WO2020115110A1 - Laser processing machine having a wobble scanner - Google Patents

Laser processing machine having a wobble scanner Download PDF

Info

Publication number
WO2020115110A1
WO2020115110A1 PCT/EP2019/083625 EP2019083625W WO2020115110A1 WO 2020115110 A1 WO2020115110 A1 WO 2020115110A1 EP 2019083625 W EP2019083625 W EP 2019083625W WO 2020115110 A1 WO2020115110 A1 WO 2020115110A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
axis
optical fiber
workpiece
laser
Prior art date
Application number
PCT/EP2019/083625
Other languages
German (de)
French (fr)
Inventor
Martin Huonker
Original Assignee
Trumpf Laser Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Laser Gmbh filed Critical Trumpf Laser Gmbh
Priority to CN201980081028.3A priority Critical patent/CN113165110A/en
Publication of WO2020115110A1 publication Critical patent/WO2020115110A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head

Definitions

  • Laser processing machine with a wobble scanner The invention relates to a laser processing machine for processing a
  • a laser beam comprising a laser beam generator for generating the laser beam, an optical fiber into which the laser beam is coupled, collimation optics for collimation of the laser beam emerging divergently from the optical fiber and a mirror scanner for one- or two-dimensional deflection of the laser beam in the direction of the workpiece.
  • Such a laser processing machine with a mirror scanner is known for example from DE 10 2013 110 523 B3.
  • a laser focus oscillating transversely to the direction of advance has proven to be advantageous in some applications, in particular also when welding thick sheet metal, where a gap has to be bridged, or when a larger connecting cross-section is required for overlap welding.
  • a high-frequency mirror scanner is arranged in front of the low-frequency mirror scanner, which deflects the collimated laser beam in one or two dimensions towards the workpiece with an oscillation frequency of maximum 400 Hz , which deflects the collimated or focused laser beam in one or two dimensions with an oscillation frequency between 400 Hz and 5000 Hz.
  • This object is achieved according to the invention by a deflection unit arranged between the fiber end of the optical fiber and the collimating optics, which deflects the beam axis of the divergent laser beam - one or two dimensions - oscillatingly offset in parallel, or by a displacement unit which turns the fiber end of the optical fiber on or off two-dimensionally oscillating offset parallel to the collimation optics.
  • the wobble movement does not take place in the collimated laser beam directly in front of focusing optics, but in the divergent laser beam immediately, i.e. a few mm after the end of the fiber, where the beam diameter is still significantly smaller than the collimated laser beam in front of the focusing optics.
  • the direction of the laser beam cannot simply be changed in the divergent laser beam after the optical fiber with a scanner mirror, but the beam axis must be shifted in parallel in order to achieve a lateral shift of the laser beam in the working focus.
  • the wobble movement takes place in the first variant of the invention by means of a deflection unit which deflects the beam axis of the divergent laser beam in one or two dimensions with an oscillating offset parallel to the actual beam axis, or in the second variant of the invention by means of a displacement unit which oscillates the fiber end of the optical fiber in one or two dimensions displaced parallel to the collimation optics. In the latter case, the fiber end formed on the workpiece is laterally displaced. In both variants of the invention, the oscillation of the deflection or displacement unit is greater than the scanning frequency of the downstream mirror scanner.
  • the deflection unit for a one-dimensional deflection has a plane-parallel plate arranged transversely, that is to say obliquely or at right angles, to the beam axis in the beam path of the divergent laser beam, said plate having an axis running obliquely, in particular at right angles to the beam axis of the divergent laser beam rotates.
  • This planpa parallel plate can for example be mounted on the axis of a conventional scanner engine.
  • the plane-parallel plate Due to the lateral offset that a light beam experiences when it passes through a plane-parallel plate that is at an angle in the beam, an optical parallel shift of the beam axis is achieved, which is transferred to the workpiece with the magnification ratio of the subsequent optics.
  • the plane-parallel plate is set into a torsional vibration, the laser beam experiences a corresponding (one-dimensional) lateral vibration movement in the area of the laser focus. Since the necessary plane-parallel plate, provided that it is positioned close to the end of the fiber, can be very small, a very high scanning frequency can be achieved in conjunction with a conventional scanner motor.
  • the axis is advantageously mounted such that it can be rotated azimuthally about the beam axis, so that the position of the scanning frequency or the direction of the scanning movement on the workpiece can be readjusted, which is particularly the case with non-linear ones
  • the deflection unit for an oscillating two-dimensional parallel offset of the beam axis can have two plane-parallel plates arranged one behind the other and each obliquely arranged in the beam path of the divergent laser beam, each of which oscillates or rotates about mutually perpendicular axes, each of which is inclined, in particular at right angles, to the beam axis of the divergent laser beam.
  • the displacement unit has at least one actuator acting in the displacement direction, to which the fiber end of the optical fiber is attached.
  • the actuator can be a piezo actuator, for example.
  • two actuators each acting at right angles to one another, are provided in order to bring about a two-dimensional parallel offset of the fiber end of the optical fiber with respect to the axis of the divergent laser beam.
  • FIG. 1 shows a laser processing machine according to the invention with a deflection unit arranged in the di-divergent laser beam for generating an oscillating one-dimensional parallel offset of the beam axis of the divergent laser beam;
