerization step was 50.3%.
 その後、得られた混合溶液に、老化防止剤のエタノール溶液1.5mlを添加して重合
を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブ
タジエンを回収した。次いで、回収したポリブタジエンを100℃で1時間真空乾燥し
た。
Then, 1.5 ml of an ethanol solution of an antioxidant was added to the obtained mixed solution to terminate the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour.
 (参考例1)
 重合時間を20分としたこと以外は、実施例1Aと同様にして、第一重合工程を行った。その後、得られた混合溶液に、老化防止剤のエタノール溶液1.5mlを添加して重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで、回収したポリブタジエンを100℃で1時間真空乾燥した。第一重合工程後のモノマー転化率及び得られたポリブタンジエンの物性を表1に示す。
(Reference example 1)
The first polymerization step was carried out in the same manner as in Example 1A except that the polymerization time was 20 minutes. Then, 1.5 ml of an ethanol solution of an antioxidant was added to the obtained mixed solution to terminate the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour. Table 1 shows the monomer conversion rate after the first polymerization step and the physical properties of the obtained polybutanediene.
 (参考例2)
 重合時間を20分としたこと以外は、実施例2Aと同様にして、第一重合工程を行った。その後、得られた混合溶液に、老化防止剤のエタノール溶液1.5mlを添加して重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで、回収したポリブタジエンを100℃で1時間真空乾燥した。第一重合工程後のモノマー転化率及び得られたポリブタンジエンの物性を表1に示す。
(Reference example 2)
The first polymerization step was carried out in the same manner as in Example 2A except that the polymerization time was 20 minutes. Then, 1.5 ml of an ethanol solution of an antioxidant was added to the obtained mixed solution to terminate the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour. Table 1 shows the monomer conversion rate after the first polymerization step and the physical properties of the obtained polybutanediene.
 (参考例3)
 重合時間を20分としたこと以外は、実施例3Aと同様にして、第一重合工程を行った。その後、得られた混合溶液に、老化防止剤のエタノール溶液1.5mlを添加して重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで、回収したポリブタジエンを100℃で1時間真空乾燥した。第一重合工程後のモノマー転化率及び得られたポリブタンジエンの物性を表1に示す。
(Reference example 3)
The first polymerization step was carried out in the same manner as in Example 3A except that the polymerization time was 20 minutes. Then, 1.5 ml of an ethanol solution of an antioxidant was added to the obtained mixed solution to terminate the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour. Table 1 shows the monomer conversion rate after the first polymerization step and the physical properties of the obtained polybutanediene.
 (比較例1A)
 市販のポリブタジエン(宇部興産製、商品名:BR150L)の物性を表1に示す。
(Comparative Example 1A)
Table 1 shows the physical properties of commercially available polybutadiene (trade name: BR150L manufactured by Ube Industries).
 (組成物評価)
 実施例1A~5A、参考例1~3及び比較例1のポリブタジエンを用いたゴム組成物を製造した。具体的には、実施例1A~5A、参考例1~3及び比較例1のポリブタジエン30重量部と天然ゴム(ML=70)70重量部を、あらかじめ90℃に加温した250ccのラボプラストミルに投入して、1分間混練した。次に、カーボンブラック(ISAF、三菱化学製、商品名:ダイアブラックI)50重量部、オイル(H&R製、商品名:VivaTec 400)3重量部、酸化亜鉛(ZnO♯1)3重量部、ステアリン酸(新日本理化製)を2重量部、及び酸化防止剤(大内新興製、商品名:ノクラック6C)2重量部を混合して、4分間混練した。混練を開始してから合計で5分間経過した後、混練物をラボプラストミルより取り出した。次に、取り出した混合物を6インチロールに巻きつけてロール混練しながら、加硫剤である粉末硫黄1.5重量部と加硫促進剤(三新化学工業製、商品名:サンセラーNS)1重量部を添加し、約5分間混合することで、ゴム組成物を得た。
(Composition evaluation)
Rubber compositions using the polybutadienes of Examples 1A to 5A, Reference Examples 1 to 3 and Comparative Example 1 were produced. Specifically, 30 parts by weight of polybutadiene of Examples 1A to 5A, Reference Examples 1 to 3 and Comparative Example 1 and 70 parts by weight of natural rubber (ML=70) were preliminarily heated to 90° C. and 250 cc of Laboplast mill. And kneaded for 1 minute. Next, 50 parts by weight of carbon black (ISAF, manufactured by Mitsubishi Chemical, trade name: Diablack I), 3 parts by weight of oil (manufactured by H&R, trade name: VivaTec 400), 3 parts by weight of zinc oxide (ZnO#1), stearin. 2 parts by weight of an acid (manufactured by Shin Nippon Rika) and 2 parts by weight of an antioxidant (manufactured by Ouchi Shinko, trade name: Nocrac 6C) were mixed and kneaded for 4 minutes. After a total of 5 minutes had elapsed since the start of the kneading, the kneaded product was taken out from the Labo Plastomill. Next, while winding the mixture taken out around a 6-inch roll and kneading the rolls, 1.5 parts by weight of powdered sulfur as a vulcanizing agent and a vulcanization accelerator (manufactured by Sanshin Chemical Industry Co., Ltd., trade name: Sancellar NS) 1 A rubber composition was obtained by adding parts by weight and mixing for about 5 minutes.
