WO2008044722A1 - Oil extended rubber composition, method for producing the same, tire member, and tire - Google Patents

Oil extended rubber composition, method for producing the same, tire member, and tire Download PDF

Info

Publication number
WO2008044722A1
WO2008044722A1 PCT/JP2007/069815 JP2007069815W WO2008044722A1 WO 2008044722 A1 WO2008044722 A1 WO 2008044722A1 JP 2007069815 W JP2007069815 W JP 2007069815W WO 2008044722 A1 WO2008044722 A1 WO 2008044722A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
polymer
rubber composition
extended rubber
weight
Prior art date
Application number
PCT/JP2007/069815
Other languages
French (fr)
Japanese (ja)
Inventor
Masao Nakamura
Kazuya Ito
Hidenori Yamagishi
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2008538747A priority Critical patent/JPWO2008044722A1/en
Publication of WO2008044722A1 publication Critical patent/WO2008044722A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/12Incorporating halogen atoms into the molecule
    • C08C19/14Incorporating halogen atoms into the molecule by reaction with halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons

Definitions

  • Oil-extended rubber composition method for producing the same, tire member and tire
  • the present invention relates to an oil-extended rubber composition, a method for producing the same, a tire member and tire obtained therefrom.
  • an oil-extended rubber composition comprising a rubber component whose essential component is a specific conjugate polymer having a specific monomer composition, a specific microstructure and a specific molecular weight characteristic, and a method for producing the same
  • the present invention also relates to a tire member comprising the oil-extended rubber composition and a tire provided with the tire member.
  • Patent Document 1 discloses a rubber composition containing a rubber having a glass transition temperature of 50 ° C or lower and a paraffin oil having a weight average molecular weight force of S500 or higher.
  • Patent Document 2 discloses a rubber composition obtained by mixing paraffin oil with polybutadiene having a cis 1,4 bond content of 96% and a weight average molecular weight of 400,000.
  • these rubber compositions have a problem in wear resistance although they are excellent in low temperature characteristics.
  • Patent Documents 3 and 4 disclose rubber compositions containing polybutadiene having a high cis 1,4 bond content and oil having a roma content of 10% or less. However, this rubber composition had a problem of V and poor wear and low heat build-up.
  • Patent Document 1 Japanese Patent Laid-Open No. 04-81438
  • Patent Document 2 JP 2004 277506 A
  • Patent Document 3 JP 2005-36065 A
  • Patent Document 4 Japanese Patent Laid-Open No. 2005-154754
  • an object of the present invention is to provide an oil-extended rubber composition excellent in wear resistance and low heat build-up, and a method for producing the same.
  • Another object of the present invention is to provide a tire member using the oil-extended rubber composition.
  • Still another object of the present invention is to provide a tire provided with the tire member.
  • the present inventors have conducted extensive research to achieve the above object, and as a result, obtained lanthanum-based IJ metal compounds (A), organoaluminum compounds (B), organoaluminum hydride compounds (C), and halogen compounds.
  • a polymerization catalyst comprising a specific ratio of organoaluminum compound and organoaluminum hydride compound in the polymerization catalyst comprising (D), a higher cis 1, 4 bond content and a narrower
  • a conjugated phene polymer having a molecular weight distribution can be obtained, and further research based on this finding, it is possible to obtain wear resistance by blending a specific amount of a specific process oil into the conjugated gen polymer.
  • the present invention has been completed by finding that an oil-extended rubber composition excellent in heat resistance and low heat buildup can be obtained.
  • a conjugated diene polymer having at least a butadiene unit having a viscosity of 65 to 200 (ML, 100 ° C) and 1.5 to 4 ⁇ . 0 molecular weight distribution
  • conjugated unit polymer (P1) having a cis-1,4 bond content of 96.5% or more and a butyl bond content of 1.0% or less in the butadiene unit portion as an essential component 100 parts by weight and the process oil 10 to contain Aroma content of 5 wt 0/0 or more; oil-extended rubber composition comprising 120 parts by weight is provided.
  • the conjugate polymer (P1) has a Mooney viscosity ( ⁇ L, 100 ° C) force of S75 to 175 and a molecular weight distribution of 2.0 to 3.5.
  • the cis 1,4 bond content in the portion is 97.5% or more and the bull bond content is 0.9% or less! /.
  • the butadiene in the conjugated polymer (P1) The unit ratio is preferably 80% by weight or more.
  • the conjugate polymer (P1) is composed of a lanthanum series metal compound (A), an organoaluminum compound (B), an organoaluminum hydride compound (C), and a halogen compound (D). It is preferably obtained by polymerizing a monomer containing butadiene as an essential component using a polymerization catalyst.
  • the conjugate polymer (P1) is composed of a lanthanum series metal compound (A), an organoaluminum compound (B), an organoaluminum hydride compound (C), and a halogen compound (D). It is preferably obtained by polymerizing a conjugated diene monomer using a polymerization catalyst, and then modifying it with an organometallic halide (E) represented by the following general formula (1). Masle.
  • M is Si, Ge, Sn or Ti
  • X is a halogen atom.
  • R 1 is a single bond.
  • R 2 represents hydrogen or a hydrocarbon having 1 to 20 carbon atoms that may contain a hetero atom
  • g and h each represent an integer of !! to 4.
  • the polymerization catalyst is composed of a lanthanum series metal compound (A), an organic alkylaluminum compound (B), an organic aluminum hydride compound (C), and a halogen compound (D). It is preferable that the molar ratio (B / C) force of the organoalkylaluminum compound (B) to the organoaluminum hydride compound (C) is 5 ⁇ (B / C) ⁇ 1,000.
  • the process oil contains 10 to 40% by weight of aroma!
  • the rubber component is composed only of the conjugated diene polymer (P1). It is preferable to be! /
  • the rubber component is 5% by weight or more of the conjugated polymer (P1), and the polymer rubber (P2) other than this conjugated polymer (P1) is 95% by weight or less. It is preferred that it consists of,.
  • the polymer rubber (P2) other than the conjugated polymer (P1) is a copolymer of an aromatic bur and a conjugated gene, 7 in conjugation units with one viscosity (ML, 100 ° C)
  • it has a bull bond content of 1 + 4 to 85%.
  • silica, clay, talc, calcium carbonate, carbon black, carbon nanotube, fullerene, nylon short fiber, and water are further included in 100 to 100 parts by weight of the rubber component.
  • An oil-extended rubber composition further comprising at least one compounding agent selected from the group consisting of aluminum oxide is provided.
  • a method for producing an oil-extended rubber composition in which a process oil is mixed with an organic solvent solution of a rubber component containing a conjugated diene polymer (P1) as an essential component and then desolvated. .
  • a tire member obtained by crosslinking the oil-extended rubber composition of the present invention.
  • the tire provided with the said member for tires is provided.
  • a crosslinked rubber (vulcanized product) obtained by crosslinking the oil-extended rubber composition of the present invention is excellent in low heat buildup and wear resistance.
  • a tire member having excellent practicality and a tire provided with the tire member can be obtained from the oil-extended rubber composition.
  • the oil-extended rubber composition of the present invention comprises 10 to 120 parts by weight of a specific process oil in 100 parts by weight of a rubber component containing a specific conjugated polymer (P1) as an essential component.
  • the conjugated diene polymer (P1) used in the present invention is a co-polymer having at least a butadiene unit, that is, a butadiene homopolymer or copolymerizable with butadiene. Copolymers with various monomers having specific microstructure and molecular weight characteristics.
  • the conjugation polymer (P 1) is a homopolymer of butadiene (polybutadiene) or a copolymer of butadiene and a monomer copolymerizable therewith.
  • the monomer copolymerizable with butadiene is not particularly limited.
  • a conjugation monomer other than butadiene can be cited.
  • Specific examples thereof include 1, 3-butadiene, isoprene (2-methyl-1, 3-butadiene); 2, 3-dimethyl-1, 3-butadiene, 2-chloro-1, 3 - butadiene, 1, 3 - Pentajen, 1; 3-hexagen and the like can be mentioned. Of these, isoprene is preferred.
  • conjugation monomers can be used alone or in combination of two or more.
  • monomers copolymerizable with butadiene other than conjugated diene include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, o —Ethylstyrene, m-ethylstyrene, p-ethylstyrene, p-tert-butylstyrene, ⁇ -methylstyrene, ⁇ -methyl- ⁇ -methylstyrene, ⁇ -chlorostyrene, m-chlorostyrene, p-chlorostyrene, p-bromostyrene, 2 —Aromatic vinyl monomers such as methyl-4,6-dichlorostyrene, 2,4-dibu-mouthed styrene, and burnaphthalene; carbon numbers 2 to 10 such as ethylene, prop
  • the ratio of the butadiene units in the conjugated polymer (P 1) is 80% by weight or more, preferably S, more preferably 90% by weight or more, and more preferably 95% by weight or more. Is preferable.
  • the bonding mode of the monomer is particularly It is not limited, and for example, it can be made with various coupling modes such as block shape, taper shape, random shape, and the like with force S.
  • the conjugated diene polymer (P1) used in the present invention has a cis in the butadiene unit portion.
  • 1, 4 is a bond content should be at 96.5% or more, this and force S preferably 97.5% or more, and more preferably 98. be 0% or more.
  • the conjugate polymer (P1) needs to have a bull bond content in the butadiene unit portion of 1.0% or less, and preferably 0.9% or less. More preferably, it is at most%.
  • the conjugate polymer (P1) has a Mooney viscosity (ML, 100 ° C) force of 5 to 20
  • the conjugate polymer (P1) needs to have a molecular weight distribution of 1.5 to 4.0, preferably 2.0 to 3.5, and preferably 2.0 to A power of 3 is also preferable.
  • the conjugated diene polymer (P1) used in the present invention is a polymer composed of a lanthanum series metal compound ( ⁇ ), an organic alcohol compound ( ⁇ ), an organoaluminum hydride compound (C), and a halogen compound (D). It can be obtained by polymerizing a monomer containing butadiene as an essential component using a catalyst.
  • the lanthanum series metal compound ( ⁇ ), which is the first component of the polymerization catalyst, is a lanthanum series metal salt, alkoxide, phenoxide or complex, with the salt being preferred.
  • the lanthanum-based metal is at least one selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, pylorium, gadolinium, tenolebium, dysprosium, honorium, enolebium, thulium, ytterbium and lutetium. It is a kind of metal. Among these, lanthanum, cerium, praseodymium, neodymium, samarium, and gadolinium are preferred for easy access and high polymerization activity. From the viewpoint, neodymium is particularly preferable.
  • the salt of the lanthanum series metal is not particularly limited, but a carboxylate salt that is preferably a carboxylate salt or a salt of phosphoric acid is more preferable.
  • lanthanum metal salts are complex salts of carboxylate and phosphorus-containing organic acid salts ( It may be a complex salt structure consisting of different bonding modes, such as [rubonate] [phosphorus-containing organic acid salt]).
  • the carboxylic acid forming the carboxylate is not particularly limited! /, But usually has 2 to 20 carbon atoms. Specific examples include acetic acid, octanoic acid, otathenic acid, lauric acid, versatic acid (aliphatic monocarboxylic acid having 6 to 20 carbon atoms having a carboxyl group on a tertiary carbon in which three alkyl groups having 1 or more carbon atoms are bonded). Aliphatic carboxylic acid such as phenylacetic acid; Alicyclic carboxylic acid such as cyclopentanecarboxylic acid; Aromatic carboxylic acid such as benzoic acid and naphthenic acid; etc. Is mentioned. Among these, versatic acid is more preferable because a catalyst having a high polymerization activity, which is preferably an aliphatic carboxylic acid having 6 to 20 carbon atoms, is obtained.
  • the phosphoric acid that forms a salt of phosphoric acid is not particularly limited, but a compound represented by the following general formula (2) is preferable.
  • R 3 and R 4 are each a hydrogen atom, a hydroxyl group, a carbon number;! To 20 alkyl group or an alkoxy group, a C 6-20 aryl group or a phenoxy group, or a carbon number 7 to 20 represents an aralkyl group or an alkylphenoxy group.
  • Specific examples of the compound represented by the general formula (2) include phosphoric acid; dibutyl phosphate, dihexyl phosphate, dioctyl phosphate, bis (2-ethylhexyl phosphate), bis ( Phosphoric acid dialkyl esters such as 1-methylheptyl), dioleyl phosphate, butyl phosphate (2-ethylhexyl), phosphoric acid (1-methylheptyl) (2-ethylhexyl); phosphorus such as diphenyl phosphate Acid diaryl ester; 2-ethylhexylphosphonate mono-2-ethylhexyl, monoalkylphosphonate monoalkyl ester such as 2-butylhexylphosphonate monobutyl; monoalkyl such as 2-ethylhexylphosphonate monophenyl Phosphonates such as monophosphonophosphonates; phosphonates such as mono-2-ethylen
  • the phenol for forming the lanthanum series metal phenoxide is not particularly limited. Specific examples thereof include alkyl-substituted monophenols such as 2,6-di-t-butylphenol and 2,6-di-t-butyl-4-methylphenol. Can be mentioned.
  • the alcohol for forming the alkoxide of the lanthanum series metal is not particularly limited. Specific examples thereof include methanol, ethanol, isopropanol, t-butanol, tamyl alcohol, 2 butyr alcohol, 3 Hexenyl alcohol and other carbon atoms 1 to 10; aliphatic alcohols; cyclohexyl alcohols and other carbon atoms 3 to 6 alicyclic alcohols; benzyl alcohol and other carbon atoms 7 to 10; aryl substituted aliphatic alcohols And the like.
  • the lanthanum series metal complex is not particularly limited, but specific examples thereof include a / 3-diketon complex.
  • 0-diketone for forming a complex examples include / 3-diketones having 5 to 12 carbon atoms such as acetylacetone, benzoylacetone, ethylacetylacetone and the like.
  • the amount of component (A) used is such that lanthanum-based IJ metal strength in component (A) is usually 0.001 to 100 millimonoles, preferably The range is 0.005 to 50 millimoles.
  • the organoaluminum compound (B), which is the second component of the polymerization catalyst, has the general formula
  • R 5 to R 13 are each a hydrocarbon group having! r and s are each an integer of 2 to 100;
  • hydrocarbon group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n propinole group, isopropyl group, n butyl group, isobutyl group, sec butyl group, t butyl group, n pentyl group, and n hexyl group.
  • an alkyl group is most preferred.
  • the alkyl group, the aralkyl group, and the aryl group have a substituent at any position! /, Or may be! /.
  • hydrocarbon groups those having 2 or more carbon atoms are preferred because of their high solubility in saturated hydrocarbon solvents used for polymerization and excellent control of the polymer molecular weight!
  • organoaluminum compound represented by the general formula (3) include trimethylaluminum, triethinorenoreminium, tri-n-propylaluminum, triisopropylaluminum, tri-n-butyl. Noreanolium, triisobutylaluminum, methyldiisobutylaluminum, tri-n-pentylaluminum, tri-n-hexylaluminum, tricyclohexylurenoreminimum, tribenzenorenoreminium, dimethylbenzylaluminum, jetyl
  • the organoaluminum compound represented by the general formula (4) or (5) is, for example, a trianolenoquinoleminoleum or dialkylaluminum in a solvent such as benzene, tolylene or cyclohexane. It can be obtained by adding a salt having water of crystallization, such as water, copper sulfate pentahydrate, aluminum sulfate salt 16 hydrate, etc. after adding mumonochloride or the like.
  • organoaluminum compound represented by the general formula (4) or (5) include methylanoloxane, ethylalumoxane, propylalumoxane, butylalumoxane, isobutylalumoxane, t-butylalumoxane. Hexylalumoxane, octylalumoxane and the like. Of these, isobutylalumoxane, t-butylalumoxane, hexylalumoxane and octylalumoxane are preferred.
  • organoaluminum compounds those represented by the general formula (3) are preferable because they give a polymer having high living properties. Ease of availability and handling, high catalyst activity, etc. From this point, triethyl aluminum and triisobutyl aluminum are preferred!
  • the amount of component (B) in the above polymerization catalyst is usually 0.5 to 500 monolayers, preferably 5 to 250 monolayers, more preferably 1 mol of the lanthanum series metal in component (A). ⁇ ma 20 ⁇ ; 100 moles.
  • the organoaluminum hydride compound (C), which is the third component of the polymerization catalyst, is a compound represented by the following formula (6).
  • R 14 represents a hydrocarbon group having from 10 to 10 carbon atoms, k is 1 or 2, and preferably 1. When k is 1, two R 14 may be the same or different. May be.
  • hydrocarbon group R 14 having carbon atoms of! To 10 include methyl group, ethyl group, n propylene group, isopropyl group, n butyl group, isobutyl group, sec butyl group, t butyl group, n C1-C10 alkyl groups such as pentyl group and n-hexyl group; C3-C6 cycloalkyl groups such as cyclopentyl group and cyclohexyl group; Carbons such as benzyl group and 2 phenylethyl group A aralkyl group having 7 to 10; a 6 to 10 carbon atom such as a phenyl group; an aryl group having 10; and the like.
  • an alkyl group is preferable.
  • the alkyl group, the aralkyl group, and the aryl group each have a substituent at any position, and may be V! /.
  • Specific examples of the organoaluminum hydride compound (C) include methylaluminum hydride, hydrogenated chilled aluminum, hydrogenated n-propylaluminum, hydrogenated isopropylaluminum hydride, n-butylaluminum hydride, isobutylaluminum hydride, Formulas such as hydrogenated n-pentylaluminum, hydrogenated neopentylaluminum, hydrogenated n-hexanolenoreluminium, hydrogenated isohexylaluminum, hydrogenated cyclohexylaluminum, hydrogenated phenylaluminum, etc .: Hydrocarbyl aluminum represented by A1H R 14
  • A1HR 14 such as dineopentylaluminum, di-n-hexylaluminum hydride, diisohexylaluminum hydride, dicyclohexylaluminum hydride, dipheny
  • the amount of the component (C) in the above polymerization catalyst is usually 0.;! To 100 monolayers, preferably (or 0.5 to 25 monolayers) per mol of the lanthanum series metal in the component (A). More preferably (ma;! To 3 monoles.
  • the molar ratio (B / C) between the organoaluminum compound ( ⁇ ) and the organoaluminum hydride compound (C) is 5 ⁇ (B / C) ⁇ l, 000 It is preferable to satisfy.
  • This molar ratio (B / C) is preferably 10 or more, more preferably 12 or more, preferably 500 or less, more preferably 100 or less.
  • Conjugated polymers (P1) having a narrower molecular weight distribution and a higher cis 1,4 bond content in the butadiene unit portion when the molar ratio (B / C) in the above polymerization catalyst is within the above range Can be obtained.
  • the halogen compound (D) as the fourth component of the polymerization catalyst may be a compound containing a halogen atom, and preferred specific examples thereof include metal halide compounds, halogenated compounds. Mention may be made of organic compounds and organoaluminum halide compounds.
  • the halogen contained in the halogen compound the chlorine, bromine or iodine atom is preferred. Yes.
  • the metal halide compound include magnesium chloride, zinc chloride, calcium chloride, magnesium (II) iodide anhydride, manganese pentabromide bromide, manganese perchlorate (II) ⁇ 6 water Japanese, Manganese (II) chloride anhydrous, Manganese (II) chloride tetrahydrate, Manganese (II) bromide, Manganese (II) tetrahydrate, Rhenium chloride (111), Chloride Examples include rhenium (V), pentacarbonyl rhenium chloride, and pentacarbonyl rhenium bromide.
  • halogenated organic compound examples include benzoyl chloride, xylylene dichloride, bropioyl chloride, benzyl chloride, benzylidene chloride, t-butyl chloride, t-amyl chloride, chlorodiphenylmethane, Organochlorine compounds such as chlorotriphenylmethane and methylchloroformate, hexaclonal butadiene; xylylene dibromide, benzoinorebromide, propioninorebromide, benzinorebromide, benzylidene bromide, t-butyl bromide, t- Organic bromine compounds such as amyl bromide and methyl bromoformate; and organic iodine compounds such as benzoyl iodide and xylylene diiodide.
  • the organoaluminum halide compound is usually a compound represented by the general formula (7).
  • R 15 is a hydrocarbon group having 1 to 10 carbon atoms
  • X is a halogen atom
  • p is 1 or 2, and preferably 1. Further, when p force is applied, two R 15
  • the hydrocarbon group R 15 having 1 to 10 carbon atoms may be the same as the hydrocarbon group R 14 having 1 to 10 carbon atoms, An alkyl group is preferred.
  • organoaluminum halide compounds include dialkylaluminum halides such as dimethylaluminum chloride, dimethylaluminum bromide, jetylaluminum chloride, jetylaluminum bromide, dibutylaluminum chloride, and dibutylaluminum bromide; Kuchiguchi Ride, Etyl Aluminum Yu Examples include alkylaluminum sesquihalides such as mussesquic mouthrides; alkylaluminum dinosides such as methylaluminum dichloride, ethylaluminum dichloride, and butylaluminum dichloride.
  • the amount of component (D) used is usually from 0.;! To 20 monolayers, preferably from 0.5 to 1 monolayers of the lanthanum series metal in component (A). 10 monoles, more preferably (ma;! To 5 monoles.
  • the above polymerization catalyst is prepared by mixing the components (A) to (D) with the force S that can be obtained by mixing the components (A) to (D) in any order, and then mixing the components (A) and (B). It is preferred to add component (C) to the mixture.
  • the component (A) and the component (B) are first mixed, the component (C) is blended in the resulting mixture, and then the component (D) is blended.
  • the obtained mixture is aged for 1 minute or more and the component (C) is added to the aged mixture.
  • aging means that after a certain reaction component and another reaction component are mixed, a certain time is left until the next step.
  • the time for aging is preferably 1 to 60 minutes, more preferably 5 to 30 minutes. If the aging time is too short, the molecular weight distribution of the resulting conjugate polymer (P1) may be widened. On the other hand, if this time is too long, the polymerization activity of the resulting polymerization catalyst may decrease.
  • component (A) conjugate conjugate is added to the resulting mixture, Thereafter, component (c) is preferably added.
  • component (A) is added to the resulting mixture, followed by component (C) and then component (D).
  • the conjugation addition may be performed at any time point immediately after mixing of component (A) and component (B) to immediately before the addition of component (C).
  • the mixture is aged for 1 to 20 minutes, then the conjugate is added; and further !! aged for 20 to 20 minutes before component (C) Add.
  • the amount of conjugation addition at the time of catalyst preparation is not particularly limited, but is usually 1 to 200 mol, preferably 10 to 100 mol, per 1 mol of the lanthanum series metal in component (A). Presence of conjugation during catalyst preparation increases the polymerization activity of the catalyst, and the resulting conjugated 1, polymer (P1) has a higher cis 1,4 bond content, resulting in a narrower molecular weight distribution. .
  • Conjugation used for preparing the catalyst used here may be used alone or in combination of two or more. Further, it may be the same as or different from the conjugation used as the monomer constituting the conjugation polymer (P1).
  • the solvent used here is not particularly limited, but it may have 1 to carbon atoms which may be substituted with a halogen atom; a chain or cyclic saturated hydrocarbon having 10 carbon atoms which may be substituted with a halogen atom, or 6 to 6 carbon atoms which may be substituted with a halogen atom. ; 12 aromatic hydrocarbons, monoolefins and the like.
  • linear or cyclic saturated hydrocarbons having 1 to 10 carbon atoms are substituted with halogen atoms such as ⁇ butane, ⁇ -pentane, ⁇ hexane, ⁇ -heptane, ⁇ -octane, and cyclohexane. Those not substituted; and those substituted with a rhogen atom such as chloroform, methylene chloride, dichloroethane and the like.
  • aromatic hydrocarbon examples include those not substituted with a halogen atom such as benzene, toluene and xylene; and those substituted with a halogen atom such as black benzene.
  • monoolefins include 1-butene and 2-butene.
  • a linear or cyclic saturated hydrocarbon having 1 to 10 carbon atoms is particularly preferable, and n-butane, n-pentane, n hexane and cyclohexane are preferable.
  • the reaction temperature and reaction time for preparing the polymerization catalyst are not particularly limited, but are usually 78 ° C to + 100 ° C, preferably -20 ° C to + 80 ° C, usually 1 second to 24 hours.
  • a solution prepared as a solution can be used as it is, or it can be used by distilling off the solvent. Moreover, you may refine
  • the polymerization catalyst may be supported on a carrier such as carbon black, an inorganic compound, or an organic polymer compound. By carrying it on a carrier, it is possible to prevent contamination due to catalyst adhesion in the polymerization reactor.
  • a carrier such as carbon black, an inorganic compound, or an organic polymer compound.
  • the inorganic compound that can be used as the carrier include inorganic oxides such as silica, alumina, magnesia, titania, zircoure, strong rucia, and inorganic chlorides such as magnesium chloride.
  • These inorganic compounds are preferably porous particles having an average particle size of 5 to; 150 ⁇ 111 and a specific surface area of 2 to 800 m 2 / g.
  • heat treatment is performed at 100 to 800 ° C. Remove water to use as a carrier.
  • organic polymer compound that can be used as a carrier examples include a carboxy-modified crosslinked styrene copolymer composed of styrene-dibutylbenzene methacrylate. These organic polymer compounds are preferably spherical particles having an average particle diameter of 5 to 250 m.
  • the polymerization catalyst further contains an organometallic compound having at least one metal selected from Group 1 to 3, 12 and 13 elements of the periodic table May be.
  • the organometallic compound is not particularly limited, and examples thereof include an organolithium compound, an organomagnesium compound, and an organomagnesium halide.
  • organic lithium compound examples include methyl lithium, butyl lithium, phenyl lithium and the like.
  • Examples of the organic magnesium compound include dibutyl magnesium.
  • Examples of the organomagnesium halide include ethylmagnesium chloride and butylmagnesium chloride.
  • the conjugated diene polymer (P1) is obtained by using the above polymerization catalyst and butadiene. Can be obtained by copolymerizing with other monomers copolymerizable with butadiene as required.
  • the polymerization method is not particularly limited, and examples thereof include a bulk polymerization method, a solution polymerization method and a slurry polymerization method in an inert solvent, and a gas phase polymerization method using a gas phase stirring tank and a gas phase fluidized bed. I can get lost. Among these methods, the solution polymerization method that can narrow the molecular weight distribution is preferable.
  • the solution polymerization method may be a batch type or a continuous type.
  • the inert solvent used in the solution polymerization method is not particularly limited! /, But has 4 to 10 carbon atoms; a linear or cyclic saturated hydrocarbon having 10 to 10 carbon atoms; an aromatic hydrocarbon having 6 to 12 carbon atoms; Monoolefins such as 1-butene and 2-butene; and the like, which may be substituted with a halogen atom! /.
  • Saturated hydrocarbons include n-butane, cyclopentane, n-pentane, 2-methylpentane, 2,3 dimethylpentane, n hexane, 2 methylheptane, 2,3 dimethylheptane, cycloheptane, n heptane, n Examples include octane, cyclooctane, and cyclohexane.
  • Examples of the saturated hydrocarbon substituted with a halogen atom include black mouth form, methyl chloride, dichloroethane and the like.
  • aromatic hydrocarbons examples include benzene, toluene, xylene and the like.
  • aromatic hydrocarbon substituted with a halogen atom examples include black benzene.
  • chain-like or cyclic saturated hydrocarbons having 4 to 10 carbon atoms are particularly preferred, and n-butane, n-hexane, n-pentane, 2-methylpentane and cyclohexane are preferred.
  • the polymerization temperature for obtaining the conjugation polymer (P1) is usually 50 ° C to + 200 ° C, preferably 0 ° C to 150 ° C, more preferably 20 ° C to 90 °. C, most preferably 40-70 ° C.
  • the polymerization time is about 1 second to 20 hours, and the polymerization pressure is about 0.;! To 3 MPa.
  • a chain transfer agent can be used to adjust the molecular weight of the conjugation polymer (P1).
  • Chain transfer agents have been used in the production of cis 1,4 polybutadiene rubber.
  • Specific examples thereof include allenes such as 1,2-butadiene; cyclic genes such as cyclooctene; and the like.
  • the same effect can be obtained even if the polymerization reaction is carried out in the presence of hydrogen gas.
  • the conjugation polymer (P1) may be modified with an organic metal halide (E) represented by the following general formula (1) following polymerization. This modification prevents the solidification of the polymer during the recovery of the polymer and improves the industrial productivity of the polymer.
  • E organic metal halide
  • M is Si, Ge, Sn or Ti
  • X is a halogen atom.
  • R 1 is a single bond.
  • R 2 represents hydrogen or a hydrocarbon having 1 to 20 carbon atoms that may contain a hetero atom
  • g and h each represent an integer of !! to 4.
  • Specific examples of the compound represented by the general formula (1) include silicon tetrachloride, trichlorosilane, dichlorosilane, diphenyldichlorosilane, dibutyldichlorosilane, triphenylchlorosilane, tributylchlorosilane, 1 , 2-Di (trichlorosilyl) ethane, trichlorodisilane and other halogenated silicon compounds; triphenylgermanium chloride, dibutylgermanium dichloride, halogenated germanium compounds such as diphenylgermanium dichloride, butylgermanium trichloride; tetrachloride Tin, tin tetrabromide, triphenyltin chloride, tributyltin chloride, triisopropyltin chloride, diphenyltin chloride, dioctyltin dichloride, dibutylt
  • tin tetrachloride silicon tetrachloride, 1,2-bis (trichlorosilyl) ethane, trichlorodisilane, etc., which are preferred as halogenated tin compounds and halogenated silicon compounds, are preferred. Those with 4 or more halogen atoms are preferred!