  • FIG. 2 shows a detailed view of the deflection unit shown in FIG. 1;
  • Fig. 3a, 3b the laser beam deflected by the deflection unit of FIG. 2 on the
  • FIG. 4 shows a deflection unit for generating an oscillating two-dimensional parallel offset of the beam axis of the divergent laser beam in a detailed view analogous to FIG. 2;
  • Fig. 5a, 5b the laser beam deflected by the deflection unit of FIG. 4 on the
  • FIG. 6 shows a shifting unit for generating an oscillating one-dimensional parallel offset of the beam axis of the divergent laser beam in a detailed view analogous to FIG. 2.
  • the laser processing machine 1 shown in perspective in FIG. 1 is used for Processing of a workpiece 2 by means of a laser beam 3 and comprises a laser beam generator 4 for generating the laser beam 3, a transport optical fiber 5, into which the laser beam 3 is coupled, a collimation optics 6 for collimation of the laser beam emerging divergent from the fiber end 7 of the optical fiber 5 3, focusing optics 8 for focusing the laser beam 3 in the direction of the workpiece 2, and, for example, a two-axis mirror scanner 9 for two-dimensional deflection of the laser beam 3.
  • the laser processing machine 1 also has a deflection unit 10 which is arranged between the fiber end 7 of the optical fiber 5 and the collimation optics 6 and which deflects the beam axis A of the divergent laser beam 3 in a one-dimensionally osillating manner with a parallel offset.
  • the deflection unit 10 shown enlarged in FIG. 2, has an inclined plane-parallel plate 11 in the beam path of the divergent laser beam 3, which extends around an axis 12 that runs obliquely, at right angles in FIG. 1, to the beam axis A of the divergent laser beam 3 swings or rotates completely (double arrow direction 13).
  • the plane-parallel plate 11 should have the highest possible refractive index with the lowest possible absorption of the laser light in order to achieve the highest possible beam offset, and can e.g. made of sapphire.
  • the beam offset x of the offset beam axis A 'as a function of the angle of incidence a of the beam axis A on the oscillating or rotating plane-parallel plate 11 is calculated from the following equation:
  • n refractive index of the plane-parallel plate 11.
  • the laser beam 3 Due to the torsional vibration of the plane-parallel plate 11 about the axis 12, the laser beam 3 experiences a corresponding linear (one-dimensional) lateral vibration movement in the area of the laser focus, that is to say, for example, on the surface of the workpiece 2. Since the plane-parallel plate 11, because it is positioned close (a few mm) to the fiber end 7, can be very small, a very high torsional vibration or scanning frequency can be achieved in connection with a conventional scanner motor.
  • the laser beam 3 incident in the Z direction becomes in accordance with the oscillation of the plane-parallel plate 11 about the axis 12 in Y direction, that is one dimensionally perpendicular to the direction of incidence of the laser beam 3, deflects in an oscillating manner.
  • 3b shows the laser beam 3 deflected by the deflection unit 10 on the workpiece surface with an additional feed movement v (v> 0) in the X direction between the workpiece 2 and the laser beam 3, which results, for example, in a zigzag curve 14 of the laser beam 3 on the workpiece surface .
  • the deflection unit 10 For an oscillating two-dimensional parallel offset of the beam axis A, the deflection unit 10, as shown in FIG. 4, has two plane-parallel plates 11a, 11b arranged one behind the other and in each case obliquely arranged in the beam path of the divergent laser beam 3.
  • the plane-parallel plates 11 a, 11 b each swing about mutually perpendicular axes 12a, 12b, each of which runs obliquely, at right angles in FIG. 3, to the beam axis A of the divergent laser beam 3.
  • the laser beam 3 experiences a corresponding two-dimensional lateral oscillating movement in the region of the laser focus, ie on the surface of the workpiece 2. Since the plane-parallel plates 11 a, 11 b can be very small because they are positioned close (a few mm) to the fiber end 7, a very high torsional vibration or scanning frequency can be achieved in connection with a conventional scanner motor.
  • the incident laser beam 3 in the Z direction is deflected in accordance with the oscillations of the plane-parallel plates 11a, 11b about the axis 12a, 12b in the X and Y directions, that is two-dimensionally perpendicular to the direction of incidence of the laser beam 3 .
  • 5b shows the laser beam 3 deflected by the deflection unit 10 of FIG. 4 on the workpiece surface with an additional feed movement v (v> 0) in the X direction between the workpiece 2 and the laser beam 3, for example in a cycloidal trajectory of the laser beam
  • FIG. 6 shows a displacement unit 20 for generating an oscillating one-dimensional parallel offset of the beam axis A of the divergent laser beam 3 with respect to the collimation optics 6.
  • the displacement unit 20 has an actuator 21 acting at right angles to the beam axis A in the displacement direction 22, on which the fiber end 7 the optical fiber 5 is attached.
  • Corresponding linear (one dimensional) lateral oscillating movement, that is to say one-dimensionally perpendicular to the direction of incidence of the laser beam 3 is carried out.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser processing machine (1) for processing a workpiece (2) by means of a laser beam (3) comprises a laser beam generator (4) for generating the laser beam (3), an optical fiber (5), into which the laser beam (3) is coupled, a collimation optical unit (6) for collimating the laser beam (3) emerging divergently from the optical fiber (5), a mirror scanner (9) for one- or two-dimensional deflection of the laser beam (3) in the direction of the workpiece (2), and also, according to the invention, a deflection unit (10), which is arranged between the fiber end (7) of the optical fiber (5) and the collimation optical unit (6) and which deflects the beam axis of the divergent laser beam (3) with a parallel offset in one- or two-dimensional oscillatory fashion, or a displacement unit (20), which displaces the fiber end (7) of the optical fiber (5) with a parallel offset in one- or two-dimensional oscillatory fashion relative to the collimation optical unit (6).

