WO2020116034A1 - 物理量測定装置 - Google Patents

物理量測定装置 Download PDF

Info

Publication number
WO2020116034A1
WO2020116034A1 PCT/JP2019/040807 JP2019040807W WO2020116034A1 WO 2020116034 A1 WO2020116034 A1 WO 2020116034A1 JP 2019040807 W JP2019040807 W JP 2019040807W WO 2020116034 A1 WO2020116034 A1 WO 2020116034A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical quantity
measuring device
quantity measuring
introduction
guide
Prior art date
Application number
PCT/JP2019/040807
Other languages
English (en)
French (fr)
Inventor
丈夫 細川
安藤 亮
文夫 結城
貴成 秋元
直生 斎藤
洋 小貫
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020559768A priority Critical patent/JP7065207B2/ja
Publication of WO2020116034A1 publication Critical patent/WO2020116034A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments

Definitions

  • the present invention relates to a physical quantity measuring device.
  • an electronically controlled fuel injection system is adopted, and a physical quantity measuring device that measures various physical quantities is installed in the engine room.
  • the physical quantity measuring device arranged in the engine room is equipped with sensors such as a humidity sensor and a pressure sensor. These sensors are used for fuel control.
  • a humidity sensor is arranged in an intake passage through which intake air flows, and a signal is generated according to the humidity of intake air flowing through this intake passage.
  • the intake passage has a throttle for reducing the flow passage cross-sectional area, and the humidity sensor is arranged in this throttle.
  • the humidity sensor of Patent Document 1 by disposing the humidity sensor in the diaphragm, the flow velocity of the intake air is increased, the retention of the intake air in the vicinity of the humidity sensor is suppressed, and the responsiveness of the humidity sensor is improved. ..
  • Patent Document 1 there is a problem that highly accurate measurement cannot be performed due to the influence of the droplet when the intake air contains the droplet.
  • the physical quantity measuring device a sensor provided in the measurement chamber, an introduction portion for introducing the measurement target medium into the measurement chamber, a guide portion provided so as to protrude from the inlet opening of the introduction portion,
  • the guide portion includes a penetrating portion that penetrates in the thickness direction, and the guide portion is such that the lower end portion of the penetrating portion is located in a portion where the opening area of the introducing portion is large. And is arranged in the introduction part.
  • the present invention even if the intake air contains droplets, it is possible to suppress the influence of the droplets and perform more accurate measurement.
  • FIG. 3 is a partially enlarged cross-sectional view of the AA cross section of the physical quantity measuring device.
  • FIG. 1 is a top view of the physical quantity measuring device 1. This FIG. 1 shows the substrate surface in order to make the internal structure easy to understand.
  • FIG. 2 is a cross-sectional view showing the AA cross section of FIG. In the following description, the vertical direction is based on the vertical direction on the drawing in FIG. 2, and does not necessarily correspond to the vertical direction in the state where the physical quantity measuring device 1 is mounted.
  • the physical quantity measuring device 1 includes a substrate 10 in a housing 1A, and an electronic component 10a and a connecting portion 10b on the substrate 10.
  • the housing 1A is a resin member having a measuring portion accommodation space 13.
  • the substrate 10 on which the humidity sensor 4 and the pressure sensor 5 are mounted is housed in the measuring unit housing space 13.
  • the humidity sensor 4 and the pressure sensor 5 are mounted on the same surface of the substrate 10, the pressure sensor 5 is provided in the first measurement chamber 5A of the housing 1A, and the humidity sensor 4 is provided in the second measurement chamber 4A of the housing 1A.
  • the measurement unit accommodation space 13 has a configuration in which the first measurement chamber 5A and the second measurement chamber 4A communicate with each other.
  • the upper surface of the substrate 10 is a circuit room 15 in which the electronic components 10a and the like are arranged, and the circuit room 15 is covered with a sensor cover (not shown).
  • the connector portion 9 is integrally formed with the housing 1A by the resin forming the main body of the housing 1A.