  • the addition amount of the compound (E) is preferably 0.001-1 mol with respect to 1 mol of the lanthanum series metal compound (A). Further preferred. When the addition amount is within this range, a rejuvenating effect can be obtained if the exothermic property, wear property and coagulation property of the conjugated diene polymer are excellent.
  • the reaction temperature when the compound (E) is reacted is usually 20 to 100 ° C, preferably 40 to 8 ° C.
  • reaction time is usually;! -120 minutes, preferably 5
  • the rubber component used in the oil-extended rubber composition of the present invention may be only the conjugated diene polymer (P1), but a heavy component other than the conjugated diene polymer (P1) and the conjugated diene polymer (P1).
  • Combined rubber (P1)
  • the polymer rubber (P2) that can be used in combination with the conjugated polymer (P1) as a rubber component is not particularly limited! /.
  • a specific example of this is a conjugated gen polymer, which has molecular weight characteristics (molecular viscosity and molecular weight distribution) and microstructure of the butadiene unit (P1
  • polymer rubber (P2) examples include emulsion polymerization SBR (styrene butadiene copolymer rubber), solution polymerization random SBR (bonded styrene 5 to 50% by weight, 1,2 bond content of butadiene unit part 10 to 80% ), High trans SBR (trans bond content of butadiene part 70 to 95%), low cis BR (polybutadiene rubber), high trans BR (trans bond content of butadiene part 70 to 95%), high bull SBR low Bull SBR block copolymer rubber, other conjugated polymer that does not meet the requirements of conjugated polymer (P1) in terms of micro structure or molecular weight, such as natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber ( BR), styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, emulsification Examples thereof include a polymerized styrene /
  • polymer rubber (P2) other than the conjugate polymer examples include acrylic rubber, epichlorohydrin rubber, fluorine rubber, silicon rubber, ethylene propylene rubber, urethane rubber and the like.
  • the polymer rubber (P2) is usually a solid one, but a liquid one may be used. These polymer rubbers (P2) can be used alone or in combination of two or more.
  • polymer rubber (P2) among these, an aromatic bur-conjugated rubber copolymer, a natural rubber, a polybutadiene rubber, and a polyisoprene rubber are preferable. preferable.
  • the viscosity of the aromatic bis-conjugate copolymer rubber is 1 to 100 (ML, 100 ° C).
  • the content of butyl in the conjugated gen unit part of the aromatic butyl-conjugated gen copolymer rubber is 7 to 85%, preferably S, and more preferably 20 to 70%.
  • the aromatic bull unit content in the aromatic bull-conjugated conjugated copolymer rubber is St (wt%), and the bull content V (%) in the conjugated gen unit portion is
  • the direct force of (2St + V) is preferably an amount satisfying 30 ⁇ (2St + V) ⁇ 170, and particularly preferably an amount satisfying 60 ⁇ (2St + V) ⁇ 140.
  • the rubber component is 5% by weight of the conjugated polymer (P1). % or more and the polymer rubber (P2) 95 weight 0/0 follows is preferable is made of tool rubber component conjugated diene polymer (P1) polymer rubber with 80 to 30 wt% (P2) is More preferably, it is 20 to 70% by weight.
  • the ratio of the conjugated polymer (P1) is preferably 1% by weight or more with respect to the total amount of the rubber component. 5 to 95% by weight It is more preferable that it is 30 to 80% by weight.
  • the method for producing the polymer rubber (P2) used in the present invention is not particularly limited, and a conventionally known method can be employed. For example, a method of polymerizing using an organic active metal as an initiator is mentioned. That's the power S.
  • the polymer rubber (P2) may have been subjected to a coupling agent treatment subsequent to the polymerization.
  • the treatment with the coupling agent further improves the wear characteristics when the oil-extended rubber composition of the present invention is a crosslinked rubber (vulcanized product).
  • Examples of the coupling agent include a silicon-containing coupling agent, a tin-containing coupling agent, a phosphorus-containing coupling agent, an epoxy group-containing coupling agent, an isocyanate group-containing force coupling agent, and an ester group-containing coupling agent.
  • a cage-containing coupling agent and an epoxy group-containing coupling agent are preferred, with a cage-containing coupling agent, an epoxy group-containing coupling agent, and an isocyanate group-containing coupling agent being preferred.
  • Examples of the caustic-containing coupling agent include alkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, and alkyltriphenoxysilane; silicon tetrachloride, silicon tetrabromide, tetra Halogenated silane compounds such as silicon iodide, monomethyltrichlorosilane, monoethyltrichlorosilane, monobutyltrichlorosilane, monohexyltrichlorosilane, monomethyltritribromosilane, bistrichlorosilylethane, etc .; monochrome oxysilane, trichloromethoxysilane And alkoxyhalogenated silane compounds such as tribromomethoxysilane;
  • tetramethoxysilane and silicon tetrachloride are more preferred, and alkoxysilane compounds and halogenated silane compounds are preferred!
  • tin-containing coupling agent examples include, for example, tin tetrachloride, tin tetrabromide, monomethyltrichlorozose, monoethinoretrichlorotin, monobutinoretrichlorotin, monohexinoretrichlorosu, bistrichlorostani.
  • tin halide compounds such as ruthetan
  • alkoxytin compounds such as tetramethoxytin, tetraethoxytin, and tetrabutoxytin
  • the phosphorus-containing coupling agent include trisnoylphenyl phosphite, trimethyl phosphite, triethyl phosphite and the like.
  • epoxy group-containing coupling agent examples include tetraglycidyl 1,1,3-bisaminomethylcyclohexane, tetraglycidyl 1,3-bisaminomethylbenzene, epoxy-modified silicone, epoxidized soybean oil, and epoxidation. Linseed oil etc. are mentioned.
  • tetraglycidyl 1,3-bisaminomethylcyclohexane is preferable.
  • the isocyanate group-containing coupling agent include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylenomethane diisocyanate, diphenylenoethane diisocyanate, 1, 3 , 5-benzene triisocyanate and the like.
  • 2,4-tolylene diisocyanate is preferable.
  • ester group-containing coupling agent examples include dimethyl adipate, dimethyl adipate, dimethyl terephthalate, jetyl terephthalate, dimethyl phthalate, and dimethyl isophthalenoate.
  • alkenyl group-containing coupling agent examples include dibutylbenzene and diisopropenylbenzene.
  • halogenated hydrocarbon examples include chlorophonerem, tribromomethane, trichloromethane, trichloropropane, tribromopropane, carbon tetrachloride, and tetrachloroethane.
  • These coupling agents can be used alone or in combination of two or more.
  • the amount of the coupling agent to be used can be appropriately selected according to the required weight average molecular weight, coupling rate, reactivity of the coupling agent, etc., but with respect to the organic active metal in the polymerization catalyst.
  • the number of moles of the functional group is preferably 0.
  • the coupling rate is a ratio (% by weight) of a polymer (coupling polymer) produced by coupling a plurality of living polymers to one molecule of coupling agent with respect to the total amount of the polymer. Yes, it can be measured by gel 'permeation' chromatographic analysis.
  • the coupling rate in the case of coupling the polymer rubber (P2) is preferably 10% by weight or more, more preferably 30 to 90% by weight, still more preferably 40 to 80% by weight, particularly preferably 55 to 80% by weight. If the coupling rate is too low, the processability may be inferior, and low heat build-up and wear resistance may be inferior.
  • the coupling reaction is preferably carried out at 0 to; 150 ° C. under reaction conditions for 0.5 to 20 hours.
  • the oil-extended rubber composition of the present invention comprises 10 to 120 parts by weight of a process oil with respect to 100 parts by weight of a rubber component containing the conjugated polymer (P1) as an essential component. is there.
  • mineral oil or synthetic oil can be used.
  • mineral oil t-DAE, s RAE, MES, aroma oil, naphthenic oil, paraffin oil, etc. are usually used.
  • the aroma content of the process oil needs to be 5% by weight or more.
  • the aromatic content is preferably 10 to 40% by weight, more preferably 20 to 35% by weight.
  • the aroma content is the ratio of the aroma content to the total of 100 aroma content, naphthene content, and paraffin content measured by ASTM D 2140 ring analysis method.
  • the wear resistance is inferior, and if it is excessively high, the heat resistance is inferior to the low heat build-up.
  • an oil expansion obtained by using a process oil having an aroma content in the above range is used. Rubber composition strength Excellent balance between wear resistance and low heat build-up.
  • the oil-extended rubber composition of the present invention may contain an anti-aging agent.
  • the anti-aging agent may be added at the time of preparing the polymers (conjugation polymer (P1) and polymer rubber (P2)) used as the rubber component in the present invention. It can be added at any stage in the process of preparing the product! /.
  • the total amount of the anti-aging agent added at the time of preparation of each polymer used in the present invention (before the addition of the crosslinking agent) is not particularly limited, but is generally 0.01 to 2 parts by weight.
  • the anti-aging agent is not particularly limited, but specific examples thereof include phenol-based, thio-based, and phosphorus-based anti-aging agents.
  • phenolic anti-aging agents include tetrakis [methylene 3 (3 ', 5' —T-Butyl-4'-Hydroxyphenol) propionate] methane, 1, 3, 5-trimethyl
  • the phenolic anti-aging agent may have a thioether group described later.
  • anti-aging agents for phosphorus compounds include tris (noyulpheninole) phosphite, tris (2,4 di-t-butylphenol) phosphite, tris having one phosphorus atom in the molecule.
  • a phosphite compound thermal stabilizer having two or more phosphorus atoms in the molecule is tris [2-t-butyltinole 4- (3-t-butyl-4-hydroxy 5-methylphenylthio) 5-methylphenyl] phosphite. It may have two or more thioether structures in the molecule.
  • thioether-based anti-aging agent examples include dilauryl 3, 3 'thiodipropionate, dimyristyl 3, 3' thiodipropionate, distearyl 3, 3'-thiodipropionate, laurinorestearinore 3, 3 'Thiodipropionate, Pentaeryth Ritol-tetrakis (3 lauryl thiopropionate), 3, 9 bis (2 dodecylthioethinole) 2, 4, 8, 10 tetraoxaspiro [5,5] undecane; 4, 6 bis (octinoretiomethyl) o-talesole 2, 2 Thiodiethylenebis [3- (3,5 di-t-butyl-4-hydroxyphenol) propionate], 2,4 Bis (n-octylthio) 6- (4-hydroxy-3,5-di-tert-butylanilino ) ⁇ 1, 3, 5-Triazine;
  • the oil-extended rubber composition of the present invention further includes a reinforcing filler such as silica, carbon black, talc, calcium carbonate, clay, carbon nanotube, fullerene, nylon short fiber, aluminum hydroxide. Can be blended.
  • a reinforcing filler such as silica, carbon black, talc, calcium carbonate, clay, carbon nanotube, fullerene, nylon short fiber, aluminum hydroxide. Can be blended.
  • the oil-extended rubber composition of the present invention includes a crosslinking agent; a crosslinking accelerator such as zinc white; a crosslinking accelerator such as sulfamide; a processing assistant such as stearic acid and its salt; a silane coupling agent; Stabilizers; active agents such as diethylene glycol, polyethylene glycol and silicone oil; tackifiers such as petroleum resin and coumarone resin; wax; These compounding amounts are usually 5 to 120 parts by weight with respect to 100 parts by weight in total of the rubber components (conjugation polymer (P 1) and polymer rubber (P2)) used in the present invention.
  • a crosslinking accelerator such as zinc white
  • a crosslinking accelerator such as sulfamide
  • a processing assistant such as stearic acid and its salt
  • silane coupling agent such as silane coupling agent
  • Stabilizers active agents such as diethylene glycol, polyethylene glycol and silicone oil
  • tackifiers such as petroleum resin and coumarone resin
  • Examples of the silica compounded in the oil-extended rubber composition of the present invention include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica.
  • wet method white carbon mainly containing hydrous key acid is preferable.
  • a carbon silica dual 'phase' filler in which silica is supported on the carbon black surface may be used.
  • These silicas can be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area of silica is preferably 50 to 400 m 2 / g, more preferably 50 to 250 m 2 / g. Within this range, the resulting oil-extended rubber composition is more excellent in wear resistance and low heat build-up.
  • silica CDBP absorption! Power of 50 to 400 ml / 100 g, preferably (80 to 300 ml / 100 g.
  • Silica preferably has a pH of less than 7, more preferably ⁇ 5 to 6.9.
  • the amount of silica is preferably 5 to 120 parts by weight, more preferably 20 to 100 parts by weight, and particularly preferably 40 parts by weight with respect to 100 parts by weight of all rubber components in the oil-extended rubber composition. ⁇ 90 parts by weight.
  • silane coupling agents examples include butyltriethoxysilane, 0- (3,4-epoxy
  • Rasulfide a mercapto-type silane coupling agent having an alkylene ether bond represented by the general formula (8) (wherein t is an integer of! To 5);
  • silane coupling agents mercapto silane coupling agents having an alkylene ether group and disulfides are more preferable, which are preferred to tetrasulfide, disulfide and mercapto silane coupling agents having an alkyl ether group. .
  • These silane coupling agents can be used alone or in combination of two or more.
  • the amount of the silane coupling agent is preferably 0.;! To 30 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of silica.
  • Examples of carbon black to be blended in the oil-extended rubber composition of the present invention include furnace black, acetylene black, thermal black, channel black, and graphite. Of these, specific examples of which furnace black is preferred include SAF, IS AF, ISAF—HS, ISAF—LS, IISAF—HS, HAF, HAF—HS, HAF—LS, and FEF. These carbon blacks can be used alone or in combination of two or more.
  • the compounding amount of carbon black is usually 150 parts by weight or less with respect to 100 parts by weight of all rubber components in the rubber composition.
  • the total amount of silica and carbon black is 100 parts by weight of all rubber components. It is preferable to be 5 to 150 parts by weight!
  • the nitrogen adsorption specific surface area (N SA) of carbon black is preferably 5 to 200 m 2 / g, Preferably 80 to 130 m 2 / g, and dibutyl phthalate (DBP) adsorption amount is preferably 5 to 300 ml / 100 g, more preferably 80 to 160 ml / 100 g. Within this range, the resulting rubber composition is excellent in mechanical properties and wear resistance.
  • N SA nitrogen adsorption specific surface area
  • DBP dibutyl phthalate
  • cetyltrimethylammonium bromide has an adsorption specific surface area of 110-; 170 m 2 / g, and DBP (24M4DBP) oil absorption after repeated compression four times at a pressure of 165 MPa Wear resistance is further improved by using high structure carbon black in an amount of 110-130 ml / 100 g.
  • the oil-extended rubber composition of the present invention may further contain a crosslinking agent.
  • Cross-linking agents include sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; sulfur halides such as sulfur monochloride and sulfur dichloride; dicumyl peroxide, and dibutyl butyl peroxide.
  • Organic peroxides such as xoxides; p-quinone dioxime, p, p'-dibenzoy / lequinone diximes and other quinone dioximes; triethylenetetramine, hexamethylenediamine carbamate, 4, 4, -methylenebis o chloroadiline, etc. Examples thereof include polyvalent amine compounds; alkylphenol resins having a methylol group; among these, powdered sulfur, in which sulfur is preferred, is more preferred.
  • crosslinking agents are used alone or in combination of two or more.
  • the amount of the crosslinking agent is preferably from 0.5 to 15 parts by weight, more preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of all rubber components.
  • the crosslinking agent is preferably used in combination with a crosslinking accelerator and a crosslinking activator.
  • cross-linking accelerator examples include N cyclohexyl lu 2-benzothiazyl sulfenamide, N-t-butyl-2-benzothiazole sulfenamide, N oxyethylene 2-benzothiazole sulfenamide, N Sulfenamide-based crosslinking accelerators such as oxyethylene 2-benzothiazonolesulfenamide, N, N, 1-diisopropyl-1-benzothiazolesulfenamide; diphenyldanidine, diortolylguanidine, orthotolylbiguanidine Guanidine-based cross-linking accelerators such as: thiolear cross-linking accelerators such as jetylthiourea; thiazole-based cross-linking accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and 2-mercaptobenzothiazole zinc salt; Tetrame Accelerators: Dithiocarbamate crosslinking accelerators such as
  • crosslinking activator for example, higher fatty acids such as stearic acid, zinc oxide and the like can be used.
  • zinc oxide having a high surface activity particle size of 5 m or less is preferred. Examples include zinc oxide with a particle size of 0.05-0.2 m and zinc oxide with a particle size of 0.3-1111.
  • Power S can be.
  • zinc oxide that has been surface-treated with an amine-based dispersant or wetting agent can also be used.
  • the amount of the crosslinking activator is appropriately selected.
  • the amount of the higher fatty acid is preferably from 0.05 to 15 parts by weight, more preferably from 0.5 to 100 parts by weight based on 100 parts by weight of the total rubber component.
  • the amount of zinc oxide is preferably 0.05 to 10 parts by weight, more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the total rubber component.
  • an additional anti-aging agent may be blended in addition to the anti-aging agent that can be blended in advance in the oil-extended rubber composition.
  • the oil-extended rubber composition of the present invention can be obtained by kneading each component according to a conventional method.
  • a cross-linking agent is included as a component of the oil-extended rubber composition, a compounding agent excluding the cross-linking agent and the cross-linking accelerator is kneaded, and then the cross-linking agent and the cross-linking accelerator are mixed into the kneaded product to crosslink the oil-extended A rubber composition can be obtained.
  • the kneading temperature of the compounding agent and rubber excluding the crosslinking agent and the crosslinking accelerator is preferably 80 to 200 ° C, more preferably 110 to 180 ° C, and the kneading time is preferably 30 seconds to 30 minutes. It is.
  • the mixing of the crosslinking agent and crosslinking accelerator with the kneaded product is usually performed after cooling to 100 ° C or lower, preferably 80 ° C or lower.
  • the crosslinking method for crosslinking the crosslinkable oil-extended rubber composition is not particularly limited, and may be selected according to the shape, size, etc. of the vulcanizate. Fill mold with crosslinkable oil-extended rubber composition It may be crosslinked at the same time as molding by filling and heating, or a preliminarily molded crosslinkable oil-extended rubber composition may be heated and crosslinked.
  • the crosslinking temperature is preferably 120 to 200 ° C, more preferably 140 to 180 ° C, and the crosslinking time is usually about 1 to 120 minutes.
  • each compounding agent may be added to and mixed with the organic solvent of the rubber component, and then the solvent may be removed.
  • Examples of the solvent removal method include a spray drying method, a steam stripping method, a direct drying method by solvent separation using supercritical carbon dioxide, and the like.
  • the steam stripping method is preferably employed industrially.
  • Applications of the oil-extended rubber composition of the present invention include tire treads, under treads, side treads, beads, bead fillers, tire carcass; hoses, belts, mats, anti-vibration rubbers, and other various industries.
  • the oil-extended rubber composition of the present invention is excellent in low heat buildup and wear resistance
  • tire members such as treads, carcass, sidewalls, and bead parts are used as footwear, particularly tire reds for low fuel consumption tires. It can be suitably used for use.
  • the branching rate of the polymer rubber (P2) is determined from the area ratio of the high molecular weight side peak to the low molecular weight side peak in the obtained analysis chart. Measured by NMR.
  • Judgment is made based on the following criteria based on the condition of clogging of the transfer line when pumping the crumb obtained by steam stripping the polymerization solution at 105 ° C.
  • Versatic acid (Versatic 10, manufactured by Shell Co.) (3.5 parts) was added to 15 parts of an aqueous solution in which 0.8 parts of sodium hydroxide had been dissolved to prepare an aqueous solution of sodium versatate. Then, the above-mentioned sodium versatate aqueous solution was added dropwise to an aqueous solution in which 4 parts of neodymium chloride had been dissolved with vigorous stirring. The blue-violet viscous product formed in the aqueous solution was sufficiently washed with water and dried to obtain a neodymium versatate salt.
  • neodymium versatate obtained in Synthesis Example 1 (component (A)) is dissolved in 200 parts of n-hexane, and 37 mol of triisobutylaluminum (TIBAU (component (B)) is added thereto. , after aging (early aging). 7.5 minutes, 1, was added 3-butadiene 15 molar (hexane solution n-), under stirring, and further 7.5 minutes aging (late aging).
  • Diisobutylaluminum hydride (DIBAH) ((component) 1.8 mol and jetyl aluminum chloride (DEAC) (component (D)) 2 mol were added at room temperature.At this time, component (B) and component (C) And the molar ratio (B / C) is 20 ⁇ 6.
  • DIBAH Diisobutylaluminum hydride
  • DEAC jetyl aluminum chloride
  • a jacketed reactor with a capacity of 2,000 liters was charged with 567 kg of cyclohexane and 100 kg of 1,3 butadiene so that the monomer concentration was 15%.
  • the catalyst solution 1 was added so that the molar amount of neodymium salt was 0 ⁇ 15 mol, and the polymerization reaction was performed at 60 ° C for 120 minutes with stirring (the polymerization start temperature and the maximum temperature during polymerization are described in the table). ), After the polymerization conversion of the polymer reached almost 100%, 0.006 mol (0.04 mol per 1 mol of neodymium (Nd)) tin tetrachloride in cyclohexane was added, Denaturation reaction was performed for 1 minute.
  • the reaction was stopped by adding 3 times mole of ethanol to Nd to obtain a polymer solution having a concentration of 15% containing the conjugate polymer P11 as the conjugate polymer (P1).
  • the Sn content in the polymer obtained by reprecipitation of PI twice was determined using the ICP internal standard method, confirming that the reaction rate of the denaturation reaction was 100%.
  • Conjugated polymer P11 yield is 99.2%, cis 1,4 bond content and 1,2 bule bond content of butadiene unit moiety are 98.4% and 0.5%, Mooney, respectively.
  • the viscosity (ML, 100 ° C) was 81.2 and the molecular weight distribution was 2.73. Also, tetrachloride
  • the coagulation properties before and after denaturation were 3 and 1, respectively.
  • Table 1 shows the solidification properties before and after modification with tin tetrachloride.
  • Polymer PC14 was obtained as a control conjugated diene polymer (P1) except that the amount of diisobutylaluminum hydride (DIBAH) (component (C)) was changed as shown in Table 1 and the same procedure as in Production Example 11 was performed. . These yields, cis-1,4 bond content and 1,2-bule bond content, Mooney viscosity (ML, 100 ° C) and molecular weight distribution of butadiene units.
  • DIBAH diisobutylaluminum hydride
  • component (C) component
  • Component (B) Component (C) Molar ratio 20.6 26.4 5.3 12.3 Starting temperature (° c) 50 50 50 50 50
  • a stainless steel autoclave polymerization reactor is charged with different amounts of styrene, 1,3-butadiene, cyclohexane and a small amount of tetramethylenediamine as solvents, and then n-butyllithium is added as a polymerization catalyst. Polymerization was started at 40 ° C while stirring the contents. The internal temperature of the polymerization reactor rose to 60 ° C. After the polymerization reaction, the compounds shown in Table 2 as the coupling agent were each 0 ⁇ 13 monolayers (P21, coupling symmetric IJ fffi number (4), 0 to 1 mol of n-butyllithium used as the polymerization catalyst).
  • silane coupling agent dedasa 5 parts
  • This crosslinkable oil-extended rubber composition 1 was vulcanized at 150 ° C. for 30 minutes to obtain a vulcanized product 1.
  • Table 3 shows the results of evaluating the low heat build-up and wear resistance of this vulcanizate 1.
  • Process oil was changed to modified aroma oil t DAE (manufactured by Nippon Oil Co., Ltd., aroma component 25 ⁇ 8%), and for Examples 3 and 4, the type of conjugated polymer (P1) is shown in Table 3.
  • the oil-extended rubber compositions 2 to 4, the crosslinkable oil-extended rubber compositions 2 to 4 and the vulcanizates 2 to 4 were obtained in the same manner as in Example 1, except that the low exothermic property and abrasion resistance were obtained. Sex was evaluated. The results are shown in Table 3.
  • conjugation polymer P11 as conjugation polymer (P1)
  • commercially available cobalt-catalyzed butadiene rubber as a control conjugation polymer (cis 1,4 bond content 96%, 1,2 bull bond content 2. 8%, Mooney viscosity (ML, 100 ° C) 80.5, molecule
  • Conjugated polymer as conjugate polymer (P1) Conjugated polymer as P1 Conjugated polymer as reference conjugated polymer (P1) in place of P11 C2 was obtained, and its low heat build-up and wear resistance were evaluated. The results are shown in Table 3.
  • the oil-extended rubber compositions (Examples;! To 4) using the conjugated gen polymer (P1) satisfying the provisions of the present invention are control conjugates not satisfying the provisions of the present invention.
  • the oil-extended rubber composition (Comparative Examples 1 and 2) using a gene polymer it has a low heat build-up and excellent wear resistance.
  • the oil-extended gen rubber composition of the present invention is excellent in low exothermic property.
  • a higher Mooney viscosity is better in balance between low heat buildup and wear resistance.
  • the higher the cis content the better the wear resistance.
  • Example 2 Except for the use of 0.3 part, the same operations as in Example 1 were carried out to obtain vulcanizates 5 to 9 and C3, and the low exothermic properties and wear resistance of the vulcanizates were evaluated.
  • the results are shown in Table 4.
  • CA, CN, and CP represent the aroma content, the naphthene content, and the paraffin content, respectively.
  • Ar02 Reformed aroma oil t—DAE (manufactured by Nippon Oil Corporation)
  • Ar04 Naphthenic oil. Made by Idemitsu Kosan Co., Ltd., trade name “Diana Process Oil NS—100”
  • Ar06 Made by Idemitsu Kosan Co., Ltd., trade name "Diana Process Oil NP 700"
  • An oil-extended rubber composition 1A was obtained in the same manner as in Example 1 by using 0.2 part of methyl phenol (trade name “IRGA NOX 1520L” manufactured by Ciba Specialty Chemicals).
  • the oil-extended rubber composition 28A was obtained in the same manner except that a 15% solution of the name “Nipol SBR9528R”) in cyclohexane was used and 37.5 parts of the process oil shown in Table 5 was used.
  • silane coupling agent made
  • This crosslinkable mixed oil-extended rubber composition 10 was vulcanized at 160 ° C. for 20 minutes to obtain a vulcanized product 10.
  • Table 5 shows the results of evaluating the low heat build-up and wear resistance of the vulcanizate 10.
  • Crosslinkable mixed oil-extended rubber compositions 11 to 13 were obtained in the same manner as in Example 10 except that the polymers (P2) and process oils shown in Table 5 were used. From this, vulcanizates 11 to 13 were obtained in the same manner as in Example 10. Table 5 shows the results of evaluating the low heat build-up and wear resistance of these vulcanizates 11 to 13.
  • the oils of the examples and comparative examples in Table 5 were adjusted with mineral oil t-DAE so that the total oil amount was 50.0 parts with respect to 100 parts of the total rubber amount, and were put into a Banbury mixer. .
  • Example 14 A rubber composition 23B was prepared in the same manner as in Example 10 except that no process oil was used in preparing an oil-extended rubber composition from the polymer P23 as the polymer (P2).
  • a crosslinkable mixed oil-extended rubber composition 14 was obtained in the same manner as in Example 10 except that the rubber composition 23B was used instead of the oil-extended rubber composition 28A. From this, a vulcanizate 14 was obtained in the same manner as in Example 10. The results of evaluating the low heat buildup and wear resistance of this vulcanizate 14 are shown in Table 5.
  • a crosslinkable oil-extended rubber composition C4 was obtained in the same manner as in Example 11 except that the oil-extended rubber composition 1A was not used. From this, a vulcanizate C4 was obtained in the same manner as in Example 10. Table 5 shows the results of evaluating the low heat buildup and wear resistance of this vulcanizate C4.
  • Ar02 Modified Aloma Oil t—DAE (manufactured by Nippon Oil Corporation)
  • modified aroma oil t DAE manufactured by Nippon Oil Co., Ltd. 25.8 parts
  • anti-aging agent 2 4 bis (n-octylthiomethyl) 6 methylphenol (Ciba Specialty Chemicals, trade name “IRGANOX 1520L”), 0.2 part, and 60 ° C
  • a polymer was precipitated by a steam stripping method and dried to obtain a mixed oil-extended rubber composition 17.
  • silica manufactured by Rhodia, trade name “Zeo
  • This crosslinkable (mixed) oil-extended rubber composition 17 was vulcanized at 160 ° C. for 20 minutes to obtain a vulcanized product 17.
  • Example 18 In the same manner as in Example 17, except that the types and amounts of the conjugated diene polymer (P1), the polymer (P2), and the process oil used are changed as shown in Table 6, Examples 18 to 22 Mixed oil-extended rubber compositions 18-22, crosslinkable (mixed) oil-extended rubber compositions 18-22, and carbonates 18-22 were obtained.
  • Table 6 shows the results of evaluating the low heat buildup and wear resistance of vulcanizates 17-22.
  • the mixed oil-extended rubber composition C5 and the crosslinkable (mixed) oil-extended rubber composition C5 were obtained in the same manner as in Example 17, except that the product name “Nipol BR1441”] was used. From this crosslinkable (mixed) oil-extended rubber composition C5, a vulcanizate C5 was obtained in the same manner as in Example 17, and the results of evaluating the low heat buildup and wear resistance are shown in Table 6.