 得られたゴム組成物のムーニー粘度(ML1+4,100℃)を測定することで、加工性を評価した。さらに、得られたゴム組成物を温度150℃でプレス加硫し、得られた加硫試験片のtanδ及びランボーン摩耗係数を測定することで、低ロス性及び耐摩耗性を評価した。結果を表2に示す。 The processability was evaluated by measuring the Mooney viscosity (ML 1+4,100° C. ) of the obtained rubber composition. Further, the obtained rubber composition was press-vulcanized at a temperature of 150° C., and tan δ and Lambourn abrasion coefficient of the obtained vulcanized test piece were measured to evaluate low loss property and abrasion resistance. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上の結果に基づき、ポリブタジエンのムーニー粘度(Polymer ML)に対するゴム組成物のムーニー粘度のINDEX値(加工性)、50℃におけるtanδのINDEX値(低ロス性)、及びランボーン摩耗係数のINDEX値(耐摩耗性)をグラフにしたものを、それぞれ図1~3に示す。市販品(比較例1A)を基準として、第一重合工程及び第二重合工程を行った実施例1A~3Aでは、第一重合工程のみを行った参考例1~3に比べて、低ロス性は同等に維持しつつ、加工性を改善することができ、また耐摩耗性に優れていることが分かる。 Based on the above results, the INDEX value (workability) of the Mooney viscosity of the rubber composition with respect to the Mooney viscosity (Polymer ML) of polybutadiene, the INDEX value of tan δ at 50° C. (low loss property), and the INDEX value of the Lambourn abrasion coefficient ( Graphs of (wear resistance) are shown in FIGS. 1 to 3, respectively. Compared to Reference Examples 1 to 3 in which only the first polymerization step was performed, Examples 1A to 3A in which the first polymerization step and the second polymerization step were performed based on the commercially available product (Comparative Example 1A) had lower loss property. It can be seen that the workability can be improved while maintaining the same, and the wear resistance is excellent.
2.第2の発明《ポリブタジエン(2)》 2. Second invention <<Polybutadiene (2)>>
 (収率(Yield))
 ポリブタジエンの収率(Yield)は、得られたポリブタジエンの重量を測定し、重合溶液の容量に対する比率(g/L)で算出した。
(Yield)
The yield of polybutadiene (Yield) was calculated by measuring the weight of the obtained polybutadiene and calculating the ratio (g/L) to the volume of the polymerization solution.
 (ムーニー粘度(ML1+4,100℃))
 ポリブタジエンのムーニー粘度(ML1+4,100℃)は、JIS K6300に従い、株式会社島津製作所製のムーニー粘度計(商品名:SMV-200)を使用して100℃で1分予熱したのち4分間測定した。
(Moonie viscosity (ML 1+4,100°C ))
The Mooney viscosity (ML 1+4,100° C. ) of polybutadiene was measured according to JIS K6300 using a Mooney viscometer (trade name: SMV-200) manufactured by Shimadzu Corporation for 1 minute at 100° C. and then measured for 4 minutes. ..
 (5重量%トルエン溶液粘度(Tcp))
 ポリブタジエンの5重量%トルエン溶液粘度(Tcp)は、ポリマー2.28gをトルエン50mlに溶解した後、キャノンフェンスケ粘度計No.400を使用して、25℃で測定した。なお、標準液としては、粘度計校正用標準液(JIS Z8809)を用いた。
(Viscosity of 5 wt% toluene solution (Tcp))
The viscosity (Tcp) of a 5 wt% toluene solution of polybutadiene was measured by dissolving 2.28 g of the polymer in 50 ml of toluene and then measuring the viscosity of a Canon Fenske viscometer No. 400 was used and measured at 25°C. A standard solution for calibrating viscometer (JIS Z8809) was used as the standard solution.
