WO2020114486A1 - 介质移相器和基站天线 - Google Patents

介质移相器和基站天线 Download PDF

Info

Publication number
WO2020114486A1
WO2020114486A1 PCT/CN2019/123662 CN2019123662W WO2020114486A1 WO 2020114486 A1 WO2020114486 A1 WO 2020114486A1 CN 2019123662 W CN2019123662 W CN 2019123662W WO 2020114486 A1 WO2020114486 A1 WO 2020114486A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
phase shifter
impedance matching
sliding
dielectric plate
Prior art date
Application number
PCT/CN2019/123662
Other languages
English (en)
French (fr)
Inventor
刘亮
康玉龙
张昊
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020114486A1 publication Critical patent/WO2020114486A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Definitions

  • the present disclosure relates to the technical field of mobile communication base station antennas.
  • the phase shifter is the core component of the electric tuned antenna, and the performance is directly determined by the ESC base station. The performance of the antenna, which in turn affects the coverage capacity of the network.
  • Electrically adjustable antenna phase shifters can be basically divided into two implementations, namely changing the electrical length of the transmission line and changing the dielectric constant of the transmission line.
  • the latter is called a dielectric phase shifter. Since the dielectric phase shifter does not change the transmission line itself, it has the characteristics of small design tolerance sensitivity, small loss, and excellent performance.
  • An aspect of the present disclosure provides a dielectric phase shifter that includes a cavity, a phase shift circuit built into the cavity, and a slide that is slidably mounted in the cavity and that is parallel to the phase shift circuit
  • the sliding dielectric plate includes a dielectric plate body and an impedance matching portion provided at both ends of the dielectric plate body, and the length of the impedance matching portion is an odd multiple of a quarter wavelength.
  • Another aspect of the present disclosure provides a base station antenna including a dielectric phase shifter, which is the above-mentioned dielectric phase shifter.
  • FIG. 1 is a schematic structural diagram of a dielectric phase shifter according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of the dielectric phase shifter shown in FIG. 1 after removing the cavity;
  • FIG. 3 is an explosion schematic diagram of the dielectric phase shifter shown in FIG. 1 after removing the cavity;
  • FIG. 4 is a schematic structural diagram of a parallel input 1 in 5 out dielectric phase shifter according to an embodiment of the present disclosure
  • FIG. 5 is a schematic structural view of a series-in 1-in-7-out dielectric phase shifter according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a serial-in 1-in-9-out dielectric phase shifter according to an embodiment of the present disclosure.
  • the terms “upper”, “lower”, “inner”, “middle”, “outer”, “front”, “rear”, etc. indicate orientation or positional relationship based on the orientation or position shown in the drawings relationship. These terms are mainly used to better describe the present disclosure and its embodiments, and are not used to limit that the indicated device, element, or component must have a specific orientation, or be constructed and operated in a specific orientation.
  • connection can be a fixed connection, a detachable connection, or a one-piece construction; it can be a mechanical connection, or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be two devices, components, or Internal communication between components.
  • the present disclosure provides a dielectric phase shifter, which has a simple matching implementation, a small size, and satisfies high-power and wide-band designs.
  • FIG. 1 is a schematic structural diagram of a dielectric phase shifter according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural view of the dielectric phase shifter shown in FIG. 1 after removing the cavity.
  • FIG. 3 is an explosion schematic diagram of the dielectric phase shifter shown in FIG. 1 after removing the cavity.
  • a serial phase feed 1 in 5 out dielectric phase shifter 10 is provided.
  • the dielectric phase shifter 10 includes a cavity 450 and a phase shifter body 20 disposed inside the cavity 450 .
  • the phase shifter body 20 includes a phase shift circuit 200 and a sliding dielectric plate 100, wherein the phase shift circuit 200 and the sliding dielectric plate 100 are both built in the cavity 450, and the sliding dielectric plate 100 is slidably installed Located in the cavity 450 and parallel to the phase shift circuit 200, the sliding dielectric plate 100 includes a dielectric plate body and impedance matching portions provided at both ends of the dielectric plate body. The length of the impedance matching portion is a quarter wavelength.
  • the wavelength ⁇ g u/ ⁇
  • the unit of the propagation speed u in the formula is m/s
  • the propagation speed u selects the propagation speed of the electromagnetic wave in the air to be the speed of light 3 ⁇ 108m/s
  • the unit of the frequency ⁇ is Hz
  • the unit of wavelength ⁇ g is m.
  • the input impedance Zin of the matching part satisfies:
  • the impedance transformation can be achieved.
  • the characteristic impedance of the phase shift circuit 200 changes, with the air strip line impedance on one side and the dielectric strip line impedance on the other side.