Abstract

Disclosed is a rubber composition excellent in wear resistance and low heat generation property. Also disclosed is a method for producing such a rubber composition, a tire member using such a rubber composition, and a tire. Specifically disclosed is an oil extended rubber composition containing 100 parts by weight of a rubber component essentially containing a conjugated diene polymer (P1) having at least a butadiene unit and 10-120 parts by weight of a process oil. The conjugated diene polymer (P1) has a Mooney viscosity of 65-200 (ML1+4, 100˚C) and a molecular weight distribution of 1.5-4.0, while having a cis-1,4-bond content of not less than 96.5% and a vinyl bond content of not more than 1.0% in the butadiene unit portion.

Description

明 細 書  Specification
油展ゴム組成物、その製造方法、タイヤ用部材及びタイヤ  Oil-extended rubber composition, method for producing the same, tire member and tire
技術分野  Technical field
[0001] 本発明は、油展ゴム組成物、その製造方法、それから得られるタイヤ用部材及びタ ィャに関する。更に詳しくは、特定の単量体組成、特定のミクロ構造及び特定の分子 量特性を有する特定の共役ジェン重合体を必須成分とするゴム成分を含有してなる 油展ゴム組成物、その製造方法、この油展ゴム組成物からなるタイヤ用部材及びこの タイヤ用部材を備えてなるタイヤに関する。  TECHNICAL FIELD [0001] The present invention relates to an oil-extended rubber composition, a method for producing the same, a tire member and tire obtained therefrom. In more detail, an oil-extended rubber composition comprising a rubber component whose essential component is a specific conjugate polymer having a specific monomer composition, a specific microstructure and a specific molecular weight characteristic, and a method for producing the same The present invention also relates to a tire member comprising the oil-extended rubber composition and a tire provided with the tire member.
背景技術  Background art
[0002] 一般に、タイヤ用のゴムは反発弾性、耐摩耗性及び低発熱性のバランスに優れるこ とが必要であり、このため、シス 1 , 4 結合含有量ができるだけ高ぐ分子量分布 が狭いポリブタジエンが求められている。ネオジム等のランタン系列金属を含有する 重合触媒を使用すると、そのようなポリブタジエン (以下、「BR」と記すことがある。)の 製造に有利であることが知られており、この触媒系に関する検討が行われている。  [0002] In general, rubber for tires needs to have an excellent balance of impact resilience, wear resistance, and low heat build-up, and as a result, polybutadiene with a molecular weight distribution that is as high as possible in the cis 1,4 bond content and narrow in molecular weight distribution. Is required. It is known that the use of a polymerization catalyst containing a lanthanum series metal such as neodymium is advantageous for the production of such polybutadiene (hereinafter sometimes referred to as “BR”). Has been done.
[0003] 例えば、特許文献 1には、ガラス転移温度が 50°C以下のゴムと重量平均分子量 力 S500以上のパラフィンオイルとを含有するゴム組成物が開示されている。また、特 許文献 2には、シス 1 , 4 結合含有量が 96%で重量平均分子量が 40万のポリブ タジェンにパラフィンオイルが混合されたゴム組成物が開示されて!/、る。しかしながら 、これらのゴム組成物は、低温特性に優れるものの耐摩耗性に問題があった。  [0003] For example, Patent Document 1 discloses a rubber composition containing a rubber having a glass transition temperature of 50 ° C or lower and a paraffin oil having a weight average molecular weight force of S500 or higher. Patent Document 2 discloses a rubber composition obtained by mixing paraffin oil with polybutadiene having a cis 1,4 bond content of 96% and a weight average molecular weight of 400,000. However, these rubber compositions have a problem in wear resistance although they are excellent in low temperature characteristics.
特許文献 3及び 4にはシス 1 , 4 結合含有量が高いポリブタジエンとァロマ分が 10%以下のオイルとを含有するゴム組成物が開示されている。し力、しながら、このゴ ム組成物は、摩耗性及び低発熱性に劣ると V、う問題があった。  Patent Documents 3 and 4 disclose rubber compositions containing polybutadiene having a high cis 1,4 bond content and oil having a roma content of 10% or less. However, this rubber composition had a problem of V and poor wear and low heat build-up.
[0004] 特許文献 1 :特開平 04— 81438号公報  [0004] Patent Document 1: Japanese Patent Laid-Open No. 04-81438
特許文献 2:特開 2004 277506号公報  Patent Document 2: JP 2004 277506 A
特許文献 3:特開 2005— 36065号公報  Patent Document 3: JP 2005-36065 A
特許文献 4:特開 2005— 154754号公報  Patent Document 4: Japanese Patent Laid-Open No. 2005-154754
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0005] 従って、本発明の目的は、耐摩耗性と低発熱性とに優れた油展ゴム組成物及びそ の製造方法を提供することにある。 [0005] Therefore, an object of the present invention is to provide an oil-extended rubber composition excellent in wear resistance and low heat build-up, and a method for producing the same.
また、本発明の他の目的は、この油展ゴム組成物を用いて、タイヤ用部材を提供す るこどにめる。  Another object of the present invention is to provide a tire member using the oil-extended rubber composition.
本発明の更に他の目的は、このタイヤ用部材を備えてなるタイヤを提供することに ある。  Still another object of the present invention is to provide a tire provided with the tire member.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、ランタン系歹 IJ 金属化合物 (A)、有機アルミニウム化合物(B)、有機アルミニウムハイドライド化合物 (C)及びハロゲン化合物(D)からなる重合触媒にお!/、て、有機アルミニウム化合物と 有機アルミニウムハイドライド化合物とを特定の割合で含有する重合触媒を用いるこ とにより、より高いシス 1 , 4 結合含有量とより狭い分子量分布とを有する共役ジ ェン重合体を得ることができることを見出し、この知見に基づいて更に研究を進めた 結果、上記共役ジェン重合体に特定のプロセスオイルを特定量配合することにより耐 摩耗性及び低発熱性に優れる油展ゴム組成物を得ることができることを見出し、本発 明を完成するに至った。 [0006] The present inventors have conducted extensive research to achieve the above object, and as a result, obtained lanthanum-based IJ metal compounds (A), organoaluminum compounds (B), organoaluminum hydride compounds (C), and halogen compounds. By using a polymerization catalyst comprising a specific ratio of organoaluminum compound and organoaluminum hydride compound in the polymerization catalyst comprising (D), a higher cis 1, 4 bond content and a narrower As a result of finding that a conjugated phene polymer having a molecular weight distribution can be obtained, and further research based on this finding, it is possible to obtain wear resistance by blending a specific amount of a specific process oil into the conjugated gen polymer. The present invention has been completed by finding that an oil-extended rubber composition excellent in heat resistance and low heat buildup can be obtained.
[0007] 力、くして、本発明によれば、少なくともブタジエン単位を有する共役ジェン重合体で あって、 65〜200のム一二一粘度(ML , 100°C)及び 1. 5〜4· 0の分子量分布 [0007] In other words, according to the present invention, a conjugated diene polymer having at least a butadiene unit, having a viscosity of 65 to 200 (ML, 100 ° C) and 1.5 to 4 ···. 0 molecular weight distribution
1 + 4  1 + 4
を有し、且つブタジエン単位部分において 96. 5%以上のシス—1 , 4 結合含有量 及び 1. 0%以下のビュル結合含有量を有する共役ジェン重合体 (P1)を必須成分と するゴム成分 100重量部並びにァロマ分を 5重量0 /0以上含有するプロセスオイル 10 〜; 120重量部を含有してなる油展ゴム組成物が提供される。 And a conjugated unit polymer (P1) having a cis-1,4 bond content of 96.5% or more and a butyl bond content of 1.0% or less in the butadiene unit portion as an essential component 100 parts by weight and the process oil 10 to contain Aroma content of 5 wt 0/0 or more; oil-extended rubber composition comprising 120 parts by weight is provided.
本発明の油展ゴム組成物において、共役ジェン重合体(P1)の、ムーニー粘度(Μ L , 100°C)力 S75〜; 175であり、分子量分布が 2· 0〜3. 5であり、ブタジエン単位 In the oil-extended rubber composition of the present invention, the conjugate polymer (P1) has a Mooney viscosity (Μ L, 100 ° C) force of S75 to 175 and a molecular weight distribution of 2.0 to 3.5. Butadiene unit
1 + 4 1 + 4
部分におけるシス 1 , 4 結合含有量が 97. 5%以上且つビュル結合含有量が 0. 9%以下であることが好まし!/、。  It is preferable that the cis 1,4 bond content in the portion is 97.5% or more and the bull bond content is 0.9% or less! /.
また、本発明の油展ゴム組成物において、共役ジェン重合体 (P1)中のブタジエン 単位の比率が 80重量%以上であることが好ましい。 In the oil-extended rubber composition of the present invention, the butadiene in the conjugated polymer (P1) The unit ratio is preferably 80% by weight or more.
本発明の油展ゴム組成物において、共役ジェン重合体 (P1)がランタン系列金属 化合物 (A)、有機アルミニウム化合物(B)、有機アルミニウムハイドライド化合物(C) 及びハロゲン化合物 (D)で構成される重合触媒を用いてブタジエンを必須成分とす る単量体を重合して得られたものであることが好ましい。  In the oil-extended rubber composition of the present invention, the conjugate polymer (P1) is composed of a lanthanum series metal compound (A), an organoaluminum compound (B), an organoaluminum hydride compound (C), and a halogen compound (D). It is preferably obtained by polymerizing a monomer containing butadiene as an essential component using a polymerization catalyst.
また、本発明の油展ゴム組成物において、共役ジェン重合体 (P1)がランタン系列 金属化合物 (A)、有機アルミニウム化合物(B)、有機アルミニウムハイドライド化合物 (C)及びハロゲン化合物 (D)で構成される重合触媒を用いて共役ジェン単量体を重 合したのち、更に下記一般式(1)で表される有機金属ハロゲン化物 (E)で、変性して 得られたものであることが好ましレ、。  In the oil-extended rubber composition of the present invention, the conjugate polymer (P1) is composed of a lanthanum series metal compound (A), an organoaluminum compound (B), an organoaluminum hydride compound (C), and a halogen compound (D). It is preferably obtained by polymerizing a conjugated diene monomer using a polymerization catalyst, and then modifying it with an organometallic halide (E) represented by the following general formula (1). Masle.
[化 1]
Figure imgf000004_0001
[Chemical 1]
Figure imgf000004_0001
(式中、 Mは、 Si、 Ge、 Sn又は Tiであり、 Xはハロゲン原子である。 Xが複数存在する ときは、それらは、互いに同じでも異なっていてもよい。 R1は、単結合であるか、へテ 口原子を含んでいてもよい炭素数 1〜20の炭化水素基を表す。 R2は、水素、又はへ テロ原子を含んでいてもよい炭素数 1〜20の炭化水素基を表す。 R2が複数存在する ときは、それらは、互いに同じでも異なっていてもよい。 g及び hは、それぞれ、;!〜 4 の整数を表す。 h力 のとき、 fは 0である。 h力 〜4のとき、 fは 1であり、少なくとも 1つ の R2は R1と結合して!/、る力 S、このとき R2は単結合であってもよ!/、)。 (In the formula, M is Si, Ge, Sn or Ti, and X is a halogen atom. When a plurality of X are present, they may be the same or different from each other. R 1 is a single bond. Or a hydrocarbon group having 1 to 20 carbon atoms that may contain a heteroatom R 2 represents hydrogen or a hydrocarbon having 1 to 20 carbon atoms that may contain a hetero atom When a plurality of R 2 are present, they may be the same or different from each other, and g and h each represent an integer of !! to 4. When h force, f is 0 When h force is ~ 4, f is 1, and at least one R 2 is bonded to R 1 ! /, The force S, and R 2 may be a single bond! /, ).
更に、本発明の油展ゴム組成物において、重合触媒が、ランタン系列金属化合物( A)、有機アルキルアルミニウム化合物(B)、有機アルミニウムハイドライド化合物(C) 及びハロゲン化合物(D)で構成されるものであって、有機アルキルアルミニウム化合 物(B)と有機アルミニウムハイドライド化合物(C)とのモル比(B/C)力 5≤ (B/C) ≤1 , 000を満たすものであることが好ましい。  Furthermore, in the oil-extended rubber composition of the present invention, the polymerization catalyst is composed of a lanthanum series metal compound (A), an organic alkylaluminum compound (B), an organic aluminum hydride compound (C), and a halogen compound (D). It is preferable that the molar ratio (B / C) force of the organoalkylaluminum compound (B) to the organoaluminum hydride compound (C) is 5≤ (B / C) ≤1,000.
本発明の油展ゴム組成物において、プロセスオイルがァロマ分を 10〜40重量%含 有するものであることが好まし!/、。  In the oil-extended rubber composition of the present invention, it is preferred that the process oil contains 10 to 40% by weight of aroma!
本発明の油展ゴム組成物において、ゴム成分が共役ジェン重合体 (P1)のみから なるものであることが好まし!/、。 In the oil-extended rubber composition of the present invention, the rubber component is composed only of the conjugated diene polymer (P1). It is preferable to be! /
また、本発明の油展ゴム組成物において、ゴム成分が共役ジェン重合体 (P1) 5重 量%以上と、この共役ジェン重合体 (P1)以外の重合体ゴム(P2) 95重量%以下と、 からなるものであることが好ましレ、。  Further, in the oil-extended rubber composition of the present invention, the rubber component is 5% by weight or more of the conjugated polymer (P1), and the polymer rubber (P2) other than this conjugated polymer (P1) is 95% by weight or less. It is preferred that it consists of,.
更に、本発明の油展ゴム組成物において、共役ジェン重合体 (P1)以外の重合体 ゴム(P2)が芳香族ビュルと共役ジェンとの共重合体であって、 100〜200のム一二 一粘度(ML , 100°C)を有し共役ジェン単位において 7  Furthermore, in the oil-extended rubber composition of the present invention, the polymer rubber (P2) other than the conjugated polymer (P1) is a copolymer of an aromatic bur and a conjugated gene, 7 in conjugation units with one viscosity (ML, 100 ° C)
1 + 4 〜85%のビュル結合含 有量を有するものであることが好ましレ、。  Preferably, it has a bull bond content of 1 + 4 to 85%.
[0010] 本発明によれば、更に、ゴム成分 100重量部に対して 5〜; 120重量部の、シリカ、ク レー、タルク、炭酸カルシウム、カーボンブラック、カーボンナノチューブ、フラーレン、 ナイロン短繊維及び水酸化アルミニウムからなる群から選ばれる少なくとも 1つの配合 剤を更に含有してなる油展ゴム組成物が提供される。  [0010] According to the present invention, 5 to 120 parts by weight of silica, clay, talc, calcium carbonate, carbon black, carbon nanotube, fullerene, nylon short fiber, and water are further included in 100 to 100 parts by weight of the rubber component. An oil-extended rubber composition further comprising at least one compounding agent selected from the group consisting of aluminum oxide is provided.
[0011] 本発明によれば、共役ジェン重合体 (P1)を必須成分とするゴム成分の有機溶媒 溶液にプロセスオイルを混合した後、脱溶媒する油展ゴム組成物の製造方法が提供 される。  [0011] According to the present invention, there is provided a method for producing an oil-extended rubber composition in which a process oil is mixed with an organic solvent solution of a rubber component containing a conjugated diene polymer (P1) as an essential component and then desolvated. .
また、本発明によれば、本発明の油展ゴム組成を架橋してなるタイヤ用部材が提供 される。  Further, according to the present invention, there is provided a tire member obtained by crosslinking the oil-extended rubber composition of the present invention.
更に、本発明によれば、上記タイヤ用部材を備えてなるタイヤが提供される。  Furthermore, according to this invention, the tire provided with the said member for tires is provided.
発明の効果  The invention's effect
[0012] 本発明の油展ゴム組成物を架橋して得られる架橋ゴム (加硫物)は、低発熱性と耐 摩耗性に優れている。  [0012] A crosslinked rubber (vulcanized product) obtained by crosslinking the oil-extended rubber composition of the present invention is excellent in low heat buildup and wear resistance.
従って、この油展ゴム組成物から実用性に優れたタイヤ用部材及びこのタイヤ用部 材を備えてなるタイヤを得ることができる。  Accordingly, a tire member having excellent practicality and a tire provided with the tire member can be obtained from the oil-extended rubber composition.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 本発明の油展ゴム組成物は、特定の共役ジェン重合体 (P1)を必須成分とするゴ ム成分 100重量部に特定のプロセスオイル 10〜; 120重量部を含有してなる。 [0013] The oil-extended rubber composition of the present invention comprises 10 to 120 parts by weight of a specific process oil in 100 parts by weight of a rubber component containing a specific conjugated polymer (P1) as an essential component.
[0014] 本発明で用いる共役ジェン重合体 (P1)は、少なくともブタジエン単位を有する共 役ジェン重合体、即ち、ブタジエンの単独重合体又はブタジエンとこれと共重合可能 な単量体との共重合体であって、特定のミクロ構造及び分子量特性を有するもので ある。 [0014] The conjugated diene polymer (P1) used in the present invention is a co-polymer having at least a butadiene unit, that is, a butadiene homopolymer or copolymerizable with butadiene. Copolymers with various monomers having specific microstructure and molecular weight characteristics.
[0015] 共役ジェン重合体 (P 1 )は、ブタジエンの単独重合体 (ポリブタジエン)又はブタジ ェンとこれと共重合可能な単量体との共重合体である。  The conjugation polymer (P 1) is a homopolymer of butadiene (polybutadiene) or a copolymer of butadiene and a monomer copolymerizable therewith.
ブタジエンと共重合可能な単量体は、特に限定されない。  The monomer copolymerizable with butadiene is not particularly limited.
ブタジエンと共重合可能な単量体の代表例として、ブタジエン以外の共役ジェン単 量体を挙げること力 Sできる。その具体例としては、 1 , 3—ブタジエン、イソプレン(2— メチルー 1 , 3—ブタジエン)、 2, 3—ジメチルー 1 , 3—ブタジエン、 2—クロロー 1 , 3 —ブタジエン、 1 , 3—ペンタジェン、 1; 3—へキサジェン等が挙げられる。これらの 中でも、イソプレンが好ましい。 As a representative example of a monomer copolymerizable with butadiene, a conjugation monomer other than butadiene can be cited. Specific examples thereof include 1, 3-butadiene, isoprene (2-methyl-1, 3-butadiene); 2, 3-dimethyl-1, 3-butadiene, 2-chloro-1, 3 - butadiene, 1, 3 - Pentajen, 1; 3-hexagen and the like can be mentioned. Of these, isoprene is preferred.
これらの共役ジェン単量体は、 1種を単独で又は 2種以上を組み合わせて用いるこ と力 Sできる。  These conjugation monomers can be used alone or in combination of two or more.
[0016] ブタジエンと共重合可能な単量体であって共役ジェン以外のものの具体例としては 、スチレン、 o—メチルスチレン、 m—メチルスチレン、 p—メチルスチレン、 2, 4—ジメ チルスチレン、 o—ェチルスチレン、 m—ェチルスチレン、 p—ェチルスチレン、 p— t ーブチルスチレン、 α—メチルスチレン、 α—メチルー ρ—メチルスチレン、 ο—クロル スチレン、 m—クロルスチレン、 p—クロルスチレン、 p—ブロモスチレン、 2—メチルー 4, 6—ジクロルスチレン、 2, 4—ジブ口モスチレン、ビュルナフタレン等の芳香族ビニ ノレ単量体;エチレン、プロピレン、 1—ブテン、シクロペンテン、 2—ノルボルネン等の 炭素数 2〜 10のモノォレフィン単量体; 1 , 5—へキサジェン、 1 , 6—へブタジエン、 1 , 7—ォクタジェン、ジシクロペンタジェン、 5—ェチリデンー2—ノルボルネン等の炭 素数 5〜10の非共役ジェン単量体;メチルアタリレート、メチルメタタリレート、ェチル アタリレート、ェチルメタタリレート、ブチルアタリレート等の炭素数 1〜8の a , 13 —ェ チレン性不飽和カルボン酸アルキルエステル単量体;等が挙げられる。  [0016] Specific examples of monomers copolymerizable with butadiene other than conjugated diene include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, o —Ethylstyrene, m-ethylstyrene, p-ethylstyrene, p-tert-butylstyrene, α-methylstyrene, α-methyl-ρ-methylstyrene, ο-chlorostyrene, m-chlorostyrene, p-chlorostyrene, p-bromostyrene, 2 —Aromatic vinyl monomers such as methyl-4,6-dichlorostyrene, 2,4-dibu-mouthed styrene, and burnaphthalene; carbon numbers 2 to 10 such as ethylene, propylene, 1-butene, cyclopentene, and 2-norbornene 1,5-hexagen, 1,6-hexabutadiene, 1,7-octadiene, dicyclopentadi N, 5-ethylidene-2-norbornene and other non-conjugated diene monomers having 5 to 10 carbon atoms; methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, butyl acrylate, etc. 1 to 8 a, 13 -ethylenically unsaturated carboxylic acid alkyl ester monomers;
[0017] 共役ジェン重合体(P 1 )におけるブタジエン単位の比率は、 80重量%以上であるこ と力 S好ましく、 90重量%以上であることが更に好ましぐ 95重量%以上であることが特 に好ましい。  [0017] The ratio of the butadiene units in the conjugated polymer (P 1) is 80% by weight or more, preferably S, more preferably 90% by weight or more, and more preferably 95% by weight or more. Is preferable.
なお、共役ジェン重合体 (P 1 )が共重合体である場合、単量体の結合様式は特に 限定されず、例えば、ブロック状、テーパー状、ランダム状等種々の結合様式とする こと力 Sでさる。 In addition, when the conjugated diene polymer (P 1) is a copolymer, the bonding mode of the monomer is particularly It is not limited, and for example, it can be made with various coupling modes such as block shape, taper shape, random shape, and the like with force S.
[0018] 本発明で用いる共役ジェン重合体 (P1)は、そのブタジエン単位部分におけるシス  [0018] The conjugated diene polymer (P1) used in the present invention has a cis in the butadiene unit portion.
1 , 4 結合含有量が 96. 5%以上であることが必要であり、 97. 5%以上であるこ と力 S好ましく、 98. 0%以上であることが更に好ましい。 1, 4 is a bond content should be at 96.5% or more, this and force S preferably 97.5% or more, and more preferably 98. be 0% or more.
また、共役ジェン重合体 (P1)は、そのブタジエン単位部分におけるビュル結合含 有量が 1. 0%以下であることが必要であり、 0. 9%以下であることが好ましぐ 0. 8% 以下であることが更に好ましい。  In addition, the conjugate polymer (P1) needs to have a bull bond content in the butadiene unit portion of 1.0% or less, and preferably 0.9% or less. More preferably, it is at most%.
[0019] 更に、共役ジェン重合体(P1)は、そのムーニー粘度(ML , 100°C)力 5〜20 [0019] Further, the conjugate polymer (P1) has a Mooney viscosity (ML, 100 ° C) force of 5 to 20
1 + 4  1 + 4
0であることが必要であり、 75〜175であることがより好ましい。  0 is required, and 75 to 175 is more preferable.
[0020] 更に、共役ジェン重合体(P1)は、その分子量分布が 1. 5〜4. 0であることが必要 であり、 2· 0〜3· 5であることカ好ましく、 2· 0〜3· 3であること力^!も好ましい。  [0020] Further, the conjugate polymer (P1) needs to have a molecular weight distribution of 1.5 to 4.0, preferably 2.0 to 3.5, and preferably 2.0 to A power of 3 is also preferable.
[0021] 本発明で用いる共役ジェン重合体 (P1)は、ランタン系列金属化合物 (Α)、有機ァ ノレミニゥム化合物(Β)、有機アルミニウムハイドライド化合物(C)及びハロゲン化合物 (D)で構成される重合触媒を用いてブタジエンを必須成分とする単量体を重合する ことによって得ることができる。  [0021] The conjugated diene polymer (P1) used in the present invention is a polymer composed of a lanthanum series metal compound (Α), an organic alcohol compound (Β), an organoaluminum hydride compound (C), and a halogen compound (D). It can be obtained by polymerizing a monomer containing butadiene as an essential component using a catalyst.
[0022] 重合触媒の第一の構成成分であるランタン系列金属化合物 (Α)は、ランタン系列 金属の塩、アルコキシド、フエノキシド又は錯体であり、中でも塩が好ましい。  [0022] The lanthanum series metal compound (Α), which is the first component of the polymerization catalyst, is a lanthanum series metal salt, alkoxide, phenoxide or complex, with the salt being preferred.
[0023] ランタン系列金属は、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サ マリゥム、ユウ口ピウム、ガドリニウム、テノレビゥム、ジスプロシウム、ホノレミゥム、エノレビ ゥム、ツリウム、イッテルビウム及びルテチウムからなる群から選ばれる少なくとも 1種 の金属である。これらの中でも、ランタン、セリウム、プラセオジム、ネオジム、サマリゥ ム及びガドリニウムが好ましぐ入手しやすく取り扱いやすぐ重合活性が高ぐ得られ る重合体のブタジエン単位部分のシス 1 , 4 結合含有量が高い点から、ネオジム が特に好ましい。  [0023] The lanthanum-based metal is at least one selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, promethium, samarium, pylorium, gadolinium, tenolebium, dysprosium, honorium, enolebium, thulium, ytterbium and lutetium. It is a kind of metal. Among these, lanthanum, cerium, praseodymium, neodymium, samarium, and gadolinium are preferred for easy access and high polymerization activity. From the viewpoint, neodymium is particularly preferable.
[0024] ランタン系列金属の塩は、特に限定されないが、カルボン酸塩及びリン酸類の塩が 好ましぐカルボン酸塩がより好ましい。  [0024] The salt of the lanthanum series metal is not particularly limited, but a carboxylate salt that is preferably a carboxylate salt or a salt of phosphoric acid is more preferable.
また、ランタン系列金属の塩は、カルボン酸塩とリン含有有機酸塩との複合塩(〔力 ルボン酸塩〕〔リン含有有機酸塩〕)のような、異なる結合様式からなる複合塩構造のも のであってもよい。 In addition, lanthanum metal salts are complex salts of carboxylate and phosphorus-containing organic acid salts ( It may be a complex salt structure consisting of different bonding modes, such as [rubonate] [phosphorus-containing organic acid salt]).
[0025] カルボン酸塩を形成するカルボン酸は、特に限定されな!/、が、通常、炭素数 2〜20 のものである。その具体例としては、酢酸、オクタン酸、オタテン酸、ラウリン酸、バー サチック酸 (炭素数 1以上のアルキル基が 3つ結合した三級炭素にカルボキシル基を 有する炭素数 6〜20の脂肪族モノカルボン酸である。)等の脂肪族カルボン酸;フエ ニル酢酸等のァリール置換脂肪族カルボン酸;シクロペンタンカルボン酸等の脂環 族カルボン酸;安息香酸、ナフテン酸等の芳香族カルボン酸;等が挙げられる。中で も、炭素数 6〜20の脂肪族カルボン酸が好ましぐ高重合活性の触媒が得られる点 から、バーサチック酸がより好ましい。  [0025] The carboxylic acid forming the carboxylate is not particularly limited! /, But usually has 2 to 20 carbon atoms. Specific examples include acetic acid, octanoic acid, otathenic acid, lauric acid, versatic acid (aliphatic monocarboxylic acid having 6 to 20 carbon atoms having a carboxyl group on a tertiary carbon in which three alkyl groups having 1 or more carbon atoms are bonded). Aliphatic carboxylic acid such as phenylacetic acid; Alicyclic carboxylic acid such as cyclopentanecarboxylic acid; Aromatic carboxylic acid such as benzoic acid and naphthenic acid; etc. Is mentioned. Among these, versatic acid is more preferable because a catalyst having a high polymerization activity, which is preferably an aliphatic carboxylic acid having 6 to 20 carbon atoms, is obtained.
[0026] リン酸類の塩を形成するリン酸類は、特に限定されないが、下記の一般式(2)で表 される化合物が好ましい。  [0026] The phosphoric acid that forms a salt of phosphoric acid is not particularly limited, but a compound represented by the following general formula (2) is preferable.
[0027] [化 2]  [0027] [Chemical 2]
0  0
R3 \ ll R 3 \ ll
ノ P― OH ( 2)  P-OH (2)
R  R
(式中、 R3及び R4は、それぞれ、水素原子、水酸基、炭素数;!〜 20のアルキル基若 しくはアルコキシ基、炭素数 6〜20のァリール基若しくはフエノキシ基、又は炭素数 7 〜20のァラルキル基若しくはアルキルフエノキシ基を表わす。 ) (Wherein R 3 and R 4 are each a hydrogen atom, a hydroxyl group, a carbon number;! To 20 alkyl group or an alkoxy group, a C 6-20 aryl group or a phenoxy group, or a carbon number 7 to 20 represents an aralkyl group or an alkylphenoxy group.)
[0028] 一般式(2)で示される化合物の具体例としては、リン酸;リン酸ジブチル、リン酸ジ へキシル、リン酸ジォクチル、リン酸ビス(2—ェチルへキシル)、リン酸ビス(1ーメチ ルヘプチル)、リン酸ジォレイル、リン酸ブチル(2—ェチルへキシル)、リン酸(1ーメ チルヘプチル)(2—ェチルへキシル)等のリン酸ジアルキルエステル;リン酸ジフエ二 ノレ等のリン酸ジァリールエステル; 2—ェチルへキシルホスホン酸モノー 2—ェチルへ キシル、 2—ェチルへキシルホスホン酸モノブチル等のモノアルキルホスホン酸モノ アルキルエステル; 2—ェチルへキシルホスホン酸モノフエニル等のモノアルキルホス ホン酸モノァリ一ノレエステノレ;ホスホン酸モノー 2—ェチノレへキシノレ、ホスホン酸モノ 1 メチルヘプチル等のホスホン酸モノアルキルエステル;ホスホン酸モノフエニル 等のホスホン酸モノアリールエステル;ジブチルホスフィン酸、ビス(2—ェチルへキシ ノレ)ホスフィン酸、ビス(1 メチルへプチノレ)ホスフィン酸、ジォレイルホスフィン酸、( 2—ェチルへキシル)(1 メチルヘプチル)ホスフィン酸等のジアルキルホスフィン酸 ;ジフエニルホスフィン酸等のジァリールホスフィン酸;等が挙げられる。 [0028] Specific examples of the compound represented by the general formula (2) include phosphoric acid; dibutyl phosphate, dihexyl phosphate, dioctyl phosphate, bis (2-ethylhexyl phosphate), bis ( Phosphoric acid dialkyl esters such as 1-methylheptyl), dioleyl phosphate, butyl phosphate (2-ethylhexyl), phosphoric acid (1-methylheptyl) (2-ethylhexyl); phosphorus such as diphenyl phosphate Acid diaryl ester; 2-ethylhexylphosphonate mono-2-ethylhexyl, monoalkylphosphonate monoalkyl ester such as 2-butylhexylphosphonate monobutyl; monoalkyl such as 2-ethylhexylphosphonate monophenyl Phosphonates such as monophosphonophosphonates; phosphonates such as mono-2-ethylenohexenole phosphonate and monomethyl eptyl phosphonate Monoalkyl esters; phosphonate Monofueniru Phosphonic acid monoaryl esters such as: dibutylphosphinic acid, bis (2-ethylhexylole) phosphinic acid, bis (1 methylheptynole) phosphinic acid, dioleylphosphinic acid, (2-ethylhexyl) (1 methyl Heptyl) phosphinic acid and other dialkylphosphinic acids; diphenylphosphinic acid and other diarylphosphinic acids; and the like.
[0029] ランタン系列金属のフエノキシドを形成するためのフエノールは、特に限定されない 、その具体例としては、 2, 6 ジー t ブチルフエノール、 2, 6 ジ tーブチルー 4 メチルフエノール等のアルキル置換モノフエノールを挙げることができる。  [0029] The phenol for forming the lanthanum series metal phenoxide is not particularly limited. Specific examples thereof include alkyl-substituted monophenols such as 2,6-di-t-butylphenol and 2,6-di-t-butyl-4-methylphenol. Can be mentioned.
[0030] ランタン系列金属のアルコキシドを形成するためのアルコールは、特に限定されな いが、その具体例としては、メタノール、エタノール、イソプロパノール、 tーブタノール 、 tーァミルアルコール、 2 ブテュルアルコール、 3 へキセニルアルコール等の炭 素数 1〜; 10の脂肪族アルコール;シクロへキシルアルコール等の炭素数 3〜6の脂環 族アルコール;ベンジルアルコール等の炭素数 7〜; 10のァリール置換脂肪族アルコ ール;等が挙げられる。  [0030] The alcohol for forming the alkoxide of the lanthanum series metal is not particularly limited. Specific examples thereof include methanol, ethanol, isopropanol, t-butanol, tamyl alcohol, 2 butyr alcohol, 3 Hexenyl alcohol and other carbon atoms 1 to 10; aliphatic alcohols; cyclohexyl alcohols and other carbon atoms 3 to 6 alicyclic alcohols; benzyl alcohol and other carbon atoms 7 to 10; aryl substituted aliphatic alcohols And the like.
ランタン系列金属の錯体は、特に限定されないが、その具体例としては、 /3—ジケト ン錯体を挙げることカできる。  The lanthanum series metal complex is not particularly limited, but specific examples thereof include a / 3-diketon complex.
錯体を形成するための 0ージケトンの具体例としては、ァセチルアセトン、ベンゾィ ルアセトン、ェチルァセチルアセトン等の炭素数 5〜; 12の /3—ジケトンが挙げられる Specific examples of 0-diketone for forming a complex include / 3-diketones having 5 to 12 carbon atoms such as acetylacetone, benzoylacetone, ethylacetylacetone and the like.
Yes
[0031] 上記の重合触媒において、成分 (A)の使用量は、単量体 1モルに対して成分 (A) 中のランタン系歹 IJ金属力 通常、 0. 001〜; 100ミリモノレ、好ましくは 0. 005〜50ミリ モルとなる範囲である。  [0031] In the above polymerization catalyst, the amount of component (A) used is such that lanthanum-based IJ metal strength in component (A) is usually 0.001 to 100 millimonoles, preferably The range is 0.005 to 50 millimoles.
この量が過度に少ないと重合活性が不足するおそれがあり、過度に多いと得られる 重合体の分子量が小さすぎたり、触媒残渣の除去が困難になったりするおそれがあ  If this amount is excessively small, the polymerization activity may be insufficient, and if it is excessively large, the molecular weight of the resulting polymer may be too small, or removal of the catalyst residue may be difficult.
[0032] 上記の重合触媒の第二の構成成分である有機アルミニウム化合物(B)は、一般式 [0032] The organoaluminum compound (B), which is the second component of the polymerization catalyst, has the general formula
(3)、 (4)又は(5)で表される。  It is represented by (3), (4) or (5).
A1R5R6R7 (3) A1R 5 R 6 R 7 (3)
[0033] [化 3] ( 4)[0033] [Chemical 3] ( Four)
Figure imgf000010_0001
Figure imgf000010_0001
[0034] [化 4]  [0034] [Chemical 4]
Figure imgf000010_0002
Figure imgf000010_0002