 (重量平均分子量(Mw)、数平均分子量(Mn))
 ポリブタジエンの重量平均分子量(Mw)及び数平均分子量(Mn)は、テトラヒドロフランを溶媒とした温度40℃でのゲルパーミエーションクロマトグラフィー(GPC、東ソー社製)により得られた分子量分布曲線から、標準ポリスチレンを標準物質として作成した検量線を用いて計算した。なお、カラムはShodex製KF-805L(商品名)を2本直列に接続し、検出器は示唆屈折計(RI)を用いた。
(Weight average molecular weight (Mw), number average molecular weight (Mn))
The weight average molecular weight (Mw) and the number average molecular weight (Mn) of polybutadiene are the standard polystyrene from the molecular weight distribution curve obtained by gel permeation chromatography (GPC, manufactured by Tosoh Corporation) at a temperature of 40° C. using tetrahydrofuran as a solvent. Was calculated by using a calibration curve prepared as a standard substance. Note that two KF-805L (trade name) manufactured by Shodex were connected in series to the column, and a suggestive refractometer (RI) was used as a detector.
 (ミクロ構造分析におけるシス1,4結合含量(モル%))
 ポリブタジエンのミクロ構造の割合については、0.4重量%の二硫化炭素溶液を用いて赤外吸収スペクトル分析を行い、740cm-1(シス)、967cm-1(トランス)、910cm-1(ビニル)の吸収強度比から算出した。
(Cis 1,4 bond content (mol%) in microstructure analysis)
The proportion of the microstructure of the polybutadiene, carried out by infrared absorption spectroscopy using a 0.4 wt% carbon disulfide solution, 740 cm -1 (cis), 967 cm -1 (trans), 910 cm -1 (vinyl) It was calculated from the absorption intensity ratio of.
 (ハロゲン含量(μg/g))
 ポリブタジエン10gをトルエン300mlに溶解させた後、トルエン溶液に蒸留水100mlを加えた。3時間攪拌させた後、トルエンと蒸留水を分離した。分離させた蒸留水を採取し、イオンクロマトグラフィー(検出器:日立製作所製L-2470、カラムオーブン:日立製作所製L-2350)を用いて塩化物イオン濃度を定量し、ポリブタジエン中のハロゲン含量を算出した。
(Halogen content (μg/g))
After dissolving 10 g of polybutadiene in 300 ml of toluene, 100 ml of distilled water was added to the toluene solution. After stirring for 3 hours, toluene and distilled water were separated. The separated distilled water was collected and the chloride ion concentration was quantified using ion chromatography (detector: L-2470 manufactured by Hitachi, column oven: L-2350 manufactured by Hitachi) to determine the halogen content in the polybutadiene. Calculated.
 (実施例1B)
 内容量1.5Lのオートクレーブの内部を窒素置換し、脱水シクロヘキサン550ml及びブタジエン350mlを仕込み、混合溶液中のブタジエン濃度を4.4Mとした。
(Example 1B)
The inside of an autoclave having an internal capacity of 1.5 L was replaced with nitrogen, 550 ml of dehydrated cyclohexane and 350 ml of butadiene were charged, and the butadiene concentration in the mixed solution was set to 4.4M.
 この混合溶液の温度を25℃とし、(A)成分:水48μl(3.0mM)を添加し、500rpmで30分間攪拌した。さらに、シクロオクタジエン(COD)0.92ml(8.3mM)と、(B1)成分:トリエチルアルミニウム(TEA)2.4mmol(2.67mM)及び(B2)成分:ジエチルアルミニウムクロライド(DEAC)0.48mmol(0.53mM)を添加し、1分半後に65℃へ昇温を開始した。(B1)成分及び(B2)成分の添加から5分後に、(C)成分:オクテン酸コバルト(Co(Oct))のシクロヘキサン溶液(4mM)を1.35ml(6μM)添加し、10秒後に(D)成分:トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート(PhCB(C)のトルエン溶液(4mM)を2.03ml(9μM)添加して、65℃で20分間重合した。 The temperature of this mixed solution was adjusted to 25° C., component (A): 48 μl (3.0 mM) of water was added, and the mixture was stirred at 500 rpm for 30 minutes. Furthermore, cyclooctadiene (COD) 0.92 ml (8.3 mM), (B1) component: triethylaluminum (TEA) 2.4 mmol (2.67 mM) and (B2) component: diethylaluminum chloride (DEAC) 0. 48 mmol (0.53 mM) was added, and after 1 and a half minutes, the temperature was raised to 65°C. Five minutes after the addition of the components (B1) and (B2), 1.35 ml (6 μM) of a cyclohexane solution (4 mM) of the component (C): cobalt octenoate (Co(Oct) 2 ) was added, and 10 seconds later. Component (D): 2.03 ml (9 μM) of a toluene solution (4 mM) of triphenylcarbonium tetrakis(pentafluorophenyl)borate (Ph 3 CB(C 6 F 5 ) 4 ) was added, and the mixture was heated at 65° C. for 20 minutes. Polymerized.