  • a plurality of connection terminals 9 a project from the circuit chamber 15 into the inner space of the connector section 9. That is, the connection terminal 9a is provided so as to project outward from the circuit chamber 15 of the housing 1A.
  • the connection terminal 9a is electrically connected to the humidity sensor 4 and the pressure sensor 5 via the substrate 10, and supplies power to the humidity sensor 4 and the pressure sensor 5 and extracts detection signals from the humidity sensor 4 and the pressure sensor 5. to enable.
  • the physical quantity measuring device 1 is fixed to the pipe wall of the intake pipe 11 via the O-ring 16, and the side fixed to the pipe wall of the intake pipe 11 is called the base end side or the fixed side, and the intake air is taken from the base end side.
  • the side of the intake pipe 12 formed inside the pipe 11 that is inserted into the air passage (air passage) is referred to as the tip side.
  • the first measurement chamber 5A, the pressure sensor 5, the second measurement chamber 4A, and the humidity sensor 4 of the physical quantity measurement device 1 are arranged on the base end side, and the temperature sensor 14 and the guide portion 2 described later are arranged on the tip end side.
  • the measuring portion housing space 13 formed by the housing 1A is provided with an introducing portion 3 extending toward the tip side.
  • the end portion of the introduction portion 3 on the base end side is the substrate 10, and the substrate 10 is configured to close the passage formed inside the introduction portion 3. That is, the introduction part 3 is provided in a direction perpendicular to the plane of the substrate 10 (mounting surface of the substrate 10).
  • a guide portion 2 is provided in the center of the inside of the leading end side of the introduction portion 3 in a direction perpendicular to the plane of the substrate 10.
  • a temperature sensor 14 is provided at the tip 2c of the guide portion 2. The guide portion 2 and the temperature sensor 14 are fixed to the housing 1A.
  • FIG. 3 is a view showing the guide portion 2, and shows the guide portion 2 in the BB cross section of FIG.
  • the guide portion 2 includes a penetrating portion 2 a that penetrates in the thickness direction of the guide portion 2 at the central portion of the guide portion 2.
  • the introduction part 3 includes an inlet opening 3a having an opening area larger than the opening area of the portion where the O-ring is provided.
  • the guide portion 2 is arranged such that the lower end portion 2b of the penetrating portion 2a is located in the inlet opening portion 3a.
  • the guide part 2 is arranged on the distal end side of the introduction part 3, and the air flowing through the intake pipe 11 hits the guide part 2, and the air is positively directed to the first measurement chamber 5A from inside the introduction part 3 toward the proximal end side. Replace with. That is, the air hitting the guide portion 2 is introduced from the introduction portion 3 into the first measurement chamber 5A over the entire circumference (360°) in the introduction portion 3 in the circumferential direction. Therefore, the air can be introduced regardless of the direction of the flow of the air flowing through the intake pipe 11.
  • Air has a flow of introduction from the tip side to the base side and a flow of discharge from the base side to the tip side. Therefore, the portion of the introduction part 3 functions as gas exchange. In the gas exchange, the air is smoothly replaced, and the air near the substrate 10 is smoothly replaced.
  • the introduction part 3 and the first measurement chamber 5A communicate with each other, and the first measurement chamber 5A and the second measurement chamber 4A communicate with each other.
  • the center of the introduction unit 3 and the center of the second measurement chamber 4A are arranged at a position separated by a predetermined distance. That is, the second measurement chamber 4A is arranged offset from the opening of the introduction section 3. For this reason, air is positively introduced into the first measurement chamber 5A from the introduction portion 3, and vertical vortices are generated in the vertical direction in the first measurement chamber 5A. In addition, a horizontal vortex is generated in the horizontal direction in the first measurement chamber 5A.
  • the second measurement chamber 4A introduces air into the second measurement chamber 4A by utilizing the phenomenon that the gas spreads in the space due to the gas concentration difference (air humidity difference in this embodiment).