[0035] 一般式(3)、(4)及び(5)において、 R5〜R13は、それぞれ、炭素数;!〜 20の炭化 水素基である。 r及び sは、それぞれ、 2〜; 100の整数である。 In the general formulas (3), (4), and (5), R 5 to R 13 are each a hydrocarbon group having! r and s are each an integer of 2 to 100;
炭素数 1〜20の炭化水素基としては、例えば、メチル基、ェチル基、 n プロピノレ 基、イソプロピル基、 n ブチル基、イソブチル基、 sec ブチル基、 t ブチル基、 n ペンチル基、 n へキシル基、 n へプチル基、 n ォクチル基、 n ノニル基、 n デシル基等の炭素数 1〜20のアルキル基;シクロペンチル基、シクロへキシル基 等の炭素数 3〜6のシクロアルキル基;ベンジル基、 2 フエニルェチル基、 3 フエ ニルプロピル基等の炭素数 7〜20のァラルキル基;フエニル基、 1 ナフチル基, 2 —ナフチル基等の炭素数 6〜20のァリール基;等が挙げられる。これらの中でも、ァ ルキル基が最も好ましい。また、アルキル基、ァラルキル基及びァリール基は任意の 位置に置換基を有して!/、てもよ!/、。  Examples of the hydrocarbon group having 1 to 20 carbon atoms include methyl group, ethyl group, n propinole group, isopropyl group, n butyl group, isobutyl group, sec butyl group, t butyl group, n pentyl group, and n hexyl group. , N-heptyl group, n-octyl group, n-nonyl group, n-decyl group and other alkyl groups having 1 to 20 carbon atoms; cyclopentyl group, cyclohexyl group and other cycloalkyl groups having 3 to 6 carbon atoms; benzyl group, And aralkyl groups having 7 to 20 carbon atoms such as 2 phenylethyl group and 3 phenylpropyl group; aryl groups having 6 to 20 carbon atoms such as phenyl group, 1 naphthyl group, and 2-naphthyl group; and the like. Of these, an alkyl group is most preferred. In addition, the alkyl group, the aralkyl group, and the aryl group have a substituent at any position! /, Or may be! /.
これらの炭化水素基のうち、炭素数が 2以上のものが、重合に用いる飽和炭化水素 溶媒への溶解性が高く、重合体分子量の制御性に優れるので好まし!/、。  Of these hydrocarbon groups, those having 2 or more carbon atoms are preferred because of their high solubility in saturated hydrocarbon solvents used for polymerization and excellent control of the polymer molecular weight!
[0036] 一般式(3)で表される有機アルミニウム化合物の具体例としては、トリメチルアルミ 二ゥム、トリエチノレアノレミニゥム、トリ n プロピルアルミニウム、トリイソプロピルアルミ二 ゥム、トリ n ブチノレアノレミニゥム、トリイソブチルアルミニウム、メチルジイソブチルアル ミニゥム、トリ n—ペンチルアルミニウム、トリ n へキシルアルミニウム、トリシクロへキシ ルァノレミニゥム、トリベンジノレアノレミニゥム、ジメチルベンジルアルミニウム、ジェチル [0036] Specific examples of the organoaluminum compound represented by the general formula (3) include trimethylaluminum, triethinorenoreminium, tri-n-propylaluminum, triisopropylaluminum, tri-n-butyl. Noreanolium, triisobutylaluminum, methyldiisobutylaluminum, tri-n-pentylaluminum, tri-n-hexylaluminum, tricyclohexylurenoreminimum, tribenzenorenoreminium, dimethylbenzylaluminum, jetyl
,ミニゥム、トリフエニルアルミニウム、トリ(4 メチルフエ二ノレ)アルミニウム :ニゥム、フエニノレジメチノレアノレミニゥム、フエ二, ゥム等が挙げられる。 , Minium, triphenylaluminum, tri (4 methylphenol) aluminum Um and so on.
[0037] 一般式 (4)又は(5)で表される有機アルミニウム化合物は、例えば、ベンゼン、トノレ ェン、シクロへキサン等の溶媒中に、トリアノレキノレアノレミニゥム、ジアルキルアルミユウ ムモノクロライド等を添加した後、水、硫酸銅塩の 5水和物や、硫酸アルミニウム塩の 16水和物等の結晶水を有する塩を加えて反応させることによって得ることができる。  [0037] The organoaluminum compound represented by the general formula (4) or (5) is, for example, a trianolenoquinoleminoleum or dialkylaluminum in a solvent such as benzene, tolylene or cyclohexane. It can be obtained by adding a salt having water of crystallization, such as water, copper sulfate pentahydrate, aluminum sulfate salt 16 hydrate, etc. after adding mumonochloride or the like.
[0038] 一般式 (4)又は(5)で表される有機アルミニウム化合物の具体例としては、メチルァ ノレモキサン、ェチルアルモキサン、プロピルアルモキサン、ブチルアルモキサン、イソ ブチルアルモキサン、 t ブチルアルモキサン、へキシルアルモキサン、ォクチルァ ルモキサン等が挙げられる。これらの中でも、イソブチルアルモキサン、 tーブチルァ ルモキサン、へキシルアルモキサン及びォクチルアルモキサン力 好ましい。  [0038] Specific examples of the organoaluminum compound represented by the general formula (4) or (5) include methylanoloxane, ethylalumoxane, propylalumoxane, butylalumoxane, isobutylalumoxane, t-butylalumoxane. Hexylalumoxane, octylalumoxane and the like. Of these, isobutylalumoxane, t-butylalumoxane, hexylalumoxane and octylalumoxane are preferred.
[0039] 有機アルミニウム化合物としては、一般式(3)で表されるものが、リビング性の高い 重合体を与える点で好ましぐ中でも、入手及び取扱の容易性、触媒 の高活性付 与等の点から、トリェチルアルミニウム及びトリイソブチルアルミニウムが好まし!/、。  [0039] Among the organoaluminum compounds, those represented by the general formula (3) are preferable because they give a polymer having high living properties. Ease of availability and handling, high catalyst activity, etc. From this point, triethyl aluminum and triisobutyl aluminum are preferred!
[0040] 上記の重合触媒における成分 (B)の量は、成分 (A)中のランタン系列金属 1モル ίこ対し、通常、 0. 5〜500モノレ、好ましく ίま 5〜250モノレ、より好ましく ίま 20〜; 100モ ルである。  [0040] The amount of component (B) in the above polymerization catalyst is usually 0.5 to 500 monolayers, preferably 5 to 250 monolayers, more preferably 1 mol of the lanthanum series metal in component (A). ίma 20 ~; 100 moles.
[0041] 上記の重合触媒の第三の構成成分である有機アルミニウムハイドライド化合物(C) は、下記式(6)で表される化合物である。  [0041] The organoaluminum hydride compound (C), which is the third component of the polymerization catalyst, is a compound represented by the following formula (6).
A1H R14 (6) A1H R 14 (6)
k 3— k  k 3— k
(R14は、炭素数;!〜 10の炭化水素基を表し、 kは 1又は 2であり、好ましくは 1である。 また、 kが 1のとき、 2つの R14は、同一でも相異なっていてもよい。 ) (R 14 represents a hydrocarbon group having from 10 to 10 carbon atoms, k is 1 or 2, and preferably 1. When k is 1, two R 14 may be the same or different. May be.)
[0042] 炭素数;!〜 10の炭化水素基 R14の具体例としては、メチル基、ェチル基、 n プロピ ノレ基、イソプロピル基、 n ブチル基、イソブチル基、 sec ブチル基、 t ブチル基、 n ペンチル基、 n へキシル基等の炭素数 1〜10のアルキル基;シクロペンチル基 、シクロへキシル基等の炭素数 3〜6のシクロアルキル基;ベンジル基、 2 フエ二ノレ ェチル基等の炭素数 7〜; 10のァラルキル基;フエニル基等の炭素数 6〜; 10のァリ一 ル基;等が挙げられる。これらの中でも、アルキル基が好ましい。また、アルキル基、 ァラルキル基及びァリール基は、任意の位置に置換基を有して V、てもよ!/、。 [0043] 有機アルミニウムハイドライド化合物(C)の具体例としては、水素化メチルアルミユウ ム、水素化工チルアルミニウム、水素化 n プロピルアルミニウム、水素化イソプロピ ルァノレミニゥム、水素化 n ブチルアルミニウム、水素化イソブチルアルミニウム、水 素化 n ペンチルアルミニウム、水素化ネオペンチルアルミニウム、水素化 n へキシ ノレアノレミニゥム、水素化イソへキシルアルミニウム、水素化シクロへキシルアルミユウ ム、水素化フエニルアルミニウム等の、式: A1H R14で表されるヒドロカルビルアルミ二 [0042] Specific examples of the hydrocarbon group R 14 having carbon atoms of! To 10 include methyl group, ethyl group, n propylene group, isopropyl group, n butyl group, isobutyl group, sec butyl group, t butyl group, n C1-C10 alkyl groups such as pentyl group and n-hexyl group; C3-C6 cycloalkyl groups such as cyclopentyl group and cyclohexyl group; Carbons such as benzyl group and 2 phenylethyl group A aralkyl group having 7 to 10; a 6 to 10 carbon atom such as a phenyl group; an aryl group having 10; and the like. Among these, an alkyl group is preferable. In addition, the alkyl group, the aralkyl group, and the aryl group each have a substituent at any position, and may be V! /. [0043] Specific examples of the organoaluminum hydride compound (C) include methylaluminum hydride, hydrogenated chilled aluminum, hydrogenated n-propylaluminum, hydrogenated isopropylaluminum hydride, n-butylaluminum hydride, isobutylaluminum hydride, Formulas such as hydrogenated n-pentylaluminum, hydrogenated neopentylaluminum, hydrogenated n-hexanolenoreluminium, hydrogenated isohexylaluminum, hydrogenated cyclohexylaluminum, hydrogenated phenylaluminum, etc .: Hydrocarbyl aluminum represented by A1H R 14
2  2
ゥムジノ、イドライド;水素化ジメチルアルミニウム、水素化ジェチルアルミニウム、水素 化ジ n プロピルアルミニウム、水素化ジイソプロピルアルミニウム、水素化ジ n ブチ ルァノレミニゥム、水素化ジイソブチルアルミニウム、水素化ジ n ペンチルアルミユウ ム、水素化ジネオペンチルアルミニウム、水素化ジ n へキシルアルミニウム、水素化 ジイソへキシルアルミニウム、水素化ジシクロへキシルアルミニウム、水素化ジフエ二 ルアルミニウム等の、式: A1HR14で表されるジ(ヒドロカルビル)アルミニウムハイドラ Umdino, idide; dimethylaluminum hydride, dimethylaluminum hydride, di-n-propylaluminum hydride, diisopropylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, di-n-pentylaluminum hydride, hydrogenated Di (hydrocarbyl) aluminum hydra represented by the formula: A1HR 14 , such as dineopentylaluminum, di-n-hexylaluminum hydride, diisohexylaluminum hydride, dicyclohexylaluminum hydride, diphenylaluminum hydride, etc.
2  2
イド;等が挙げられる。  Id; and the like.
[0044] 上記の重合触媒における成分(C)の量は、成分 (A)中のランタン系列金属 1モル ίこ対し、通常、 0. ;!〜 100モノレ、好ましく (ま 0. 5〜25モノレ、より好ましく (ま;!〜 3モノレ である。  [0044] The amount of the component (C) in the above polymerization catalyst is usually 0.;! To 100 monolayers, preferably (or 0.5 to 25 monolayers) per mol of the lanthanum series metal in the component (A). More preferably (ma;! To 3 monoles.
[0045] 上記の重合触媒にお!/、て、有機アルミニウム化合物(Β)と有機アルミニウムハイドラ イド化合物(C)とのモル比(B/C)が 5≤ (B/C)≤l , 000を満たすことが好ましい。 このモル比(B/C)は、好ましくは 10以上、より好ましくは 12以上であり、好ましくは 500以下、より好ましくは 100以下である。  [0045] In the above polymerization catalyst, the molar ratio (B / C) between the organoaluminum compound (Β) and the organoaluminum hydride compound (C) is 5≤ (B / C) ≤l, 000 It is preferable to satisfy. This molar ratio (B / C) is preferably 10 or more, more preferably 12 or more, preferably 500 or less, more preferably 100 or less.
上記の重合触媒におけるモル比(B/C)が上記範囲内にあるときに、より狭い分子 量分布とブタジエン単位部分におけるより高いシス 1 , 4 結合含有量とを有する 共役ジェン重合体 (P1)を得ることができる。  Conjugated polymers (P1) having a narrower molecular weight distribution and a higher cis 1,4 bond content in the butadiene unit portion when the molar ratio (B / C) in the above polymerization catalyst is within the above range Can be obtained.
[0046] 上記の重合触媒の第四の構成成分であるハロゲン化合物(D)は、ハロゲン原子を 含有する化合物であればよいが、その好適な具体例としては、ハロゲン化金属化合 物、ハロゲン化有機化合物及び有機アルミニウムハライド化合物を挙げることができ [0046] The halogen compound (D) as the fourth component of the polymerization catalyst may be a compound containing a halogen atom, and preferred specific examples thereof include metal halide compounds, halogenated compounds. Mention may be made of organic compounds and organoaluminum halide compounds.
ノ、ロゲン化合物に含まれるハロゲンとしては、塩素、臭素又はヨウ素原子が好まし い。 As the halogen contained in the halogen compound, the chlorine, bromine or iodine atom is preferred. Yes.
[0047] ハロゲン化金属化合物の具体例としては、塩化マグネシウム、塩化亜鉛、塩化カル シゥム、ヨウ化マグネシウム(II)無水物、ペンタカルポ二ル臭化マンガン、過塩素酸マ ンガン(II) · 6水和物、塩化マンガン(II)無水物、塩化マンガン(II) ·4水和物、臭化 マンガン(II)無水物、臭化マンガン(II) ·4水和物、塩化レニウム(111)、塩化レニウム (V)、ペンタカルポニル塩化レニウム及びペンタカルポ二ル臭化レニウム等が挙げら れる。  [0047] Specific examples of the metal halide compound include magnesium chloride, zinc chloride, calcium chloride, magnesium (II) iodide anhydride, manganese pentabromide bromide, manganese perchlorate (II) · 6 water Japanese, Manganese (II) chloride anhydrous, Manganese (II) chloride tetrahydrate, Manganese (II) bromide, Manganese (II) tetrahydrate, Rhenium chloride (111), Chloride Examples include rhenium (V), pentacarbonyl rhenium chloride, and pentacarbonyl rhenium bromide.
また、これらのハロゲン化金属化合物と、リン化合物、カルボニル化合物、窒素化合 物、エーテル化合物、アルコール等のルイス塩基とを反応させたものを使用すること もできる。  Further, those obtained by reacting these metal halide compounds with Lewis bases such as phosphorus compounds, carbonyl compounds, nitrogen compounds, ether compounds and alcohols can also be used.
[0048] ハロゲン化有機化合物の具体例としては、ベンゾイルク口ライド、キシリレンジクロラ イド、ブロピオユルク口ライド、ベンジルクロライド、ベンジリデンク口ライド、 tーブチルク 口ライド、 t ァミルク口ライド、クロロジフエニルメタン、クロロトリフエニルメタン及びメチ ルクロロホルメート、へキサクロ口ブタジエン等の有機塩素化合物;キシリレンジブロマ イド、ベンゾィノレブロマイド、プロピオニノレブロマイド、ベンジノレブロマイド、ベンジリデ ンブロマイド、 t ブチルブロマイド、 tーァミルブロマイド及びメチルブロモホルメート 等の有機臭素化合物;及びベンゾィルアイオダイド、キシリレンジアイオダイド等の有 機ヨウ素化合物が挙げられる。  [0048] Specific examples of the halogenated organic compound include benzoyl chloride, xylylene dichloride, bropioyl chloride, benzyl chloride, benzylidene chloride, t-butyl chloride, t-amyl chloride, chlorodiphenylmethane, Organochlorine compounds such as chlorotriphenylmethane and methylchloroformate, hexaclonal butadiene; xylylene dibromide, benzoinorebromide, propioninorebromide, benzinorebromide, benzylidene bromide, t-butyl bromide, t- Organic bromine compounds such as amyl bromide and methyl bromoformate; and organic iodine compounds such as benzoyl iodide and xylylene diiodide.
[0049] 有機アルミニウムハライド化合物は、通常、一般式(7)で表わされる化合物である。  [0049] The organoaluminum halide compound is usually a compound represented by the general formula (7).
AIR15 X (7) AIR 15 X (7)
P 3— p  P 3— p
(R15は炭素数 1〜; 10の炭化水素基であり、 Xはハロゲン原子であり、 pは 1又は 2であ り、好ましくは 1である。また、 p力 のとき、 2つの R15は、同一でも相異なっていてもよ い。炭素数 1〜; 10の炭化水素基 R15としては、前記炭素数 1〜; 10の炭化水素基 R14と 同様なものが挙げられ、中でも、アルキル基が好ましい。 ) (R 15 is a hydrocarbon group having 1 to 10 carbon atoms, X is a halogen atom, p is 1 or 2, and preferably 1. Further, when p force is applied, two R 15 The hydrocarbon group R 15 having 1 to 10 carbon atoms may be the same as the hydrocarbon group R 14 having 1 to 10 carbon atoms, An alkyl group is preferred.)
[0050] 有機アルミニウムハライド化合物の具体例としては、ジメチルアルミニウムクロライド、 ジメチルアルミニウムブロマイド、ジェチルアルミニウムクロライド、ジェチルアルミユウ ムブロマイド、ジブチルアルミニウムクロライド、ジブチルアルミニウムブロマイド等のジ アルキルアルミニウムハライド;メチルアルミニウムセスキク口ライド、ェチルアルミユウ ムセスキク口ライド等のアルキルアルミニウムセスキハライド;メチルアルミニウムジクロ ライド、ェチルアルミニウムジクロライド、ブチルアルミニウムジクロライド等のアルキル アルミニウムジノ、ライド;等が挙げられる。 [0050] Specific examples of organoaluminum halide compounds include dialkylaluminum halides such as dimethylaluminum chloride, dimethylaluminum bromide, jetylaluminum chloride, jetylaluminum bromide, dibutylaluminum chloride, and dibutylaluminum bromide; Kuchiguchi Ride, Etyl Aluminum Yu Examples include alkylaluminum sesquihalides such as mussesquic mouthrides; alkylaluminum dinosides such as methylaluminum dichloride, ethylaluminum dichloride, and butylaluminum dichloride.
これらは 1種単独で又は 2種以上を組み合わせて用いることができる。  These can be used alone or in combination of two or more.
[0051] 上記の重合触媒において、成分 (D)の使用量は、成分 (A)中のランタン系列金属 1モノレ ίこ対し、通常、 0. ;!〜 20モノレ、好ましく (ま 0. 5〜; 10モノレ、より好ましく (ま;!〜 5 モノレである。 [0051] In the polymerization catalyst described above, the amount of component (D) used is usually from 0.;! To 20 monolayers, preferably from 0.5 to 1 monolayers of the lanthanum series metal in component (A). 10 monoles, more preferably (ma;! To 5 monoles.
[0052] このような成分 (Α)〜成分 (D)から構成される重合触媒を使用することによって、従 来に比し、ムーニー粘度が高ぐ分子量分布が狭ぐブタジエン単位部分のシス 1 , 4 結合含有量が高くビュル結合含有量が低い、共役ジェン重合体 (P1)を得るこ と力 Sできる。  [0052] By using a polymerization catalyst composed of such components (i) to (D), cis 1, which is a butadiene unit portion having a higher Mooney viscosity and a narrower molecular weight distribution than conventional ones, 4 It is possible to obtain a conjugate polymer (P1) having a high bond content and a low bull bond content.
[0053] 上記の重合触媒は、成分 (A)〜(D)を、任意の順序で混合することによって得るこ とができる力 S、成分 (A)と成分 (B)と混合した後、この混合物に成分 (C)を添加する のが好ましい。  [0053] The above polymerization catalyst is prepared by mixing the components (A) to (D) with the force S that can be obtained by mixing the components (A) to (D) in any order, and then mixing the components (A) and (B). It is preferred to add component (C) to the mixture.
より好ましくは、まず、成分 (A)と成分 (B)とを混合し、得られた混合物に、成分 (C) を配合し、次いで、成分 (D)を配合する。  More preferably, the component (A) and the component (B) are first mixed, the component (C) is blended in the resulting mixture, and then the component (D) is blended.
このような順序で混合を行なうことにより、重合活性が高くなり、また、得られる共役 ジェン重合体 (P1)の分子量分布がより狭くなり、且つブタジエン単位部分における シス 1 , 4 結合含有量がより高くなる。  By mixing in this order, the polymerization activity is increased, the molecular weight distribution of the resulting conjugated polymer (P1) is narrowed, and the cis 1,4 bond content in the butadiene unit portion is further increased. Get higher.
[0054] また、成分 (A)と成分 (B)とを混合した後、得られた混合物を 1分間以上エージング し、このエージングした混合物に成分(C)を添加することが好ましい。 [0054] Further, after mixing the component (A) and the component (B), it is preferable that the obtained mixture is aged for 1 minute or more and the component (C) is added to the aged mixture.
ここで、エージングとは、ある反応成分と他の反応成分とを混合後、次工程までに一 定時間を置くことである。  Here, aging means that after a certain reaction component and another reaction component are mixed, a certain time is left until the next step.
エージングにかける時間は、好ましくは 1〜60分、より好ましくは 5〜30分である。ェ 一ジング時間が短すぎると、得られる共役ジェン重合体 (P1)の分子量分布が広くな るおそれがある。他方、この時間が長すぎると、得られる重合触媒の重合活性が低下 するおそれがある。  The time for aging is preferably 1 to 60 minutes, more preferably 5 to 30 minutes. If the aging time is too short, the molecular weight distribution of the resulting conjugate polymer (P1) may be widened. On the other hand, if this time is too long, the polymerization activity of the resulting polymerization catalyst may decrease.
[0055] 更に、成分 (A)と成分 (B)とを混合した後、得られる混合物に共役ジェンを添加し、 その後に、成分(c)を添加するのが好ましい。 [0055] Further, after mixing the component (A) and the component (B), conjugate conjugate is added to the resulting mixture, Thereafter, component (c) is preferably added.
より好ましくは、成分 (A)と成分 (B)とを混合した後、得られる混合物に共役ジェン を添加し、その後に成分(C)、更にその後に成分 (D)を添加する。  More preferably, after mixing component (A) and component (B), the conjugate is added to the resulting mixture, followed by component (C) and then component (D).
この共役ジェンの添加は、成分 (A)と成分 (B)との混合直後から成分 (C)の添加直 前までのいずれの時点で行ってもよい。好ましくは、成分 (A)と成分 (B)との混合後、 混合物を 1〜20分間エージングしてから共役ジェンを添加し、更に、;!〜 20分間ェ 一ジングした後、成分(C)を添加する。  The conjugation addition may be performed at any time point immediately after mixing of component (A) and component (B) to immediately before the addition of component (C). Preferably, after mixing component (A) and component (B), the mixture is aged for 1 to 20 minutes, then the conjugate is added; and further !! aged for 20 to 20 minutes before component (C) Add.
また、触媒調製時の共役ジェンの添加量は特に制限されないが、成分 (A)中のラ ンタン系列金属 1モルに対し、通常、 1〜200モル、好ましくは 10〜100モルである。 触媒調製時に共役ジェンを存在させることにより、触媒の重合活性が高くなり、また 、得られる共役ジェン重合体 (P1)のシス 1 , 4 結合含有量がより高くなり、分子 量分布がより狭くなる。  The amount of conjugation addition at the time of catalyst preparation is not particularly limited, but is usually 1 to 200 mol, preferably 10 to 100 mol, per 1 mol of the lanthanum series metal in component (A). Presence of conjugation during catalyst preparation increases the polymerization activity of the catalyst, and the resulting conjugated 1, polymer (P1) has a higher cis 1,4 bond content, resulting in a narrower molecular weight distribution. .
[0056] ここで用いる触媒調製に用いる共役ジェンは、 1種を単独で用いてもよぐ 2種以上 を組み合わせて用いてもよい。また、共役ジェン重合体 (P1)を構成する単量体とし て用いる共役ジェンと同一であっても異なってレ、てもよレ、。  [0056] Conjugation used for preparing the catalyst used here may be used alone or in combination of two or more. Further, it may be the same as or different from the conjugation used as the monomer constituting the conjugation polymer (P1).
[0057] 重合触媒として用いる成分 (A)〜(D)が固体状である場合には、各成分を溶媒溶 ί夜として用いること力 S好ましレ、。 [0057] When the components (A) to (D) used as a polymerization catalyst are in a solid state, the ability to use each component as a solvent solution is preferable.
ここで用いる溶媒としては、特に限定されないが、ハロゲン原子で置換されていても よい炭素数 1〜; 10の鎖状又は環状の飽和炭化水素、ハロゲン原子で置換されてい てもよい炭素数 6〜; 12の芳香族炭化水素、モノォレフィン類等が挙げられる。  The solvent used here is not particularly limited, but it may have 1 to carbon atoms which may be substituted with a halogen atom; a chain or cyclic saturated hydrocarbon having 10 carbon atoms which may be substituted with a halogen atom, or 6 to 6 carbon atoms which may be substituted with a halogen atom. ; 12 aromatic hydrocarbons, monoolefins and the like.
炭素数 1〜; 10の鎖状又は環状の飽和炭化水素の具体例としては、 η ブタン、 η— ペンタン、 η へキサン、 η—ヘプタン、 η—オクタン、シクロへキサン等のハロゲン原 子で置換されていないもの;及びクロ口ホルム、メチレンクロライド、ジクロロェタン等の ノ、ロゲン原子で置換されたものが挙げられる。  Specific examples of linear or cyclic saturated hydrocarbons having 1 to 10 carbon atoms are substituted with halogen atoms such as η butane, η-pentane, η hexane, η-heptane, η-octane, and cyclohexane. Those not substituted; and those substituted with a rhogen atom such as chloroform, methylene chloride, dichloroethane and the like.
芳香族炭化水素の具体例としては、ベンゼン、トルエン、キシレン等のハロゲン原 子で置換されていないもの;及びクロ口ベンゼン等のハロゲン原子で置換されたもの が挙げられる。  Specific examples of the aromatic hydrocarbon include those not substituted with a halogen atom such as benzene, toluene and xylene; and those substituted with a halogen atom such as black benzene.
モノォレフィン類の具体例としては、 1ーブテン、 2—ブテン等が挙げられる。 これらの中でも、炭素数 1〜; 10の鎖状又は環状の飽和炭化水素が好ましぐとりわ け、 n—ブタン、 n—ペンタン、 n へキサン及びシクロへキサンが好ましい。 Specific examples of monoolefins include 1-butene and 2-butene. Among these, a linear or cyclic saturated hydrocarbon having 1 to 10 carbon atoms is particularly preferable, and n-butane, n-pentane, n hexane and cyclohexane are preferable.
[0058] 重合触媒を調製するための反応温度や反応時間は特に限定されないが、通常、 78°C〜 + 100°C、好ましくは— 20°C〜 + 80°Cで、通常、 1秒〜 24時間である。 重合触媒は、溶液として調製したものをそのまま用いることもできるし、溶媒を留去 して力、ら用いることもできる。また、必要に応じて精製してもよい。 [0058] The reaction temperature and reaction time for preparing the polymerization catalyst are not particularly limited, but are usually 78 ° C to + 100 ° C, preferably -20 ° C to + 80 ° C, usually 1 second to 24 hours. As the polymerization catalyst, a solution prepared as a solution can be used as it is, or it can be used by distilling off the solvent. Moreover, you may refine | purify as needed.
[0059] 上記の重合触媒は、カーボンブラック、無機化合物、有機高分子化合物等の担体 に担持させてもよい。担体に担持させることにより、重合反応器 の触媒付着による 汚染を防止することができる。 [0059] The polymerization catalyst may be supported on a carrier such as carbon black, an inorganic compound, or an organic polymer compound. By carrying it on a carrier, it is possible to prevent contamination due to catalyst adhesion in the polymerization reactor.
担体として使用できる無機化合物の好適な例としては、シリカ、アルミナ、マグネシ ァ、チタニア、ジルコユア、力ルシア等の無機酸化物及び塩化マグネシウム等の無機 塩化物が挙げられる。これらの無機化合物は、平均粒子径が 5〜; 150 ^ 111、比表面 積が 2〜800m2/gの多孔性粒子であることが好ましぐ通常、 100〜800°Cで熱処 理して水分を除去して担体として使用する。 Preferable examples of the inorganic compound that can be used as the carrier include inorganic oxides such as silica, alumina, magnesia, titania, zircoure, strong rucia, and inorganic chlorides such as magnesium chloride. These inorganic compounds are preferably porous particles having an average particle size of 5 to; 150 ^ 111 and a specific surface area of 2 to 800 m 2 / g. Usually, heat treatment is performed at 100 to 800 ° C. Remove water to use as a carrier.
また、担体として使用できる有機高分子化合物としては、スチレンーメタクリル酸 ジビュルベンゼンからなるカルボキシ変性架橋スチレン共重合体等が挙げられる。こ れらの有機高分子化合物は、平均粒子径が 5〜250 mの球状粒子であると好まし い。  Examples of the organic polymer compound that can be used as a carrier include a carboxy-modified crosslinked styrene copolymer composed of styrene-dibutylbenzene methacrylate. These organic polymer compounds are preferably spherical particles having an average particle diameter of 5 to 250 m.
[0060] 上記の重合触媒は、成分 (A)〜(D)の他に、更に、周期表第 1〜3、 12及び 13族 元素から選ばれる少なくとも 1種の金属を有する有機金属化合物を含有してもよい。 この有機金属化合物としては特に限定されないが、例えば、有機リチウム化合物、 有機マグネシウム化合物、有機マグネシウムハロゲン化物等が挙げられる。  [0060] In addition to the components (A) to (D), the polymerization catalyst further contains an organometallic compound having at least one metal selected from Group 1 to 3, 12 and 13 elements of the periodic table May be. The organometallic compound is not particularly limited, and examples thereof include an organolithium compound, an organomagnesium compound, and an organomagnesium halide.
有機リチウム化合物としては、メチルリチウム、ブチルリチウム、フエニルリチウム等が 挙げられる。  Examples of the organic lithium compound include methyl lithium, butyl lithium, phenyl lithium and the like.
有機マグネシウム化合物としては、ジブチルマグネシウム等が挙げられる。 有機マグネシウムハロゲン化物としては、ェチルマグネシウムクロライド、ブチルマグ ネシゥムクロライド等が挙げられる。  Examples of the organic magnesium compound include dibutyl magnesium. Examples of the organomagnesium halide include ethylmagnesium chloride and butylmagnesium chloride.
[0061] 本発明において共役ジェン重合体 (P1)は、上記の重合触媒を用いて、ブタジエン を、必要に応じてブタジエンと共重合可能なその他の単量体と共に、共重合すること によって得られる。 [0061] In the present invention, the conjugated diene polymer (P1) is obtained by using the above polymerization catalyst and butadiene. Can be obtained by copolymerizing with other monomers copolymerizable with butadiene as required.
[0062] 重合方法は、特に限定されないが、塊状重合法、不活性溶媒中での溶液重合法 及びスラリー重合法、並びに、気相撹拌槽ゃ気相流動床を使用した気相重合法が挙 げられる。これらの方法の中では、分子量分布をより狭くできる溶液重合法が好まし い。溶液重合法は、回分式でも連続式でもよい。  [0062] The polymerization method is not particularly limited, and examples thereof include a bulk polymerization method, a solution polymerization method and a slurry polymerization method in an inert solvent, and a gas phase polymerization method using a gas phase stirring tank and a gas phase fluidized bed. I can get lost. Among these methods, the solution polymerization method that can narrow the molecular weight distribution is preferable. The solution polymerization method may be a batch type or a continuous type.
[0063] 溶液重合法で使用する不活性溶媒は、特に限定されな!/、が、炭素数 4〜; 10の鎖 状又は環状の飽和炭化水素;炭素数 6〜; 12の芳香族炭化水素; 1ーブテン、 2 ブ テン等のモノォレフィン類;等が挙げられ、これらはハロゲン原子で置換されて!/、ても よい。  [0063] The inert solvent used in the solution polymerization method is not particularly limited! /, But has 4 to 10 carbon atoms; a linear or cyclic saturated hydrocarbon having 10 to 10 carbon atoms; an aromatic hydrocarbon having 6 to 12 carbon atoms; Monoolefins such as 1-butene and 2-butene; and the like, which may be substituted with a halogen atom! /.
飽和炭化水素としては、 n—ブタン、シクロペンタン、 n—ペンタン、 2—メチルペンタ ン、 2, 3 ジメチルペンタン、 n へキサン、 2 メチルヘプタン、 2, 3 ジメチルへ プタン、シクロヘプタン、 n ヘプタン、 n オクタン、シクロオクタン、シクロへキサン 等が挙げられる。ハロゲン原子で置換された飽和炭化水素としては、クロ口ホルム、メ チレンクロライド、ジクロロェタン等が挙げられる。  Saturated hydrocarbons include n-butane, cyclopentane, n-pentane, 2-methylpentane, 2,3 dimethylpentane, n hexane, 2 methylheptane, 2,3 dimethylheptane, cycloheptane, n heptane, n Examples include octane, cyclooctane, and cyclohexane. Examples of the saturated hydrocarbon substituted with a halogen atom include black mouth form, methyl chloride, dichloroethane and the like.
芳香族炭化水素としては、ベンゼン、トルエン、キシレン等が挙げられる。ハロゲン 原子で置換された芳香族炭化水素としては、クロ口ベンゼン等が挙げられる。  Examples of aromatic hydrocarbons include benzene, toluene, xylene and the like. Examples of the aromatic hydrocarbon substituted with a halogen atom include black benzene.
中でも、炭素数 4〜; 10の鎖状又は環状の飽和炭化水素が好ましぐ取り分け、 n— ブタン、 n へキサン、 n—ペンタン、 2—メチルペンタン及びシクロへキサンが好まし い。  Of these, chain-like or cyclic saturated hydrocarbons having 4 to 10 carbon atoms are particularly preferred, and n-butane, n-hexane, n-pentane, 2-methylpentane and cyclohexane are preferred.
[0064] 共役ジェン重合体 (P1)を得るための重合温度は、通常、 50°C〜 + 200°C、好 ましくは 0°C〜150°C、より好ましくは 20°C〜90°Cであり、最も好ましいのは 40〜70 °Cである。重合温度がこの範囲にあると、分子量の制御が容易になり工業的に有利 である。重合時間は、 1秒から 20時間程度であり、重合圧力は、 0. ;!〜 3MPa程度で ある。  [0064] The polymerization temperature for obtaining the conjugation polymer (P1) is usually 50 ° C to + 200 ° C, preferably 0 ° C to 150 ° C, more preferably 20 ° C to 90 °. C, most preferably 40-70 ° C. When the polymerization temperature is within this range, the molecular weight can be easily controlled, which is industrially advantageous. The polymerization time is about 1 second to 20 hours, and the polymerization pressure is about 0.;! To 3 MPa.
[0065] 共役ジェン重合体 (P1)の分子量を調節するために、連鎖移動剤を使用することが できる。  [0065] A chain transfer agent can be used to adjust the molecular weight of the conjugation polymer (P1).
連鎖移動剤としては、シス 1 , 4 ポリブタジエンゴムの製造において従来力 使 用されるものが使用でき、その具体例として、 1 , 2—ブタジエン等のアレン類;シクロ ォクタジェン等の環状ジェン類;等が挙げられる。また、水素ガスを共存させて重合 反応を行っても同様の効果を得ることができる。 Chain transfer agents have been used in the production of cis 1,4 polybutadiene rubber. Specific examples thereof include allenes such as 1,2-butadiene; cyclic gens such as cyclooctene; and the like. Moreover, the same effect can be obtained even if the polymerization reaction is carried out in the presence of hydrogen gas.
[0066] 共役ジェン重合体 (P1)は、重合に引き続いて、下記一般式(1)で表される有機金 属ハロゲン化物(E)で、変性したものであってもよい。この変性により、重合体を回収 する際の重合体の凝固が防止され、重合体の工業的な生産性が良好となる。  [0066] The conjugation polymer (P1) may be modified with an organic metal halide (E) represented by the following general formula (1) following polymerization. This modification prevents the solidification of the polymer during the recovery of the polymer and improves the industrial productivity of the polymer.