 30分間の重合後、老化防止剤のエタノール溶液1.5mlを添加して重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで、回収したポリブタジエンを100℃で1時間真空乾燥した。重合条件を表3に、重合結果を表4に示す。 After 30 minutes of polymerization, 1.5 ml of an ethanol solution of an antioxidant was added to stop the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour. The polymerization conditions are shown in Table 3 and the polymerization results are shown in Table 4.
 (実施例2B~7B、比較例1B~2B)
 (A)成分の濃度、(B1)成分及び(B2)成分の種類及び濃度、並びにCODの濃度を表3に記載したように変更したこと以外は、実施例1Bと同様の方法で、ポリブタジエンを製造した。重合結果を表3に示す。なお、実施例7Bでは、(B2)成分としてジエチルアルミニウムクロライド(DEAC)の代わりにエチルアルミニウムセスキクロライド(EASC)を用いた。また、実施例1B、3B、5B及び比較例1Bでは、ポリブタジエンのムーニー粘度(ML1+4,100℃)が70程度になるように重合条件を設定し、実施例2B、4B、6B、7B及び比較例2Bでは、ポリブタジエンのムーニー粘度(ML1+4,100℃)が60程度になるように重合条件を設定した。
(Examples 2B to 7B, Comparative Examples 1B to 2B)
Polybutadiene was prepared in the same manner as in Example 1B except that the concentrations of the component (A), the types and concentrations of the components (B1) and (B2), and the concentration of COD were changed as shown in Table 3. Manufactured. The polymerization results are shown in Table 3. In Example 7B, ethyl aluminum sesquichloride (EASC) was used as the component (B2) instead of diethyl aluminum chloride (DEAC). In Examples 1B, 3B, 5B and Comparative Example 1B, the polymerization conditions were set so that the Mooney viscosity (ML 1+4,100° C. ) of polybutadiene was about 70, and Examples 2B, 4B, 6B, 7B and Comparative Examples were compared. In Example 2B, the polymerization conditions were set so that the polybutadiene had a Mooney viscosity (ML 1+4,100° C. ) of about 60.
(実施例8B) 
 内容量1.5Lのオートクレーブの内部を窒素置換し、シクロヘキサン459ml、ブタジエン339ml及びC4留分152mlを仕込み、混合溶液中のブタジエン濃度を3.8Mとした。混合溶液の含水濃度は0.18mMとした。
(Example 8B)
The inside of an autoclave having an internal volume of 1.5 L was replaced with nitrogen, 459 ml of cyclohexane, 339 ml of butadiene and 152 ml of C4 fraction were charged, and the butadiene concentration in the mixed solution was set to 3.8M. The water content of the mixed solution was 0.18 mM.
 この混合溶液の温度を25℃とし、(A)成分:水2.69mmolを添加し、500rpmで30分間攪拌した。さらに、シクロオクタジエン(COD)9.4mmolと、(B1)成分:トリエチルアルミニウム(TEA)2.03mmolと、(B2)成分:ジエチルアルミニウムクロライド(DEAC)1.01mmolとを添加し、5分後に65℃へ昇温を開始した。昇温後(C)成分:オクテン酸コバルト(Co(Oct))4.0μmolと(D)成分:トリフェニルカルボニウムテトラキス(ペンタフルロフェニル)ボレート(PhCB(C)6.1μmolとを同時に添加して、65℃で20分間重合した。 The temperature of this mixed solution was adjusted to 25° C., 2.69 mmol of component (A): water was added, and the mixture was stirred at 500 rpm for 30 minutes. Further, cyclooctadiene (COD) 9.4 mmol, component (B1): triethylaluminum (TEA) 2.03 mmol, and component (B2): diethylaluminum chloride (DEAC) 1.01 mmol were added, and after 5 minutes. The heating to 65° C. was started. After heating, component (C): cobalt octenoate (Co(Oct) 2 ) 4.0 μmol and component (D): triphenylcarbonium tetrakis(pentaflurophenyl)borate (Ph 3 CB(C 6 F 5 ) 4 ) 6.1 μmol was added at the same time and polymerized at 65° C. for 20 minutes.
 20分間の重合後、老化防止剤のエタノール溶液1.5mlを添加して重合を停止した。オートクレーブの内部を放圧した後、重合液にエタノールを投入し、ポリブタジエンを回収した。次いで、回収したポリブタジエンを100℃で1時間真空乾燥した。 After 20 minutes of polymerization, 1.5 ml of an ethanol solution containing an antioxidant was added to terminate the polymerization. After depressurizing the inside of the autoclave, ethanol was added to the polymerization solution to recover polybutadiene. Then, the recovered polybutadiene was vacuum dried at 100° C. for 1 hour.