Description

Laserbearbeitungsmaschine mit einem Wobbelscanner Die Erfindung betrifft eine Laserbearbeitungsmaschine zur Bearbeitung eines Laser processing machine with a wobble scanner The invention relates to a laser processing machine for processing a
Werkstücks mittels eines Laserstrahls, aufweisend einen Laserstrahlerzeuger zum Erzeugen des Laserstrahls, eine Lichtleitfaser, in die der Laserstrahl eingekoppelt wird, eine Kollimationsoptik zur Kollimation des aus der Lichtleitfaser divergent austretenden Laserstrahls und einen Spiegelscanner zum ein- oder zweidimensio- nalen Ablenken des Laserstrahls in Richtung auf das Werkstück. Workpiece by means of a laser beam, comprising a laser beam generator for generating the laser beam, an optical fiber into which the laser beam is coupled, collimation optics for collimation of the laser beam emerging divergently from the optical fiber and a mirror scanner for one- or two-dimensional deflection of the laser beam in the direction of the workpiece.
Eine derartige Laserbearbeitungsmaschine mit einem Spiegelscanner ist bei spielsweise durch die DE 10 2013 110 523 B3 bekannt geworden. Beim Laserschweißen hat sich bei manchen Anwendungen ein quer zur Vor schubrichtung schwingender Laserfokus als vorteilhaft erwiesen, insbesondere auch beim Schweißen dicker Bleche, wo ein Spalt überbrückt werden muss, oder wenn insgesamt ein größerer Anbindequerschnitt bei Überlappschweißungen er forderlich ist. Such a laser processing machine with a mirror scanner is known for example from DE 10 2013 110 523 B3. In laser welding, a laser focus oscillating transversely to the direction of advance has proven to be advantageous in some applications, in particular also when welding thick sheet metal, where a gap has to be bridged, or when a larger connecting cross-section is required for overlap welding.
Prinzipiell kann eine solche schnelle seitliche Bewegung („Wobbeln“) des Laserfo kus mit einem herkömmlichen Spiegelscanner gelöst werden, allerdings sind die normalerweise verwendeten Scannersysteme für den Prozess, der mindestens ei nige hundert Hertz an Scanfrequenz fordert, zu langsam. Der Spiegelscanner kann den Spiegel, über den der fokussierte Strahl (im Falle eines Post-Objective- Scannersystems) bzw. der kollimierte Strahl (im Falle einer Scanoptik mit f-Theta- Objektiv) umgelenkt wird, nicht schnell genug bewegen, um die geforderte Scan frequenz von mehreren hundert Hz bzw. einigen kHz zu erreichen. Dies liegt da ran, dass das von den Spiegelscannern erreichbare Drehmoment relativ klein ist im Vergleich zur Trägheit der Scannerspiegel. In principle, such a rapid lateral movement ("wobbling") of the laser focus can be solved with a conventional mirror scanner, but the scanner systems normally used are too slow for the process, which requires at least a few hundred Hertz of scan frequency. The mirror scanner cannot move the mirror via which the focused beam (in the case of a post-objective scanner system) or the collimated beam (in the case of scan optics with an f-theta lens) is deflected quickly enough to perform the required scan frequency of several hundred Hz or a few kHz. This is because the torque that can be achieved by the mirror scanners is relatively small compared to the inertia of the scanner mirrors.
Bei der aus der eingangs genannten DE 10 2013 1 10 523 B3 bekannten Laserbe arbeitungsmaschine ist dem niederfrequenten Spiegelscanner, der den kollimier- ten Laserstrahl in Richtung auf das Werkstück mit einer Oszillationsfrequenz von maximal 400 Hz ein- oder zweidimensional ablenkt, ein hochfrequenter Spie gelscanner vorgeordnet, der den kollimierten bzw. fokussierten Laserstrahl ein- o- der zweidimensional mit einer Oszillationsfrequenz zwischen 400 Hz und 5000 Hz ablenkt. In the laser processing machine known from DE 10 2013 1 10 523 B3 mentioned at the outset, a high-frequency mirror scanner is arranged in front of the low-frequency mirror scanner, which deflects the collimated laser beam in one or two dimensions towards the workpiece with an oscillation frequency of maximum 400 Hz , which deflects the collimated or focused laser beam in one or two dimensions with an oscillation frequency between 400 Hz and 5000 Hz.
Auch aus der US 2012/0273472 A1 ist eine Laserbearbeitungsmaschine mit einer dem eigentlichen Spiegelscanner vorgeordneten Scannereinheit bekannt, die aus zwei akustooptischen Modulatoren zum zweidimensionalen Ablenken des Laser strahls aufgebaut ist. From US 2012/0273472 A1 a laser processing machine with a scanner unit upstream of the actual mirror scanner is known, which is constructed from two acousto-optical modulators for two-dimensional deflection of the laser beam.
Demgegenüber ist es die Aufgabe der vorliegenden Erfindung, bei einer Laserbe arbeitungsmaschine der eingangs genannten Art eine Alternative zur Erzeugung einer schnellen seitlichen Bewegung („Wobbeln“) des Laserfokus anzugeben. Diese Aufgabe wird erfindungsgemäß gelöst durch eine zwischen dem Faserende der Lichtleitfaser und der Kollimationsoptik angeordnete Ablenkeinheit, welche die Strahlachse des divergenten Laserstrahls - ein- oder zweidimensional - oszillie rend parallel versetzt ablenkt, oder durch eine Verschiebeeinheit, welche das Fa serende der Lichtleitfaser ein- oder zweidimensional oszillierend parallelversetzt gegenüber der Kollimationsoptik verschiebt. In contrast, it is the object of the present invention to provide an alternative for generating a rapid lateral movement (“wobbling”) of the laser focus in a laser processing machine of the type mentioned at the beginning. This object is achieved according to the invention by a deflection unit arranged between the fiber end of the optical fiber and the collimating optics, which deflects the beam axis of the divergent laser beam - one or two dimensions - oscillatingly offset in parallel, or by a displacement unit which turns the fiber end of the optical fiber on or off two-dimensionally oscillating offset parallel to the collimation optics.
Erfindungsgemäß erfolgt die Wobbelbewegung nicht im kollimierten Laserstrahl unmittelbar vor einer Fokussieroptik, sondern im divergenten Laserstrahl unmittel bar, d.h. einige mm, nach dem Faserende, wo der Strahldurchmesser noch deut lich kleiner ist als der kollimierte Laserstrahl vor der Fokussieroptik. Damit können kleinere und leichtere Komponenten mit reduziertem Trägheitsmoment verwendet werden. In Gegensatz zu Spiegelscannern im kollimierten Laserstrahl kann jedoch im divergenten Laserstrahl nach der Lichtleitfaser nicht einfach mit einem Scan nerspiegel die Richtung des Laserstrahls verändert werden, sondern die Strahl achse muss parallel verschoben werden, um eine seitliche Verschiebung des La serstrahls im Arbeitsfokus zu erreichen. Der Parallelversatz der optischen Achse im divergenten Laserstrahl nach der Lichtleitfaser führt allerdings dazu, dass der Laserstrahl nach der Kollimationsoptik parallelversetzt zur eigentlichen optischen Achse ist, mithin also eine größere Durchtrittsapertur benötigt wird; dies ist kein wirkliches Problem, muss aber bei der Auslegung der Aperturen bzw. auch der Wege zwischen Kollimation und Fokussierung berücksichtigt werden. According to the invention, the wobble movement does not take place in the collimated laser beam directly in front of focusing optics, but in the divergent laser beam immediately, i.e. a few mm after the end of the fiber, where the beam diameter is still significantly smaller than the collimated laser beam in front of the focusing optics. This means that smaller and lighter components with a reduced moment of inertia can be used. In contrast to mirror scanners in the collimated laser beam, the direction of the laser beam cannot simply be changed in the divergent laser beam after the optical fiber with a scanner mirror, but the beam axis must be shifted in parallel in order to achieve a lateral shift of the laser beam in the working focus. However, the parallel offset of the optical axis in the divergent laser beam after the optical fiber leads to the fact that the laser beam after the collimation optics is offset parallel to the actual optical axis, so a larger passage aperture is therefore required; this is not a real problem, but must be taken into account when designing the apertures or the paths between collimation and focusing.
Die Wobbelbewegung erfolgt in der ersten Erfindungsvariante mittels einer Ablen keinheit, welche die Strahlachse des divergenten Laserstrahls ein- oder zweidi mensional oszillierend parallelversetzt zur eigentlichen Strahlachse ablenkt, oder in der zweiten Erfindungsvariante mittels einer Verschiebeeinheit, welche das Fa serende der Lichtleitfaser ein- oder zweidimensional oszillierend parallelversetzt zur Kollimationsoptik verschiebt. Im letzteren Fall wird das auf das Werkstück ab gebildete Faserende lateral verschoben. In beiden Erfindungsvarianten ist die Os zillation der Ablenk- oder Verschiebeeinheit größer als die Scanfrequenz des nachgeordneten Spiegelscanners. In einer bevorzugten Ausführungsform der ersten Erfindungsvariante weist die Ab lenkeinheit für eine eindimensionalen Ablenkung eine quer, also schräg oder rechtwinklig, zur Strahlachse im Strahlengang des divergenten Laserstrahls ange ordnete planparallele Platte auf, die um eine schräg, insbesondere rechtwinklig zur Strahlachse des divergenten Laserstrahls verlaufende Achse rotiert. Diese planpa rallele Platte kann beispielsweise auf der Achse eines herkömmlichen Scannermo tors montiert sein. Durch den seitlichen Versatz, den ein Lichtstrahl beim Durchtritt durch eine schräg im Strahl stehende planparallele Platte erfährt, wird eine opti sche Parallelverschiebung der Strahlachse erreicht, die mit dem Vergrößerungs verhältnis der nachfolgenden Optik auf das Werkstück übertragen wird. Versetzt man die planparallele Platte in eine Drehschwingung, erfährt der Laserstrahl im Bereich des Laserfokus eine entsprechende (eindimensionale) laterale Schwing bewegung. Da die notwendige planparallele Platte, sofern sie nahe beim Faser ende positioniert wird, sehr klein sein kann, kann in Verbindung mit einem her kömmlichen Scannermotor eine sehr hohe Scanfrequenz erreicht werden. Vorteil haft ist die Achse azimutal um die Strahlachse herum drehbar gelagert, so dass die Lage der Scanfrequenz bzw. die Richtung der Scanbewegung auf dem Werk stück nachgeregelt werden kann, was insbesondere bei nicht-geradlinigen The wobble movement takes place in the first variant of the invention by means of a deflection unit which deflects the beam axis of the divergent laser beam in one or two dimensions with an oscillating offset parallel to the actual beam axis, or in the second variant of the invention by means of a displacement unit which oscillates the fiber end of the optical fiber in one or two dimensions displaced parallel to the collimation optics. In the latter case, the fiber end formed on the workpiece is laterally displaced. In both variants of the invention, the oscillation of the deflection or displacement unit is greater than the scanning frequency of the downstream mirror scanner. In a preferred embodiment of the first variant of the invention, the deflection unit for a one-dimensional deflection has a plane-parallel plate arranged transversely, that is to say obliquely or at right angles, to the beam axis in the beam path of the divergent laser beam, said plate having an axis running obliquely, in particular at right angles to the beam axis of the divergent laser beam rotates. This planpa parallel plate can for example be mounted on the axis of a conventional scanner engine. Due to the lateral offset that a light beam experiences when it passes through a plane-parallel plate that is at an angle in the beam, an optical parallel shift of the beam axis is achieved, which is transferred to the workpiece with the magnification ratio of the subsequent optics. If the plane-parallel plate is set into a torsional vibration, the laser beam experiences a corresponding (one-dimensional) lateral vibration movement in the area of the laser focus. Since the necessary plane-parallel plate, provided that it is positioned close to the end of the fiber, can be very small, a very high scanning frequency can be achieved in conjunction with a conventional scanner motor. The axis is advantageously mounted such that it can be rotated azimuthally about the beam axis, so that the position of the scanning frequency or the direction of the scanning movement on the workpiece can be readjusted, which is particularly the case with non-linear ones
Schweißnähten vorteilhaft ist. Welds is advantageous.
In einer Weiterbildung kann die Ablenkeinheit für einen oszillierenden zweidimen sionalen Parallelversatz der Strahlachse zwei im Strahlengang des divergenten Laserstrahls hintereinander und jeweils schräg angeordnete planparallele Platten aufweisen, die jeweils um zueinander rechtwinklige Achsen schwingen oder rotie ren, welche jeweils schräg, insbesondere rechtwinklig, zur Strahlachse des diver genten Laserstrahls verlaufen. Dies hat den Vorteil, dass die Wobbelbewegung analog zu einem zweiachsigen Scansystem in beiden Achsen mit etwa der glei chen Dynamik ausgeführt und auch die Steuerungstechnik direkt von einem Zwei- achsscanner übernommen werden kann. In a further development, the deflection unit for an oscillating two-dimensional parallel offset of the beam axis can have two plane-parallel plates arranged one behind the other and each obliquely arranged in the beam path of the divergent laser beam, each of which oscillates or rotates about mutually perpendicular axes, each of which is inclined, in particular at right angles, to the beam axis of the divergent laser beam. This has the advantage that the wobble movement can be carried out analogously to a two-axis scanning system in both axes with approximately the same dynamics and the control technology can also be taken over directly by a two-axis scanner.
In einer bevorzugten Ausführungsform der zweiten Erfindungsvariante weist die Verschiebeeinheit mindestens einen in der Verschieberichtung wirkenden Aktor auf, an dem das Faserende der Lichtleitfaser befestigt ist. Der Aktor kann bei spielsweise ein Piezoaktor sein. Für einen zweidimensionalen Parallel versatz sind zwei jeweils rechtwinklig zueinander wirkende Aktoren vorgesehen, um einen zweidimensionalen Parallelversatz des Faserendes der Lichtleitfaser gegenüber der Achse des divergenten Laserstrahls zu bewirken. In a preferred embodiment of the second variant of the invention, the displacement unit has at least one actuator acting in the displacement direction, to which the fiber end of the optical fiber is attached. The actuator can be a piezo actuator, for example. For a two-dimensional parallel offset two actuators, each acting at right angles to one another, are provided in order to bring about a two-dimensional parallel offset of the fiber end of the optical fiber with respect to the axis of the divergent laser beam.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstands der Erfindung ergeben sich aus der Beschreibung, den Ansprüchen und der Zeichnung. Ebenso können die vorstehend genannten und die noch weiter aufgeführten Merkmale je für sich oder zu mehreren in beliebigen Kombinationen Verwendung finden. Die gezeigten und beschriebenen Ausführungsformen sind nicht als abschließende Aufzählung zu verstehen, sondern haben vielmehr beispielhaften Charakter für die Schilderung der Erfindung. Es zeigen: Further advantages and advantageous configurations of the object of the invention result from the description, the claims and the drawing. Likewise, the features mentioned above and those listed further can be used individually or in combination in any combination. The embodiments shown and described are not to be understood as an exhaustive list, but rather have an exemplary character for the description of the invention. Show it:
Fig. 1 eine erfindungsgemäße Laserbearbeitungsmaschine mit einer im di vergenten Laserstrahl angeordneten Ablenkeinheit zur Erzeugung ei nes oszillierenden eindimensionalen Parallelversatzes der Strahl achse des divergenten Laserstrahls; 1 shows a laser processing machine according to the invention with a deflection unit arranged in the di-divergent laser beam for generating an oscillating one-dimensional parallel offset of the beam axis of the divergent laser beam;
Fig. 2 eine Detailansicht der in Fig. 1 gezeigten Ablenkeinheit; FIG. 2 shows a detailed view of the deflection unit shown in FIG. 1;
Fign. 3a, 3b den von der Ablenkeinheit der Fig. 2 abgelenkten Laserstrahl auf der Fig. 3a, 3b the laser beam deflected by the deflection unit of FIG. 2 on the
Werkstückoberfläche ohne Vorschubbewegung zwischen Laserstrahl und Werkstück (Fig. 3a) und bei einer Vorschubbewegung zwischen Laserstrahl und Werkstück (Fig. 3b); Workpiece surface without feed movement between laser beam and workpiece (FIG. 3a) and with a feed movement between laser beam and workpiece (FIG. 3b);
Fig. 4 eine Ablenkeinheit zur Erzeugung eines oszillierenden zweidimensio nalen Parallelversatzes der Strahlachse des divergenten Laser strahls in einer Detailansicht analog zu Fig. 2; FIG. 4 shows a deflection unit for generating an oscillating two-dimensional parallel offset of the beam axis of the divergent laser beam in a detailed view analogous to FIG. 2;
Fign. 5a, 5b den von der Ablenkeinheit der Fig. 4 abgelenkten Laserstrahl auf der Fig. 5a, 5b the laser beam deflected by the deflection unit of FIG. 4 on the
Werkstückoberfläche ohne Vorschubbewegung zwischen Laserstrahl und Werkstück (Fig. 5a) und bei einer Vorschubbewegung zwischen Laserstrahl und Werkstück (Fig. 5b); und Workpiece surface without feed movement between laser beam and workpiece (FIG. 5a) and with a feed movement between laser beam and workpiece (FIG. 5b); and
Fig. 6 eine Verschiebeeinheit zur Erzeugung eines oszillierenden eindimen sionalen Parallelversatzes der Strahlachse des divergenten Laser strahls in einer Detailansicht analog zu Fig. 2. 6 shows a shifting unit for generating an oscillating one-dimensional parallel offset of the beam axis of the divergent laser beam in a detailed view analogous to FIG. 2.
Die in Fig. 1 perspektivisch dargestellte Laserbearbeitungsmaschine 1 dient zur Bearbeitung eines Werkstücks 2 mittels eines Laserstrahls 3 und umfasst einen Laserstrahlerzeuger 4 zum Erzeugen des Laserstrahls 3, eine Transport-Lichtleit faser 5, in die der Laserstrahl 3 eingekoppelt wird, eine Kollimationsoptik 6 zur Kollimation des aus dem Faserende 7 der Lichtleitfaser 5 divergent austretenden Laserstrahls 3, eine Fokussieroptik 8 zum Fokussieren des Laserstrahls 3 in Rich tung auf das Werkstück 2, sowie einen z.B. zweiachsigen Spiegelscanner 9 zum zweidimensionalen Ablenken des Laserstrahls 3. The laser processing machine 1 shown in perspective in FIG. 1 is used for Processing of a workpiece 2 by means of a laser beam 3 and comprises a laser beam generator 4 for generating the laser beam 3, a transport optical fiber 5, into which the laser beam 3 is coupled, a collimation optics 6 for collimation of the laser beam emerging divergent from the fiber end 7 of the optical fiber 5 3, focusing optics 8 for focusing the laser beam 3 in the direction of the workpiece 2, and, for example, a two-axis mirror scanner 9 for two-dimensional deflection of the laser beam 3.
Die Laserbearbeitungsmaschine 1 weist außerdem eine zwischen dem Faserende 7 der Lichtleitfaser 5 und der Kollimationsoptik 6 angeordnete Ablenkeinheit 10 auf, welche die Strahlachse A des divergenten Laserstrahls 3 eindimensional os zillierend parallelversetzt ablenkt. Dazu weist die in Fig. 2 vergrößert dargestellte Ablenkeinheit 10 eine schräg im Strahlengang des divergenten Laserstrahls 3 an geordnete planparallele Platte 11 auf, die um eine schräg, in Fig. 1 rechtwinklig, zur Strahlachse A des divergenten Laserstrahls 3 verlaufende Achse 12 entweder hin und her schwingt oder vollständig rotiert (Doppelpfeilrichtung 13). Die planpa rallele Platte 11 sollte einen möglichst hohen Brechungsindex bei möglichst gerin ger Absorption des Laserlichts aufweisen, um einen möglichst hohen Strahlversatz zu erreichen, und kann z.B. aus Saphir sein. The laser processing machine 1 also has a deflection unit 10 which is arranged between the fiber end 7 of the optical fiber 5 and the collimation optics 6 and which deflects the beam axis A of the divergent laser beam 3 in a one-dimensionally osillating manner with a parallel offset. For this purpose, the deflection unit 10, shown enlarged in FIG. 2, has an inclined plane-parallel plate 11 in the beam path of the divergent laser beam 3, which extends around an axis 12 that runs obliquely, at right angles in FIG. 1, to the beam axis A of the divergent laser beam 3 swings or rotates completely (double arrow direction 13). The plane-parallel plate 11 should have the highest possible refractive index with the lowest possible absorption of the laser light in order to achieve the highest possible beam offset, and can e.g. made of sapphire.
Der Strahlversatz x der versetzten Strahlachse A‘ in Abhängigkeit vom variieren den Einfallswinkel a der Strahlachse A auf die schwingende bzw. rotierende plan parallele Platte 11 berechnet sich aus folgender Gleichung: The beam offset x of the offset beam axis A 'as a function of the angle of incidence a of the beam axis A on the oscillating or rotating plane-parallel plate 11 is calculated from the following equation:
x = d * sin(a) *(1 - cos(a)/(SQRT(n2-sin2(a))), mit x = d * sin (a) * (1 - cos (a) / (SQRT (n 2 -sin 2 (a))), with
d: Plattendicke, und d: plate thickness, and
n: Brechungsindex der planparallelen Platte 11. n: refractive index of the plane-parallel plate 11.
Durch die Drehschwingung der planparallelen Platte 11 um die Achse 12 erfährt der Laserstrahl 3 im Bereich des Laserfokus, also z.B. auf der Oberfläche des Werkstücks 2, eine entsprechende lineare (eindimensionale) laterale Schwingbe wegung. Da die planparallele Platte 11 , weil nahe (einige mm) am Faserende 7 positioniert, sehr klein sein kann, kann in Verbindung mit einem herkömmlichen Scannermotor eine sehr hohe Drehschwing- bzw. Scanfrequenz erreicht werden. Fig. 3a zeigt den von der Ablenkeinheit 10 abgelenkten Laserstrahl 3 auf der Werkstückoberfläche ohne Vorschubbewegung (v=0) zwischen Werkstück 2 und Laserstrahl 3. Der in Z-Richtung einfallende Laserstrahl 3 wird entsprechend der Oszillation der planparallelen Platte 11 um die Achse 12 in Y-Richtung, also eindi mensional rechtwinklig zur Einfallrichtung des Laserstrahls 3, oszillierend abge lenkt. Fig. 3b zeigt den von der Ablenkeinheit 10 abgelenkten Laserstrahl 3 auf der Werkstückoberfläche bei einer zusätzlichen Vorschubbewegung v (v>0) in X- Richtung zwischen Werkstück 2 und Laserstrahl 3, was beispielsweise in einer zickzackförmigen Bahnkurve 14 des Laserstrahls 3 auf der Werkstückoberfläche resultiert. Due to the torsional vibration of the plane-parallel plate 11 about the axis 12, the laser beam 3 experiences a corresponding linear (one-dimensional) lateral vibration movement in the area of the laser focus, that is to say, for example, on the surface of the workpiece 2. Since the plane-parallel plate 11, because it is positioned close (a few mm) to the fiber end 7, can be very small, a very high torsional vibration or scanning frequency can be achieved in connection with a conventional scanner motor. 3a shows the laser beam 3 deflected by the deflection unit 10 on the workpiece surface without a feed movement (v = 0) between the workpiece 2 and the laser beam 3. The laser beam 3 incident in the Z direction becomes in accordance with the oscillation of the plane-parallel plate 11 about the axis 12 in Y direction, that is one dimensionally perpendicular to the direction of incidence of the laser beam 3, deflects in an oscillating manner. 3b shows the laser beam 3 deflected by the deflection unit 10 on the workpiece surface with an additional feed movement v (v> 0) in the X direction between the workpiece 2 and the laser beam 3, which results, for example, in a zigzag curve 14 of the laser beam 3 on the workpiece surface .
Für einen oszillierenden zweidimensionalen Parallelversatz der Strahlachse A weist die Ablenkeinheit 10, wie in Fig. 4 gezeigt, zwei im Strahlengang des diver genten Laserstrahls 3 hintereinander und jeweils schräg angeordnete planparal lele Platten 11a, 11b auf. Die planparallelen Platten 11 a, 11 b schwingen jeweils um zueinander rechtwinklige Achsen 12a, 12b, welche jeweils schräg, in Fig. 3 rechtwinklig, zur Strahlachse A des divergenten Laserstrahls 3 verlaufen. Durch die Drehschwingungen der planparallelen Platten 11a, 11 b erfährt der Laserstrahl 3 im Bereich des Laserfokus, also auf der Oberfläche des Werkstücks 2, eine ent sprechende zweidimensionale laterale Schwingbewegung. Da die planparallelen Platten 11 a, 11 b, weil nahe (einige mm) am Faserende 7 positioniert, sehr klein sein können, kann in Verbindung mit einem herkömmlichen Scannermotor eine sehr hohe Drehschwing- bzw. Scanfrequenz erreicht werden. For an oscillating two-dimensional parallel offset of the beam axis A, the deflection unit 10, as shown in FIG. 4, has two plane-parallel plates 11a, 11b arranged one behind the other and in each case obliquely arranged in the beam path of the divergent laser beam 3. The plane-parallel plates 11 a, 11 b each swing about mutually perpendicular axes 12a, 12b, each of which runs obliquely, at right angles in FIG. 3, to the beam axis A of the divergent laser beam 3. Due to the torsional vibrations of the plane-parallel plates 11a, 11b, the laser beam 3 experiences a corresponding two-dimensional lateral oscillating movement in the region of the laser focus, ie on the surface of the workpiece 2. Since the plane-parallel plates 11 a, 11 b can be very small because they are positioned close (a few mm) to the fiber end 7, a very high torsional vibration or scanning frequency can be achieved in connection with a conventional scanner motor.
Fig. 5a zeigt den von der Ablenkeinheit 10 der Fig. 4 abgelenkten Laserstrahl 3 auf der Werkstückoberfläche ohne Vorschubbewegung (v=0) zwischen WerkstückFIG. 5a shows the laser beam 3 deflected by the deflection unit 10 of FIG. 4 on the workpiece surface without a feed movement (v = 0) between the workpiece
2 und Laserstrahl 3. Der in Z-Richtung einfallende Laserstrahl 3 wird entsprechend den Oszillationen der planparallelen Platten 11a, 11 b um die Achse 12a, 12b in X- und Y-Richtung, also zweidimensional rechtwinklig zur Einfallrichtung des Laser strahls 3, oszillierend abgelenkt. Fig. 5b zeigt den von der Ablenkeinheit 10 der Fig. 4 abgelenkten Laserstrahl 3 auf der Werkstückoberfläche bei einer zusätzli chen Vorschubbewegung v (v>0) in X-Richtung zwischen Werkstück 2 und Laser strahl 3, was beispielsweise in einer zykloidförmigen Bahnkurve des Laserstrahls2 and laser beam 3. The incident laser beam 3 in the Z direction is deflected in accordance with the oscillations of the plane-parallel plates 11a, 11b about the axis 12a, 12b in the X and Y directions, that is two-dimensionally perpendicular to the direction of incidence of the laser beam 3 . 5b shows the laser beam 3 deflected by the deflection unit 10 of FIG. 4 on the workpiece surface with an additional feed movement v (v> 0) in the X direction between the workpiece 2 and the laser beam 3, for example in a cycloidal trajectory of the laser beam
3 auf der Werkstückoberfläche resultiert. Fig. 6 zeigt eine Verschiebeeinheit 20 zur Erzeugung eines oszillierenden eindi mensionalen Parallelversatzes der Strahlachse A des divergenten Laserstrahls 3 gegenüber der Kollimationsoptik 6. Dazu weist die Verschiebeeinheit 20 einen rechtwinklig zur Strahlachse A in der Verschieberichtung 22 wirkenden Aktor 21 auf, an dem das Faserende 7 der Lichtleitfaser 5 befestigt ist. Der z.B. als Piezo- aktor ausgeführte Aktor 21 schwingt in der Verschieberichtung 22 und bewirkt so eine oszillierende eindimensionale Parallelverschiebung des Faserendes 7 gegen über der Kollimationsoptik 6, wodurch der Laserstrahl 3 im Bereich des Laserfo- kus, also auf der Oberfläche des Werkstücks 2, eine entsprechende lineare (eindi mensionale) laterale Schwingbewegung, also eindimensional rechtwinklig zur Ein fallrichtung des Laserstrahls 3, durchführt. 3 results on the workpiece surface. 6 shows a displacement unit 20 for generating an oscillating one-dimensional parallel offset of the beam axis A of the divergent laser beam 3 with respect to the collimation optics 6. For this purpose, the displacement unit 20 has an actuator 21 acting at right angles to the beam axis A in the displacement direction 22, on which the fiber end 7 the optical fiber 5 is attached. The actuator 21, which is designed as a piezo actuator, for example, oscillates in the direction of displacement 22 and thus causes an oscillating one-dimensional parallel displacement of the fiber end 7 with respect to the collimation optics 6, as a result of which the laser beam 3 in the area of the laser focus, ie on the surface of the workpiece 2 Corresponding linear (one dimensional) lateral oscillating movement, that is to say one-dimensionally perpendicular to the direction of incidence of the laser beam 3, is carried out.

Claims

Patentansprüche Claims
1. Laserbearbeitungsmaschine (1 ) zur Bearbeitung eines Werkstücks (2) mit tels eines Laserstrahls (3), aufweisend 1. Laser processing machine (1) for processing a workpiece (2) by means of a laser beam (3), comprising
einen Laserstrahlerzeuger (4) zum Erzeugen des Laserstrahls (3), eine Lichtleitfaser (5), in die der Laserstrahl (3) eingekoppelt wird, eine Kollimationsoptik (6) zur Kollimation des aus der Lichtleitfaser (5) di vergent austretenden Laserstrahls (3), und a laser beam generator (4) for generating the laser beam (3), an optical fiber (5) into which the laser beam (3) is coupled, a collimating lens (6) for collimating the laser beam (3) emerging from the optical fiber (5) , and
einen Spiegelscanner (9) zum ein- oder zweidimensionalen Ablenken des Laserstrahls (3) in Richtung auf das Werkstück (2), a mirror scanner (9) for deflecting the laser beam (3) in one or two dimensions towards the workpiece (2),
gekennzeichnet durch eine zwischen dem Faserende (7) der Lichtleitfaser (5) und der Kollimationsoptik (6) angeordnete Ablenkeinheit (10), welche die Strahlachse (A) des divergenten Laserstrahls (3) ein- oder zweidimen sional oszillierend parallelversetzt ablenkt, oder durch eine Verschiebeein heit (20), welche das Faserende (7) der Lichtleitfaser (5) ein- oder zweidi mensional oszillierend parallelversetzt gegenüber der Kollimationsoptik (6) verschiebt. characterized by a deflection unit (10) which is arranged between the fiber end (7) of the optical fiber (5) and the collimation optics (6) and which deflects the beam axis (A) of the divergent laser beam (3) in a one or two-dimensionally oscillating manner, or by one Displacement unit (20), which moves the fiber end (7) of the optical fiber (5) one or two dimensions in an oscillating manner, offset in parallel with respect to the collimation optics (6).
2. Laserbearbeitungsmaschine nach Anspruch 1 , dadurch gekennzeichnet, dass die Ablenkeinheit (10) mindestens eine quer zur Strahlachse (A) im Strahlengang des divergenten Laserstrahls (3) angeordnete planparallele Platte (11 ) aufweist, die um eine schräg, insbesondere rechtwinklig, zur Strahlachse (A) des divergenten Laserstrahls (3) verlaufende Achse (12) schwingt oder rotiert. 2. Laser processing machine according to claim 1, characterized in that the deflection unit (10) has at least one plane-parallel plate (11) arranged transversely to the beam axis (A) in the beam path of the divergent laser beam (3), which is at an angle, in particular at right angles, to the beam axis (A) of the divergent laser beam (3) extending axis (12) oscillates or rotates.
3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Achse (12) der planparallelen Platte (11 ) azimutal um die Strahlachse (A) herum drehbar gelagert ist. 3. Device according to claim 2, characterized in that the axis (12) of the plane-parallel plate (11) is rotatably mounted azimuthally about the beam axis (A).
4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass die Ablenkeinheit (10) zwei im Strahlengang des divergen ten Laserstrahls (3) hintereinander und jeweils schräg angeordnete plan parallele Platten (11 a, 11 b) aufweist, die jeweils um zueinander rechtwink- lige Achsen (12a, 12b) schwingen oder rotieren, welche jeweils schräg, insbesondere rechtwinklig, zur Strahlachse (A) des divergenten Laser strahls (3) verlaufen. 4. Device according to one of the preceding claims, characterized in that the deflection unit (10) has two in the beam path of the divergen th laser beam (3) one behind the other and each obliquely arranged plane parallel plates (11 a, 11 b), each around each other right-angled axes (12a, 12b) oscillate or rotate, each of which runs obliquely, in particular at right angles, to the beam axis (A) of the divergent laser beam (3).
5. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Ver schiebeeinheit (20) mindestens einen in der Verschieberichtung (22) wir kenden Aktor (21 ), insbesondere Piezoaktor, aufweist, an dem das Faser ende (7) der Lichtleitfaser (5) befestigt ist. 5. The device according to claim 1, characterized in that the displacement unit (20) has at least one actuator (21) in the displacement direction (22), in particular piezo actuator, on which the fiber end (7) of the optical fiber (5) is attached.
PCT/EP2019/083625 2018-12-07 2019-12-04 Laser processing machine having a wobble scanner WO2020115110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980081028.3A CN113165110A (en) 2018-12-07 2019-12-04 Laser processing machine with swinging scanner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018221203.1A DE102018221203A1 (en) 2018-12-07 2018-12-07 Laser processing machine with a wobble scanner
DE102018221203.1 2018-12-07

Publications (1)

Publication Number Publication Date
WO2020115110A1 true WO2020115110A1 (en) 2020-06-11

Family

ID=68887397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/083625 WO2020115110A1 (en) 2018-12-07 2019-12-04 Laser processing machine having a wobble scanner

Country Status (3)

Country Link
CN (1) CN113165110A (en)
DE (1) DE102018221203A1 (en)
WO (1) WO2020115110A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022107324B4 (en) 2022-03-29 2024-03-28 Precitec Gmbh & Co. Kg Laser processing head with deflection devices
CN115079404B (en) * 2022-06-01 2024-04-02 武汉欧毅光学有限公司 Laser galvanometer scanning system with two-dimensional scanning function
CN115889978B (en) * 2023-03-09 2023-05-09 深圳市睿达科技有限公司 Laser welding 3D spiral light spot control method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247174A (en) * 1990-05-07 1993-09-21 Scitex Corporation Ltd. Laser scanning apparatus having a scanning beam and a reference beam
DE102010049460A1 (en) * 2010-09-13 2012-03-15 Laser- Und Medizin-Technologie Gmbh, Berlin trepanning
US20120273472A1 (en) 2010-10-22 2012-11-01 Electro Scientific Industries, Inc. Laser processing systems and methods for beam dithering and skiving
DE102013110523B4 (en) 2013-09-24 2016-08-18 Scansonic Mi Gmbh Apparatus and method for joining workpieces by means of a laser beam
DE102017201495A1 (en) * 2017-01-31 2018-08-02 Robert Bosch Gmbh Laser welding method for producing a weld on a surface of a material arrangement; Laser welding device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD243123A1 (en) * 1985-12-02 1987-02-18 Zeiss Jena Veb Carl ARRANGEMENT FOR INPUTING A LASER BEAM INTO A GLASS FIBER
CN103203541B (en) * 2013-02-04 2015-05-13 张立国 Laser machining device
EP3209453A1 (en) * 2014-10-20 2017-08-30 Bystronic Laser AG Machining head for laser machining machine, and laser machining machine
JPWO2017130351A1 (en) * 2016-01-28 2018-10-04 オリンパス株式会社 Optical fiber scanner, optical scanning endoscope, and endoscope system
JP6484204B2 (en) * 2016-09-09 2019-03-13 ファナック株式会社 Galvano scanner
FR3056129B1 (en) * 2016-09-20 2019-07-19 Renault S.A.S METHOD FOR GUIDING A ROTARY DISPLACEMENT LASER BEAM, AND ASSOCIATED GUIDE DEVICE
CN107138862B (en) * 2017-06-20 2023-10-20 深圳市韵腾激光科技有限公司 Laser rotary cutting device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247174A (en) * 1990-05-07 1993-09-21 Scitex Corporation Ltd. Laser scanning apparatus having a scanning beam and a reference beam
DE102010049460A1 (en) * 2010-09-13 2012-03-15 Laser- Und Medizin-Technologie Gmbh, Berlin trepanning
US20120273472A1 (en) 2010-10-22 2012-11-01 Electro Scientific Industries, Inc. Laser processing systems and methods for beam dithering and skiving
DE102013110523B4 (en) 2013-09-24 2016-08-18 Scansonic Mi Gmbh Apparatus and method for joining workpieces by means of a laser beam
DE102017201495A1 (en) * 2017-01-31 2018-08-02 Robert Bosch Gmbh Laser welding method for producing a weld on a surface of a material arrangement; Laser welding device

Also Published As

Publication number Publication date
DE102018221203A1 (en) 2020-06-10
CN113165110A (en) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2020115110A1 (en) Laser processing machine having a wobble scanner
EP2054772B1 (en) Exposure apparatus
DE102008022014B3 (en) Dynamic beam deflection of a laser beam
DE3207467C2 (en)
DE202008017745U1 (en) Device for guiding a light beam
WO2007079760A1 (en) Scanner head and machining device comprising the same
EP2491451B1 (en) Device and method for deflecting a light beam in two different directions and scanning microscope
WO2020109209A1 (en) Device and method for beam shaping and beam modulation during laser material processing
WO2021198165A1 (en) Optical arrangement and laser system
DE102017008424B4 (en) Galvo scanner
EP2163936B1 (en) Device for deflecting a laser beam
EP2921146B1 (en) Device for processing eye tissue using femtosecond laser pulses
DE102004007178B4 (en) Laser processing head
EP0904557B1 (en) Confocal microscope for optical determination of an observation volume
DE10233491A1 (en) Compact device for imaging a printing form
DE102007014933A1 (en) Laser guide for medical applications is redirected by angled pair of rotating reflective surfaces
EP3312656B1 (en) Device for relocating a light beam impacting an optical axis
DE102022107324B4 (en) Laser processing head with deflection devices
DE102022000743B3 (en) Optical device for deflecting and focusing laser radiation for laser material processing and using two connected and driven rotating polygon mirrors, a galvanometer scanner and focusing optics
DE102011006152A1 (en) Laser trepanning device for setting and varying propagation angle and lateral displacement of laser beam, has control device that is provided to control two orthogonal tilting axes of two tilting mirrors
WO2024017574A1 (en) Laser cutting method with periodically recurring superimposed beam deflection
DE102015103164B4 (en) Scanning device with at least one one-dimensional scanning unit
DE102022121239A1 (en) Beam width changing device, manufacturing device for additive manufacturing with such a beam width changing device, method for additive manufacturing using such a beam width changing device and use of such a beam width changing device for the additive manufacturing of components
DE10057298A1 (en) Laser processing equipment with observation device
WO2024002747A1 (en) Method and device for the dynamic positioning of a plurality of laser beams on a target plane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19817920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19817920

Country of ref document: EP

Kind code of ref document: A1