[0067] [化 5]
Figure imgf000018_0001
[0067] [Chemical 5]
Figure imgf000018_0001
(式中、 Mは、 Si、 Ge、 Sn又は Tiであり、 Xはハロゲン原子である。 Xが複数存在する ときは、それらは、互いに同じでも異なっていてもよい。 R1は、単結合であるか、へテ 口原子を含んでいてもよい炭素数 1〜20の炭化水素基を表す。 R2は、水素、又はへ テロ原子を含んでいてもよい炭素数 1〜20の炭化水素基を表す。 R2が複数存在する ときは、それらは、互いに同じでも異なっていてもよい。 g及び hは、それぞれ、;!〜 4 の整数を表す。 h力 のとき、 fは 0である。 h力 〜4のとき、 fは 1であり、少なくとも 1つ の R2は R1と結合している力 S、このとき R2は単結合であってもよい。 ) (In the formula, M is Si, Ge, Sn or Ti, and X is a halogen atom. When a plurality of X are present, they may be the same or different from each other. R 1 is a single bond. Or a hydrocarbon group having 1 to 20 carbon atoms that may contain a heteroatom R 2 represents hydrogen or a hydrocarbon having 1 to 20 carbon atoms that may contain a hetero atom When a plurality of R 2 are present, they may be the same or different from each other, and g and h each represent an integer of !! to 4. When h force, f is 0 (When h force is ~ 4, f is 1, and at least one R 2 is a force S bonded to R 1, and R 2 may be a single bond.)
[0068] 一般式(1)で表される化合物の具体例としては、四塩化ケィ素、トリクロロシラン、ジ クロロシラン、ジフエニルジクロロシラン、ジブチルジクロロシラン、トリフエユルクロロシ ラン、トリブチルクロロシラン、 1 , 2—ジ(トリクロロシリル)ェタン、トリクロロジシラン等の ハロゲン化ケィ素化合物;トリフエニルゲルマニムクロリド、ジブチルゲルマニウムジク 口リド、ジフエニルゲルマニウムジクロリド、ブチルゲルマニウムトリクロリド等のハロゲン 化ゲルマニウム化合物;四塩化スズ、四臭化スズ、トリフエニルスズクロリド、トリブチル スズクロリド、トリーイソプロピルスズクロリド、ジフエニルスズクロリド、ジォクチルスズジ クロリド、ジブチルスズジクロリド、フエニルスズトリクロリド、ブチルスズトリクロリド等の ノヽロゲン化スズ化合物;テトラクロ口チタン、トリクロ口チタン、ジシクロペンタジェ二ノレ ジクロロチタン等のハロゲン化チタン化合物;等を示すことができる。 [0068] Specific examples of the compound represented by the general formula (1) include silicon tetrachloride, trichlorosilane, dichlorosilane, diphenyldichlorosilane, dibutyldichlorosilane, triphenylchlorosilane, tributylchlorosilane, 1 , 2-Di (trichlorosilyl) ethane, trichlorodisilane and other halogenated silicon compounds; triphenylgermanium chloride, dibutylgermanium dichloride, halogenated germanium compounds such as diphenylgermanium dichloride, butylgermanium trichloride; tetrachloride Tin, tin tetrabromide, triphenyltin chloride, tributyltin chloride, triisopropyltin chloride, diphenyltin chloride, dioctyltin dichloride, dibutyltin dichloride, phenyltin trichloride, butyltin trichloride Fluorogen tin compounds such as Loride; Titanium halide compounds such as Tetrachrome Titanium, Trichrome Titanium, Dicyclopentadienyl No-Dichloro Titanium; and the like.
これらの中でもハロゲン化スズ化合物及びハロゲン化ケィ素化合物が好ましぐ四 塩化スズ、四塩化ケィ素、 1 , 2—ビス(トリクロロシリル)ェタン、トリクロロジシラン等の 4以上のハロゲン原子を有するものが好まし!/、。 Among these, tin tetrachloride, silicon tetrachloride, 1,2-bis (trichlorosilyl) ethane, trichlorodisilane, etc., which are preferred as halogenated tin compounds and halogenated silicon compounds, are preferred. Those with 4 or more halogen atoms are preferred!
[0069] 化合物(E)の添加量は、ランタン系列金属化合物(A) lモルに対して、 0. 001-1 モルであることが好ましぐ 0. 01-0. 1モルであることが更に好ましい。添加量がこ の範囲内にあるときに、共役ジェン重合体の発熱性、摩耗特性及び凝固性に優れる とレ、う効果を得ることができる。 [0069] The addition amount of the compound (E) is preferably 0.001-1 mol with respect to 1 mol of the lanthanum series metal compound (A). Further preferred. When the addition amount is within this range, a rejuvenating effect can be obtained if the exothermic property, wear property and coagulation property of the conjugated diene polymer are excellent.
[0070] 化合物(E)を反応させるときの反応温度は、通常、 20〜100°C、好ましくは 40〜8 [0070] The reaction temperature when the compound (E) is reacted is usually 20 to 100 ° C, preferably 40 to 8 ° C.
0°C、より好ましくは 50〜70°Cである。反応時間は、通常、;!〜 120分、好ましくは 50 ° C, more preferably 50 to 70 ° C. The reaction time is usually;! -120 minutes, preferably 5
〜60分、より好ましくは 。〜 30分である。 ~ 60 minutes, more preferably. ~ 30 minutes.
[0071] 化合物 )による変性反応終了後に、イソシァネート化合物、キノン化合物、エステ ル化合物、炭酸エステル化合物、カルボン酸及び酸ノ、ロゲン化物からなる群から選 ばれる少なくとも 1種の化合物を添加してもよい。 [0071] At the end of the modification reaction with compound (1), at least one compound selected from the group consisting of isocyanate compounds, quinone compounds, ester compounds, carbonate compounds, carboxylic acids and acid compounds, and rogenates may be added. .
[0072] 本発明の油展ゴム組成物に用いるゴム成分は、共役ジェン重合体 (P1)のみであ つてもよいが、共役ジェン重合体 (P1)と共役ジェン重合体 (P1)以外の重合体ゴム([0072] The rubber component used in the oil-extended rubber composition of the present invention may be only the conjugated diene polymer (P1), but a heavy component other than the conjugated diene polymer (P1) and the conjugated diene polymer (P1). Combined rubber (
P2)とを含有するものであってもよ!/、。 May contain P2)! /.
[0073] 本発明の油展ゴム組成物において、ゴム成分として共役ジェン重合体 (P1)と併用 することができる重合体ゴム(P2)は特に限定されな!/、。 [0073] In the oil-extended rubber composition of the present invention, the polymer rubber (P2) that can be used in combination with the conjugated polymer (P1) as a rubber component is not particularly limited! /.
その具体例としては、共役ジェン重合体であって、分子量特性(ム一二一粘度及び 分子量分布)及びブタジエン単位部分のミクロ構造に関して、共役ジェン重合体 (P1 A specific example of this is a conjugated gen polymer, which has molecular weight characteristics (molecular viscosity and molecular weight distribution) and microstructure of the butadiene unit (P1
)の要件を満足しな V、もの及び共役ジェン重合体以外の重合体ゴムを挙げることが できる。 ) And polymer rubbers other than conjugated polymer can be mentioned.
重合体ゴム(P2)の具体例としては、乳化重合 SBR (スチレン ブタジエン共重合 ゴム)、溶液重合ランダム SBR (結合スチレン 5〜50重量%、ブタジエン単位部分の 1 , 2 結合含有量 10〜80%)、高トランス SBR (ブタジエン部のトランス結合含有量 7 0〜95%)、低シス BR (ポリブタジエンゴム)、高トランス BR (ブタジエン部のトランス結 合含有量 70〜95%)、高ビュル SBR 低ビュル SBRブロック共重合ゴム、その他ミ クロ構造又は分子量特性において共役ジェン重合体 (P1)の要件を満足しない共役 ジェン重合体、例えば、天然ゴム(NR)、ポリイソプレンゴム(IR)、ポリブタジエンゴム (BR)、スチレン—イソプレン共重合ゴム、ブタジエン—イソプレン共重合ゴム、乳化 重合スチレン一アクリロニトリル一ブタジエン共重合ゴム、アクリロニトリル一ブタジェ ン共重合ゴム、ポリイソプレン SBRブロック共重合ゴム、ポリスチレンーポリブタジェ ンーポリスチレンブロック共重合体等を挙げることができる。 Specific examples of the polymer rubber (P2) include emulsion polymerization SBR (styrene butadiene copolymer rubber), solution polymerization random SBR (bonded styrene 5 to 50% by weight, 1,2 bond content of butadiene unit part 10 to 80% ), High trans SBR (trans bond content of butadiene part 70 to 95%), low cis BR (polybutadiene rubber), high trans BR (trans bond content of butadiene part 70 to 95%), high bull SBR low Bull SBR block copolymer rubber, other conjugated polymer that does not meet the requirements of conjugated polymer (P1) in terms of micro structure or molecular weight, such as natural rubber (NR), polyisoprene rubber (IR), polybutadiene rubber ( BR), styrene-isoprene copolymer rubber, butadiene-isoprene copolymer rubber, emulsification Examples thereof include a polymerized styrene / acrylonitrile / butadiene copolymer rubber, an acrylonitrile / butadiene copolymer rubber, a polyisoprene SBR block copolymer rubber, and a polystyrene / polybutadiene / polystyrene block copolymer.
また、共役ジェン重合体以外の重合体ゴム(P2)の具体例としては、アクリルゴム、 ェピクロロヒドリンゴム、フッ素ゴム、シリコンゴム、エチレン プロピレンゴム、ウレタン ゴム等が挙げられる。  Specific examples of the polymer rubber (P2) other than the conjugate polymer include acrylic rubber, epichlorohydrin rubber, fluorine rubber, silicon rubber, ethylene propylene rubber, urethane rubber and the like.
重合体ゴム(P2)は、通常、固形のものであるが、液状のものを用いても良い。 これらの重合体ゴム(P2)は、 1種を単独で又は 2種以上を組み合わせて使用する こと力 Sでさる。  The polymer rubber (P2) is usually a solid one, but a liquid one may be used. These polymer rubbers (P2) can be used alone or in combination of two or more.
[0074] 重合体ゴム(P2)としては、これらの中でも、芳香族ビュル一共役ジェン共重合ゴム 、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴムが好ましぐ芳香族ビュル一共役 ジェン共重合ゴムが更に好ましい。芳香族ビュル一共役ジェン共重合ゴムのム一二 一粘度(ML , 100°C)は、 100  [0074] Among these, as the polymer rubber (P2), among these, an aromatic bur-conjugated rubber copolymer, a natural rubber, a polybutadiene rubber, and a polyisoprene rubber are preferable. preferable. The viscosity of the aromatic bis-conjugate copolymer rubber is 1 to 100 (ML, 100 ° C).
1 +4 〜200であることが好ましい。芳香族ビュル—共役 ジェン共重合ゴムの共役ジェン単位部分におけるビュル含有量は、 7〜85%である こと力 S好ましく、 20〜70%であることがより好ましい。また、芳香族ビュル一共役ジェ ン共重合ゴムの芳香族ビュル単位の含有量は、芳香族ビュル単位の含有量を St ( 重量%)とし、共役ジェン単位部分におけるビュル含有量 V(%)とした場合における (2St + V)のィ直力 30≤ (2St + V)≤170となる量であることカ好ましく、 60≤ (2St + V)≤ 140となる量であることが特に好ましい。芳香族ビュル一共役ジェン共重合 ゴムの(2St + V)の値が上記範囲であれば、共役ジェン重合体(P1)との相溶性が 良好となり、油展ゴム組成物から得られる加硫物の耐摩耗性が良好となる。  It is preferably 1 +4 to 200. The content of butyl in the conjugated gen unit part of the aromatic butyl-conjugated gen copolymer rubber is 7 to 85%, preferably S, and more preferably 20 to 70%. In addition, the aromatic bull unit content in the aromatic bull-conjugated conjugated copolymer rubber is St (wt%), and the bull content V (%) in the conjugated gen unit portion is In this case, the direct force of (2St + V) is preferably an amount satisfying 30≤ (2St + V) ≤170, and particularly preferably an amount satisfying 60≤ (2St + V) ≤140. If the (2St + V) value of the aromatic butyl-conjugate copolymer is in the above range, the compatibility with the conjugated polymer (P1) will be good, and the vulcanizate obtained from the oil-extended rubber composition Good wear resistance.
[0075] 本発明の油展ゴム組成物において、ゴム成分として、共役ジェン重合体 (P1)と重 合体ゴム (P2)とを併用する場合は、ゴム成分が共役ジェン重合体 (P1) 5重量%以 上と重合体ゴム(P2) 95重量0 /0以下とからなるものであることが好ましぐゴム成分が 共役ジェン重合体(P1) 80〜30重量%で重合体ゴム(P2)が 20〜70重量%である ことが更に好ましい。 [0075] In the oil-extended rubber composition of the present invention, when the conjugated polymer (P1) and the polymer rubber (P2) are used in combination as the rubber component, the rubber component is 5% by weight of the conjugated polymer (P1). % or more and the polymer rubber (P2) 95 weight 0/0 follows is preferable is made of tool rubber component conjugated diene polymer (P1) polymer rubber with 80 to 30 wt% (P2) is More preferably, it is 20 to 70% by weight.
本発明の油展ゴム組成物をタイヤ用途に用いる場合は、ゴム成分全量に対して、 共役ジェン重合体 (P1)の割合が 1重量%以上であることが好ましぐ 5〜95重量% であること力 り好ましく、 30〜80重量%であることが特に好ましい。 When the oil-extended rubber composition of the present invention is used for tire applications, the ratio of the conjugated polymer (P1) is preferably 1% by weight or more with respect to the total amount of the rubber component. 5 to 95% by weight It is more preferable that it is 30 to 80% by weight.
[0076] 本発明で用いる重合体ゴム(P2)の製造方法は、特に限定されず、従来公知の方 法を採用することができ、例えば、有機活性金属を開始剤として重合する方法を挙げ ること力 Sでさる。 [0076] The method for producing the polymer rubber (P2) used in the present invention is not particularly limited, and a conventionally known method can be employed. For example, a method of polymerizing using an organic active metal as an initiator is mentioned. That's the power S.
重合体ゴム(P2)は、重合に引き続いて、カップリング剤処理を行なったものであつ てもよい。カップリング剤処理により、本発明の油展ゴム組成物を架橋ゴム(加硫物) とした時の摩耗特性がさらに向上する。  The polymer rubber (P2) may have been subjected to a coupling agent treatment subsequent to the polymerization. The treatment with the coupling agent further improves the wear characteristics when the oil-extended rubber composition of the present invention is a crosslinked rubber (vulcanized product).
[0077] カップリング剤としては、例えば、ケィ素含有カップリング剤、スズ含有カップリング 剤、リン含有カップリング剤、エポキシ基含有カップリング剤、イソシァネート基含有力 ップリング剤、エステル基含有カップリング剤、アルケニル基含有カップリング剤、ハロ ゲン化炭化水素等が挙げられる。  [0077] Examples of the coupling agent include a silicon-containing coupling agent, a tin-containing coupling agent, a phosphorus-containing coupling agent, an epoxy group-containing coupling agent, an isocyanate group-containing force coupling agent, and an ester group-containing coupling agent. Alkenyl group-containing coupling agents, halogenated hydrocarbons and the like.
なかでも、ケィ素含有カップリング剤、エポキシ基含有カップリング剤及びイソシァネ ート基含有カップリング剤が好ましぐケィ素含有カップリング剤及びエポキシ基含有 カップリング剤がより好ましい。  Of these, a cage-containing coupling agent and an epoxy group-containing coupling agent are preferred, with a cage-containing coupling agent, an epoxy group-containing coupling agent, and an isocyanate group-containing coupling agent being preferred.
[0078] ケィ素含有カップリング剤としては、例えば、テトラメトキシシラン、テトラエトキシシラ ン、テトラブトキシシラン、アルキルトリフエノキシシラン等のアルコキシシラン化合物; 四塩化ケィ素、四臭化ケィ素、四ヨウ化ケィ素、モノメチルトリクロロシラン、モノェチ ノレトリクロロシラン、モノブチルトリクロロシラン、モノへキシルトリクロロシラン、モノメチ ノレトリブロモシラン、ビストリクロロシリルェタン等のハロゲン化シラン化合物;モノクロ口 トキシシラン、トリクロロメトキシシラン、トリブロモメトキシシラン等のアルコキシハロゲン 化シラン化合物;等が挙げられる。  [0078] Examples of the caustic-containing coupling agent include alkoxysilane compounds such as tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, and alkyltriphenoxysilane; silicon tetrachloride, silicon tetrabromide, tetra Halogenated silane compounds such as silicon iodide, monomethyltrichlorosilane, monoethyltrichlorosilane, monobutyltrichlorosilane, monohexyltrichlorosilane, monomethyltritribromosilane, bistrichlorosilylethane, etc .; monochrome oxysilane, trichloromethoxysilane And alkoxyhalogenated silane compounds such as tribromomethoxysilane;
なかでも、アルコキシシラン化合物及びノヽロゲン化シラン化合物が好ましぐテトラメ トキシシラン及び四塩化ケィ素がより好まし!/、。  Of these, tetramethoxysilane and silicon tetrachloride are more preferred, and alkoxysilane compounds and halogenated silane compounds are preferred!
[0079] スズ含有カップリング剤としては、例えば、四塩化スズ、四臭化スズ、モノメチルトリク ロロスズ、モノェチノレトリクロロスズ、モノブチノレトリクロロスズ、モノへキシノレトリクロロス ズ、ビストリクロロスタニルェタン等のハロゲン化スズ化合物;テトラメトキシスズ、テトラ ェトキシスズ、テトラブトキシスズ等のアルコキシスズ化合物;等が挙げられる。 リン含有カップリング剤としては、例えば、トリスノユルフェニルホスファイト、トリメチル ホスファイト、トリェチルホスファイト等が挙げられる。 [0079] Examples of the tin-containing coupling agent include, for example, tin tetrachloride, tin tetrabromide, monomethyltrichlorozose, monoethinoretrichlorotin, monobutinoretrichlorotin, monohexinoretrichlorosu, bistrichlorostani. And tin halide compounds such as ruthetan; alkoxytin compounds such as tetramethoxytin, tetraethoxytin, and tetrabutoxytin; Examples of the phosphorus-containing coupling agent include trisnoylphenyl phosphite, trimethyl phosphite, triethyl phosphite and the like.
[0080] エポキシ基含有カップリング剤としては、例えば、テトラグリシジル一 1 , 3—ビスアミ ノメチルシクロへキサン、テトラグリシジルー 1 , 3—ビスアミノメチルベンゼン、ェポキ シ変成シリコーン、エポキシ化大豆油、エポキシ化亜麻仁油等が挙げられる。 [0080] Examples of the epoxy group-containing coupling agent include tetraglycidyl 1,1,3-bisaminomethylcyclohexane, tetraglycidyl 1,3-bisaminomethylbenzene, epoxy-modified silicone, epoxidized soybean oil, and epoxidation. Linseed oil etc. are mentioned.
なかでも、テトラグリシジルー 1 , 3—ビスアミノメチルシクロへキサンが好ましい。 イソシァネート基含有カップリング剤としては、例えば、 2, 4—トリレンジイソシァネー ト、 2, 6—トリレンジイソシァネート、ジフエニノレメタンジイソシァネート、ジフエニノレエタ ンジイソシァネート、 1 , 3, 5—ベンゼントリイソシァネート等が挙げられる。  Of these, tetraglycidyl 1,3-bisaminomethylcyclohexane is preferable. Examples of the isocyanate group-containing coupling agent include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, diphenylenomethane diisocyanate, diphenylenoethane diisocyanate, 1, 3 , 5-benzene triisocyanate and the like.
なかでも、 2, 4—トリレンジイソシァネートが好ましい。  Of these, 2,4-tolylene diisocyanate is preferable.
[0081] エステル基含有カップリング剤としては、例えば、アジピン酸ジメチル、アジピン酸ジ ェチル、テレフタル酸ジメチル、テレフタル酸ジェチル、フタル酸ジメチル、イソフタノレ 酸ジメチル等が挙げられる。 [0081] Examples of the ester group-containing coupling agent include dimethyl adipate, dimethyl adipate, dimethyl terephthalate, jetyl terephthalate, dimethyl phthalate, and dimethyl isophthalenoate.
アルケニル基含有カップリング剤としては、例えば、ジビュルベンゼン、ジイソプロぺ ニルベンゼン等が挙げられる。  Examples of the alkenyl group-containing coupling agent include dibutylbenzene and diisopropenylbenzene.
ハロゲン化炭化水素としては、例えば、クロロホノレム、トリブロモメタン、トリクロ口エタ ン、トリクロ口プロパン、トリブロモプロパン、四塩化炭素、テトラクロロェタン等が挙げら れる。  Examples of the halogenated hydrocarbon include chlorophonerem, tribromomethane, trichloromethane, trichloropropane, tribromopropane, carbon tetrachloride, and tetrachloroethane.
これらのカップリング剤は、 1種を単独で又は 2種以上を組み合わせて使用すること ができる。  These coupling agents can be used alone or in combination of two or more.
[0082] カップリング剤の使用量は、要求される重量平均分子量やカップリング率、カツプリ ング剤の反応性等に応じて適宜選択することができるが、重合触媒中の有機活性金 属に対して、官能基のモル数が 0. ;!〜 10モル当量が好ましい。  [0082] The amount of the coupling agent to be used can be appropriately selected according to the required weight average molecular weight, coupling rate, reactivity of the coupling agent, etc., but with respect to the organic active metal in the polymerization catalyst. The number of moles of the functional group is preferably 0.
ここで、カップリング率は、重合体全量に対する、 1分子のカップリング剤に対して複 数のリビング重合体がカップリングして生成した重合体 (カップリング重合体)の割合( 重量%)であり、ゲル'パーミエーシヨン'クロマトグラフ分析により、測定できる。  Here, the coupling rate is a ratio (% by weight) of a polymer (coupling polymer) produced by coupling a plurality of living polymers to one molecule of coupling agent with respect to the total amount of the polymer. Yes, it can be measured by gel 'permeation' chromatographic analysis.
重合体ゴム(P2)をカップリングする場合のカップリング率は、好ましくは 10重量% 以上、より好ましくは 30〜90重量%、更に好ましくは 40〜80重量%、特に好ましくは 55〜80重量%である。カップリング率が過度に低いと加工性に劣ったり、低発熱性 及び耐摩耗性に劣ったりする場合がある。 The coupling rate in the case of coupling the polymer rubber (P2) is preferably 10% by weight or more, more preferably 30 to 90% by weight, still more preferably 40 to 80% by weight, particularly preferably 55 to 80% by weight. If the coupling rate is too low, the processability may be inferior, and low heat build-up and wear resistance may be inferior.
カップリング反応は、好ましくは、 0〜; 150°Cで、 0. 5〜20時間の反応条件で行わ れる。  The coupling reaction is preferably carried out at 0 to; 150 ° C. under reaction conditions for 0.5 to 20 hours.
[0083] 本発明の油展ゴム組成物は、共役ジェン重合体 (P1)を必須成分とするゴム成分 1 00重量部に対して、プロセスオイル 10〜; 120重量部を含有してなるものである。  [0083] The oil-extended rubber composition of the present invention comprises 10 to 120 parts by weight of a process oil with respect to 100 parts by weight of a rubber component containing the conjugated polymer (P1) as an essential component. is there.
[0084] プロセスオイルとしては、鉱物油や合成油を用いることができる。鉱物油としては、 t -DAE, s RAE、 MES、ァロマオイル、ナフテンオイル、パラフィンオイル等が通 常用いられる。  [0084] As the process oil, mineral oil or synthetic oil can be used. As mineral oil, t-DAE, s RAE, MES, aroma oil, naphthenic oil, paraffin oil, etc. are usually used.
本発明においては、プロセスオイルのァロマ分は、 5重量%以上であることが必要 である。ァロマ分は、 10〜40重量%であることが好ましぐ 20〜35重量%であること がより好ましい。  In the present invention, the aroma content of the process oil needs to be 5% by weight or more. The aromatic content is preferably 10 to 40% by weight, more preferably 20 to 35% by weight.
ァロマ分は、 ASTM D 2140の環分析の方法で測定されるァロマ分、ナフテン分 及びパラフィン分の合計 100に対するァロマ分の比率である。  The aroma content is the ratio of the aroma content to the total of 100 aroma content, naphthene content, and paraffin content measured by ASTM D 2140 ring analysis method.
ァロマ分が低いと耐摩耗性に劣り、過度に高いと低発熱性に劣るものとなる力 本 発明においては、上記範囲内にあるァロマ分を有するプロセスオイルを使用すること により、得られる油展ゴム組成物力 耐摩耗性と低発熱性とのバランスに優れたものと なる。  If the aroma content is low, the wear resistance is inferior, and if it is excessively high, the heat resistance is inferior to the low heat build-up.In the present invention, an oil expansion obtained by using a process oil having an aroma content in the above range is used. Rubber composition strength Excellent balance between wear resistance and low heat build-up.
[0085] 本発明の油展ゴム組成物は、老化防止剤を含有していてもよい。老化防止剤は、 本発明でゴム成分として使用する重合体 (共役ジェン重合体 (P1)及び重合体ゴム( P2) )の調製時に添加してもよぐこれらの重合体調製後に油展ゴム組成物を調製す る過程の任意の段階で添加してもよ!/、。  [0085] The oil-extended rubber composition of the present invention may contain an anti-aging agent. The anti-aging agent may be added at the time of preparing the polymers (conjugation polymer (P1) and polymer rubber (P2)) used as the rubber component in the present invention. It can be added at any stage in the process of preparing the product! /.
本発明で使用する各重合体の調製時 (架橋剤添加前)に添加する老化防止剤の 合計量は、特に限定されないが、ゴム成分の合計 100重量部に対して、通常、 0. 01 〜2重量部である。  The total amount of the anti-aging agent added at the time of preparation of each polymer used in the present invention (before the addition of the crosslinking agent) is not particularly limited, but is generally 0.01 to 2 parts by weight.
[0086] 老化防止剤は特に限定されないが、その具体例としては、フエノール系、チォエー テル系、リン系等の老化防止剤を挙げることができる。  [0086] The anti-aging agent is not particularly limited, but specific examples thereof include phenol-based, thio-based, and phosphorus-based anti-aging agents.
フエノール系の老化防止剤の具体例としては、テトラキス〔メチレン 3 (3' , 5'ージ —tーブチルー 4'ーヒドロキシフエ二ノレ)プロピオネート〕メタン、 1, 3, 5—トリメチルーSpecific examples of phenolic anti-aging agents include tetrakis [methylene 3 (3 ', 5' —T-Butyl-4'-Hydroxyphenol) propionate] methane, 1, 3, 5-trimethyl
2, 4, 6 トリス(3, 5 ジ tーブチルー 4ーヒドロキシベンジル)ベンゼン、 2, 4 ビ スー(n ォクチルチオ)ー6 (4ーヒドロキシ 3, 5—ジ tーブチルァニリノ) 1,2, 4, 6 tris (3,5 di-tert-butyl-4-hydroxybenzyl) benzene, 2,4bis (n-octylthio) -6 (4-hydroxy-3,5-di-tert-butylanilino) 1,
3, 5—トリァジン、ォクタデシルー 3—(3, 5—ジ tーブチノレー 4ーヒドロキシフエ二 ノレ)プロビオネート、トリエチレングリコール ビス〔 3—( 3— t ブチル 5—メチル3, 5-triazine, Octadecyl 3- (3, 5-di-butinoleol 4-hydroxyphenol) propionate, triethylene glycol bis [3- (3-t-butyl 5-methyl
4—ヒドロキシフエ二ノレ)プロピオネート〕、 1, 3, 5—トリス一(4— t ブチル 3—ヒド ロキシ一2, 6 ジメチルベンジル)イソシァヌル酸、 2, 2'—メチレン一ビス一 (4ーメ チルー 6— t ブチルフエノール)、 3, 9 ビス〔2—{3—(3—t ブチルー 4ーヒドロ キシ 5—メチルフエ二ノレ)プロピオ二ルォキシ} 1, 1ージメチルェチル〕 2, 4, 8 , 10 テトラオキサスピロ〔5·5〕ゥンデカン、 4ーヒドロキシメチルー 2, 6 ジ tーブ チルフエノール、 2, 6 ジ tーブチルー 4 ェチルフエノール、ブチル化ヒドロキシ ァニソール、 2, 2'—ジヒドロキシー 3, 3'—ジシクロへキシルー 5, 5' ジメチルージ フエニルメタン、 1, 1, 3—トリス(2—メチル 4—ヒドロキシ一 5— t ブチルフエニル )ブタン、 4, 4,ーブチリデンビス(6— tーブチルー m クレゾール、 4, 4,ーチォビス (3 メチル 6— t ブチルフエノール)、ビス(3 シクロへキシル 2 ヒドロキシ一4-Hydroxyphenyl) propionate], 1, 3, 5-tris (4-tert-butyl 3-hydroxy-1,2,6-dimethylbenzyl) isocyanuric acid, 2,2'-methylene monobis (4-me 6-t-butylphenol), 3, 9 bis [2- {3 -— (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy} 1,1-dimethylethyl] 2, 4, 8, 10 tetraoxa Spiro [5 · 5] undecane, 4-hydroxymethyl-2,6 di-tert-butylphenol, 2,6 di-tert-butyl-4-ethylphenol, butylated hydroxyanisole, 2,2'-dihydroxy-3,3'-dicyclo Hexiru 5, 5 'dimethyl-diphenylmethane, 1, 1, 3-tris (2-methyl 4-hydroxy-5-t-butylphenyl) butane, 4, 4, -butylidenebis (6-t-butyl-m cresol, 4, 4, thiobi (3-methyl-6- t-butylphenol), hexyl 2-hydroxy-one to bis (3 cyclo
5 メチルフエ二ノレ)メタン、 2, 2,一メチレンビス(4 ェチル一6— t ブチルーフエノ 一ル)、 1, 1 ビス(2,ーメチルー 4'ーヒドロキシ 5'—t ブチルーフエ二ノレ)ブタ ン等を挙げること力 Sできる。 5 Methylphenol) methane, 2,2,1-methylenebis (4-ethyl-1-6-butyl-phenol), 1,1-bis (2-methyl-4'-hydroxy-5'-t-butyl-phenol) butane, etc. Power S can be.
なお、フエノール系老化防止剤は、後述するチォエーテル基を有するものであって あよい。  The phenolic anti-aging agent may have a thioether group described later.
リン系化合物の老化防止剤の具体例としては、分子内に 1個のリン原子を有するトリ ス(ノユルフェ二ノレ)ホスファイト、トリス(2, 4 ジ一 t ブチルフエ二ノレ)ホスファイト、ト リス(2, 5 ジー t ブチルフエ二ノレ)ホスファイト、トリス(2, 4 ビス(1, 1 ジメチノレ プロピノレ)フエ二ノレ)ホスファイト、トリデシルホスフアイト、ォクチルジフエニルホスファ イト、ジ(デシル)モノフエニルホスファイト、トリス(3, 5—ジ tーブチルー 4ーヒドロキ シフエニル)ホスファイト、トリス(モノー、ジー混合ノユルフェニル)ホスファイト、 2, 2, ーメチレンビス(4, 6 ジー t ブチルフエニル)ー2 ェチルへキシルホスファイト、 2 , 2,ーメチレンビス(4, 6 ジー t ブチルフエニル)ー2 ォクタデシルホスファイト、 2, 2,ーェチリデンビス(4, 6 ジー t ブチルフエニル)フルォロホスファイト等を挙 げること力 Sでさる。 Specific examples of anti-aging agents for phosphorus compounds include tris (noyulpheninole) phosphite, tris (2,4 di-t-butylphenol) phosphite, tris having one phosphorus atom in the molecule. (2,5-dibutyl butylphenol) phosphite, tris (2,4 bis (1,1 dimethinole propinole) phosphinole) phosphite, tridecyl phosphite, octyl diphenyl phosphite, di (decyl) Monophenyl phosphite, tris (3,5-di-tert-butyl-4-hydroxyphenyl) phosphite, tris (mono-di mixed phenylphenyl) phosphite, 2,2, -methylenebis (4,6-di-t-butylphenyl) -2-ethylhexyl Phosphite, 2,2, -methylenebis (4,6 di-t-butylphenyl) -2 octadecyl phosphite, 2, 2-Ethylidenebis (4, 6 di-t-butylphenyl) fluorophosphite, etc.
[0088] リン系化合物の老化防止剤の分子内に 2以上のリン原子を有する具体例としては、 ジ(トリデシル)ペンタエリスリトールジホスフアイト、ジステアリルペンタエリスリトールジ ホスファイト等のジアルキルペンタエリスリトールジホスフアイト;ジ(ノユルフェ二ノレ)ぺ ンタエリスリトールジホスフアイト、ビス(2, 4 ジー t ブチルフエ二ノレ)ペンタエリスリ トールジホスフアイト、ビス(2, 6 ジー t ブチルフエ二ノレ)ペンタエリスリトールジホス ファイト、ビス(2, 6 ジ tーブチルー 4 メチルフエ二ノレ)ペンタエリスリトールジホ スフアイト、ビス(2, 4 ジ tーブチルー 6 メチルフエ二ノレ)ペンタエリスリトールジ ホスファイト、ビス(2, 6 ジ tーブチルー 4 イソプロピルフエ二ノレ)ペンタエリスリト ールジホスファイト、ビス(2, 6 ジ tーブチルー 4— sec ブチルフエニル)ペンタ エリスリトールジホスフアイト、ビス(2, 4, 6 トリー t ブチルフエ二ノレ)ペンタエリスリト ールジホスファイト等のジァリールペンタエリスリトールジホスフアイト;等のペンタエリ スリトールジホスフアイトのほ力、、テトラ(トリデシル)イソプロピリデンジフエ二ルジホスフ アイト、テトラ(トリデシル)一 1 , 1 , 3—トリス(2—メチル 5— t ブチル 4—ヒドロキ シフエニル)ブタンジホスフアイト、テトラ(C 以上 C 以下の混合アルキル)— 4, 4 '  [0088] Specific examples of the phosphorus compound anti-aging agent having two or more phosphorus atoms in the molecule include dialkylpentaerythritol diphosphites such as di (tridecyl) pentaerythritol diphosphite and distearyl pentaerythritol diphosphite. Phytite; Di (Noyulfeninore) Pentaerythritol Diphosphite, Bis (2,4G t-Butylphenol) Pentaerythritol Diphosphite, Bis (2,6G t-Butylphenolinore) Pentaerythritol Diphosphite, Bis (2,6 di-tert-butyl-4-methylphenol) pentaerythritol diphosphite, bis (2,4 di-tert-butyl-6-methylphenol) pentaerythritol diphosphite, bis (2,6 di-tert-butyl-4-isopropylphenol) Pentaerythritol diphosphie Diaryl pentaerythritol diphosphite, such as bis (2,6 di-tert-butyl-4-sec butylphenyl) pentaerythritol diphosphite, bis (2,4,6 tri-t-butylphenyl) pentaerythritol diphosphite The power of pentaerythritol diphosphite, such as tetra (tridecyl) isopropylidenediphenyldiphosphite, tetra (tridecyl) mono-1,1,3-tris (2-methyl 5-tbutyl 4-hydroxyphenyl) ) Butanediphosphite, tetra (mixed alkyl from C to C) — 4, 4 '
12 15  12 15
イソプロピリデンジフエニルジホスファイト、テトラ(トリデシル) 4, 4 'ーブチリデン ビス(2— t ブチルー 5 メチルフエニル)ジホスフアイト、テトラ(トリデシル) 4, 4, ーブチリデンビス(3—メチルー 6— t ブチルフエノール)ジホスフアイト、ビス(ォクチ ノレフエ二ノレ) ビス [4, 4,ーブチリデンビス(3—メチルー 6— t ブチルフエノール)] 1 , 6—へキサンジオールジホスファイト等を挙げることができる。  Isopropylidene diphenyl diphosphite, tetra (tridecyl) 4,4'-butylidene bis (2-t-butyl-5-methylphenyl) diphosphite, tetra (tridecyl) 4,4, -butylidene bis (3-methyl-6-tert-butylphenol) diphosphite, bis (Octinorefeninore) Bis [4,4, -butylidenebis (3-methyl-6-t-butylphenol)] 1,6-hexanediol diphosphite and the like can be mentioned.
また、分子内に 2以上のリン原子を有するホスファイト化合物熱安定剤は、トリス〔2 —tーブチノレー 4一(3— t ブチルー 4ーヒドロキシ 5—メチルフエ二ルチオ) 5— メチルフエニル〕ホスファイトのように、分子内に 2以上のチォエーテル構造を有するも のであってもよい。  A phosphite compound thermal stabilizer having two or more phosphorus atoms in the molecule is tris [2-t-butyltinole 4- (3-t-butyl-4-hydroxy 5-methylphenylthio) 5-methylphenyl] phosphite. It may have two or more thioether structures in the molecule.
[0089] チォエーテル系の老化防止剤の具体例としては、ジラウリル 3, 3 ' チォジプロ ピオネート、ジミリスチルー 3, 3 ' チォジプロピオネート、ジステアリル 3, 3 '—チ ォジプロピオネート、ラウリノレステアリノレー 3, 3 ' チォジプロピオネート、ペンタエリス リトールーテトラキス(3 ラウリルチオプロピオネート)、 3, 9 ビス一(2 ドデシルチ ォェチノレ) 2, 4, 8, 10 テトラオキサスピロ〔5, 5〕ゥンデカン; 4, 6 ビス(ォクチ ノレチオメチル) o—タレゾール、 2, 2 チォージエチレンビス [3— (3, 5 ジー t— ブチルー 4ーヒドロキシフエ二ノレ)プロピオネート]、 2, 4 ビス一(n ォクチルチオ) 6—(4ーヒドロキシ—3, 5—ジ—tーブチルァニリノ)ー1 , 3, 5—トリアジン;等を挙 げること力 Sでさる。 [0089] Specific examples of the thioether-based anti-aging agent include dilauryl 3, 3 'thiodipropionate, dimyristyl 3, 3' thiodipropionate, distearyl 3, 3'-thiodipropionate, laurinorestearinore 3, 3 'Thiodipropionate, Pentaeryth Ritol-tetrakis (3 lauryl thiopropionate), 3, 9 bis (2 dodecylthioethinole) 2, 4, 8, 10 tetraoxaspiro [5,5] undecane; 4, 6 bis (octinoretiomethyl) o-talesole 2, 2 Thiodiethylenebis [3- (3,5 di-t-butyl-4-hydroxyphenol) propionate], 2,4 Bis (n-octylthio) 6- (4-hydroxy-3,5-di-tert-butylanilino ) ―1, 3, 5-Triazine;
[0090] 本発明の油展ゴム組成物には、更に、シリカ、カーボンブラック、タルク、炭酸カル シゥム、クレー、カーボンナノチューブ、フラーレン、ナイロン短繊維、水酸化アルミ二 ゥム等の補強充填剤を配合することができる。  [0090] The oil-extended rubber composition of the present invention further includes a reinforcing filler such as silica, carbon black, talc, calcium carbonate, clay, carbon nanotube, fullerene, nylon short fiber, aluminum hydroxide. Can be blended.
また、本発明の油展ゴム組成物には、架橋剤;亜鉛華等の架橋促進助剤;スルフエ ンアミド等の架橋促進剤;ステアリン酸やその塩等の加工助剤;シランカップリング剤; 加工安定剤;ジエチレングリコール、ポリエチレングリコール、シリコーンオイル等の活 性剤;石油樹脂、クマロン樹脂等の粘着付与剤;ワックス;等を配合することができる。 これらの配合量は、本発明で使用するゴム成分 (共役ジェン重合体 (P 1 )及び重合 体ゴム(P2) )の合計 100重量部に対して、通常、 5〜; 120重量部である。  The oil-extended rubber composition of the present invention includes a crosslinking agent; a crosslinking accelerator such as zinc white; a crosslinking accelerator such as sulfamide; a processing assistant such as stearic acid and its salt; a silane coupling agent; Stabilizers; active agents such as diethylene glycol, polyethylene glycol and silicone oil; tackifiers such as petroleum resin and coumarone resin; wax; These compounding amounts are usually 5 to 120 parts by weight with respect to 100 parts by weight in total of the rubber components (conjugation polymer (P 1) and polymer rubber (P2)) used in the present invention.
[0091] 本発明の油展ゴム組成物に配合するシリカとしては、例えば、乾式法ホワイトカーボ ン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカ等が挙げられる。これらの 中でも、含水ケィ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボ ンブラック表面にシリカを担持させたカーボン シリカ デュアル 'フェイズ 'フイラ一を 用いてもよい。これらのシリカは、 1種を単独で又は 2種以上を組み合わせて用いるこ と力 Sできる。  [0091] Examples of the silica compounded in the oil-extended rubber composition of the present invention include dry method white carbon, wet method white carbon, colloidal silica, and precipitated silica. Among these, wet method white carbon mainly containing hydrous key acid is preferable. Alternatively, a carbon silica dual 'phase' filler in which silica is supported on the carbon black surface may be used. These silicas can be used alone or in combination of two or more.
[0092] シリカの窒素吸着比表面積(ASTM D3037— 81に準じ BET法で測定される。) は、好ましくは 50〜400m2/g、より好ましくは 50〜250m2/gである。この範囲であ ると、得られる油展ゴム組成物の耐摩耗性及び低発熱性が、より優れる。また、シリカ の CDBP吸由!:力 50〜400ml/100gのもの力 く、好ましく (ま 80〜300ml/100 gである。シリカの pHは、 pH7未満であることが好ましぐ ρΗ5〜6· 9であることがより 好ましい。また、シリカの配合量は、油展ゴム組成物中の全ゴム成分 100重量部に対 して、好ましくは 5〜120重量部、より好ましくは 20〜; 100重量部、特に好ましくは 40 〜90重量部である。 [0092] The nitrogen adsorption specific surface area of silica (measured by BET method according to ASTM D3037-81) is preferably 50 to 400 m 2 / g, more preferably 50 to 250 m 2 / g. Within this range, the resulting oil-extended rubber composition is more excellent in wear resistance and low heat build-up. Also, silica CDBP absorption! : Power of 50 to 400 ml / 100 g, preferably (80 to 300 ml / 100 g. Silica preferably has a pH of less than 7, more preferably ρΗ5 to 6.9. The amount of silica is preferably 5 to 120 parts by weight, more preferably 20 to 100 parts by weight, and particularly preferably 40 parts by weight with respect to 100 parts by weight of all rubber components in the oil-extended rubber composition. ~ 90 parts by weight.
[0093] 本発明において、共役ジェン重合体 (P1)にシリカを配合して用いる場合、シラン力 ップリング剤を配合することにより、低発熱性及び耐摩耗性が更に改善される。  [0093] In the present invention, when silica is used in the conjugate polymer (P1), low heat build-up and wear resistance are further improved by adding a silane coupling agent.
シランカップリング剤としては、例えば、ビュルトリエトキシシラン、 0 - (3, 4—ェポ Examples of silane coupling agents include butyltriethoxysilane, 0- (3,4-epoxy
Ν~ ( β—アミノエチル) γ—アミノプ  Ν ~ (β-aminoethyl) γ-aminop
Figure imgf000027_0001
Figure imgf000027_0001
ラスルフイド;一般式(8) (式中、 tは、;!〜 5の整数である。)で示されるアルキレンエー テル結合をもつメルカプト型のシランカップリング剤;等を挙げること力 Sできる。  Rasulfide; a mercapto-type silane coupling agent having an alkylene ether bond represented by the general formula (8) (wherein t is an integer of! To 5);
HS -C H - SiOC H (C H O) CH (8)  HS -C H-SiOC H (C H O) CH (8)
[0094] これらのシランカップリング剤の中でも、テトラスルフイド、ジスルフイド及びアルキレ ンエーテル基をもつメルカプト型のシランカップリング剤が好ましぐアルキレンエーテ ル基をもつメルカプト型のシランカップリング剤及びジスルフイドがより好ましい。 これらのシランカップリング剤は、 1種を単独で又は 2種以上を組み合わせて使用す ること力 Sでさる。  [0094] Among these silane coupling agents, mercapto silane coupling agents having an alkylene ether group and disulfides are more preferable, which are preferred to tetrasulfide, disulfide and mercapto silane coupling agents having an alkyl ether group. . These silane coupling agents can be used alone or in combination of two or more.
シランカップリング剤の配合量は、シリカ 100重量部に対して、好ましくは 0. ;!〜 30 重量部、より好ましくは 1〜; 15重量部である。  The amount of the silane coupling agent is preferably 0.;! To 30 parts by weight, more preferably 1 to 15 parts by weight with respect to 100 parts by weight of silica.
[0095] 本発明の油展ゴム組成物に配合するカーボンブラックとしては、ファーネスブラック 、アセチレンブラック、サーマルブラック、チャンネルブラック、グラフアイト等が挙げら れる。これらの中でも、ファーネスブラックが好ましぐその具体例としては、 SAF、 IS AF、 ISAF— HS、 ISAF— LS、 IISAF— HS、 HAF、 HAF— HS、 HAF— LS、 FE F等が挙げられる。これらのカーボンブラックは、 1種を単独で又は 2種以上を組み合 わせて使用することができる。 [0095] Examples of carbon black to be blended in the oil-extended rubber composition of the present invention include furnace black, acetylene black, thermal black, channel black, and graphite. Of these, specific examples of which furnace black is preferred include SAF, IS AF, ISAF—HS, ISAF—LS, IISAF—HS, HAF, HAF—HS, HAF—LS, and FEF. These carbon blacks can be used alone or in combination of two or more.
カーボンブラックの配合量は、ゴム組成物中の全ゴム成分 100重量部に対して、通 常、 150重量部以下であり、シリカとカーボンブラックの合計量力 全ゴム成分 100重 量部に対して、 5〜 150重量部となるようにすることが好まし!/、。  The compounding amount of carbon black is usually 150 parts by weight or less with respect to 100 parts by weight of all rubber components in the rubber composition. The total amount of silica and carbon black is 100 parts by weight of all rubber components. It is preferable to be 5 to 150 parts by weight!
[0096] カーボンブラックの窒素吸着比表面積(N SA)は、好ましくは 5〜200m2/g、より 好ましくは 80〜; 130m2/gであり、ジブチルフタレート(DBP)吸着量は、好ましくは 5 〜300ml/100g、より好ましくは 80〜; 160ml/100gである。この範囲であると、得 られるゴム組成物が機械的特性及び耐摩耗性に優れる。更に、カーボンブラックとし て、セチルトリメチルアンモニゥムブロマイド(CTAB)の吸着比表面積が 110〜; 170 m2/gであり、 165MPaの圧力で 4回繰り返し圧縮を加えた後の DBP (24M4DBP) 吸油量が 110〜130ml/100gであるハイストラクチャーカーボンブラックを用いると 、耐摩耗性が更に改善される。 [0096] The nitrogen adsorption specific surface area (N SA) of carbon black is preferably 5 to 200 m 2 / g, Preferably 80 to 130 m 2 / g, and dibutyl phthalate (DBP) adsorption amount is preferably 5 to 300 ml / 100 g, more preferably 80 to 160 ml / 100 g. Within this range, the resulting rubber composition is excellent in mechanical properties and wear resistance. Furthermore, as carbon black, cetyltrimethylammonium bromide (CTAB) has an adsorption specific surface area of 110-; 170 m 2 / g, and DBP (24M4DBP) oil absorption after repeated compression four times at a pressure of 165 MPa Wear resistance is further improved by using high structure carbon black in an amount of 110-130 ml / 100 g.
[0097] 本発明の油展ゴム組成物には、更に架橋剤を配合することができる。 [0097] The oil-extended rubber composition of the present invention may further contain a crosslinking agent.
架橋剤としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄 等の硫黄;一塩化硫黄、二塩化硫黄等のハロゲン化硫黄;ジクミルパーォキシド、ジ ターシヤリブチルパーォキシド等の有機過酸化物; p キノンジォキシム、 p, p'—ジ ベンゾィ/レキノンジ才キシム等のキノンジ才キシム;トリエチレンテトラミン、へキサメチ レンジアミンカルバメート、 4, 4,ーメチレンビス o クロロア二リン等の有機多価アミ ン化合物;メチロール基をもったアルキルフエノール樹脂;等が挙げられ、これらの中 でも、硫黄が好ましぐ粉末硫黄がより好ましい。  Cross-linking agents include sulfur such as powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur; sulfur halides such as sulfur monochloride and sulfur dichloride; dicumyl peroxide, and dibutyl butyl peroxide. Organic peroxides such as xoxides; p-quinone dioxime, p, p'-dibenzoy / lequinone diximes and other quinone dioximes; triethylenetetramine, hexamethylenediamine carbamate, 4, 4, -methylenebis o chloroadiline, etc. Examples thereof include polyvalent amine compounds; alkylphenol resins having a methylol group; among these, powdered sulfur, in which sulfur is preferred, is more preferred.
これらの架橋剤は、 1種を単独で又は 2種以上を組み合わせて用いられる。架橋剤 の配合量は、全ゴム成分 100重量部に対して、好ましくは 0. ;!〜 15重量部、より好ま しくは 0. 5〜5重量部である。  These crosslinking agents are used alone or in combination of two or more. The amount of the crosslinking agent is preferably from 0.5 to 15 parts by weight, more preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of all rubber components.
[0098] 上記架橋剤は、架橋促進剤及び架橋活性化剤と併用するのが好ましい。 [0098] The crosslinking agent is preferably used in combination with a crosslinking accelerator and a crosslinking activator.
架橋促進剤としては、例えば、 N シクロへキシルー 2—べンゾチアジルスルフェン アミド、 N— t ブチルー 2—べンゾチアゾールスルフェンアミド、 N ォキシエチレン 2—べンゾチアゾールスルフェンアミド、 N ォキシエチレン 2—べンゾチアゾー ノレスルフェンアミド、 N, N,一ジイソプロピル一 2—ベンゾチアゾールスルフェンアミド 等のスルフェンアミド系架橋促進剤;ジフエニルダァニジン、ジオルトトリルグァニジン 、オルトトリルビグァニジン等のグァニジン系架橋促進剤;ジェチルチオゥレア等のチ ォゥレア系架橋促進剤; 2—メルカプトべンゾチアゾール、ジベンゾチアジルジスルフ イド、 2—メルカプトべンゾチアゾール亜鉛塩等のチアゾール系架橋促進剤;テトラメ 進剤;ジメチルジチォカルバミン酸ナトリウム、ジェチルジチォカルバミン酸亜鉛等の ジチォ力ルバミン酸系架橋促進剤;イソプロピルキサントゲン酸ナトリウム、イソプロピ ルキサントゲン酸亜鉛、ブチルキサントゲン酸亜鉛等のキサントゲン酸系架橋促進剤 ;等の架橋促進剤が挙げられる。なかでも、スルフェンアミド系架橋促進剤を含むもの が特に好ましい。これらの架橋促進剤は、 1種類単独で使用してもよく 2種以上を組 み合わせて使用してもよい。架橋促進剤の配合量は、全ゴム成分 100重量部に対し て、好ましくは 0. ;!〜 15重量部、より好ましくは 0. 5〜5重量部である。 Examples of the cross-linking accelerator include N cyclohexyl lu 2-benzothiazyl sulfenamide, N-t-butyl-2-benzothiazole sulfenamide, N oxyethylene 2-benzothiazole sulfenamide, N Sulfenamide-based crosslinking accelerators such as oxyethylene 2-benzothiazonolesulfenamide, N, N, 1-diisopropyl-1-benzothiazolesulfenamide; diphenyldanidine, diortolylguanidine, orthotolylbiguanidine Guanidine-based cross-linking accelerators such as: thiolear cross-linking accelerators such as jetylthiourea; thiazole-based cross-linking accelerators such as 2-mercaptobenzothiazole, dibenzothiazyl disulfide, and 2-mercaptobenzothiazole zinc salt; Tetrame Accelerators: Dithiocarbamate crosslinking accelerators such as sodium dimethyldithiocarbamate and zinc jetyldithiocarbamate; Xanthogenate crosslinking accelerators such as sodium isopropylxanthate, zinc isopropylxanthate and zinc butylxanthate A crosslinking accelerator such as an agent; Of these, those containing a sulfenamide-based crosslinking accelerator are particularly preferred. These crosslinking accelerators may be used alone or in combination of two or more. The blending amount of the crosslinking accelerator is preferably 0.5;! To 15 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of all rubber components.
[0099] 架橋活性化剤としては、例えば、ステアリン酸等の高級脂肪酸や酸化亜鉛等を用 いること力 Sできる。酸化亜鉛は、表面活性の高い粒度 5 m以下のものが好ましぐ例 えば、粒度が 0. 05-0. 2 mの活性亜鉛華や 0. 3〜1 111の亜鉛華等を挙げるこ と力 Sできる。また、酸化亜鉛としては、ァミン系の分散剤や湿潤剤で表面処理したもの 等を用いることもできる。  [0099] As the crosslinking activator, for example, higher fatty acids such as stearic acid, zinc oxide and the like can be used. For example, zinc oxide having a high surface activity particle size of 5 m or less is preferred. Examples include zinc oxide with a particle size of 0.05-0.2 m and zinc oxide with a particle size of 0.3-1111. Power S can be. In addition, zinc oxide that has been surface-treated with an amine-based dispersant or wetting agent can also be used.
架橋活性化剤の配合量は適宜選択されるが、高級脂肪酸の配合量は、全ゴム成 分 100重量部に対して、好ましくは 0. 05〜; 15重量部、より好ましくは 0. 5〜5重量 部であり、酸化亜鉛の配合量は、全ゴム成分 100重量部に対して、好ましくは 0. 05 〜; 10重量部、より好ましくは 0. 5〜3重量部である。  The amount of the crosslinking activator is appropriately selected. The amount of the higher fatty acid is preferably from 0.05 to 15 parts by weight, more preferably from 0.5 to 100 parts by weight based on 100 parts by weight of the total rubber component. The amount of zinc oxide is preferably 0.05 to 10 parts by weight, more preferably 0.5 to 3 parts by weight with respect to 100 parts by weight of the total rubber component.
また、油展ゴム組成物に架橋剤を配合する際に、油展ゴム組成物に予め配合され 得る老化防止剤とは別に、追加の老化防止剤を配合しても良い。  In addition, when the crosslinking agent is blended in the oil-extended rubber composition, an additional anti-aging agent may be blended in addition to the anti-aging agent that can be blended in advance in the oil-extended rubber composition.
[0100] 本発明の油展ゴム組成物は、常法に従って各成分を混練することにより得ることが できる。油展ゴム組成物の成分として架橋剤を含む場合は、架橋剤と架橋促進剤と を除く配合剤を混練した後、その混練物に架橋剤及び架橋促進剤を混合して架橋 性の油展ゴム組成物を得ることができる。  [0100] The oil-extended rubber composition of the present invention can be obtained by kneading each component according to a conventional method. When a cross-linking agent is included as a component of the oil-extended rubber composition, a compounding agent excluding the cross-linking agent and the cross-linking accelerator is kneaded, and then the cross-linking agent and the cross-linking accelerator are mixed into the kneaded product to crosslink the oil-extended A rubber composition can be obtained.
架橋剤と架橋促進剤とを除く配合剤及びゴムの混練温度は、好ましくは 80〜200 °C、より好ましくは 110〜; 180°Cであり、その混練時間は、好ましくは 30秒〜 30分で ある。架橋剤及び架橋促進剤と混練物との混合は、通常、 100°C以下、好ましくは 8 0°C以下まで冷却後に行われる。  The kneading temperature of the compounding agent and rubber excluding the crosslinking agent and the crosslinking accelerator is preferably 80 to 200 ° C, more preferably 110 to 180 ° C, and the kneading time is preferably 30 seconds to 30 minutes. It is. The mixing of the crosslinking agent and crosslinking accelerator with the kneaded product is usually performed after cooling to 100 ° C or lower, preferably 80 ° C or lower.
[0101] 架橋性の油展ゴム組成物を架橋するための架橋方法は、特に限定されず、加硫物 の形状、大きさ等に応じて選択すればよい。金型中に架橋性の油展ゴム組成物を充 填して加熱することにより成形と同時に架橋してもよぐ予め成形しておいた架橋性の 油展ゴム組成物を加熱して架橋してもよい。架橋温度は、好ましくは 120〜200°C、 より好ましくは 140〜180°Cであり、架橋時間は、通常、 1〜120分程度である。 [0101] The crosslinking method for crosslinking the crosslinkable oil-extended rubber composition is not particularly limited, and may be selected according to the shape, size, etc. of the vulcanizate. Fill mold with crosslinkable oil-extended rubber composition It may be crosslinked at the same time as molding by filling and heating, or a preliminarily molded crosslinkable oil-extended rubber composition may be heated and crosslinked. The crosslinking temperature is preferably 120 to 200 ° C, more preferably 140 to 180 ° C, and the crosslinking time is usually about 1 to 120 minutes.
[0102] 本発明の油展ゴム組成物を工業的に有利に得るには、ゴム成分の有機溶媒溶液 にプロセスオイルを混合した後、脱溶媒する方法を採用することができる。 [0102] In order to obtain the oil-extended rubber composition of the present invention in an industrially advantageous manner, it is possible to employ a method of removing the solvent after mixing the process oil into the organic solvent solution of the rubber component.
また、ゴム成分の有機溶媒に、プロセスオイルのほか、各配合剤を添加混合した後 、脱溶媒してもよい。  In addition to the process oil, each compounding agent may be added to and mixed with the organic solvent of the rubber component, and then the solvent may be removed.
脱溶媒の方法としては、スプレードライ法やスチームストリツビング法、超臨界二酸 化炭素等を使用した溶媒分離による直接乾燥法等が挙げられる。工業的に好ましく はスチームストリツビング法が採用される。  Examples of the solvent removal method include a spray drying method, a steam stripping method, a direct drying method by solvent separation using supercritical carbon dioxide, and the like. The steam stripping method is preferably employed industrially.
[0103] 本発明の油展ゴム組成物の用途としては、タイヤ用のトレッド、アンダートレッド、サ イドトレッド、ビード、ビードフイラ一、タイヤのカーカス;ホース、ベルト、マット、防振ゴ ムその他の各種工業用品;接着剤;樹脂用耐衝撃性改良剤;樹脂フィルム緩衝剤; 靴底、ゴム靴;ゴルフボールのコア;玩具等を挙げることができる。 [0103] Applications of the oil-extended rubber composition of the present invention include tire treads, under treads, side treads, beads, bead fillers, tire carcass; hoses, belts, mats, anti-vibration rubbers, and other various industries. Articles; adhesives; impact resistance improvers for resins; resin film buffers; shoe soles, rubber shoes; golf ball cores; toys and the like.
特に本発明の油展ゴム組成物は、低発熱性及び耐摩耗性に優れるので、例えばト レッド、カーカス、サイドウォール、ビード部等のタイヤ各部材ゃ履物として、特に低燃 費タイヤのタイヤレッド用として好適に用いることができる。  In particular, since the oil-extended rubber composition of the present invention is excellent in low heat buildup and wear resistance, for example, tire members such as treads, carcass, sidewalls, and bead parts are used as footwear, particularly tire reds for low fuel consumption tires. It can be suitably used for use.
実施例  Example
[0104] 以下に実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明はこ れらによって限定されるものではない。なお、実施例及び比較例中の部及び%は、 断りのない限り質量基準である。  [0104] Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the examples and comparative examples, parts and% are based on mass unless otherwise specified.
[0105] (1) 1 , 4 結合含有量 (シス、トランス)及び 1 , 2 ビュル結合含有量  [0105] (1) 1, 4 bond content (cis, trans) and 1, 2 Bull bond content
丄^1 NMR及び13 C— PST— NMR分析により決定する。 丄 ^ 1 Determined by NMR and 13 C-PST-NMR analysis.
(2) Mw及び Mn  (2) Mw and Mn
東ソ一社製 GMHカラムを 2本連結して用い、テトラヒドロフランを溶離液として、標 準ポリスチレン試料を用いて作成した校正曲線に基づいて求める。  Two GMH columns manufactured by Tosoh Corporation are used in combination, and tetrahydrofuran is used as the eluent, and is obtained based on a calibration curve prepared using a standard polystyrene sample.
(3)分子量分布(Mw/Mn)  (3) Molecular weight distribution (Mw / Mn)
ゲル.パーミエーシヨン.クロマトグラフィー法によって、重合体の Mw及び Mnを測 定して決定する。 Gel, permeation, chromatographic method to measure Mw and Mn of the polymer. And decide.
[0106] (4)重合体ゴム(P2)の分岐率(カップリング率) [0106] (4) Branching rate (coupling rate) of polymer rubber (P2)
東ソ一社製分析カラム GMH— HR— Hを 2本連結して用い、テトラヒドロフランを溶 離液 (40°C、 1ml/分)として、標準ポリスチレン試料を用いて作成した校正曲線に 基づいて求める。重合体ゴム(P2)の分岐率は、得られた分析チャートにおける高分 子量側ピークと低分子量側ピークの面積比から求める。 一 NMRにより測定する。  Determined based on a calibration curve created using a standard polystyrene sample with two analytical columns GMH-HR-H connected by Tosoh Corporation and tetrahydrofuran as the eluent (40 ° C, 1 ml / min). . The branching rate of the polymer rubber (P2) is determined from the area ratio of the high molecular weight side peak to the low molecular weight side peak in the obtained analysis chart. Measured by NMR.
[0107] (6)凝固性 [0107] (6) Solidification
105°Cで重合溶液をスチームストリツビングして得られたクラムをポンプ移送するとき の、移送ラインの詰まりの状況から、下記の基準で判断する。  Judgment is made based on the following criteria based on the condition of clogging of the transfer line when pumping the crumb obtained by steam stripping the polymerization solution at 105 ° C.
1 :詰まりが全く起こらない。  1: No clogging occurs.
2:時々ポンプ圧力に変動があるが移送は可能である。  2: The pump pressure varies from time to time, but transfer is possible.
3 :時々移送ラインが詰まるので、予備ポンプに切り替えながら運転する必要がある  3: Since the transfer line is sometimes clogged, it is necessary to switch to a spare pump and operate.
4 : 1時間に 10回以上詰まりを繰り返す 4: Repeated clogging 10 times or more per hour
(7)重合体のムーニー粘度(ML , 100°C)  (7) Mooney viscosity of polymer (ML, 100 ° C)
1 + 4  1 + 4
ムーニー粘度計(島津製作所社製)を用い、 JIS K6300に準じて測定する。  Use a Mooney viscometer (manufactured by Shimadzu Corporation) and measure according to JIS K6300.
[0108] (8)油展ゴム組成物の低発熱性 [8108] (8) Low exothermic property of oil-extended rubber composition
粘弾性測定装置(レオメトリックス社製、商品名「RDA— 11」)を用い、 0. 5%ねじれ 、 20Hzの条件で 60°Cにおける tan δを測定する。結果は、同一配合組成のグルー プ毎に指数として表示する。即ち、表 3では比較例 1の測定値を、表 4では比較例 3 の測定値を、それぞれ 100とする指数で表示する。この指数が小さいほど低発熱性 に優れている。  Using a viscoelasticity measuring device (Rheometrics, trade name “RDA-11”), tan δ at 60 ° C. is measured under the conditions of 0.5% twist and 20 Hz. The result is displayed as an index for each group of the same composition. In other words, Table 3 shows the measured values of Comparative Example 1 and Table 4 shows the measured values of Comparative Example 3 as 100. The smaller this index, the better the low heat buildup.
[0109] (9)油展ゴム組成物の耐摩耗性 (タイヤ用途) [0109] (9) Abrasion resistance of oil-extended rubber composition (for tires)
JIS Κ6264に準じて、ランボーン摩耗試験機を用いて測定する。結果は、同一配 合組成のグループ毎に指数として表示する。即ち、表 3では比較例 1の測定値を、表 4では比較例 3の測定値を、それぞれ 100とする指数で表示する。この値が高い程、 耐摩耗性に優れることを示す。 Measured according to JIS Κ6264 using a Lambourn abrasion tester. The result is displayed as an index for each group of the same composition. In other words, Table 3 shows the measured values of Comparative Example 1 and Table 4 shows the measured values of Comparative Example 3 as 100. The higher this value, Shows excellent wear resistance.
[0110] 〔合成例 1〕 [Synthesis Example 1]
(バーサチック酸ネオジム塩の製造例)  (Example of production of neodymium salt versatic acid)
水酸化ナトリウム 0. 8部を溶解した水溶液 15部にバーサチック酸 (バーサチック 10、シェル社製) 3. 5部を添加して、バーサチック酸ナトリウム塩水溶液を調製した。 次いで、塩化ネオジム 4部を溶解した水溶液に、強撹拌しながら上記のバーサチック 酸ナトリウム塩水溶液を滴下した。水溶液中に生成した青紫色の粘稠物を充分に水 洗した後、乾燥してバーサチック酸ネオジム塩を得た。  Versatic acid (Versatic 10, manufactured by Shell Co.) (3.5 parts) was added to 15 parts of an aqueous solution in which 0.8 parts of sodium hydroxide had been dissolved to prepare an aqueous solution of sodium versatate. Then, the above-mentioned sodium versatate aqueous solution was added dropwise to an aqueous solution in which 4 parts of neodymium chloride had been dissolved with vigorous stirring. The blue-violet viscous product formed in the aqueous solution was sufficiently washed with water and dried to obtain a neodymium versatate salt.
[0111] 〔合成例 2〕 [Synthesis Example 2]
(触媒溶液の調製)  (Preparation of catalyst solution)
上記合成例 1で得たバーサチック酸ネオジム塩 ( (A)成分) 1モルを n へキサン 20 0部に溶解し、これに、トリイソブチルアルミニウム(TIBAU ( (B)成分) 37モルを添 加し、エージング (前半エージング)した。 7. 5分経過後、 1 , 3—ブタジエン 15モル( n—へキサン溶液)を添加し、攪拌下に、更に 7· 5分間エージング (後半エージング) した。次いで、ジイソブチルアルミニウムハイドライド(DIBAH) ( ( 成分)1. 8モル 及びジェチルアルミニウムクロライド(DEAC) ( (D)成分) 2モルを、室温で添加した。 このとき、(B)成分と(C)成分とのモル(B/C)比は、 20· 6である。 1 mol of neodymium versatate obtained in Synthesis Example 1 (component (A)) is dissolved in 200 parts of n-hexane, and 37 mol of triisobutylaluminum (TIBAU (component (B)) is added thereto. , after aging (early aging). 7.5 minutes, 1, was added 3-butadiene 15 molar (hexane solution n-), under stirring, and further 7.5 minutes aging (late aging). then , Diisobutylaluminum hydride (DIBAH) ((component) 1.8 mol and jetyl aluminum chloride (DEAC) (component (D)) 2 mol were added at room temperature.At this time, component (B) and component (C) And the molar ratio (B / C) is 20 · 6.
得られた混合物を更に 1時間室温で撹拌することにより、触媒溶液 1を得た。  The resulting mixture was further stirred at room temperature for 1 hour to obtain catalyst solution 1.
[0112] 〔製造例 11〕 [Production Example 11]
(共役ジェン重合体 (P 1 )の製造)  (Production of Conjugated Polymer (P 1))
容量 2, 000リットルのジャケット付き反応器に、モノマー濃度が 15%になるように、 シクロへキサンを 567kg、 1 , 3 ブタジエンを 100kg仕込んだ。次いで、触媒溶液 1 をネオジム塩のモル量が 0· 15モルになるように加え、撹拌しつつ 60°Cで 120分間 重合反応させ(重合開始温度と重合中の最高温度を表中に記載する)、ポリマーの 重合転化率がほぼ 100%に到達した後、 0. 006モル (ネオジム(Nd) 1モルに対して 0. 04モル)の四塩化スズのシクロへキサン溶液を添加して、 30分間変性反応を行な つた。 Ndに対して 3倍モルのエタノールを加えて反応を停止して、共役ジェン重合体 (P 1)として共役ジェン重合体 P 11を含有する濃度 15 %の重合体溶液を得た。なお 、変性反応は、 PIを 2回再沈殿して得られたポリマー中の Sn含有量を ICP内部標準 法で求めることにより、変性反応の反応率が 100%であることを確認した A jacketed reactor with a capacity of 2,000 liters was charged with 567 kg of cyclohexane and 100 kg of 1,3 butadiene so that the monomer concentration was 15%. Next, the catalyst solution 1 was added so that the molar amount of neodymium salt was 0 · 15 mol, and the polymerization reaction was performed at 60 ° C for 120 minutes with stirring (the polymerization start temperature and the maximum temperature during polymerization are described in the table). ), After the polymerization conversion of the polymer reached almost 100%, 0.006 mol (0.04 mol per 1 mol of neodymium (Nd)) tin tetrachloride in cyclohexane was added, Denaturation reaction was performed for 1 minute. The reaction was stopped by adding 3 times mole of ethanol to Nd to obtain a polymer solution having a concentration of 15% containing the conjugate polymer P11 as the conjugate polymer (P1). In addition In the denaturation reaction, the Sn content in the polymer obtained by reprecipitation of PI twice was determined using the ICP internal standard method, confirming that the reaction rate of the denaturation reaction was 100%.
共役ジェン重合体 P11の収率は、 99. 2%、ブタジエン単位部分のシス 1 , 4 結合含有量及び 1 , 2 ビュル結合含有量は、それぞれ、 98. 4%及び 0. 5%、ムー ニー粘度(ML , 100°C)は 81. 2、分子量分布は 2. 73であった。また、四塩化ス  Conjugated polymer P11 yield is 99.2%, cis 1,4 bond content and 1,2 bule bond content of butadiene unit moiety are 98.4% and 0.5%, Mooney, respectively. The viscosity (ML, 100 ° C) was 81.2 and the molecular weight distribution was 2.73. Also, tetrachloride
1 + 4  1 + 4
ズで変性する前後の凝固性は、それぞれ、 3及び 1であった。  The coagulation properties before and after denaturation were 3 and 1, respectively.
[0113] 〔製造例 12〜; 13〕 [Production Examples 12 to 13]
ジイソブチルアルミニウムハイドライド(DIBAH) ( (C)成分)の量を表 1に示すように 変更するほかは製造例 11と同様に操作して、共役ジェン重合体 (P1)として重合体 P 12〜P13を得た。これらの収率、ブタジエン単位部分のシス— 1 , 4 結合含有量及 び 1 , 2—ビュル結合含有量、ムーニー粘度(ML , 100°C)及び分子量分布並び  Except for changing the amount of diisobutylaluminum hydride (DIBAH) (component (C)) as shown in Table 1, the same procedure as in Production Example 11 was carried out to prepare polymers P 12 to P13 as conjugated diene polymers (P1). Obtained. These yields, cis-1,4 bond content and 1,2-bule bond content, Mooney viscosity (ML, 100 ° C) and molecular weight distribution of butadiene unit
1 + 4  1 + 4
に四塩化スズで変性する前後の凝固性を表 1に示す。  Table 1 shows the solidification properties before and after modification with tin tetrachloride.
[0114] 〔比較製造例 C14〕 [0114] [Comparative Production Example C14]
ジイソブチルアルミニウムハイドライド(DIBAH) ( (C)成分)の量を表 1に示すように 変更するほかは製造例 11と同様に操作して、対照共役ジェン重合体 (P1)として重 合体 PC14を得た。これらの収率、ブタジエン単位部分のシス— 1 , 4 結合含有量 及び 1 , 2—ビュル結合含有量、ムーニー粘度(ML , 100°C)及び分子量分布を  Polymer PC14 was obtained as a control conjugated diene polymer (P1) except that the amount of diisobutylaluminum hydride (DIBAH) (component (C)) was changed as shown in Table 1 and the same procedure as in Production Example 11 was performed. . These yields, cis-1,4 bond content and 1,2-bule bond content, Mooney viscosity (ML, 100 ° C) and molecular weight distribution of butadiene units.
1 + 4  1 + 4
表 1に示す。  Table 1 shows.
なお、各表中、「シス結合含有量」及び「ビュル結合含有量」は、それぞれ、「シス In each table, “cis bond content” and “bull bond content” are respectively “cis bond content”.
1 , 4 結合含有量」及び「1 , 2 ビュル結合含有量」を示す。 “1, 4 bond content” and “1, 2 Bull bond content”.
[0115] [表 1] [0115] [Table 1]
比較製造 Comparative manufacturing
製造例 11 製造例 12 製造例 13  Production Example 11 Production Example 12 Production Example 13
例 C14 共役ジェン重合体 (P1) P11 P12 P13 PC14 ブタジエン ZNd (kgZmol) 750 750 1500 750 重合触媒  Example C14 Conjugated polymer (P1) P11 P12 P13 PC14 Butadiene ZNd (kgZmol) 750 750 1500 750 Polymerization catalyst
(A)成分 [モル] 1 1 1 1 (A) component [mol] 1 1 1 1
(B)成分 [モル] 37 37 37 37 ブタジエン (エージング用) [モル] 15 15 15 15Component (B) [Mole] 37 37 37 37 Butadiene (for aging) [Mole] 15 15 15 15
(C)成分 [モル] 1.8 1.4 7 3Component (C) [mol] 1.8 1.4 7 3
(D)成分 [モル] 2 2 2 2Component (D) [mol] 2 2 2 2
(B)成分ノ (C)成分モル比 20.6 26.4 5.3 12.3 開始温度 (°c) 50 50 50 50 Component (B) Component (C) Molar ratio 20.6 26.4 5.3 12.3 Starting temperature (° c) 50 50 50 50
¾trw;皿度 (。し) 60 60 60 60 カップリング剤(*1) SnCI4 SnCI4 SnCI4 SnCI4 使用量 [モル] 0.04 0.04 0.04 0.04 w/Mn 2. 73 2.51 3.04 2.86 ムーニー粘度 81.2 99. 6 79.6 60. 5 シス結合含有量(%) 98.4 98. 5 96.9 98. 1 ビニル結合含有量 (%) 0.5 0.4 1.0 0. 6 凝固性  ¾ trw; dish degree (.) 60 60 60 60 coupling agent (* 1) SnCI4 SnCI4 SnCI4 SnCI4 Amount used [mol] 0.04 0.04 0.04 0.04 w / Mn 2. 73 2.51 3.04 2.86 Mooney viscosity 81.2 99. 6 79.6 60. 5 Cis bond content (%) 98.4 98. 5 96.9 98.1 Vinyl bond content (%) 0.5 0.4 1.0 0. 6 Solidification
変性前 3 2 3 4 変性後 1 1 1 1 Before denaturation 3 2 3 4 After denaturation 1 1 1 1
* 1 SnCI4:四塩化スズ 〔製造例 21〜25」 * 1 SnCI4: Tin tetrachloride (Production Examples 21-25)
ステンレス製オートクレーブ重合反応器に、それぞれ異なる量のスチレン、 1, 3— ブタジエン、溶媒としてシクロへキサン及び少量のテトラメチレンジァミンを仕込み、次 いで、重合触媒として n—ブチルリチウムを添加し、内容物を撹拌しながら 40°Cで重 合を開始した。重合反応器の内温は 60°Cまで上昇した。重合反応後、カップリング 剤として表 2に示す化合物を、重合触媒として用いた n—ブチルリチウム 1モルに対し 、それぞれ 0· 13モノレ(P21、カップリング斉 IJの fffi数 (ま 4)、 0· 13モノレ(P22、カツプリ ング剤の価数は 4)、 0.125モノレ(P23、カップリング剤の価数は 6)、 0.13モノレ(P2 4、カップリング剤の価数は 4)、及び 0· 13モル(P25、カップリング剤の価数は 4)モ ル添加して 30分間反応を行ない、次いで、メタノールを添加して反応を停止させ、ス チームストリツビングにより重合体を回収することで、重合体 (P2)として重合体 P2;!〜 P25を得た。  A stainless steel autoclave polymerization reactor is charged with different amounts of styrene, 1,3-butadiene, cyclohexane and a small amount of tetramethylenediamine as solvents, and then n-butyllithium is added as a polymerization catalyst. Polymerization was started at 40 ° C while stirring the contents. The internal temperature of the polymerization reactor rose to 60 ° C. After the polymerization reaction, the compounds shown in Table 2 as the coupling agent were each 0 · 13 monolayers (P21, coupling symmetric IJ fffi number (4), 0 to 1 mol of n-butyllithium used as the polymerization catalyst). 13 monoles (P22, the valence of the coupling agent is 4), 0.125 monoles (P23, the valence of the coupling agent is 6), 0.13 monoles (P2 4, the valence of the coupling agent is 4), and 0 · 13 moles (P25, coupling agent valence is 4) was added and reacted for 30 minutes, then methanol was added to stop the reaction, and the polymer was recovered by steam stripping. As a polymer (P2), a polymer P2;! To P25 was obtained.
これらの結合スチレン量(芳香族ビュル単位の含有量)、分岐率、ブタジエン単位 部分の 1 , 2—ビュル結合含有量、ムーニー粘度(ML , 100°C)及び分子量分布 These bound styrene content (content of aromatic bul unit), branching rate, butadiene unit Partial 1,2-bule bond content, Mooney viscosity (ML, 100 ° C) and molecular weight distribution
1 + 4  1 + 4
を表 2に示す。  Are shown in Table 2.
[0117] [表 2] [0117] [Table 2]
Figure imgf000035_0001
Figure imgf000035_0001
SiCI4 :四塩化ケィ素  SiCI4: Cay tetrachloride
HCDS:へキサクロルジシラン  HCDS: Hexachlordisilane
TMOS:テトラメトキシシラン  TMOS: Tetramethoxysilane
結合スチレン量(9¾) +2 Xビニル結合含有量  Bonded styrene content (9¾) +2 X vinyl bond content
[0118] 〔実施例 1〕 [Example 1]
製造例 11で得た共役ジェン重合体 (P1)としての共役ジェン重合体 P11を 100部 含有するシクロへキサン溶液に、プロセスオイルとしてァロマオイル(富士興産社製、 商品名「フッコール フレックス M」、ァロマ分 45. 5%、V. G. C. (粘度比重恒数) = 0. 9758) 37. 5部、老化防止剤 2, 4—ビス(n—ォクチルチオメチル)ー6—メチルフ ェノール(チバスペシャルティケミカルズ社製、商品名「IRGANOX 1520L」)0. 15 部を添加し、 60°Cで 30分混合してから、スチームストリツビング法により重合体を析 出させ、乾燥して油展ゴム組成物 1を得た。  To the cyclohexane solution containing 100 parts of the conjugated diene polymer P11 as the conjugated diene polymer (P1) obtained in Production Example 11, aroma oil (trade name “Fukol Flex M”, manufactured by Fuji Kosan Co., Ltd. Min. 45.5%, VGC (viscosity specific gravity constant) = 0.975) 37.5 parts, anti-aging agent 2, 4-bis (n-octylthiomethyl) -6-methylphenol (Ciba Specialty Chemicals) , Trade name "IRGANOX 1520L") 0.15 part was added and mixed at 60 ° C for 30 minutes, then the polymer was analyzed by the steam stripping method, dried and oil-extended rubber composition 1 was obtained. Obtained.
次いで、得られた油展ゴム組成物 1に、シリカ(ローディア社製、商品名「Zeosil (R) 1165MP」、 BET比表面積 = 160m2 pH = 6. 5) 55部、シランカップリング剤 (デダサ社製、商品名「Si75」) 5部、酸化亜鉛(亜鉛華 # 1) 1. 5部、ステアリン酸 2. 0部及び老化防止剤 N (l , 3—ジメチルブチル)—N—フエ二ルー p—フエ二レンジァ ミン (大内新興社製、商品名「ノクラック 6C」) 3部を配合し、バンバリ一タイプミキサー 中で、混練物の排出温度が 120°Cになるように 6分間混練した後、得られた混合物を 50°Cのオープンロールに移して、更に硫黄(S # 325) 0. 9部及び架橋促進剤 N—( tーブチル)ー2—べンゾチアゾールスルフェンアミド(フレキシス社製、商品名「サント キュア TBBS」)1. 5部を加えて混練りし、架橋性の油展ゴム組成物 1を得た。 Next, the obtained oil-extended rubber composition 1 was mixed with 55 parts of silica (made by Rhodia, trade name “Zeosil (R) 1165MP”, BET specific surface area = 160 m 2 pH = 6.5), silane coupling agent (dedasa 5 parts, zinc oxide (zinc white # 1) 1.5 parts, stearic acid 2.0 parts and anti-aging agent N (l, 3-dimethylbutyl) -N-Feniru p-Phenylenediamine (trade name “NOCRACK 6C”, manufactured by Ouchi Shinsei Co., Ltd.) 3 parts was blended and kneaded in a Banbury type mixer for 6 minutes so that the discharge temperature of the kneaded product was 120 ° C. Later, the resulting mixture was transferred to an open roll at 50 ° C., and 0.9 parts of sulfur (S # 325) and a crosslinking accelerator N- (tert-butyl) -2-benzothiazole sulfenamide (flexis) Product name "Santo" Cure TBBS ") 1.5 parts were added and kneaded to obtain a crosslinkable oil-extended rubber composition 1.
この架橋性の油展ゴム組成物 1を、 150°Cで 30分加硫して、加硫物 1を得た。この 加硫物 1の低発熱性及び耐摩耗性を評価した結果を表 3に示す。  This crosslinkable oil-extended rubber composition 1 was vulcanized at 150 ° C. for 30 minutes to obtain a vulcanized product 1. Table 3 shows the results of evaluating the low heat build-up and wear resistance of this vulcanizate 1.
[0119] 〔実施例 2〜4〕  [Examples 2 to 4]
プロセスオイルを改質ァロマオイル t DAE (新日本石油社製、ァロマ分 25· 8%) に変更し、また、実施例 3及び 4については共役ジェン重合体 (P1)の種類を表 3に 示すように変更するほかは、実施例 1と同様にして油展ゴム組成物 2〜4、架橋性の 油展ゴム組成物 2〜4及び加硫物 2〜4を得、その低発熱性及び耐摩耗性を評価し た。結果を表 3に示す。  Process oil was changed to modified aroma oil t DAE (manufactured by Nippon Oil Co., Ltd., aroma component 25 · 8%), and for Examples 3 and 4, the type of conjugated polymer (P1) is shown in Table 3. The oil-extended rubber compositions 2 to 4, the crosslinkable oil-extended rubber compositions 2 to 4 and the vulcanizates 2 to 4 were obtained in the same manner as in Example 1, except that the low exothermic property and abrasion resistance were obtained. Sex was evaluated. The results are shown in Table 3.
[0120] 〔比較例 1〕  [Comparative Example 1]
共役ジェン重合体 (P1)としての共役ジェン重合体 P11に代えて、対照共役ジェン 重合体としての市販のコバルト触媒系ブタジエンゴム〔シス 1 , 4 結合含有量 96 %、 1 , 2 ビュル結合含有量 2. 8%、ムーニー粘度(ML , 100°C) 80. 5、分子  Instead of conjugation polymer P11 as conjugation polymer (P1), commercially available cobalt-catalyzed butadiene rubber as a control conjugation polymer (cis 1,4 bond content 96%, 1,2 bull bond content 2. 8%, Mooney viscosity (ML, 100 ° C) 80.5, molecule
1 + 4  1 + 4
量分布 2. 6、 曰本ゼオン社製、商品名「Nipol BR1441J:また、ゴム 100部当り、 3 7. 5部のァロマオイル(富士興産社製、商品名「フッコール フレックス M」)と 0. 15 部の老化防止剤 2, 4 ビス(n ォクチルチオメチル) 6 メチルフエノールを含有 している。〕を使用するほかは、実施例 1と同様に操作して加硫物 C1を得、その低発 熱性及び耐摩耗性を評価した。結果を表 3に示す。  Quantity distribution 2.6, Enomoto Zeon, trade name “Nipol BR1441J: Also, 37.5 parts of aroma oil per 100 parts of rubber (Fujikosan Co., Ltd., trade name“ Fukol Flex M ”) and 0.15 Part of the anti-aging agent 2, 4 bis (n-octylthiomethyl) 6 methylphenol. The vulcanizate C1 was obtained in the same manner as in Example 1, except that the low heat generation and wear resistance were evaluated. The results are shown in Table 3.
[0121] 〔比較例 2〕 [0121] [Comparative Example 2]
共役ジェン重合体 (P1)としての共役ジェン重合体 P11に代えて対照共役ジェン 重合体 (P1)としての共役ジェン重合体 PC14を使用するほかは、実施例 1と同様に 操作して加硫物 C2を得、その低発熱性及び耐摩耗性を評価した。結果を表 3に示 す。  Conjugated polymer as conjugate polymer (P1) Conjugated polymer as P1 Conjugated polymer as reference conjugated polymer (P1) in place of P11 C2 was obtained, and its low heat build-up and wear resistance were evaluated. The results are shown in Table 3.
[0122] [表 3] 比較例 1 比較例 2 実施例 1 実施例 2 実施例 3 実施例 4 油展ゴム組成物 C1 C2 1 2 3 4 共役ジェン重合体 (P1) (BR1441) PC14 P11 P11 P12 P13 ム一二一粘度 80.5 60.5 81. 2 81. 2 99. 6 79.6 シス結合含有量 (《½) 96.0 98. 1 98.4 98.4 98. 5 96.9 プロセスオイル [0122] [Table 3] Comparative Example 1 Comparative Example 2 Example 1 Example 2 Example 3 Example 4 Oil-extended rubber composition C1 C2 1 2 3 4 Conjugated polymer (P1) (BR1441) PC14 P11 P11 P12 P13 60.5 81. 2 81. 2 99. 6 79.6 Cis bond content (<< ½) 96.0 98. 1 98.4 98.4 98. 5 96.9 Process oil
種類(*4) ArOI ArOI ArOI Ar02 Ar02 Ar02 架橋性油展ゴム組成物 C1 C2 1 2 3 4 加硫物 C1 C2 1 2 3 4 低発熱性 100 91 86 66 61 73 耐摩耗性 100 102 122 133 147 116  Type (* 4) ArOI ArOI ArOI Ar02 Ar02 Ar02 Crosslinkable oil-extended rubber composition C1 C2 1 2 3 4 Vulcanized product C1 C2 1 2 3 4 Low heat generation 100 91 86 66 61 73 Abrasion resistance 100 102 122 133 147 116
*4:Ar01:富士興産社製、商品名 Γフツコール フレックス M」V. G. C. =0. 9758 Ar02:改質ァロマオイル t— DAE (新日本石油社製) * 4: Ar01: manufactured by Fujikosan Co., Ltd., trade name Γ Futskor Flex M ”V. G. C. = 0. 9758 Ar02: Reformed Aloma Oil t—DAE (manufactured by Nippon Oil Corporation)
[0123] 表 3の結果から、本発明の規定を満足する共役ジェン重合体 (P1)を使用した油展 ゴム組成物(実施例;!〜 4)は、本発明の規定を満足しない対照共役ジェン重合体を 使用した油展ゴム組成物(比較例 1及び 2)に比べて、低発熱性及び耐摩耗性に優 れること力 S分る。実施例 1の結果より、本発明の油展ジェンゴム組成物は、低発熱性 に優れていることが分る。また、実施例 1と比較例 2との比較、及び実施例 4と 3との比 較から、ムーニー粘度が高い方がより低発熱性と耐摩耗性とのバランスに優れること が分る。更に、実施例 2と実施例 4との比較からシス含有量が高い方が耐摩耗性に優 れること力 S分る。 [0123] From the results shown in Table 3, the oil-extended rubber compositions (Examples;! To 4) using the conjugated gen polymer (P1) satisfying the provisions of the present invention are control conjugates not satisfying the provisions of the present invention. Compared to the oil-extended rubber composition (Comparative Examples 1 and 2) using a gene polymer, it has a low heat build-up and excellent wear resistance. From the results of Example 1, it can be seen that the oil-extended gen rubber composition of the present invention is excellent in low exothermic property. Further, from comparison between Example 1 and Comparative Example 2 and comparison between Examples 4 and 3, it can be seen that a higher Mooney viscosity is better in balance between low heat buildup and wear resistance. Furthermore, it can be seen from the comparison between Example 2 and Example 4 that the higher the cis content, the better the wear resistance.
[0124] 〔実施例 5〜9、比較例 3〕  [Examples 5 to 9, Comparative Example 3]
100部の共役ジェン重合体(P1 )としての共役ジェン重合体 PI 1に代えて 60部の 共役ジェン重合体 PI 1と 40部の重合体 (P2)としての天然ゴム (RSS # 3)との混合 物を使用し、用いるプロセスオイルを表 4に示すとおりとするほかは、実施例 1と同様 にして、油展ゴム組成物 5〜9、 C3及び架橋性の油展ゴム組成物 5〜9、 C3を得た。 これらの架橋性の油展ゴム組成物を用いて、硫黄の量を 1.1部とし、架橋促進剤とし て 1, 3—ジフエニルダァニジン (大内新興社製、商品名「ノクセラー D」)を 0.3部使 用したほかは、実施例 1と同様に操作して加硫物 5〜9、 C3を得、加硫物の低発熱性 及び耐摩耗性を評価した。結果を表 4に示す。なお、表中、 CA、 CN及び CPは、そ れぞれ、ァロマ分含有量、ナフテン分含有量及びパラフィン分含有量を表す。  Instead of 100 parts of the conjugate polymer PI 1 as the conjugate polymer (P1), 60 parts of the conjugate polymer PI 1 and 40 parts of the natural rubber (RSS # 3) as the polymer (P2) Oil-extended rubber compositions 5-9, C3 and crosslinkable oil-extended rubber compositions 5-9, as in Example 1, except that the mixture is used and the process oil used is as shown in Table 4. Got C3. Using these crosslinkable oil-extended rubber compositions, the amount of sulfur was 1.1 parts, and 1,3-diphenyldanidine (trade name “Noxeller D”, manufactured by Ouchi Shinsei Co., Ltd.) was used as a crosslinking accelerator. Except for the use of 0.3 part, the same operations as in Example 1 were carried out to obtain vulcanizates 5 to 9 and C3, and the low exothermic properties and wear resistance of the vulcanizates were evaluated. The results are shown in Table 4. In the table, CA, CN, and CP represent the aroma content, the naphthene content, and the paraffin content, respectively.
[0125] [表 4]
Figure imgf000038_0001
[0125] [Table 4]
Figure imgf000038_0001
* 5 : ArOI:富士興産社製、商品名 Γフッコ一ル フレックス M」V. G. C. =0. 9758  * 5: ArOI: Fuji Kosan Co., Ltd., trade name Γ Fuccole Flex M ”V. G. C. = 0. 9758
Ar02:改質ァロマオイル t— DAE (新日本石油社製)  Ar02: Reformed aroma oil t—DAE (manufactured by Nippon Oil Corporation)
Ar03 :パラフィンオイル。出光興産社製、商品名「PW— 90」  Ar03: Paraffin oil. Product name “PW-90”, manufactured by Idemitsu Kosan Co., Ltd.
Ar04 :ナフテンオイル。出光興産社製、商品名「ダイアナプロセスオイル NS— 1 00」 ArOS :ナフテンオイノレ、 V. G. C. =0. 9220。  Ar04: Naphthenic oil. Made by Idemitsu Kosan Co., Ltd., trade name “Diana Process Oil NS—100” ArOS: Naphten Oil, V. G. C. = 0. 9220.
出光興産社製、商品名「ダイアナプロセスオイル NM— 1 50J  Made by Idemitsu Kosan Co., Ltd., trade name “Diana Process Oil NM— 1 50J
Ar06 :出光興産社製、商品名「ダイアナプロセスオイル NP 700」  Ar06: Made by Idemitsu Kosan Co., Ltd., trade name "Diana Process Oil NP 700"
[0126] 表 4の結果から、ァロマ分を 5重量%以上含有するプロセスオイルを使用して得た 油展ゴム組成物力 得た加硫物は、低発熱性と耐摩耗性とのバランスに優れて!/、る こと力 S分る。しかし、ァロマ分含有量が 40重量%を超えると、低発熱性がやや低下し てくる(実施例 9)ことから、ァロマ分含量は、 5〜40重量。 /0の間にあることが好ましい といえる。 [0126] From the results in Table 4, the strength of the oil-extended rubber composition obtained using a process oil containing 5% by weight or more of the aroma content. The obtained vulcanizate has an excellent balance between low heat buildup and wear resistance. ! I understand the power S. However, when the aroma content exceeds 40% by weight, the low exothermicity slightly decreases (Example 9), so the aroma content is 5-40%. It can be said that it is preferably between / 0 .
[0127] 〔実施例 10〕  [Example 10]
製造例 11と同様にして得た共役ジェン重合体 (P1)としての共役ジェン重合体 P1 1、表 5に示すプロセスオイル 37· 5部及び老化防止剤 2, 4 ビス(n ォクチルチオ メチル) 6—メチルフエノール(チバスペシャルティケミカルズ社製、商品名「IRGA NOX 1520L」)0. 2部を用いて、実施例 1と同様にして、油展ゴム組成物 1Aを得 た。  Conjugated polymer P1 1 as conjugate polymer (P1) obtained in the same manner as in Production Example 11, 30.5 parts of process oil shown in Table 5, and anti-aging agent 2, 4 Bis (n-octylthiomethyl) 6— An oil-extended rubber composition 1A was obtained in the same manner as in Example 1 by using 0.2 part of methyl phenol (trade name “IRGA NOX 1520L” manufactured by Ciba Specialty Chemicals).
他方、重合体ゴム(P2)として市販の乳化重合スチレン ブタジエン共重合体ゴム( シス— 1 , 4—結合含有量 12%、 1 , 2—ビュル結合含有量 13%、スチレン含有量 35 %、ムーニー粘度(ML , 100°C) 135、分子量分布 3. 8、 日本ゼオン社製、商品 On the other hand, commercially available emulsion polymerized styrene butadiene copolymer rubber (P2) Cis-1,4—bond content 12%, 1,2-bule bond content 13%, styrene content 35%, Mooney viscosity (ML, 100 ° C) 135, molecular weight distribution 3.8, manufactured by Nippon Zeon ,Product
1 + 4  1 + 4
名「Nipol SBR9528R」)をシクロへキサンに溶解した 15%溶液を用い、表 5に示 すプロセスオイル 37. 5部を用いるほかは、同様にして、油展ゴム組成物 28Aを得た The oil-extended rubber composition 28A was obtained in the same manner except that a 15% solution of the name “Nipol SBR9528R”) in cyclohexane was used and 37.5 parts of the process oil shown in Table 5 was used.
Yes
バンバリ一ミキサーに、それぞれ、ゴム成分 50部及びプロセスオイル 18. 75部を含 有する油展ゴム組成物 1Aと油展ゴム組成物 28A、 SAFカーボンブラック 40部、シリ 力(デグサ社製、商品名「: BV7000GR」、 BET比表面積 = 170m2/g、 pH = 6. 5) ) 40部、シランカップリング剤(デダサ社製、商品名「Si75」)4部、ワックス(大内新興 社製、商品名「サンノック」) 10部、酸化亜鉛(亜鉛華 # 1) 2· 5部、ステアリン酸 1 · 5 部及び老化防止剤 N— (1 , 3—ジメチルブチル)—N—フエ二ルー p—フエ二レンジ ァミン(大内新興社製、商品名「ノクラック 6C」) 3部を添加し、混練物の排出温度が 1 20°Cになるように 6分間混練した後、得られた混合物を 50°Cのオープンロールに移 して、更に硫黄(S # 325) 1. 8部並びに架橋促進剤 1 , 3—ジフエニルダァニジン( 大内新興社製、商品名「ノクセラー D」)0. 8部及び N—シクロへキシルー 2—べンゾ チアゾリルスルフェンアミド(大内新興社製、商品名「ノクセラー CZ— G」)l . 8部を加 えて混練し、架橋性の混合油展ゴム組成物 10を得た。  In the Banbury mixer, oil-extended rubber composition 1A and oil-extended rubber composition 28A, SAF carbon black 40 parts, siri force (trade name, manufactured by Degusa), each containing 50 parts of rubber component and 18.75 parts of process oil ": BV7000GR", BET specific surface area = 170m2 / g, pH = 6.5)) 40 parts, 4 parts of silane coupling agent (made by Dedasa, trade name "Si75"), wax (made by Ouchi Shinsei Co., Ltd., product) Name “Sannok”) 10 parts, zinc oxide (zinc flower # 1) 2-5 parts, stearic acid 1/5 parts and anti-aging agent N— (1,3-dimethylbutyl) —N—Henrirou p—Hue Add 2 parts of direnamine (Ouchi Shinsei Co., Ltd., trade name “NOCRACK 6C”) and knead for 6 minutes so that the discharge temperature of the kneaded product is 120 ° C. Move to C open roll and further sulfur (S # 325) 1. 8 parts and crosslinking accelerator 1,3-diphenyldanidine (Ouchi Shinsei Co., Ltd., trade name “Noxeller D”) 0.8 parts and N-cyclohexyloxy 2-benzothiazolylsulfenamide (Ouchi Shinsei Co., Ltd., trade name “Noxeller CZ-G”) l. 8 Part was added and kneaded to obtain a crosslinkable mixed oil-extended rubber composition 10.
この架橋性の混合油展ゴム組成物 10を 160°Cで 20分加硫して、加硫物 10を得た 。この加硫物 10の低発熱性及び耐摩耗性を評価した結果を表 5に示す。  This crosslinkable mixed oil-extended rubber composition 10 was vulcanized at 160 ° C. for 20 minutes to obtain a vulcanized product 10. Table 5 shows the results of evaluating the low heat build-up and wear resistance of the vulcanizate 10.
[0128] 〔実施例 11〜; 13〕  [Examples 11 to 13]
重合体 (P2)及びプロセスオイルとして、それぞれ、表 5に示すものを使用するほか は、実施例 10と同様にして、架橋性の混合油展ゴム組成物 11〜; 13を得た。これから 実施例 10と同様にして、加硫物 11〜; 13を得た。この加硫物 11〜; 13の低発熱性及 び耐摩耗性を評価した結果を表 5に示す。  Crosslinkable mixed oil-extended rubber compositions 11 to 13 were obtained in the same manner as in Example 10 except that the polymers (P2) and process oils shown in Table 5 were used. From this, vulcanizates 11 to 13 were obtained in the same manner as in Example 10. Table 5 shows the results of evaluating the low heat build-up and wear resistance of these vulcanizates 11 to 13.
なお、表 5の実施例及び比較例のオイルについては、全ゴム量 100部に対して、全 オイル分量として 50. 0部になるように鉱物油 t— DAEで調整しバンバリ一ミキサーに 投入した。  The oils of the examples and comparative examples in Table 5 were adjusted with mineral oil t-DAE so that the total oil amount was 50.0 parts with respect to 100 parts of the total rubber amount, and were put into a Banbury mixer. .
[0129] 〔実施例 14〕 重合体 (P2)としての重合体 P23から油展ゴム組成物を調製するに当ってプロセス オイルを使用しないほかは、実施例 10と同様にしてゴム組成物 23Bを調製した。 油展ゴム組成物 28Aに代えてゴム組成物 23Bを用いるほかは、実施例 10と同様に して、架橋性の混合油展ゴム組成物 14を得た。これから実施例 10と同様にして、加 硫物 14を得た。この加硫物 14の低発熱性及び耐摩耗性を評価した結果を表 5に示 す。 [Example 14] A rubber composition 23B was prepared in the same manner as in Example 10 except that no process oil was used in preparing an oil-extended rubber composition from the polymer P23 as the polymer (P2). A crosslinkable mixed oil-extended rubber composition 14 was obtained in the same manner as in Example 10 except that the rubber composition 23B was used instead of the oil-extended rubber composition 28A. From this, a vulcanizate 14 was obtained in the same manner as in Example 10. The results of evaluating the low heat buildup and wear resistance of this vulcanizate 14 are shown in Table 5.
[0130] 〔比較例 4〕  [0130] [Comparative Example 4]
油展ゴム組成物 1Aを使用しないほかは、実施例 11と同様にして架橋性の油展ゴ ム組成物 C4を得た。これから実施例 10と同様にして、加硫物 C4を得た。この加硫物 C4の低発熱性及び耐摩耗性を評価した結果を表 5に示す。  A crosslinkable oil-extended rubber composition C4 was obtained in the same manner as in Example 11 except that the oil-extended rubber composition 1A was not used. From this, a vulcanizate C4 was obtained in the same manner as in Example 10. Table 5 shows the results of evaluating the low heat buildup and wear resistance of this vulcanizate C4.
[0131] 〔実施例 15〜; 16〕 [Examples 15 to 16]
共役ジェン重合体 (P1)としての共役ジェン重合体 P 11の量を 50部とし、重合体( P2)として天然ゴム 40部に代えて 50部の重合体 P23を用い、ゴム成分以外の配合 剤を実施例 10と同様にするほかは、実施例 5と同様にして(即ち、共役ジェン重合体 (P1)と重合体 (P2)とを溶液中で混合した後、油展ゴムとして)、架橋性の混合油展 ゴム組成物 15を得た。これから実施例 10と同様にして、加硫物 15を得た。この加硫 物 15の低発熱性及び耐摩耗性を評価した結果を表 5に示す。  Conjugating polymer other than rubber component using 50 parts of polymer P23 instead of 40 parts of natural rubber as polymer (P2) with 50 parts of conjugating polymer P11 as conjugating polymer (P1) In the same manner as in Example 10 except that the conjugated polymer (P1) and the polymer (P2) were mixed in a solution and then an oil-extended rubber), Sexual mixed oil extended rubber composition 15 was obtained. From this, a vulcanizate 15 was obtained in the same manner as in Example 10. Table 5 shows the results of evaluating the low heat build-up and wear resistance of this vulcanizate 15.
また、共役ジェン重合体 (P1)としての共役ジェン重合体 PI 1と重合体 (P2)として の重合体 P23とから架橋性の油展ゴム組成物を得る際に、シリカの量を 40部増量し 、シランカップリング剤の量を 4部増量するほかは、実施例 15と同様にして、架橋性 の混合油展ゴム組成物 16を得た。これから実施例 10と同様にして、加硫物 16を得 た。この加硫物 16の低発熱性及び耐摩耗性を評価した結果を表 5に示す。  In addition, when obtaining a crosslinkable oil-extended rubber composition from the conjugate polymer PI 1 as the conjugate polymer (P1) and the polymer P23 as the polymer (P2), the amount of silica was increased by 40 parts. Then, a crosslinkable mixed oil-extended rubber composition 16 was obtained in the same manner as in Example 15 except that the amount of the silane coupling agent was increased by 4 parts. From this, a vulcanizate 16 was obtained in the same manner as in Example 10. Table 5 shows the results of evaluating the low heat buildup and wear resistance of the vulcanizate 16.
表 5の結果から、共役ジェン重合体 (P1)と重合体ゴム(P2)とを混合した後、油展 ゴムとした場合は、低発熱性及び耐摩耗性が、より優れることが分る(実施例 15及び 16)。  From the results in Table 5, it can be seen that low heat buildup and wear resistance are better when the conjugated polymer (P1) and polymer rubber (P2) are mixed and then used as an oil-extended rubber ( Examples 15 and 16).
[0132] [表 5] 比較例 4 実施例 10 実施例 11 実施例 12 油展ゴム組成物 - 1A 1A 1A [0132] [Table 5] Comparative Example 4 Example 10 Example 11 Example 12 Oil-extended rubber composition-1A 1A 1A
共役ジェン重合体 (P1) - P11 P11 P11  Conjugated polymer (P1)-P11 P11 P11
ム一ニー粘度 - 81. 2 81.2 81.2 シス結合含有量 (%) - 98.4 98.4 98.4 重合体ゴム(P2) - - ■ - - プロセスオイル  Mooney viscosity-81. 2 81.2 81.2 Cis bond content (%)-98.4 98.4 98.4 Polymer rubber (P2)--■--Process oil
種類(*6) - Ar02 Ar02 Ar02 油展ゴム組成物 21A 28A 21A 22A  Type (* 6)-Ar02 Ar02 Ar02 Oil-extended rubber composition 21A 28A 21A 22A
重合体ゴム(P2) P21 (9528R) P21 P22 プロセスオイル  Polymer rubber (P2) P21 (9528R) P21 P22 Process oil
種類(*6) Ar02 ArOI Ar02 Ar02 配合量 (部) 37. 5 37.5 37.5 架橋性の混合油展ゴム組成物 C4 10 11 12 加硫物 O  Type (* 6) Ar02 ArOI Ar02 Ar02 Amount (parts) 37.5 37.5 37.5 Crosslinkable mixed oil extended rubber composition C4 10 11 12 Vulcanizate O
低発熱性 100 97 94 90 耐摩耗性 100 106 103 109  Low heat generation 100 97 94 90 Abrasion resistance 100 106 103 109
Figure imgf000041_0001
Figure imgf000041_0001
*6: ArOI:富士興産社製、商品名 Γフッコ一ル フレックス MjV. G. C. =0.9758 Ar02:改質ァロマオイル t— DAE (新日本石油社製)  * 6: ArOI: manufactured by Fuji Kosan Co., Ltd., trade name: ΓFoccole Flex MjV. G. C. = 0.9758 Ar02: Modified Aloma Oil t—DAE (manufactured by Nippon Oil Corporation)
〔実施例 17〜22〕  (Examples 17 to 22)
製造例 12で得た共役ジェン重合体 (P1)としての共役ジェン重合体 P12を 30部と 、製造例 23で得た重合体(P2)としての重合体 P23を 70部含有するシクロへキサン 溶液に、プロセスオイルとして改質ァロマオイル t DAE (新日本石油社製、ァロマ 分 25. 8%)、老化防止剤 2, 4 ビス(n ォクチルチオメチル) 6 メチルフエノー ル(チバスペシャルティケミカルズ社製、商品名「IRGANOX 1520L」)0. 2部を添 加し、 60°Cで 30分混合してから、スチームストリツビング法により重合体を析出させ、 乾燥して混合油展ゴム組成物 17を得た。 Cyclohexane solution containing 30 parts of the conjugate polymer P12 as the conjugate polymer (P1) obtained in Production Example 12 and 70 parts of the polymer P23 as the polymer (P2) obtained in Production Example 23 In addition, modified aroma oil t DAE (manufactured by Nippon Oil Co., Ltd. 25.8 parts), anti-aging agent 2, 4 bis (n-octylthiomethyl) 6 methylphenol (Ciba Specialty Chemicals, trade name “IRGANOX 1520L”), 0.2 part, and 60 ° C After mixing for 30 minutes, a polymer was precipitated by a steam stripping method and dried to obtain a mixed oil-extended rubber composition 17.
次いで、得られた混合油展ゴム組成物 17に、シリカ(ローディア社製、商品名「Zeo sil (R) 1165MP」、 BET比表面積 = 160m2/g、 pH = 6. 5) 80部、 SAFカーボン ブラック 10部、ワックス 5部(大内新興社製、商品名「サンノック」)、シランカップリング 剤(デダサ社製、商品名「Si75」)をシリカの 10%、酸化亜鉛(亜鉛華 # 1) 2部、ステ アリン酸 1. 5部及び老化防止剤 N—(1 , 3—ジメチルブチル) N フエ二ルー p— フエ二レンジァミン (大内新興社製、商品名「ノクラック 6C」) 2部を添加し、混練物の 排出温度が 120°Cになるように 6分間混練した後、得られた混合物を 50°Cのオーブ ンロールに移して、更に硫黄(S # 325) 1. 9部並びに架橋促進剤 1 , 3—ジフエ二ノレ グァニジン(大内新興社製、商品名「ノクセラー D」)0. 8部及び N シクロへキシル —2—ベンゾチアゾリルスルフェンアミド(大内新興社製、商品名「ノクセラー CZ— G」 ) 2部を加えて混練し、架橋性(の混合)油展ゴム組成物 17を得た。 Subsequently, the obtained mixed oil-extended rubber composition 17 was mixed with silica (manufactured by Rhodia, trade name “Zeo sil (R) 1165MP”, BET specific surface area = 160 m 2 / g, pH = 6.5) 80 parts, SAF 10 parts of carbon black, 5 parts of wax (made by Ouchi Shinsei Co., Ltd., trade name “Sannok”), silane coupling agent (made by Dedasa Co., Ltd., trade name “Si75”), 10% of silica, zinc oxide (zinc flower # 1 ) 2 parts, stearic acid 1.5 parts and anti-aging agent N— (1,3-dimethylbutyl) N Phenol p-Phenylenediamine (trade name “NOCRACK 6C” manufactured by Ouchi Shinsei Co., Ltd.) 2 parts And knead for 6 minutes so that the discharge temperature of the kneaded product becomes 120 ° C. Then, transfer the resulting mixture to an oven roll at 50 ° C, and further add 1. 9 parts of sulfur (S # 325) and Cross-linking accelerator 1,3-diphenino guanidine (made by Ouchi Shinsei Co., Ltd., trade name “Noxeller D”) 0.8 part and N cyclohexyl —2— 2 parts of benzothiazolylsulfenamide (made by Ouchi Shinsei Co., Ltd., trade name “Noxeller CZ-G”) was added and kneaded to obtain a crosslinkable (mixed) oil-extended rubber composition 17.
この架橋性(の混合)油展ゴム組成物 17を 160°Cで 20分加硫して、加硫物 17を得 た。  This crosslinkable (mixed) oil-extended rubber composition 17 was vulcanized at 160 ° C. for 20 minutes to obtain a vulcanized product 17.
また、用いる共役ジェン重合体 (P1)、重合体 (P2)及びプロセスオイルの種類と量 を表 6に示すとおりに変更すること以外は、実施例 17と同様にして、実施例 18〜22 の混合油展ゴム組成物 18〜22、架橋性(の混合)油展ゴム組成物 18〜22及びカロ 硫物 18〜22を得た。  Further, in the same manner as in Example 17, except that the types and amounts of the conjugated diene polymer (P1), the polymer (P2), and the process oil used are changed as shown in Table 6, Examples 18 to 22 Mixed oil-extended rubber compositions 18-22, crosslinkable (mixed) oil-extended rubber compositions 18-22, and carbonates 18-22 were obtained.
加硫物 17〜22の低発熱性及び耐摩耗性を評価した結果を表 6に示す。  Table 6 shows the results of evaluating the low heat buildup and wear resistance of vulcanizates 17-22.
〔比較例 5〕 (Comparative Example 5)
共役ジェン重合体 (P1)として、共役ジェン重合体 P12に代えて市販のコバルト触 媒系ブタジエンゴム〔シス 1 , 4 結合含有量 96%、 1 , 2 ビュル結合含有量 2. 8 %、ムーニー粘度(ML , 100°C) 80. 5、分子量分布 2. 6。 日本ゼオン社製、商  Commercially available cobalt-catalyzed butadiene rubber (conjugated with a cis 1,4 bond content of 96%, 1,2 bulle bond content of 2.8%, Mooney viscosity) (ML, 100 ° C) 80.5, molecular weight distribution 2.6. Made by Nippon Zeon Co., Ltd.
1 + 4  1 + 4
品名「Nipol BR1441」〕を使用するほかは、実施例 17と同様にして、混合油展ゴム 組成物 C5及び架橋性(の混合)油展ゴム組成物 C5を得た。 この架橋性(の混合)油展ゴム組成物 C5から、実施例 17と同様にして、加硫物 C5 を得、この低発熱性及び耐摩耗性を評価した結果を表 6に示す。 The mixed oil-extended rubber composition C5 and the crosslinkable (mixed) oil-extended rubber composition C5 were obtained in the same manner as in Example 17, except that the product name “Nipol BR1441”] was used. From this crosslinkable (mixed) oil-extended rubber composition C5, a vulcanizate C5 was obtained in the same manner as in Example 17, and the results of evaluating the low heat buildup and wear resistance are shown in Table 6.
[表 6] [Table 6]
Figure imgf000043_0001
Figure imgf000043_0001
Figure imgf000043_0002
Figure imgf000043_0002
* 7 :結合スチレン量(%) + 2 Xビニル結合含有量( )  * 7: Bonded styrene content (%) + 2 X vinyl bond content ()
* 8: Ar02:改質ァロマオイル t一 DAE (新日本石油社製) 以上の結果から、本発明の油展ゴム組成物はタイヤ用部材として優れた特性を示 す。従って、この油展ゴム組成物を用いて得たタイヤ用部材を備えるタイヤは低燃費 性に優れ、耐摩耗性に優れることが分る。  * 8: Ar02: Modified Aloma Oil t 1 DAE (manufactured by Nippon Oil Corporation) From the above results, the oil-extended rubber composition of the present invention exhibits excellent properties as a tire member. Therefore, it can be seen that a tire including a tire member obtained by using this oil-extended rubber composition is excellent in fuel efficiency and wear resistance.

Claims

請求の範囲 The scope of the claims
[1] 少なくともブタジエン単位を有する共役ジェン重合体であって、 65〜200のム一二 一粘度(ML , 100°C)及び 1. 5  [1] Conjugated polymer having at least butadiene units, having a viscosity of 65 to 200 (ML, 100 ° C) and 1.5
1 + 4 〜4. 0の分子量分布を有し、且つブタジエン単 位部分において 96. 5%以上のシス 1 , 4 結合含有量及び 1. 0%以下のビュル 結合含有量を有する共役ジェン重合体 (P1)を必須成分とするゴム成分 100重量部 並びにァロマ分を 5重量%以上含有するプロセスオイル 10〜; 120重量部を含有して なる油展ゴム組成物。  Conjugated polymer having a molecular weight distribution of 1 + 4 to 4.0 and having a cis 1,4 bond content of 96.5% or more and a butyl bond content of 1.0% or less in the butadiene unit portion. An oil-extended rubber composition comprising 100 parts by weight of a rubber component containing (P1) as an essential component and 10 to 120 parts by weight of a process oil containing 5% by weight or more of aroma.
[2] 共役ジェン重合体(P1)の、ムーニー粘度(ML , 100°C)が 75〜; 175であり、分  [2] Conjugated polymer (P1) has Mooney viscosity (ML, 100 ° C) of 75-;
1 + 4  1 + 4
子量分布が 2. 0〜3. 5であり、ブタジエン単位部分におけるシス 1 , 4 結合含有 量が 97. 5%以上且つビュル結合含有量が 0. 9%以下である請求の範囲第 1項に 記載の油展ゴム組成物。  2. The molecular weight distribution is 2.0 to 3.5, the cis 1,4 bond content in the butadiene unit portion is 97.5% or more and the bull bond content is 0.9% or less. The oil-extended rubber composition described in 1.
[3] 共役ジェン重合体 (P1)中のブタジエン単位の比率が 80重量%以上である請求の 範囲第 1項又は第 2項に記載の油展ゴム組成物。  [3] The oil-extended rubber composition according to claim 1 or 2, wherein the ratio of the butadiene units in the conjugate polymer (P1) is 80% by weight or more.
[4] 共役ジェン重合体 (P1)が、ランタン系列金属化合物 (A)、有機アルミニウム化合 物(B)、有機アルミニウムハイドライド化合物(C)及びハロゲン化合物(D)で構成され る重合触媒を用いて、ブタジエンを必須成分とする単量体を重合して得られたもので ある請求の範囲第 1項〜第 3項のいずれ力、 1項に記載の油展ゴム組成物。  [4] Using a polymerization catalyst in which the conjugation polymer (P1) is composed of a lanthanum series metal compound (A), an organoaluminum compound (B), an organoaluminum hydride compound (C), and a halogen compound (D). The oil-extended rubber composition according to any one of claims 1 to 3, which is obtained by polymerizing a monomer having butadiene as an essential component.
[5] 共役ジェン重合体 (P1)がランタン系列金属化合物 (A)、有機アルミニウム化合物( B)、有機アルミニウムハイドライド化合物(C)及びハロゲン化合物(D)で構成される 重合触媒を用いて共役ジェン単量体を重合したのち、更に下記一般式(1)で表され る有機金属ハロゲン化物(E)で、変性して得られたものである請求の範囲第 4項に記 載の油展ゴム組成物。  [5] Conjugation polymer (P1) is composed of lanthanum series metal compound (A), organoaluminum compound (B), organoaluminum hydride compound (C), and halogen compound (D). The oil-extended rubber according to claim 4, which is obtained by polymerizing the monomer and further modifying with an organometallic halide (E) represented by the following general formula (1). Composition.
[化 1コ  [Chemical 1
R 寸 R2 4.g M Xg) h ( l ) R size R 2 4. G MX g ) h (l)
(式中、 Mは、 Si、 Ge、 Sn又は Tiであり、 Xはハロゲン原子である。 Xが複数存在する ときは、それらは、互いに同じでも異なっていてもよい。 R1は、単結合であるか、へテ 口原子を含んでいてもよい炭素数 1〜20の炭化水素基を表す。 R2は、水素、又はへ テロ原子を含んでいてもよい炭素数 1〜20の炭化水素基を表す。 R2が複数存在する ときは、それらは、互いに同じでも異なっていてもよい。 g及び hは、それぞれ、;!〜 4 の整数を表す。 h力 のとき、 fは 0である。 h力 〜4のとき、 fは 1であり、少なくとも 1つ の R2は R1と結合して!/、る力 S、このとき R2は単結合であってもよ!/、)。 (In the formula, M is Si, Ge, Sn or Ti, and X is a halogen atom. When a plurality of X are present, they may be the same or different from each other. R 1 is a single bond. Or a hydrocarbon group having 1 to 20 carbon atoms which may contain a heteroatom, and R 2 represents hydrogen or It represents a hydrocarbon group having 1 to 20 carbon atoms which may contain a terror atom. When a plurality of R 2 are present, they may be the same as or different from each other. g and h each represent an integer of !!-4. When h force, f is 0. When h-force ˜4, f is 1, and at least one R 2 is bonded to R 1 ! /, the force S, and R 2 may be a single bond! /,).
[6] 重合触媒が、ランタン系列金属化合物 (A)、有機アルキルアルミニウム化合物(B) 、有機アルミニウムハイドライド化合物(C)及びハロゲン化合物(D)で構成されるもの であって、有機アルキルアルミニウム化合物(B)と有機アルミニウムハイドライド化合 物(C)とのモル比(B/C)力 5≤(B/C)≤1 , 000を満たすものである請求の範囲 第 4項又は第 5項に記載の油展ゴム組成物。  [6] The polymerization catalyst is composed of a lanthanum series metal compound (A), an organic alkylaluminum compound (B), an organic aluminum hydride compound (C), and a halogen compound (D). The molar ratio (B / C) force between B) and the organoaluminum hydride compound (C), which satisfies 5≤ (B / C) ≤1,000, Oil-extended rubber composition.
[7] プロセスオイルがァロマ分を 10〜40重量%含有するものである請求の範囲第 1項 〜第 6項のいずれか 1項に記載の油展ゴム組成物。  [7] The oil-extended rubber composition according to any one of claims 1 to 6, wherein the process oil contains 10 to 40% by weight of aroma.
[8] ゴム成分が共役ジェン重合体 (P1)のみからなるものである請求の範囲第 1項〜第 7項のいずれか 1項に記載の油展ゴム組成物。  [8] The oil-extended rubber composition according to any one of [1] to [7], wherein the rubber component is composed only of the conjugated polymer (P1).
[9] ゴム成分が共役ジェン重合体 ^1) 5重量%以上と、この共役ジェン重合体 (P1) 以外の重合体ゴム(P2) 95重量%以下と、力 なるものである請求の範囲第 1項〜第 7項のいずれか 1項に記載の油展ゴム組成物。  [9] The rubber component is a conjugation polymer ^ 1) of 5% by weight or more and a polymer rubber (P2) other than this conjugation polymer (P1) of 95% by weight or less. 8. The oil-extended rubber composition according to any one of items 1 to 7.
[10] 共役ジェン重合体 (P1)以外の重合体ゴム(P2)が芳香族ビュルと共役ジェンとの 共重合体であって、 100〜200のム一二一粘度(ML , 100°C)を有し共役ジェン  [10] The polymer rubber (P2) other than the conjugated diene polymer (P1) is a copolymer of aromatic bur and conjugated diene, and has a viscosity of 100 to 200 (ML, 100 ° C) Conjugated Gen
1 + 4  1 + 4
単位において 7〜85%のビュル結合含有量を有するものである請求の範囲第 9項に 記載の油展ゴム組成物。  The oil-extended rubber composition according to claim 9, which has a bull bond content of 7 to 85% in units.
[11] ゴム成分 100重量部に対して 5〜; 120重量部の、シリカ、クレー、タルク、炭酸カル シゥム、カーボンブラック、カーボンナノチューブ、フラーレン、ナイロン短繊維及び水 酸化アルミニウムからなる群から選ばれる少なくとも 1つの配合剤を更に含有してなる 請求の範囲第 1項〜第 10項のいずれ力、 1項に記載の油展ゴム組成物。 [11] Rubber component 5 to 100 parts by weight; 120 parts by weight selected from the group consisting of silica, clay, talc, calcium carbonate, carbon black, carbon nanotubes, fullerenes, nylon short fibers, and aluminum hydroxide The oil-extended rubber composition according to any one of claims 1 to 10, further comprising at least one compounding agent.
[12] 共役ジェン重合体 (P1)を必須成分とするゴム成分の有機溶媒溶液にプロセスオイ ルを混合した後、脱溶媒する請求の範囲第 1項〜第 11項のいずれか 1項に記載の 油展ゴム組成物の製造方法。 [12] The method according to any one of claims 1 to 11, wherein the process oil is mixed with an organic solvent solution of a rubber component containing the conjugation polymer (P1) as an essential component, and then the solvent is removed. A method for producing an oil-extended rubber composition.
[13] 請求の範囲第 1項〜第 11項のいずれか 1項に記載の油展ゴム組成物を架橋して 請求の範囲第 13項に記載のタイヤ用部材を備えてなるタイヤ。 [13] The oil-extended rubber composition according to any one of claims 1 to 11 is crosslinked. A tire comprising the tire member according to claim 13.
PCT/JP2007/069815 2006-10-11 2007-10-11 Oil extended rubber composition, method for producing the same, tire member, and tire WO2008044722A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538747A JPWO2008044722A1 (en) 2006-10-11 2007-10-11 Oil-extended rubber composition, method for producing the same, tire member and tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006278159 2006-10-11
JP2006-278159 2006-10-11

Publications (1)

Publication Number Publication Date
WO2008044722A1 true WO2008044722A1 (en) 2008-04-17

Family

ID=39282912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069815 WO2008044722A1 (en) 2006-10-11 2007-10-11 Oil extended rubber composition, method for producing the same, tire member, and tire

Country Status (2)

Country Link
JP (1) JPWO2008044722A1 (en)
WO (1) WO2008044722A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275393A (en) * 2009-05-27 2010-12-09 Yokohama Rubber Co Ltd:The Rubber composition for tire
WO2012165038A1 (en) * 2011-05-30 2012-12-06 住友ゴム工業株式会社 Rubber composition for tread, and pneumatic tire
WO2013132848A1 (en) * 2012-03-07 2013-09-12 株式会社ブリヂストン Polymer and method for producing same, rubber composition containing polymer, and tire having rubber composition
JP2013203796A (en) * 2012-03-27 2013-10-07 Ube Industries Ltd Modified diene-based rubber, method for producing the same and rubber composition by using the same
JP2014503619A (en) * 2010-11-26 2014-02-13 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire tread
JP2014523941A (en) * 2011-06-29 2014-09-18 ヴェルサリス・ソシエタ・ペル・アチオニ Process for producing 1,3-butadiene-styrene copolymer and its use in vulcanizable elastomer compositions
JP2015098561A (en) * 2013-11-20 2015-05-28 住友ゴム工業株式会社 Pneumatic tire
WO2015076048A1 (en) * 2013-11-20 2015-05-28 住友ゴム工業株式会社 Winter tire
US9365703B2 (en) 2012-06-12 2016-06-14 Sumitomo Rubber Industries, Ltd. Rubber composition for tread, and pneumatic tire
CN107531820A (en) * 2015-06-24 2018-01-02 Lg化学株式会社 For the polymer based on conjugated diene for preparing the carbon monoxide-olefin polymeric of the polymer based on conjugated diene and being prepared using the carbon monoxide-olefin polymeric
US10046600B2 (en) 2013-09-17 2018-08-14 Sumitomo Rubber Industries, Ltd. Pneumatic tire
JP2020506999A (en) * 2017-01-13 2020-03-05 ハンジョウ シングル テクノロジーズ カンパニー リミテッドHangzhou Xinglu Technologies Co.,Ltd. Rubber composition, application to foamed product and production method
WO2020116367A1 (en) * 2018-12-03 2020-06-11 宇部興産株式会社 Polybutadiene and method for producing same
JP2022509159A (en) * 2018-11-23 2022-01-20 パブリック・ジョイント・ストック・カンパニー・“シブール・ホールディング” Polymer composition and its preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048940A (en) * 1999-08-06 2001-02-20 Nippon Zeon Co Ltd Butadien-based polymer and its production
JP2001139633A (en) * 1999-11-12 2001-05-22 Jsr Corp Production method for conjugated diene polymer, and rubber composition
JP2005008870A (en) * 2003-05-22 2005-01-13 Jsr Corp Method for producing modified conjugated diene-based polymer and rubber composition
JP2005036065A (en) * 2003-07-17 2005-02-10 Ube Ind Ltd Oil-extended polybutadiene and rubber composition
JP2005154754A (en) * 2003-11-06 2005-06-16 Ube Ind Ltd Oil-extended polybutadiene and rubber composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001048940A (en) * 1999-08-06 2001-02-20 Nippon Zeon Co Ltd Butadien-based polymer and its production
JP2001139633A (en) * 1999-11-12 2001-05-22 Jsr Corp Production method for conjugated diene polymer, and rubber composition
JP2005008870A (en) * 2003-05-22 2005-01-13 Jsr Corp Method for producing modified conjugated diene-based polymer and rubber composition
JP2005036065A (en) * 2003-07-17 2005-02-10 Ube Ind Ltd Oil-extended polybutadiene and rubber composition
JP2005154754A (en) * 2003-11-06 2005-06-16 Ube Ind Ltd Oil-extended polybutadiene and rubber composition

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275393A (en) * 2009-05-27 2010-12-09 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2014503619A (en) * 2010-11-26 2014-02-13 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire tread
US9403971B2 (en) 2011-05-30 2016-08-02 Sumitomo Rubber Industries, Ltd. Rubber composition for tread, and pneumatic tire
WO2012165038A1 (en) * 2011-05-30 2012-12-06 住友ゴム工業株式会社 Rubber composition for tread, and pneumatic tire
JPWO2012165038A1 (en) * 2011-05-30 2015-02-23 住友ゴム工業株式会社 Rubber composition for tread and pneumatic tire
JP2014523941A (en) * 2011-06-29 2014-09-18 ヴェルサリス・ソシエタ・ペル・アチオニ Process for producing 1,3-butadiene-styrene copolymer and its use in vulcanizable elastomer compositions
WO2013132848A1 (en) * 2012-03-07 2013-09-12 株式会社ブリヂストン Polymer and method for producing same, rubber composition containing polymer, and tire having rubber composition
JP2013185059A (en) * 2012-03-07 2013-09-19 Bridgestone Corp Polymer and producing method thereof, rubber composition containing the polymer, and tire having the rubber composition
US9540464B2 (en) 2012-03-07 2017-01-10 Bridgestone Corporation Polymer and method for producing same, rubber composition containing polymer, and tire having rubber composition
JP2013203796A (en) * 2012-03-27 2013-10-07 Ube Industries Ltd Modified diene-based rubber, method for producing the same and rubber composition by using the same
US9365703B2 (en) 2012-06-12 2016-06-14 Sumitomo Rubber Industries, Ltd. Rubber composition for tread, and pneumatic tire
US10046600B2 (en) 2013-09-17 2018-08-14 Sumitomo Rubber Industries, Ltd. Pneumatic tire
WO2015076049A1 (en) * 2013-11-20 2015-05-28 住友ゴム工業株式会社 Pneumatic tire
WO2015076048A1 (en) * 2013-11-20 2015-05-28 住友ゴム工業株式会社 Winter tire
JPWO2015076048A1 (en) * 2013-11-20 2017-03-16 住友ゴム工業株式会社 Winter tires
JP2015098561A (en) * 2013-11-20 2015-05-28 住友ゴム工業株式会社 Pneumatic tire
US10137733B2 (en) 2013-11-20 2018-11-27 Sumitomo Rubber Industries, Ltd. Pneumatic tire
CN107531820A (en) * 2015-06-24 2018-01-02 Lg化学株式会社 For the polymer based on conjugated diene for preparing the carbon monoxide-olefin polymeric of the polymer based on conjugated diene and being prepared using the carbon monoxide-olefin polymeric
JP2020506999A (en) * 2017-01-13 2020-03-05 ハンジョウ シングル テクノロジーズ カンパニー リミテッドHangzhou Xinglu Technologies Co.,Ltd. Rubber composition, application to foamed product and production method
JP7166639B2 (en) 2017-01-13 2022-11-08 ハンジョウ シングル テクノロジーズ カンパニー リミテッド RUBBER COMPOSITION AND APPLICATION TO FOAMED PRODUCT AND PRODUCTION METHOD
JP2022509159A (en) * 2018-11-23 2022-01-20 パブリック・ジョイント・ストック・カンパニー・“シブール・ホールディング” Polymer composition and its preparation method
JP7212162B2 (en) 2018-11-23 2023-01-24 パブリック・ジョイント・ストック・カンパニー・“シブール・ホールディング” Polymer composition and method for its preparation
WO2020116367A1 (en) * 2018-12-03 2020-06-11 宇部興産株式会社 Polybutadiene and method for producing same

Also Published As

Publication number Publication date
JPWO2008044722A1 (en) 2010-02-18

Similar Documents

Publication Publication Date Title
WO2008044722A1 (en) Oil extended rubber composition, method for producing the same, tire member, and tire
JP5401988B2 (en) Process for producing modified conjugated diene polymer
JP5260176B2 (en) Pneumatic tire
JP2011088988A (en) Tire
JP6624059B2 (en) Cyclic olefin rubber and method for producing the same, and rubber composition, cross-linked rubber and tire
JP5072191B2 (en) Conjugated diene polymerization catalyst and production method thereof, and conjugated diene polymer and production method thereof.
JP5463838B2 (en) Method and composition for producing cis-1,4-polybutadiene
CN113677719A (en) Modified high-cis polydiene polymers, related methods, and rubber compositions
WO2016158676A1 (en) Rubber composition, crosslinked rubber product, and tire
CN113166314B (en) Modified conjugated diene polymer and rubber composition containing the same
JP5840481B2 (en) Pneumatic tire
JP5688313B2 (en) Rubber composition and tire
KR101622067B1 (en) Method for producing polymerization catalyst composition, polymerization catalyst composition, method for producing polymer composition, and polymer composition
JP5938915B2 (en) Method for producing polybutadiene rubber
JP6304163B2 (en) Method for producing polybutadiene
CN113166315B (en) Process for producing modified conjugated diene polymer
JP2017179117A (en) Polybutadiene rubber and production method therefor, and rubber composition obtained using the same
WO2021039408A1 (en) Vulcanized rubber composition, production method for vulcanized rubber composition, and tire
JP5044966B2 (en) Siloxane structure-containing base polymer composition, reinforcing polymer composition, and vulcanizable rubber composition
JP6163822B2 (en) Modified cis-1,4-polybutadiene, process for producing the same, and rubber composition
JP2014189678A (en) Modified cis-1,4-polybutadiene, method for manufacturing the same, and rubber composition
WO2019163870A1 (en) Rubber composition
CN111630098A (en) Rubber composition, tire, conveyor belt, rubber crawler, vibration isolator, and hose
JP2019172808A (en) Conjugated diene polymer
JP5894016B2 (en) Method for producing polymer composition and polymer composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829553

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538747

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829553

Country of ref document: EP

Kind code of ref document: A1