 (実施例9B)
 (A)成分の濃度、(B1)成分及び(B2)成分の濃度を表3に記載したように変更したこと以外は、実施例8Bと同様の方法で、ポリブタジエンを製造した。重合結果を表4に示す。
(Example 9B)
Polybutadiene was produced in the same manner as in Example 8B, except that the concentrations of the components (A), (B1) and (B2) were changed as described in Table 3. The polymerization results are shown in Table 4.
 (比較例3B)
 内容量1.5Lのオートクレーブの内部を窒素置換し、シクロヘキサン420ml及びブタジエン530mlを仕込み、混合溶液中のブタジエン濃度を6.0Mとした。混合溶液の含水濃度は0.19mMとした。
(Comparative Example 3B)
The inside of an autoclave having an internal capacity of 1.5 L was replaced with nitrogen, 420 ml of cyclohexane and 530 ml of butadiene were charged, and the butadiene concentration in the mixed solution was adjusted to 6.0 M. The water content of the mixed solution was 0.19 mM.
(A)成分の濃度、(B1)成分及び(B2)成分の種類及び濃度、並びにCODの濃度を表3に記載したように変更し、重合時間を60分としたこと以外は、実施例8Bと同様の方法で、ポリブタジエンを製造した。重合結果を表4に示す。 Example 8B except that the concentration of the component (A), the types and concentrations of the components (B1) and (B2), and the concentration of COD were changed as shown in Table 3 and the polymerization time was 60 minutes. A polybutadiene was produced in the same manner as in. The polymerization results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 b2/(b1+b2)に対する収率及びTcp/MLをグラフにしたものを、それぞれ図4及び図5に示すように、本発明のようにb2/(b1+b2)を調整することで、ハイシスでTcp/MLの大きい(リニアリティの高い)ポリブタジエンを高収率で製造できることが分かる。 As shown in FIG. 4 and FIG. 5, graphs of the yield and Tcp/ML with respect to b2/(b1+b2) are shown in FIG. 4 and FIG. 5, respectively. By adjusting b2/(b1+b2) as in the present invention, Tcp/ It can be seen that polybutadiene having a large ML (high linearity) can be produced in a high yield.
 本発明に係るポリブタジエンは、リニアリティが高く、加工性、耐摩耗性及び低ロス性のバランスが改良されていることから、ゴム組成物に配合することで、タイヤをはじめ、防振ゴム、ベルト、ホース、免震ゴム、ゴムクローラ及び履物部材等に用いることができる。 The polybutadiene according to the present invention has high linearity and has an improved balance of processability, wear resistance and low loss property. Therefore, by incorporating it into a rubber composition, including a tire, a vibration-proof rubber, a belt, It can be used for hoses, seismic isolation rubbers, rubber crawlers and footwear members.

Claims (19)

  1.  1,3-ブタジエンを2段階で重合する、ポリブタジエンの製造方法であって、
     コバルト化合物(C1)と非配位アニオンとカチオンのイオン性化合物(D)とを用いて、1,3-ブタジエンを重合する第一重合工程と、
     第一重合工程で得られた混合物と、コバルト化合物(C2)とを混合し、1,3-ブタジエンを重合する第二重合工程とを有する、ポリブタジエンの製造方法。
    A method for producing polybutadiene, which comprises polymerizing 1,3-butadiene in two steps,
    A first polymerization step of polymerizing 1,3-butadiene using a cobalt compound (C1), a non-coordinating anion and a ionic compound (D) of a cation;
    A method for producing polybutadiene, comprising a second polymerization step in which the mixture obtained in the first polymerization step and a cobalt compound (C2) are mixed to polymerize 1,3-butadiene.
  2.  1,3-ブタジエンと、水(A1)と、周期律表第1、2、13族元素の有機金属化合物(B1)とを混合する工程を更に有する、請求項1に記載のポリブタジエンの製造方法。 The method for producing polybutadiene according to claim 1, further comprising a step of mixing 1,3-butadiene, water (A1), and an organometallic compound (B1) of an element of Groups 1, 2, and 13 of the periodic table. ..
  3.  第一重合工程が終了した時点における1,3-ブタジエンの転化率が20~50%であり、
     第二重合工程が終了した時点における1,3-ブタジエンの最終転化率が75%以下である、請求項1又は2に記載のポリブタジエンの製造方法。
    The conversion of 1,3-butadiene at the end of the first polymerization step is 20 to 50%,
    The method for producing polybutadiene according to claim 1 or 2, wherein the final conversion rate of 1,3-butadiene at the time of completion of the second polymerization step is 75% or less.