  • the present disclosure uses the impedance matching portion of the sliding dielectric plate 100 to perform impedance matching.
  • the length of the impedance matching part is one-quarter wavelength, which realizes the conversion of the impedance from the dielectric strip line to the air strip line.
  • the impedance of the impedance matching section satisfies the following formula:
  • Z (impedance matching part) represents the impedance of the impedance matching part
  • Z (dielectric strip line) represents the impedance of the dielectric strip line
  • Z (air strip line) represents the impedance of the air strip line.
  • the length of the impedance matching part is a quarter wavelength, which ensures the impedance matching and greatly shortens the length of the sliding dielectric plate, making the structure of the dielectric phase shifter simpler and smaller in size.
  • the cavity 450 shown in FIG. 1 is integrally formed by pultrusion or die-casting of a metal material, and forms a strip line with the internal phase shifting circuit 200, and the entire shape is a rectangular parallelepiped, and an accommodating space for accommodating the phase shifter body 20 is formed inside .
  • One end in the longitudinal direction of the cavity 450 is an open end, and a receiving space is provided through the cavity 450 to facilitate the phase shift circuit 200, the first sliding dielectric plate 110, the second sliding dielectric plate 120, and other components installation.
  • both ends of the cavity 450 in the longitudinal direction may be provided as open ends.
  • the open end of the cavity 450 may also be detachably closed by a suitable cover plate or cover.
  • the material of the cavity 450 is metal aluminum, but the present disclosure is not limited thereto.
  • the phase shift circuit 200 may be a PCB circuit board, which may be a single-layer PCB board, that is, a transmission line circuit is printed on one side of the PCB board; it may also be a double-layer board, that is, on the PCB board The transmission line circuit is printed on both sides.
  • the phase shift circuit 200 includes a dielectric substrate 230 and first transmission lines 211 and second transmission lines 212 respectively disposed on the upper and lower surfaces of the dielectric substrate 230, that is, the first transmission line 211 is disposed on the upper surface of the dielectric substrate 230, The second transmission line 212 is provided on the lower surface of the dielectric substrate 230.
  • the lines of the first transmission line 211 and the second transmission line 212 are the same and are connected through the metalized via 220.
  • the sliding dielectric plate 100 includes a first sliding dielectric plate 110 disposed above the phase shift circuit 200 and a second sliding dielectric plate 120 disposed below the phase shift circuit 200.
  • the first sliding dielectric plate 110 is slidably installed in the cavity 450 and is arranged in parallel with the phase shift circuit 200.
  • the first sliding dielectric plate 110 includes a first dielectric plate body 131 and two ends disposed at both ends of the first dielectric plate body 131
  • the first impedance matching portion 141, the length of the first impedance matching portion 141 is a quarter wavelength
  • the second sliding dielectric plate 120 is slidably installed in the cavity 450 and is arranged in parallel with the phase shift circuit 200, the second sliding medium
  • the plate 120 includes a second dielectric plate body 132 and second impedance matching portions 142 provided at both ends of the second dielectric plate body 132, and the length of the second impedance matching portion 142 is a quarter wavelength.
  • the sliding medium plate 100 includes a first sliding medium plate 110 and a second sliding medium plate 120.
  • the first sliding medium plate 110 and the second sliding medium plate 120 are in a mirror relationship with the phase shift circuit 200.
  • the first sliding dielectric plate 110 is located in the cavity above the phase shift circuit 200, the first dielectric plate body 131 is in surface contact with the first transmission line 211, and there is a gap between the first impedance matching portion 141 and the first transmission line 211.
  • the second sliding dielectric plate 120 is located in the cavity below the phase shift circuit 200, the second dielectric plate body 132 is in surface contact with the second transmission line 212, and there is a gap between the second impedance matching portion 142 and the second transmission line 212.
  • the above gap depends on the characteristic impedance of the first transmission line 211 or the second transmission line 212, and can ensure that the first impedance matching portion 141 and the second impedance matching portion 142 can compensate the characteristic impedance of the first transmission line 211 and the second transmission line 212.
  • the amount of contact with the first transmission line 211 is changed by sliding the first sliding dielectric plate 110, and the amount of contact with the second transmission line 212 is changed by sliding the second sliding dielectric plate 120, thereby achieving phase shift.
  • the first impedance matching portion 141 and the second impedance matching portion 142 include metal pieces.