  • the introduction portion 3 includes the inlet opening 3a having an opening area larger than the opening area of the portion where the O-ring is provided, and the guide portion 2 has the lower end 2b of the penetrating portion 2a with the inlet opening. It is arranged so as to be located in the portion 3a. With this configuration, even when the liquid droplets are mixed in the air, the liquid droplets are guided from the penetrating portion 2a toward the air passage (air passage) in the intake pipe 12. Further, it is possible to prevent the liquid droplets from sticking between the guide portion 2 and the housing 1A, that is, in the direction toward the base end side in the introduction portion 3. As a result, the measurement of the pressure sensor 5 of the first measurement chamber 5A and the measurement of the humidity sensor 4 of the second measurement chamber 4A are not hindered, and the responsiveness of the sensor can be ensured.
  • FIG. 4 is a partially enlarged sectional view of the physical quantity measuring device, which is a partially enlarged sectional view taken along the line BB of FIG.
  • the introduction part 3 includes an inclined part 3b having the same shape that gradually expands toward the inlet opening 3a. If the distance from the tip 2c of the guide portion 2 to the starting end 3c of the inlet opening 3a is t1, and the height of the inclined portion 3b is T, the relationship of T ⁇ t1 is established. Further, when the distance from the starting end 3c of the inlet opening 3a to the lower end 2b of the penetrating portion 2a of the guide portion 2 is t2 and the height of the inclined portion 3b is T, the relationship of T>t2 is established.
  • the liquid droplets pass through the inlet opening 3a of the introduction portion 3 through the penetrating portion 2a of the guide portion 2 and then inside the intake pipe 12. Are guided in the direction of the air passage (air passage). As a result, it is possible to prevent the droplets from sticking between the guide portion 2 and the housing 1A, that is, in the direction toward the base end side in the introduction portion 3.
  • FIG. 5 is a partially enlarged cross-sectional view of the physical quantity measuring device, and is a partially enlarged cross-sectional view taken along the line AA of FIG. 1 (a partially enlarged view of FIG. 2).
  • the lower end portion 2b of the penetrating portion 2a of the guide portion 2 has a R-shaped cross-section both ends 2d so that droplets can be easily discharged from the penetrating portion 2a. Is formed in. At least one end of the lower end portion 2b of the penetrating portion 2a may have an R shape.
  • the physical quantity measuring device 1 projects from the sensors 4 and 5 provided in the measurement chambers 4A and 5A, the introduction unit 3 that introduces the medium to be measured into the measurement chambers 4A and 5A, and the inlet opening 3a of the introduction unit 3.
  • the guide portion 2 is provided with a guide portion 2 that is provided so as to provide a guide portion 2.
  • the guide portion 2 includes a penetrating portion 2a that penetrates in the thickness direction. Is arranged in the introduction portion 3 so as to be located in a portion having a large opening area. As a result, even if the intake air contains droplets, it is possible to suppress the influence of the droplets and perform more accurate measurement.
  • the present invention can be implemented by modifying the embodiment described above as follows.
  • the guide portion 2 is arranged so as to be displaced from the center of the introduction portion 3 by a predetermined angle. As a result, it becomes possible to measure the medium to be measured regardless of the direction of the medium to be measured flowing in the intake pipe 12.
  • the present invention is not limited to the above-described embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. .. Further, a configuration in which the above embodiment and a plurality of modified examples are combined may be adopted.
  • SYMBOLS 1 Physical quantity measuring device, 1A... Housing, 2... Guide part, 2a... Penetration part, 2b... Lower end part, 3... Introducing part, 3a... Entrance opening part, 3b... Inclined part, 4... Humidity sensor, 4A... 2nd Measuring chamber, 5... Pressure sensor, 5A... First measuring chamber, 9... Connector part, 9a... Connection terminal, 10... Board, 11... Intake pipe, 12... Intake pipe, 13... Measuring part accommodating space, 15... Circuit room ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

吸入空気に液滴が含まれていた場合に、液滴の影響により高精度な測定ができない課題があった。 導入部3は、Oリングが設けられる部分の開口面積よりも大きい開口面積を有する入口開口部3aを備え、ガイド部2は、貫通部2aの下端部2bが入口開口部3aに位置するように配置される。この構成により、空気中に液滴が混在していた場合であっても、液滴は貫通部2aから吸気管内12の空気通路(空気流路)方向へ導かれる。そして、ガイド部2とハウジング1A間、すなわち、導入部3内の基端側に向かう方向に液滴が張り付くのを抑制することができる。

Description

物理量測定装置
 本発明は、物理量測定装置に関する。
 自動車では、電子制御燃料噴射システムが採用され、エンジンルーム内には様々な物理量を計測する物理量計測装置が配置されている。エンジンルーム内に配置される物理量計測装置には、湿度センサや圧力センサなどのセンサが備えられている。これらのセンサは燃料制御のために利用されている。
 自動車用等の内燃機関においては、低燃費化を図るために、吸入空気の流量、温度、及び圧力に加え、湿度の環境状態を高精度に計測することが求められており、自動車用内燃機関で湿度を測定する場合、高い検出精度および高い応答性が要求される。
 特許文献1では、吸入空気の流れる吸気路に湿度センサが配置され、この吸気路を流れる吸入空気の湿度に応じた信号を発生する。吸気路は流路断面積を減少させる絞りを有し、湿度センサはこの絞りに配置されている。特許文献1の湿度センサは、絞りに湿度センサを配置することで、吸入空気の流速を増加させ、湿度センサの近傍において吸入空気が滞留するのを抑制し、湿度センサの応答性を高めている。
特開2015-232514号公報
 特許文献1では、吸入空気に液滴が含まれていた場合に、液滴の影響により高精度な測定ができない課題があった。
 本発明による物理量計測装置は、計測室に設けられるセンサと、前記計測室に被計測媒体を導入する導入部と、前記導入部の入口開口部から突出するように設けられているガイド部と、を備える物理量計測装置において、前記ガイド部は、厚さ方向に貫通する貫通部を備えており、前記ガイド部は、前記貫通部の下端部が前記導入部の開口面積が大きい部分に位置するように、前記導入部に配置される。
 本発明によれば、吸入空気に液滴が含まれていた場合でも、液滴の影響を抑制してより高精度な測定が可能になる。
物理量計測装置の上面図である。 物理量計測装置の断面図である。 ガイド部材を示す図である。 物理量計測装置のB-B断面の部分拡大断面図である。 物理量計測装置のA-A断面の部分拡大断面図である。
 以下、本発明の一実施形態について図面を参照して説明する。なお、以下の説明では、本発明に係る物理量計測装置1を内燃機関の吸気システムに適用した例について説明するが、内燃機関の吸気システムに限らずその他のシステムに適用することができる。
 図1は、物理量計測装置1の上面図である。この図1は、内部の構成を分かり易くする為に、基板面を示す。図2は、図1のA-A断面を示す断面図である。以下の説明において、上下方向は図2における図面上の上下方向を基準にしており、物理量計測装置1が実装された状態における上下方向とは必ずしも一致しない。
 物理量計測装置1は、図1に示すように、ハウジング1A内に基板10を備え、基板10上には電子部品10aや接続部10bを備えている。
 図2に示すように、ハウジング1Aは、計測部収容空間13を有する樹脂製の部材である。計測部収容空間13には、湿度センサ4および圧力センサ5を搭載した基板10が収容されている。湿度センサ4と圧力センサ5は基板10の同一面上に実装されており、圧力センサ5はハウジング1Aの第1計測室5Aに、湿度センサ4はハウジング1Aの第2計測室4Aに設けられる。計測部収容空間13は、第1計測室5Aと第2計測室4Aとが連通する構成である。
 基板10の上面は、電子部品10aなどが配置される回路室15であり、回路室15は図示省略したセンサカバーで覆われる。ハウジング1Aには、ハウジング1Aの本体を形成する樹脂により、コネクタ部9が一体に形成されている。コネクタ部9の内側空間には、回路室15から複数の接続端子9aが突き出している。すなわち、接続端子9aはハウジング1Aの回路室15から外側に突出するように設けられている。接続端子9aは基板10を介して湿度センサ4や圧力センサ5に電気的に接続され、湿度センサ4や圧力センサ5への電源供給や、湿度センサ4や圧力センサ5からの検出信号の取り出しを可能にする。
 物理量計測装置1は、吸気管11の管壁にOリング16を介して固定されるが、吸気管11の管壁に固定される側を基端側又は固定側と呼び、基端側から吸気管11の内側に形成される吸気管内12の空気通路(空気流路)に挿入される側を先端側と呼ぶ。物理量計測装置1の第1計測室5A、圧力センサ5、第2計測室4A、湿度センサ4は基端側に配置され、後述の温度センサ14、ガイド部2は先端側に配置される。
 ハウジング1Aにより形成される計測部収容空間13には、先端側に向かって延設された導入部3が形成されている。導入部3の基端側の端部は基板10であり、基板10が導入部3の内側に形成される通路を塞ぐ構成になっている。すなわち、導入部3は基板10平面(基板10の実装面)に対して垂直方向に設けられている。導入部3の先端側の内部中央には、基板10平面に対して垂直方向にガイド部2が設けられている。さらに、ガイド部2の先端部2cには温度センサ14が設けられている。ガイド部2および温度センサ14はハウジング1Aに固定されている。
 図3は、ガイド部2を示す図であり、図2のB-B断面におけるガイド部2を示す。図3に示すように、ガイド部2は、ガイド部2の中央部でガイド部2の厚さ方向に貫通する貫通部2aを備えている。
 図2に示すように、導入部3は、Oリングが設けられる部分の開口面積よりも大きい開口面積を有する入口開口部3aを備える。ガイド部2は、貫通部2aの下端部2bが入口開口部3aに位置するように配置される。
 次に、図2を参照して、吸気管11を流れる空気などの被計測媒体を物理量計測装置1の計測部収容空間13に導入する仕組みについて説明する。
 ガイド部2は、導入部3の先端側に配置され、吸気管11を流れる空気はガイド部2に当たり、導入部3内を先端側から基端側へ向け第1計測室5Aまで空気を積極的に入れ換える。すなわち、導入部3内の周方向における全周(360°)において、ガイド部2に当たった空気が、導入部3から第1計測室5Aへ導入される。そのため、吸気管11を流れる空気の流れの方向に依らずに、空気を導入することが可能である。
 導入部3内の空気は、先端側から基端側に向かう導入の流れと、基端側から先端側に向かう排出の流れがある。このため、導入部3の部分はガス交換として機能する。ガス交換では空気の入れ替えがスムーズに行われ、基板10の近傍の空気はスムーズに入れ替わる。
 また、導入部3と第1計測室5Aが連通し、第1計測室5Aと第2計測室4Aとが連通している。さらに、図2に示すように、導入部3の中心と第2計測室4Aの中心とは所定の距離だけ離れた位置に配置される。すなわち、第2計測室4Aは、導入部3の開口からオフセットして配置される。このため、第1計測室5Aには、導入部3から空気が積極的に流入し、第1計測室5A内の上下方向に縦渦が発生する。また、第1計測室5A内の水平方向には横渦が発生する。一方、第2計測室4Aは、ガスの濃度差(本実施形態では空気の湿度差)によりガスが空間内に拡がる現象を利用して、空気を第2計測室4A内に導入する。
 また、前述したように、導入部3は、Oリングが設けられる部分の開口面積よりも大きい開口面積を有する入口開口部3aを備え、ガイド部2は、貫通部2aの下端部2bが入口開口部3aに位置するように配置される。この構成により、空気中に液滴が混在していた場合であっても、液滴は貫通部2aから吸気管内12の空気通路(空気流路)方向へ導かれる。そして、ガイド部2とハウジング1A間、すなわち、導入部3内の基端側に向かう方向に液滴が張り付くのを抑制することができる。これにより、第1計測室5Aの圧力センサ5や、第2計測室4Aの湿度センサ4の計測が妨げられることはなく、センサの応答性を確保することができる。
 図4は、物理量計測装置の部分拡大断面図であり、図2のB-B断面における部分拡大断面図である。
 図4に示すように、導入部3は、入口開口部3aに向かって徐々に広がる同一形状の傾斜部3bを備える。ガイド部2の先端部2cと入口開口部3aの始端3cからの距離をt1、傾斜部3bの高さをTとすると、T<t1の関係が成り立つ。さらに、入口開口部3aの始端3cからガイド部2の貫通部2aの下端部2bとの距離をt2、傾斜部3bの高さをTとすると、T>t2の関係が成り立つ。このような構成にしたので、空気中に液滴が混在していた場合であっても、液滴は、導入部3の入口開口部3aからガイド部2の貫通部2aを経て、吸気管内12の空気通路(空気流路)方向へ導かれる。これにより、ガイド部2とハウジング1A間、すなわち、導入部3内の基端側に向かう方向に液滴が張り付くのを抑制することができる。
 図5は、物理量計測装置の部分拡大断面図であり、図1のA-A断面における部分拡大断面図(図2の部分拡大図)である。
 図5に示すように、導入部3の入口開口部3a付近において、ガイド部2の貫通部2aの下端部2bは、液滴が貫通部2aから排出し易いように、断面両端2dがR形状に形成されている。なお、貫通部2aの下端部2bの少なくとも一端がR形状であればよい。
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)物理量計測装置1は、計測室4A、5Aに設けられるセンサ4、5と、計測室4A、5Aに被計測媒体を導入する導入部3と、導入部3の入口開口部3aから突出するように設けられているガイド部2と、を備え、ガイド部2は、厚さ方向に貫通する貫通部2aを備えており、ガイド部2は、貫通部2aの下端部2bが導入部3の開口面積が大きい部分に位置するように、導入部3に配置される。これにより、吸入空気に液滴が含まれていた場合でも、液滴の影響を抑制してより高精度な測定が可能になる。
(変形例)
 本発明は、以上説明した実施形態を次のように変形して実施することができる。
(1)実施形態では導入部3に、1枚のガイド部2を設置した例を説明したが、導入部3に、複数枚のガイド部2を設置してもよい。この場合、ガイド部2は導入部3の中心を基準に所定角度ずらして配置する。これにより、吸気管内12を流れる被計測媒体の方向に左右されず被計測媒体の計測が可能になる。
(2)実施形態ではガイド部2の厚さ方向に貫通する貫通部2aを設け、貫通部2aの下端部2bの反対側は上端部を設けずに貫通部2aと一体構成とした例を説明した。しかし、貫通部2aの下端部2bの反対側に上端部を形成してもよい。すなわち、貫通部2aの周囲はガイド部2の部材により構成されるので、ガイド部2の強度が増す。
 本発明は、上述の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。
 1…物理量計測装置、1A…ハウジング、2…ガイド部、2a…貫通部、2b…下端部、3…導入部、3a…入口開口部、3b…傾斜部、4…湿度センサ、4A…第2計測室、5…圧力センサ、5A…第1計測室、9…コネクタ部、9a…接続端子、10…基板、11…吸気管、12…吸気管内、13…計測部収容空間、15…回路室。

Claims (7)

  1.  計測室に設けられるセンサと、前記計測室に被計測媒体を導入する導入部と、前記導入部の入口開口部から突出するように設けられているガイド部と、を備える物理量計測装置において、
     前記ガイド部は、厚さ方向に貫通する貫通部を備えており、前記ガイド部は、前記貫通部の下端部が前記導入部の前記開口面積が大きい部分に位置するように、前記導入部に配置される物理量計測装置。
  2.  前記物理量計測装置はOリングを介して前記被計測媒体が流通する管に固定され、
     前記導入部の開口面積が大きい部分は、前記Oリングが設けられる位置の開口面積より開口面積が大きい請求項1に記載の物理量計測装置。
  3.  前記導入部の前記開口面積が大きい部分は、前記導入部の前記入口開口部に向かって徐々に広がる傾斜部を備える請求項1に記載の物理量計測装置。
  4.  前記ガイド部の先端部と前記入口開口部からの距離をt1、前記傾斜部の高さをTとすると、T<t1の関係が成り立つ請求項3に記載の物理量計測装置。
  5.  前記入口開口部から前記貫通部の下端部との距離をt2、前記傾斜部の高さをTとすると、T>t2の関係が成り立つ請求項3に記載の物理量計測装置。
  6.  前記傾斜部は、同一形状である請求項3に記載の物理量計測装置。
  7.  前記ガイド部の厚さ方向に貫通する前記貫通部の下端部の少なくとも一端はR形状である請求項3に記載の物理量計測装置。
PCT/JP2019/040807 2018-12-05 2019-10-17 物理量測定装置 WO2020116034A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020559768A JP7065207B2 (ja) 2018-12-05 2019-10-17 物理量測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018228113 2018-12-05
JP2018-228113 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020116034A1 true WO2020116034A1 (ja) 2020-06-11

Family

ID=70974630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/040807 WO2020116034A1 (ja) 2018-12-05 2019-10-17 物理量測定装置

Country Status (2)

Country Link
JP (1) JP7065207B2 (ja)
WO (1) WO2020116034A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004034427A2 (en) 2002-10-08 2004-04-22 Honeywell International Inc. Semiconductor packages, lead-containing solders and anodes and methods of removing alpha-emitters from materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151723A (ja) * 1993-07-22 1995-06-16 Siemens Ag センサ
JP2002120796A (ja) * 2000-10-17 2002-04-23 Sanshin Ind Co Ltd 船舶推進機の吸気装置
JP2002257608A (ja) * 2001-02-28 2002-09-11 Hitachi Ltd 熱式流量測定装置
JP2007285956A (ja) * 2006-04-19 2007-11-01 Riken Keiki Co Ltd ガス検出器
WO2015068569A1 (ja) * 2013-11-07 2015-05-14 日立オートモティブシステムズ株式会社 物理量計測装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237495B2 (ja) * 2014-06-27 2017-11-29 株式会社デンソー 空気流量測定装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151723A (ja) * 1993-07-22 1995-06-16 Siemens Ag センサ
JP2002120796A (ja) * 2000-10-17 2002-04-23 Sanshin Ind Co Ltd 船舶推進機の吸気装置
JP2002257608A (ja) * 2001-02-28 2002-09-11 Hitachi Ltd 熱式流量測定装置
JP2007285956A (ja) * 2006-04-19 2007-11-01 Riken Keiki Co Ltd ガス検出器
WO2015068569A1 (ja) * 2013-11-07 2015-05-14 日立オートモティブシステムズ株式会社 物理量計測装置

Also Published As

Publication number Publication date
JPWO2020116034A1 (ja) 2021-10-07
JP7065207B2 (ja) 2022-05-11

Similar Documents

Publication Publication Date Title
US7654134B2 (en) Air flow measuring device
JP5279667B2 (ja) 熱式空気流量センサ
KR20070036594A (ko) 유량 측정 장치
JP5557767B2 (ja) センサの構造
EP2439499A1 (en) Sensor structure
WO2012032901A1 (ja) 熱式流体流量測定装置
EP3203195B1 (en) Thermal flow meter
US9927272B2 (en) Air flow meter having a flow rate sensor and a physical quantity sensor
CN106949940B (zh) 用于感测流动的流体介质至少一个流动特性的传感器装置
US20040134272A1 (en) Device for measuring the mass of air flowing inside a line
US20080307868A1 (en) Air flow measuring device
WO2020116034A1 (ja) 物理量測定装置
JP2013083453A (ja) 湿度検出装置
KR100546930B1 (ko) 공기 유량 측정 장치
JP6734939B2 (ja) 熱式流量計
CN113574352B (zh) 物理量检测装置
US11105292B2 (en) Humidity measurement device
WO2021045117A1 (ja) 空気流量測定装置
US20210325227A1 (en) Physical quantity measurement device
JP7237155B2 (ja) 物理量検出装置
WO2019215978A1 (ja) 物理量計測装置
WO2019198720A1 (ja) センサユニット
WO2020003809A1 (ja) 物理量検出装置
JP2021014987A (ja) 湿度測定装置
WO2021045120A1 (ja) 空気流量測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020559768

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892204

Country of ref document: EP

Kind code of ref document: A1