  4.  成分(B1)として、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1a)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B1b)とを用いる、請求項2又は3に記載のポリブタジエンの製造方法。 As the component (B1), a non-halogenated organometallic compound (B1a) of elements of Groups 1, 2, and 13 of the periodic table and a halogenated organometallic compound (B1b) of elements of Groups 1, 2, and 13 of the periodic table The method for producing polybutadiene according to claim 2 or 3, which comprises using.
  5.  (B1a)成分の使用量をb1モルとし、(B1b)成分の使用量をb1モルとしたとき、
      0.10≦b1/(b1+b1)≦0.60
    を満たす、請求項4に記載のポリブタジエンの製造方法。
    (B1a) the amount of components and b1 a molar, when the b1 b molar usage (B1b) component,
    0.10≦b1 b /(b1 a +b1 b )≦0.60
    The method for producing polybutadiene according to claim 4, which satisfies the above condition.
  6.  ムーニー粘度(ML1+4,100℃)が、43~80であり、
     5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML1+4,100℃)が、2.2~4.0であり、
     ML1+4,100℃測定終了時のトルクを100%としたとき、その値が80%減衰するまでの応力緩和時間(T80)が、2.0~7.0秒であり、
     重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が、2.40~4.00であり、
     z平均分子量(Mz)と数平均分子量(Mw)の比(Mz/Mw)が、1.80~3.00である、ポリブタジエン。
    Mooney viscosity (ML 1+4,100° C. ) is 43-80 ,
    The ratio (Tcp/ML 1+4,100° C. ) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.2 to 4.0,
    ML 1+4,100° C. When the torque at the end of measurement is set to 100%, the stress relaxation time (T80) until the value decreases by 80% is 2.0 to 7.0 seconds,
    The ratio (Mw/Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn) is 2.40 to 4.00,
    A polybutadiene having a ratio (Mz/Mw) of z-average molecular weight (Mz) to number-average molecular weight (Mw) of 1.80 to 3.00.
  7.  5重量%トルエン溶液粘度(Tcp)が、100~300である、請求項6に記載のポリブタジエン。 The polybutadiene according to claim 6, which has a 5 wt% toluene solution viscosity (Tcp) of 100 to 300.
  8.  重量平均分子量(Mw)が、40.0×10~75.0×10である、請求項6又は7に記載のポリブタジエン。 The polybutadiene according to claim 6 or 7, which has a weight average molecular weight (Mw) of 40.0×10 4 to 75.0×10 4 .
  9.  数平均分子量(Mn)が、15.0×10~30.0×10である、請求項6~8のいずれか一項に記載のポリブタジエンゴム。 The polybutadiene rubber according to any one of claims 6 to 8, which has a number average molecular weight (Mn) of 15.0×10 4 to 30.0×10 4 .
  10.  周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを併用して、1,3-ポリブタジエンを重合する工程を有し、
     (B1)成分の使用量をb1モルとし、(B2)成分の使用量をb2モルとしたとき、
      0.10≦b2/(b1+b2)≦0.60
    を満たす、ポリブタジエンの製造方法。
    A non-halogenated organometallic compound (B1) of the elements of Groups 1, 2, and 13 of the periodic table and a halogenated organometallic compound (B2) of the elements of Groups 1, 2, and 13 of the periodic table are used in combination. , Having a step of polymerizing 3-polybutadiene,
    When the amount of the component (B1) used is b1 mol and the amount of the component (B2) used is b2 mol,
    0.10≦b2/(b1+b2)≦0.60
    A method for producing polybutadiene that satisfies the above conditions.
  11.  前記1,3-ポリブタジエンを重合する工程は、
     1,3-ブタジエンと、水(A)と、周期律表第1、2、13族元素の非ハロゲン化有機金属化合物(B1)と、周期律表第1、2、13族元素のハロゲン化有機金属化合物(B2)とを混合する工程と、
     得られた混合物と、コバルト化合物(C)と、非配位アニオンとカチオンのイオン性化合物(D)とを混合し、1,3-ブタジエンを重合する工程と
    を有する、
    請求項10に記載のポリブタジエンの製造方法。
    The step of polymerizing the 1,3-polybutadiene comprises
    1,3-Butadiene, water (A), non-halogenated organometallic compound (B1) of elements of Groups 1, 2, and 13 of the periodic table, and halogenation of elements of Groups 1, 2, and 13 of the periodic table A step of mixing with the organometallic compound (B2),
    A step of mixing the obtained mixture, a cobalt compound (C), an ionic compound (D) of a non-coordinating anion and a cation, and polymerizing 1,3-butadiene.
    The method for producing the polybutadiene according to claim 10.