  • the principle of metal parts used for impedance matching is that it is actually equivalent to reducing the height of the metal material cavity corresponding to the impedance matching part, that is, reducing the distance between the two ground metal plates in the strip line, Thus, the impedance of the matching part is realized.
  • the metal piece can be selected as a metal block, which is connected to the main body of the dielectric board. In this case, a specific structural connection is required between the main body of the dielectric board and the impedance matching part, such as the physical connection in various existing technologies such as snap connection, plug connection, etc. The connection method will not be repeated in this disclosure.
  • the metal block is aluminum, but the present disclosure is not limited thereto.
  • the metal member can also be selected as a metal layer.
  • the impedance matching part includes a dielectric member and a metal layer. The metal layer covers the surface of the dielectric member. The thickness of the impedance matching part is smaller than the thickness of the dielectric plate body. In this case, the main body of the dielectric board and the impedance matching part can be made in one piece.
  • the first impedance matching portion 141 and the second impedance matching portion 142 are selected to be only dielectric members, and different dielectric constants in the space are realized by reducing the height of the dielectric member, thereby obtaining the impedance required by the matching section.
  • the main body of the dielectric plate and the impedance matching portion may be integrated, and only the thickness of the dielectric member of the impedance matching portion is smaller than the thickness of the main body of the dielectric plate.
  • the first transmission line 211 and the second transmission line 212 adopt a symmetrical cross-feed structure, which is in the form of a 1-input 5-output structure, that is, it has one input port and five output ports.
  • 154 is a signal input port
  • 151, 152, 153, 155, and 156 are signal output ports, of which 153 is a constant-phase port, and the remaining ports are symmetrical.
  • the phase shifter ports 151, 152, 155, and 156 will have corresponding phase changes. Specifically, the signal enters through the signal input port 154, and each port has an original phase.
  • the transmission line of the left port 151, 152 in the cavity is gradually changed from the sliding medium plate to the air in the cavity, and the left port 151, 152 of the phase shifter is in phase. Change to lead
  • the medium of the transmission line connected to the right port 155, 156 in the cavity is gradually changed from air to a sliding medium plate, and the phase change of the right port 155, 156 of the media phase shifter is lagging Therefore, as the sliding dielectric plate 100 slides, the phase of each port exhibits a linear and continuous change.
  • the line where the port 153 is located is always in the sliding dielectric board, and the phase does not change.
  • the dielectric plate 100 only needs to slide between the two matching sections 215 on the phase shift circuit 200, and does not need to cover the matching section 215, so the sliding dielectric plate 100 does not increase the phase shifter itself length.
  • FIG. 4 is a schematic structural diagram of a 1-in-5-out dielectric phase shifter in a parallel form according to an embodiment of the present disclosure.
  • a 1-in-5 out-of-phase phase shifter body 50 in the form of parallel feeding is given, in which port 544 is a signal input port, and the dielectric plate body 510 and the impedance matching part 520 slide on the transmission line 530, thereby
  • the phases of ports 541, 542, 545, and 546 change linearly, and the line where port 543 is located is always in the medium, and the phase does not change.
  • FIG. 5 is a schematic diagram of the structure of a 1 in 7 out dielectric phase shifter in series according to an embodiment of the present disclosure.
  • a 1-in 7-out phase shifter body 30 in the form of a serial feed is given, in which port 345 is a signal input port, the dielectric board body 310 and the impedance matching part 320 slide on the transmission line 330, so that the port
  • the phases of 341, 342, 343, 346, 347, and 348 change linearly, where the line where port 344 is located is always in the medium, and the phase does not change.
  • FIG. 6 is a schematic structural diagram of a serial-in 1-in-9-out dielectric phase shifter according to an embodiment of the present disclosure.
  • a 1-in-9-out phase shifter body 40 in a form of a serial feed is given, in which port 446 is a signal input port, the dielectric board body 410 and the impedance matching part 420 slide on the transmission line 430, so that the port
  • the phases of 441, 442, 443, 444, 447, 448, 449, and 451 change, and the line where port 445 is located is always in the medium, and the phase does not change.
  • an embodiment of the present disclosure also discloses a base station antenna, which includes a dielectric phase shifter, which is a dielectric phase shifter as described above. Therefore, the base station antenna with the dielectric phase shifter also has all the technical effects mentioned above, which will not be repeated here.

Abstract

公开了一种介质移相器及安装其的基站天线。介质移相器包括腔体、内置于所述腔体内的移相电路和可滑动地安装于所述腔体内且与所述移相电路平行设置的滑动介质板,所述滑动介质板包括介质板主体和设置在所述介质板主体两端的阻抗匹配部分,所述阻抗匹配部分的长度为四分之一波长。

Description

介质移相器和基站天线 技术领域
本公开涉及移动通信基站天线技术领域。
背景技术
随着通信技术的发展,机械下倾天线辐射有本身固有的缺陷,电下倾天线的应用越来越流行,移相器作为电调天线的核心部件,性能的优劣直接决定了电调基站天线的性能,进而影响到网络的覆盖能力。
电调天线移相器基本可以分为两种实现方式,分别是改变传输线的电长度和改变传输线的介电常数,后者称为介质移相器。介质移相器由于不改变传输线路本身而具有设计容差敏感度小,损耗小,性能优良等特点。
发明内容
本公开的一方面提供了一种介质移相器,其包括腔体、内置于所述腔体内的移相电路和可滑动地安装于所述腔体内且与所述移相电路平行设置的滑动介质板,所述滑动介质板包括介质板主体和设置在所述介质板主体两端的阻抗匹配部分,所述阻抗匹配部分的长度为四分之一波长的奇数倍。
本公开的另一方面提供了一种基站天线,其包括介质移相器,所述介质移相器是上述介质移相器。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为根据本公开的实施例的介质移相器的结构示意图;
图2是图1所示介质移相器去除腔体后的结构示意图;
图3是图1所示介质移相器去除腔体后的爆炸示意图;
图4是根据本公开的实施例的并联形式的1进5出介质移相器的结构示意图;
图5是根据本公开的实施例的串联形式的1进7出介质移相器的结构示意图;以及
图6是根据本公开的实施例的串联形式的1进9出介质移相器的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本公开,下面将结合本公开的附图,对本公开的实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本公开中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开中的具体含义。
此外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图1-6并结合实施例来详细说明本公开。
由于通用的介质移相器体积大、匹配设计复杂、结构工艺实现难度高等缺点使移相器的应用受到一定的限制。本公开提供了一种介质移相器,其匹配实现简单,尺寸小,并满足大功率和宽频设计。
图1为根据本公开的实施例的介质移相器的结构示意图。图2是图1所示介质移相器去除腔体后的结构示意图。图3是图1所示介质移相器去除腔体后的爆炸示意图。如图1-3所示,给出了一种串馈形式的1进5出的介质移相器10,介质移相器10包括腔体450以及设置在腔体450内部的移相器本体20。
如图2和3所示,移相器本体20包括移相电路200和滑动介质板100,其中移相电路200和滑动介质板100均内置于腔体450内,滑动介质板100可滑动地安装于腔体450内且与移相电路200平行设置,滑动介质板100包括介质板主体和设置在介质板主体两端的阻抗匹配部分,阻抗匹配部分的长度为四分之一波长。其中,波长λg=u/ν,式中的传播速度u的单位为m/s,此式中传播速度u选择电磁波在空气中的传播速度为光速3×108m/s,频率ν的单位为Hz,波长λg的单位为m。
纯电阻负载ZL与特性阻抗为Z0的传输线连接时,如果ZL≠Z0, 传输线上会产生反射波,传输线处于失配状态,为实现匹配,此时在传输线与负载电阻之间加一段特性阻抗为Z1的传输线。
由阻抗公式可知,匹配部分输入阻抗Zin满足:
Figure PCTCN2019123662-appb-000001
其中,波矢β=2π/λ g,l为匹配部分的长度,
可知,为了使Zin=Z0,应该有
Figure PCTCN2019123662-appb-000002
Figure PCTCN2019123662-appb-000003
于是
Figure PCTCN2019123662-appb-000004
可见,只要匹配线段的长为四分之一波长的奇数倍,特性阻抗为负载电阻和馈线特性阻抗的几何平均值,就可以实现阻抗变换。
介质移相器10的滑动介质板100在腔体450内滑动时,移相电路200的特性阻抗会发生变化,一边是空气带状线阻抗,一边是介质带状线阻抗。本公开采用滑动介质板100的阻抗匹配部分来进行阻抗匹配。阻抗匹配部分的长度为四分之一波长,实现了阻抗由介质带状线到空气带状线的变换。阻抗匹配部分的阻抗满足以下公式:
Figure PCTCN2019123662-appb-000005
其中,Z(阻抗匹配部分)表示阻抗匹配部分的阻抗;Z(介质带线)表示介质带状线的阻抗;Z(空气带线)表示空气带状线的阻抗。
从而保证了介质移相器10在滑动介质板100滑动的过程中阻抗始终保持匹配,也保证了介质移相器10的宽带特性和端口幅度的线性变化。阻抗匹配部分长度为四分之一波长,保证了阻抗匹配的同时大大缩短了滑动介质板的长度,使得介质移相器的结构更加简单,尺寸更小。
如图1所示的腔体450由金属材料拉挤或压铸一体成型,与内部 的移相电路200组成带状线,整体呈长方体形状,内部形成有用于容纳移相器本体20的容置空间。所述腔体450的纵长方向的一端为开口端,并且容置空间贯通该腔体450设置,以方便移相电路200、第一滑动介质板110、第二滑动介质板120及其他组件的安装。当然,所述腔体450也可以沿纵长方向的两端均设置为开口端。在其他实施方式中,所述腔体450的开口端也可以通过相适配的盖板或盖子进行可拆卸式的封闭。根据本公开的实施例,腔体450的材质为金属铝,但本公开不限于此。
在一些实施例中,移相电路200可以为PCB电路板,该PCB电路板可以是单层PCB板,即在PCB板的一面印制传输线电路;其也可以是双层板,即在PCB板的两面均印制传输线电路。如图3所示,移相电路200包括介质基板230和分别设置在所述介质基板230上下表面的第一传输线211和第二传输线212,即第一传输线211设置在介质基板230的上表面,第二传输线212设置在介质基板230的下表面。第一传输线211和第二传输线212的线路一致且通过金属化过孔220连接。
如图3所示,所述滑动介质板100包括设置于所述移相电路200上方的第一滑动介质板110和设置于所述移相电路200下方的第二滑动介质板120。其中,第一滑动介质板110可滑动地安装于腔体450内且与移相电路200平行设置,第一滑动介质板110包括第一介质板主体131和设置在第一介质板主体131两端的第一阻抗匹配部分141,第一阻抗匹配部分141的长度为四分之一波长;第二滑动介质板120可滑动地安装于腔体450内且与移相电路200平行设置,第二滑动介质板120包括第二介质板主体132和设置在第二介质板主体132两端的第二阻抗匹配部分142,第二阻抗匹配部分142的长度为四分之一波长。
滑动介质板100包括第一滑动介质板110和第二滑动介质板120,根据本公开的实施例,第一滑动介质板110和第二滑动介质板120相对移相电路200成镜像关系。第一滑动介质板110位于移相电路200上方的腔体内,第一介质板主体131和第一传输线211表面接触,第一阻抗匹配部分141和第一传输线211之间有间隙。同样的,第二滑 动介质板120位于移相电路200下方的腔体内,第二介质板主体132和第二传输线212表面接触,第二阻抗匹配部分142和第二传输线212之间有间隙。上述的间隙取决于第一传输线211或第二传输线212的特性阻抗,能够保证第一阻抗匹配部分141及第二阻抗匹配部分142能对第一传输线211和第二传输线212的特性阻抗进行补偿。通过滑动第一滑动介质板110改变与第一传输线211的接触量,以及通过滑动第二滑动介质板120改变与第二传输线212的接触量,从而实现移相。
在一些实施例中,第一阻抗匹配部分141和第二阻抗匹配部分142包括金属件。金属件用于阻抗匹配的原理在于,其实际上是相当于降低了在阻抗匹配部分所对应的金属材质腔体的高度,即减小了带状线中两块接地金属板之间的距离,从而实现匹配部分的阻抗。金属件可以选在为金属块,其与介质板主体相连接,此情况下,介质板主体和阻抗匹配部分之间需要特定结构连接,例如卡接、插接等各种现有技术中的物理连接方式,本公开不再赘述。根据本公开的实施例,金属块为铝,但本公开不限于此。金属件还可以选择为金属层,具体的,阻抗匹配部分包括介质件和金属层,金属层覆于介质件的表面,阻抗匹配部分的厚度小于所述介质板主体的厚度。这种情况下,介质板主体和阻抗匹配部分可以做成一体成型。
在一些实施例中,第一阻抗匹配部分141和第二阻抗匹配部分142选择仅为介质件,通过降低介质件的高度来实现空间内不同介电常数,从而得到匹配部分所需要的阻抗。这种情况下,介质板主体和阻抗匹配部分可以做成一体,只需要阻抗匹配部分的介质件的厚度小于介质板主体的厚度。
如图3所示,本实施例中第一传输线211和第二传输线212采用对称串馈结构,其形式为1进5出结构,即具有一个输入端口,5个输出端口。如图1所示,154为信号输入端口,151,152,153,155,156为信号输出端口,其中153为不变相位口,其余端口左右对称。本公开的第一滑动介质板110和第二滑动介质板120,在腔体450内滑动过程中,移相器端口151,152,155,156会有相应的相位变化。具体的, 信号由信号输入端口154进入,各端口有一个原始相位。当滑动介质板100从左侧往右侧滑动时,腔体内左侧的端口151,152的传输线路在腔体内介质由滑动介质板逐渐变换为空气,介质移相器左侧端口151,152相位变化为超前
Figure PCTCN2019123662-appb-000006
同样的,腔体内右侧端口155,156所连接的传输线路在腔体内的介质由空气逐渐变换为滑动介质板,介质移相器右侧端口155,156相位变化为滞后
Figure PCTCN2019123662-appb-000007
所以,随着滑动介质板100的滑动,各端口相位呈现线性连续变化。端口153所在线路始终在滑动介质板内,相位不发生变化。
在具体工作过程中,介质板100只需要在移相电路200上的两个匹配段215之间滑动即可,且并不需要覆盖匹配段215,所以滑动介质板100并不增加移相器本身长度。
图4是根据本公开的实施例的并联形式的1进5出介质移相器的结构示意图。
如图4所示,给出了一种并联馈电形式的1进5出移相器本体50,其中端口544为信号输入端口,介质板主体510和阻抗匹配部分520在传输线530上滑动,从而端口541,542,545,546相位呈线性变化,其中端口543所在线路始终位于介质内,相位不发生变化。
图5是根据本公开的实施例的串联形式的1进7出介质移相器的结构示意图。
如图5所示,给出了一种串馈形式的1进7出移相器本体30,其中端口345为信号输入端口,介质板主体310和阻抗匹配部分320在传输线330上滑动,从而端口341,342,343,346,347,348相位呈线性变化,其中端口344所在线路始终位于介质内,相位不发生变化。
图6是根据本公开的实施例的串联形式的1进9出介质移相器的结构示意图。
如图6所示,给出了一种串馈形式的1进9出移相器本体40,其中端口446为信号输入端口,介质板主体410和阻抗匹配部分420在传输线430上滑动,从而端口441,442,443,444,447,448,449,451相位发生变化,其中端口445所在线路始终位于介质内,相位不发生变化。
此外,本公开实施例还公开了一种基站天线,其包括介质移相器,该介质移相器是如上所述的介质移相器。因此具有该介质移相器的基站天线也具有上述所有技术效果,在此不再一一赘述。
本说明书中部分实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种介质移相器,包括腔体、内置于所述腔体内的移相电路和可滑动地安装于所述腔体内且与所述移相电路平行设置的滑动介质板,其中,所述滑动介质板包括介质板主体和设置在所述介质板主体两端的阻抗匹配部分,所述阻抗匹配部分的长度为四分之一波长的奇数倍。
  2. 根据权利要求1所述的介质移相器,其中,所述介质板主体与所述移相电路接触,所述阻抗匹配部分与所述移相电路之间有间隙。
  3. 根据权利要求1所述的介质移相器,其中,所述阻抗匹配部分包括金属件。
  4. 根据权利要求1所述的介质移相器,其中,所述阻抗匹配部分包括介质件和金属层,所述金属层覆于所述介质件的表面,所述阻抗匹配部分的厚度小于所述介质板主体的厚度。
  5. 根据权利要求4所述的介质移相器,其中,所述介质板主体和介质件一体成型。
  6. 根据权利要求1所述的介质移相器,其中,所述阻抗匹配部分为介质件,所述介质件的厚度小于所述介质板主体的厚度。
  7. 根据权利要求1所述的介质移相器,其中,所述滑动介质板包括设置于所述移相电路上方的第一滑动介质板和设置于所述移相电路下方的第二滑动介质板。
  8. 根据权利要求1-7任一项所述的介质移相器,其中,所述移相电路包括介质基板和分别设置在所述介质基板上下表面的第一传 输线和第二传输线。
  9. 根据权利要求8所述的介质移相器,其中,所述第一传输线和第二传输线的线路一致且通过金属化过孔连接。
  10. 一种基站天线,其特征在于,包括权利要求1-9任一项所述的介质移相器。
PCT/CN2019/123662 2018-12-06 2019-12-06 介质移相器和基站天线 WO2020114486A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811488617.7 2018-12-06
CN201811488617.7A CN111293383A (zh) 2018-12-06 2018-12-06 介质移相器和基站天线

Publications (1)

Publication Number Publication Date
WO2020114486A1 true WO2020114486A1 (zh) 2020-06-11

Family

ID=70975356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123662 WO2020114486A1 (zh) 2018-12-06 2019-12-06 介质移相器和基站天线

Country Status (2)

Country Link
CN (1) CN111293383A (zh)
WO (1) WO2020114486A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113241506A (zh) * 2021-05-21 2021-08-10 广东盛路通信有限公司 腔体介质滑动式移相器及基站天线
CN113410594B (zh) * 2021-06-11 2023-03-21 京信通信技术(广州)有限公司 介质移相器与天线
CN113328217A (zh) * 2021-06-11 2021-08-31 京信通信技术(广州)有限公司 功分与移相一体化组件及基站天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710633A (zh) * 2009-02-13 2010-05-19 广东通宇通讯设备有限公司 一种基于介质加载的移相器模块
CN203910945U (zh) * 2014-05-27 2014-10-29 深圳国人通信股份有限公司 一种移相器及其移相单元
EP2802036A1 (fr) * 2013-05-06 2014-11-12 Alcatel- Lucent Shanghai Bell Co., Ltd Déphaseur passif à déplacement longitudinal
CN206401476U (zh) * 2017-01-22 2017-08-11 嘉兴市安信通讯技术有限公司 一种一体化多路介质移相器
CN207368177U (zh) * 2017-11-16 2018-05-15 深圳国人通信股份有限公司 一种基站天线宽带介质移相器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202042575U (zh) * 2011-03-28 2011-11-16 京信通信系统(中国)有限公司 同轴介质移相系统、移相器及移相驱动装置
CN106129544A (zh) * 2016-08-01 2016-11-16 江苏亨鑫无线技术有限公司 一种低损耗宽频带介质移相器
CN206301918U (zh) * 2016-12-23 2017-07-04 深圳国人通信股份有限公司 一种介质移相器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101710633A (zh) * 2009-02-13 2010-05-19 广东通宇通讯设备有限公司 一种基于介质加载的移相器模块
EP2802036A1 (fr) * 2013-05-06 2014-11-12 Alcatel- Lucent Shanghai Bell Co., Ltd Déphaseur passif à déplacement longitudinal
CN203910945U (zh) * 2014-05-27 2014-10-29 深圳国人通信股份有限公司 一种移相器及其移相单元
CN206401476U (zh) * 2017-01-22 2017-08-11 嘉兴市安信通讯技术有限公司 一种一体化多路介质移相器
CN207368177U (zh) * 2017-11-16 2018-05-15 深圳国人通信股份有限公司 一种基站天线宽带介质移相器

Also Published As

Publication number Publication date
CN111293383A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2020114486A1 (zh) 介质移相器和基站天线
KR101492850B1 (ko) 단일층 금속화 및 비아-레스 메타 물질 구조
JP5662801B2 (ja) フィルタ設計方法およびメタマテリアル構造ベースのフィルタ
EP2979321B1 (en) A transition between a siw and a waveguide interface
US3904997A (en) Trapped-radiation microwave transmission line
CN112272900B (zh) 螺旋超宽带微带正交定向耦合器
US20150303546A1 (en) Dielectric strap waveguides, antennas, and microwave devices
CN109346834A (zh) Sigw圆极化缝隙天线
CN104681896A (zh) 一种多路一体化介质移相器
WO2019213784A1 (en) Applications of metamaterial electromagnetic bandgap structures
US3094677A (en) Strip line wave guide coupler
Letavin Additional miniaturization of directional couplers
US20240039148A1 (en) Devices with Radiating Systems Proximate to Conductive Bodies
Inoue et al. A super-compact dual-band Wilkinson power divider composed of multi-layered CRLH transmission lines
WO2004075334A2 (en) Microwave coupler
CN110534920B (zh) 柔性巴特勒馈电网络
Zhang et al. Compact branch-line coupler using uniplanar spiral based CRLH-TL
Kildal Gap waveguides and PMC packaging: Octave bandwidth mm-and submm-wave applications of soft & hard surfaces, EBGs and AMCs
KR102251287B1 (ko) 기판집적도파관 구조를 세그먼트 분리하여 층으로 할당하고 적층하는 방식의, 5g 소형 단말기 및 중계기용 광대역 빔 포밍 안테나 면적 축소법
US20070120620A1 (en) Tunable surface mount ceramic coupler
Nouri et al. Novel Compact Branch-Line Coupler Using Non-Uniform Folded Transmission Line and Shunt Step Impedance Stub With Harmonics Suppressions.
Gruszczynski et al. Design of high‐performance three‐strip 3‐DB directional coupler in multilayer technology with compensated parasitic reactances
Zhurbenko et al. Broadband impedance transformer based on asymmetric coupled transmission lines in nonhomogeneous medium
KR100779407B1 (ko) 메타머터리얼을 이용한 초소형 이중 대역 안테나
Panigrahi et al. Leaky Surface Waves Suppression Using Simple Planar Patch-type AMC Surfaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19892171

Country of ref document: EP

Kind code of ref document: A1