  12.  前記非ハロゲン化有機金属化合物(B1)が、非ハロゲン化有機アルミニウム化合物であり、前記ハロゲン化有機金属化合物(B2)が、ハロゲン化有機アルミニウム化合物である、請求項4、5、10又は11に記載のポリブタジエンの製造方法。 The non-halogenated organometallic compound (B1) is a non-halogenated organoaluminum compound, and the halogenated organometallic compound (B2) is a halogenated organoaluminum compound. A method for producing the described polybutadiene.
  13.  非イオン性アニオンとカチオンのイオン性化合物(D)が、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート及び1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレートからなる群より選ばれる1種以上を含む、請求項1~5又は10~12のいずれか一項に記載のポリブタジエンの製造方法。 The ionic compound (D) of a nonionic anion and a cation is triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and 1,1′-dimethylferrose. 13. The method for producing polybutadiene according to any one of claims 1 to 5 or 10 to 12, containing at least one selected from the group consisting of titanium tetrakis(pentafluorophenyl)borate.
  14.  請求項1~5又は10~13のいずれか一項に記載のポリブタジエンの製造方法により得られる、ポリブタジエン。 Polybutadiene obtained by the method for producing polybutadiene according to any one of claims 1 to 5 or 10 to 13.
  15.  GPCによるポリスチレン換算の、重量平均分子量と数平均分子量の比(Mw/Mn)が2.0~2.5であり、
     5重量%トルエン溶液粘度(Tcp)とムーニー粘度(ML1+4,100℃)の比(Tcp/ML)が2.5~6.0であり、
     ミクロ構造分析におけるシス1,4結合含量が98.5モル%以上であり、
     ハロゲン含量が1~60μg/gである、ポリブタジエン。
    The ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) in terms of polystyrene by GPC is 2.0 to 2.5,
    The ratio (Tcp/ML) of the 5 wt% toluene solution viscosity (Tcp) and the Mooney viscosity (ML 1+4,100° C. ) is 2.5 to 6.0,
    The cis-1,4 bond content in the microstructure analysis is 98.5 mol% or more,
    Polybutadiene having a halogen content of 1 to 60 μg/g.
  16.  ムーニー粘度(ML1+4,100℃)が30~100である、請求項15に記載のポリブタジエン。 The polybutadiene according to claim 15, having a Mooney viscosity (ML 1+4,100° C. ) of 30 to 100.
  17.  z平均分子量(Mz)と数平均分子量(Mw)の比(Mz/Mw)が、1.60以上、2.00未満である、請求項15又は16に記載のポリブタジエン。 The polybutadiene according to claim 15 or 16, wherein a ratio (Mz/Mw) of z average molecular weight (Mz) and number average molecular weight (Mw) is 1.60 or more and less than 2.00.
  18.  請求項6~9又は14~17のいずれか一項に記載のポリブタジエンを含む、ゴム組成物。 A rubber composition containing the polybutadiene according to any one of claims 6 to 9 or 14 to 17.
  19.  請求項18に記載のゴム組成物を用いたタイヤ。
     
    A tire using the rubber composition according to claim 18.
PCT/JP2019/046938 2018-12-03 2019-12-02 Polybutadiene and method for producing same WO2020116367A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018226769A JP2022024204A (en) 2018-12-03 2018-12-03 Method for producing polybutadiene
JP2018-226769 2018-12-03
JP2019007880 2019-01-21
JP2019-007880 2019-01-21

Publications (1)

Publication Number Publication Date
WO2020116367A1 true WO2020116367A1 (en) 2020-06-11

Family

ID=70975127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046938 WO2020116367A1 (en) 2018-12-03 2019-12-02 Polybutadiene and method for producing same

Country Status (2)

Country Link
TW (1) TW202031695A (en)
WO (1) WO2020116367A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072927A (en) * 1993-06-14 1995-01-06 Japan Synthetic Rubber Co Ltd Production of butadiene polymer
JPH10182726A (en) * 1996-12-26 1998-07-07 Ube Ind Ltd Catalyst and process for production of conjugated diene polymer using the same
JP2004250691A (en) * 2003-01-31 2004-09-09 Ube Ind Ltd Modified polybutadiene-containing impact-resistant resin composition
WO2008044722A1 (en) * 2006-10-11 2008-04-17 Zeon Corporation Oil extended rubber composition, method for producing the same, tire member, and tire
US20120264897A1 (en) * 2009-12-02 2012-10-18 Ruehmer Thomas D Catalyst systems for rubber polymerizations
JP2013227523A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Method of manufacturing vinyl cis-polybutadiene and vinyl cis-polybutadiene obtained by the same
JP2013227522A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Vinyl cis-polybutadiene and method of manufacturing the same
JP2014189678A (en) * 2013-03-27 2014-10-06 Ube Ind Ltd Modified cis-1,4-polybutadiene, method for manufacturing the same, and rubber composition
JP2016148015A (en) * 2015-02-09 2016-08-18 宇部興産株式会社 Polybutadiene and manufacturing method therefor and rubber composition using the same
JP2017063815A (en) * 2015-09-28 2017-04-06 宇部興産株式会社 Rubber composition for golf ball, and golf ball
JP2017066175A (en) * 2015-09-28 2017-04-06 宇部興産株式会社 Vibrationproof rubber composition and vibrationproof rubber
JP2017179117A (en) * 2016-03-30 2017-10-05 宇部興産株式会社 Polybutadiene rubber and production method therefor, and rubber composition obtained using the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072927A (en) * 1993-06-14 1995-01-06 Japan Synthetic Rubber Co Ltd Production of butadiene polymer
JPH10182726A (en) * 1996-12-26 1998-07-07 Ube Ind Ltd Catalyst and process for production of conjugated diene polymer using the same
JP2004250691A (en) * 2003-01-31 2004-09-09 Ube Ind Ltd Modified polybutadiene-containing impact-resistant resin composition
WO2008044722A1 (en) * 2006-10-11 2008-04-17 Zeon Corporation Oil extended rubber composition, method for producing the same, tire member, and tire
US20120264897A1 (en) * 2009-12-02 2012-10-18 Ruehmer Thomas D Catalyst systems for rubber polymerizations
JP2013227522A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Vinyl cis-polybutadiene and method of manufacturing the same
JP2013227523A (en) * 2012-03-30 2013-11-07 Ube Industries Ltd Method of manufacturing vinyl cis-polybutadiene and vinyl cis-polybutadiene obtained by the same
JP2014189678A (en) * 2013-03-27 2014-10-06 Ube Ind Ltd Modified cis-1,4-polybutadiene, method for manufacturing the same, and rubber composition
JP2016148015A (en) * 2015-02-09 2016-08-18 宇部興産株式会社 Polybutadiene and manufacturing method therefor and rubber composition using the same
JP2018090820A (en) * 2015-02-09 2018-06-14 宇部興産株式会社 Polybutadiene and rubber composition using the same
JP2017063815A (en) * 2015-09-28 2017-04-06 宇部興産株式会社 Rubber composition for golf ball, and golf ball
JP2017066175A (en) * 2015-09-28 2017-04-06 宇部興産株式会社 Vibrationproof rubber composition and vibrationproof rubber
JP2017179117A (en) * 2016-03-30 2017-10-05 宇部興産株式会社 Polybutadiene rubber and production method therefor, and rubber composition obtained using the same

Also Published As

Publication number Publication date
TW202031695A (en) 2020-09-01

Similar Documents

Publication Publication Date Title
JP5994956B1 (en) Rubber composition for anti-vibration rubber, belt, hose or footwear member
JP2010168528A (en) Modified conjugated diene polymer and method of production thereof, rubber reinforcing agent-compounded rubber composition containing the modified conjugate diene polymer and method of production thereof, and tire containing the rubber reinforcing agent-compounded rubber composition
KR20130115377A (en) Copolymer, rubber composition, rubber composition for tire side use, crosslinked rubber composition, and tire
JP2011241275A (en) Polybutadiene rubber, method for producing the same, and composition
JP2016014122A (en) Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, modified conjugated diene-based polymer composition, and tire
JP6015758B2 (en) Process for producing modified cis-1,4-polybutadiene
JP5459116B2 (en) Polybutadiene rubber, process for producing the same, and composition
WO2015151626A1 (en) Rubber composition for tires
WO2019043929A1 (en) Polybutadiene rubber
JP6548750B2 (en) Oil extended rubber, rubber composition and method for producing oil extended rubber
KR102097184B1 (en) Modified conjugated diene polymer, method for producing same, and rubber composition using same
JP6711076B2 (en) Polybutadiene rubber, method for producing the same, and rubber composition using the same
JP2018090820A (en) Polybutadiene and rubber composition using the same
KR20150135914A (en) Polybutadiene rubber composition
JP5938915B2 (en) Method for producing polybutadiene rubber
WO2020116367A1 (en) Polybutadiene and method for producing same
JP2014189678A (en) Modified cis-1,4-polybutadiene, method for manufacturing the same, and rubber composition
JP2011093967A (en) Conjugated diene polymer modified product and manufacturing method therefor
WO2016039004A1 (en) Polybutadiene and rubber composition
JP6163822B2 (en) Modified cis-1,4-polybutadiene, process for producing the same, and rubber composition
WO2019163870A1 (en) Rubber composition
JP2022024204A (en) Method for producing polybutadiene
JP2022001647A (en) Rubber composition and method for producing the same
JP5982873B2 (en) Polybutadiene rubber and method for producing the same
WO2016039003A1 (en) Rubber composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP