WO2020114263A1 - 投影设备 - Google Patents

投影设备 Download PDF

Info

Publication number
WO2020114263A1
WO2020114263A1 PCT/CN2019/120138 CN2019120138W WO2020114263A1 WO 2020114263 A1 WO2020114263 A1 WO 2020114263A1 CN 2019120138 W CN2019120138 W CN 2019120138W WO 2020114263 A1 WO2020114263 A1 WO 2020114263A1
Authority
WO
WIPO (PCT)
Prior art keywords
galvanometer
assembly
holder
projection device
mounting portion
Prior art date
Application number
PCT/CN2019/120138
Other languages
English (en)
French (fr)
Inventor
黄永达
李建军
石龙飞
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2020114263A1 publication Critical patent/WO2020114263A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements

Definitions

  • the present application relates to the field of projection equipment, in particular to a projection equipment.
  • the projection device has been more and more widely used due to its advantages of large screen size and good visual effect.
  • FIG. 1 is a schematic structural diagram of a galvanometer device in the related art. As shown in FIG.
  • the galvanometer 10 is usually provided with a cantilever galvanometer support frame 20 disposed between the optical machine assembly and the lens, and one end of the galvanometer holder 20 is fixed on the top surface of the entire projection device housing, and the other end is along The galvanometer 10 extends radially.
  • the galvanometer 10 may be provided on the galvanometer support frame 20 through the fastener 30, and in order to prevent the vibration of the galvanometer 10 from being transmitted to the galvanometer support frame 20, a buffer material is provided between the galvanometer support frame 20 and the galvanometer mirror 10 .
  • the vibration frequency of the galvanometer is fast and the overall mass of the galvanometer is light, the amplitude of the galvanometer is usually large, and the damping material has a limited effect of suppressing vibration.
  • the present application provides a projection device that can better reduce resonance and noise caused by galvanometer vibration.
  • the present application provides a projection device including an optical machine component, a lens component, and a galvanometer component.
  • the galvanometer component includes a galvanometer bracket and a galvanometer disposed on the galvanometer bracket.
  • the galvanometer bracket has a first side and a second side. The first side and the second side are oppositely arranged along the axial direction of the galvanometer assembly, and the first side is fixedly connected to the optomechanical assembly, and the second side is fixedly connected to the lens assembly.
  • the projection device of the present application includes an optical machine assembly, a lens assembly and a galvanometer assembly.
  • the galvanometer assembly includes a galvanometer holder and a galvanometer arranged on the galvanometer holder.
  • the galvanometer holder has a first side and a second side. The first side The second side is opposite to the axis of the galvanometer assembly, and the first side is fixedly connected to the optomechanical assembly, and the second side is fixedly connected to the lens assembly.
  • the galvanometer bracket is located on the axial side of the galvanometer, and the galvanometer bracket is fixedly connected to other heavy-weight structures such as optomechanical components and lens components. At this time, the galvanometer bracket can transfer vibration energy from the periphery of the galvanometer.
  • FIG. 1 is a schematic structural diagram of a galvanometer device in the related art
  • FIG. 2 is a schematic structural diagram of a projection device provided by an embodiment of the present application.
  • FIG. 3 is an exploded schematic view of the projection device in FIG. 2;
  • FIG. 4 is a schematic structural diagram of a galvanometer assembly in a projection device according to an embodiment of the present application.
  • FIG. 5 is an exploded schematic view of the galvanometer assembly in FIG. 4;
  • FIG. 6 is a schematic structural view of the galvanometer assembly in FIG. 4 facing the axial direction of the galvanometer;
  • FIG. 7 is a schematic diagram of connection of a galvanometer holder and a galvanometer in a projection device provided by an embodiment of the present application.
  • 8-1, 8-2, and 8-3 are schematic diagrams of the working process of the galvanometer provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a projection device provided by a specific embodiment of the present application.
  • 3 is an exploded schematic view of the projection device in FIG. 2.
  • 4 is a schematic structural diagram of a galvanometer assembly in a projection device provided by a specific embodiment of the present application.
  • FIG. 5 is an exploded schematic view of the galvanometer assembly in FIG. 4.
  • FIG. 6 is a schematic structural view of the galvanometer assembly in FIG. 4 facing the axial direction of the galvanometer.
  • 7 is a schematic diagram of connection of a galvanometer holder and a galvanometer in a projection device provided by a specific embodiment of the present application.
  • the projection device provided in this embodiment includes an optical machine assembly 1, a lens assembly 2, and a galvanometer assembly 3.
  • the galvanometer assembly 3 includes a galvanometer holder 31 and a galvanometer holder 31 provided on the galvanometer holder 31
  • the galvanometer 32 includes a galvanometer lens 321, a galvanometer holder 31 having a first side and a second side, the first side and the second side are oppositely arranged along the axis of the galvanometer assembly 3, and the first side is
  • the assembly 1 is fixedly connected, and the second side is fixedly connected to the lens assembly 2.
  • the optical machine assembly 1 and the lens assembly 2 usually have mounting surfaces of different sizes, and the optical machine assembly 1 usually has a large light exit surface,
  • the projection component 2 generally has a smaller optical aperture entrance surface, and the size of the surface of the projection component 2 perpendicular to the optical axis is smaller than the size of the surface of the optomechanical component perpendicular to the optical axis.
  • the galvanometer holder 31 has a first side and a second side, wherein the first side is fixedly connected to the optomechanical assembly 2 and the second side is fixedly connected to the lens assembly 3, so that the galvanometer holder 31 serves as a support for the galvanometer 32 It also serves as a connector to connect the optomechanical component and the lens component.
  • the optomechanical component and/or the lens component are designed for miniaturization, the optomechanical component and the lens component with different sizes of mounting surfaces are better matched and connected together. , To achieve the assembly of projection equipment, to achieve the structural requirements of miniaturization.
  • the projection device may generally be a laser TV, a projector, or other devices capable of projecting images.
  • the projection device includes an optical machine component 1, which is also commonly called an optical engine, which includes a digital micromirror device 11 (Digital Micromirror Device, DMD), an illumination optical path at the front end, and a housing 12 other devices.
  • the illumination light path can be used as a light source to provide light; and the digital micromirror device is filled with micro light valves or light path switches, so it can be used to open and close the light path, so that the light emitted by the illumination light path is selectively passed To form an image screen.
  • the projection device further includes a lens component 2.
  • the lens assembly 2 contains multiple groups of lenses, and each group of lenses includes one or more lenses, so that through the refraction between different lenses, the light emitted from the optical component can be focused on the projection screen to display Normal picture.
  • the projection device further includes a galvanometer assembly 3, and the galvanometer assembly 3 includes a galvanometer 32.
  • the galvanometer 32 can deflect the light beam generated by the optomechanical component 1 by a certain angle through vibration to form pixel points that are offset, and the deflected pixel points can be superimposed with the original pixel points generated by the optomechanical component 1 to form a superposition
  • the clarity of the picture is improved, and the purpose of improving the resolution of the picture is visually achieved.
  • the galvanometer lens is a light-transmissive flat sheet structure, and the light-transmissive flat sheet vibrates back and forth at two different positions by electromagnetic drive, and as the flat sheet switches between the two positions, the flat sheet is transmitted through
  • the beams of the two images will be misaligned, and the two continuous image beams will have an overlapping effect to form a picture.
  • the two pictures are derived from the same high-resolution image, and the decomposition algorithm is also Based on the influence of the polarization angle of the galvanometer on the pixel shift, the superposition of these two images will not cause confusion in the image display.
  • the galvanometer lens can be cyclically moved in four different positions, which are up, down, left, and right.
  • the image to be displayed is decomposed into four images: sub-image A, sub-image B, sub-image C, and sub-image D.
  • the galvanometer changes in the upper and lower positions when the galvanometer changes in the upper and lower positions, the light beams of the sub-image A and the sub-image C successively pass through the galvanometer, and the upper and lower misalignment occurs.
  • Figure 8-2 when the galvanometer changes in the left and right positions, the light beams of the sub-image B and the sub-image D successively pass through the galvanometer, and the left-right misalignment is superimposed.
  • the galvanometer When the image to be displayed is 60 Hz, the display frequency of the four sub-images obtained according to the image decomposition is 120 Hz, then the galvanometer also needs to vibrate at the same frequency.
  • the galvanometer 32 generally includes a lens and a frame for fixing the lens.
  • the galvanometer assembly 3 further includes a galvanometer holder 31, which can form a relatively stable support point, thereby serving as a fixed and The supporting foundation enables the galvanometer 32 to be stably supported while reducing the resonance phenomenon.
  • the axis direction of the bracket for fixing the galvanometer 32 and the galvanometer 32 is perpendicular or nearly vertical, and one end of the bracket is The other parts of the bracket are fixed, and the end where the galvanometer 32 is fixed is a free end that is suspended. Therefore, the whole bracket will form a structure similar to a cantilever beam, that is, the end of the bracket that is fixed to other components and the galvanometer 32 have a relatively Long arm.
  • the galvanometer vibrates, a large deflection torque will be generated in the direction perpendicular to the axis of the galvanometer. At this time, due to the lack of support at one end, the bracket will generate a corresponding displacement swing under the driving of the deflection torque to form resonance. When the vibration amplitude of the bracket is large, it will cause large noise and overall vibration.
  • the galvanometer holder 31 In order to allow the galvanometer holder 31 to stably support and fix the galvanometer 32, the galvanometer holder 31 is prevented from being driven by the galvanometer 32 to generate large noise and resonance phenomena.
  • the galvanometer holder 31 in this embodiment may include a mounting portion 311, the mounting portion 311 will protrude along the axial direction of the galvanometer assembly 3, and the galvanometer assembly 3 can be disposed on the mounting portion 311, and obtain The mounting part 311 is supported and fixed.
  • the mounting portion 311 may protrude toward the direction of the optomechanical component 1 or protrude toward the direction of the lens component 2.
  • the bottom end of the mounting portion 311 may be fixed to the body of the galvanometer holder 31, and the top end of the mounting portion 311 protrudes toward the optical machine assembly 1 along the axis of the galvanometer assembly. Since the optomechanical component 1 generally has a large size and a mounting surface area, when the mounting portion 311 protrudes toward the optomechanical component 1, the optomechanical component 1 can shield and cover the galvanometer component 3 to avoid external dust and impurities This affects the normal operation of the galvanometer assembly 3.
  • the load and energy during vibration are distributed to the lens assembly 2 and the optomechanical assembly 1 and are effectively absorbed by these larger structures to reduce the vibration of the galvanometer holder 31; at the same time, the galvanometer holder 31 and other fixed The structures (such as the optomechanical component 1 and the lens component 2) are connected and fixed and supported by these fixed structures, and the fixed points of the connection between the galvanometer bracket 31 and the fixed structure are closer to the galvanometer 32, so the galvanometer 32 is vibrating At this time, the vibration force of the galvanometer 32 has a shorter arm relative to the fixed connection position between the galvanometer holder 31 and the fixed structure, and the resulting vibration torque is also smaller, thereby allowing the galvanometer holder 31 to 32 forms an effective support to reduce resonance and noise.
  • the galvanometer holder 31 may have various shapes and structures. The structure of the galvanometer holder 31 will be described in detail below.
  • the galvanometer holder 31 has a structure for connecting with the optomechanical component 1 or the lens component 2.
  • the galvanometer holder 31 further includes a body 312 having a light-passing hole 313 for the galvanometer 32 to pass light, and the first end of the body 312 along the axial direction of the galvanometer assembly 3 is In the optomechanical assembly 1, the second end of the body 312 along the axial direction of the galvanometer assembly 3 is fixedly connected to the lens assembly 2.
  • the body 312 may have many different shapes and structures. Since the body 312 of the galvanometer holder 31 is connected between the optical machine assembly 1 and the lens assembly 2, in order to shorten the optical path inside the projection device, the galvanometer holder 31 should have a small size in the axial direction of the galvanometer. At this time, the body 312 can be a plate-like structure, and the thickness direction of the body 312 is consistent with the axis direction of the galvanometer. In this way, the size of the galvanometer holder 31 in the direction of the axis of the galvanometer is small, so that the optical machine assembly 1 and the lens assembly 2 have a small distance, and the length of the optical path inside the projection device is shortened. When the body 312 of the galvanometer holder 31 has a plate-like structure, the two side surfaces of the body 312 in the thickness direction have large mounting surfaces, which can be conveniently connected to the optomechanical component 1 and the lens component 2.
  • the galvanometer assembly 3 is fixed between the optical machine assembly 1 and the lens assembly 2, in order to prevent the galvanometer holder 31 from blocking the light beam to the projection device, the galvanometer holder 31 is provided with a through hole 313. The axial direction of the galvanometer remains the same.
  • the shape of the light hole 313 can be matched with the shape of the galvanometer, for example, it is circular.
  • the light hole 313 can also be a different shape such as a rectangle, as long as the galvanometer holder 31 does not affect the normality of the galvanometer Just work, no restrictions here.
  • the body 312 of the galvanometer holder 31 can also have other different structures, for example, the whole can form a mounting block or a mounting boss, etc., as long as the galvanometer holder 31 can be connected and fixed between the optical machine assembly 1 and the lens assembly 2 and can It is sufficient to fix and support the mounting portion 311, and the specific structure of the body 312 of the galvanometer holder 31 is not limited here.
  • the galvanometer holder 31 can support the galvanometer 32 through the mounting portion 311.
  • the mounting part 311 can also have different structures and shapes.
  • the mounting portion 311 protrudes along the galvanometer assembly 3, and the top of the mounting portion 311 is formed It is used to fix the fulcrum of the galvanometer 32.
  • the plurality of mounting parts 311 can be supported at different parts of the galvanometer 32 to improve the support stability of the galvanometer 32.
  • the galvanometer 32 generally has a flat structure
  • the plurality of mounting portions 311 can simultaneously abut or be fixed on different parts on the same side of the galvanometer 32 to jointly support the galvanometer 32.
  • the bottom end of the mounting portion 311 may be connected to the end of the body 312 facing the optomechanical component 1, and the top end of the mounting portion 311 protrudes toward the optomechanical component 1, and forms a fulcrum capable of fixing the galvanometer 32.
  • multi-point support can be formed for the galvanometer 32.
  • the multiple fulcrums can prevent the galvanometer 32 from swinging and changing its posture. It has a better supporting effect on the galvanometer 32.
  • the number of the mounting parts 311 can be set according to the specific structure and mounting space of the galvanometer assembly 3.
  • the number of the mounting portions 311 may be three or more, for example, three, so that the three fulcrums formed by the tops of the three mounting portions 311 can form three vertices of a triangle, which can reduce vibration
  • the mirror 32 is fixed on the plane defined by the tops of the three mounting portions 311, which can effectively prevent the vibration mirror 32 from oscillating and rotating when the vibration mirror 32 is oscillating and rotating, and the support of the mirror mirror holder 31 is relatively stable.
  • the installation position of the mounting portion 311 also needs to avoid blocking the optical path of the galvanometer.
  • the mounting portion 311 may be provided on the circumferential outer side of the light passing hole 313 of the galvanometer holder 31, for example, a plurality of mounting portions 311 may be co-located on the same circumference concentrically with the light passing hole 313. At this time, the plurality of mounting portions 311 are collectively arranged around the optical path of the galvanometer 32, while supporting the galvanometer 32, to avoid affecting the optical path of the entire projection device.
  • the specific position of the mounting portion 311 can be set according to the structure of the galvanometer holder 31 and the internal space of the projection device, and is not limited here.
  • the other side of the galvanometer mirror 32 in the radial direction of the galvanometer mirror may be suspended due to lack of support.
  • the phenomenon of excessive vibration amplitude may still occur during vibration, which may cause resonance of the galvanometer holder 31 and the entire projection device.
  • the amplitude of the galvanometer mirror 32 is only large in some parts, and the amplitude of other parts is small, the galvanometer mirror 32 may be damaged.
  • a plurality of mounting portions 311 may be distributed at different positions in the circumferential direction of the light passing hole 313. Specifically, different mounting portions 311 may be located on different sides of the light passing hole 313 of the galvanometer holder 31 in the radial direction.
  • the three mounting portions 311 may surround the circumferential outer side of the light passing hole 313 of the galvanometer holder 31, and the three mounting portions 311 may be evenly arranged in the circumferential direction, or may be other arrangements.
  • two mounting portions 311 of the three mounting portions 311 may be provided on opposite sides in the radial direction of the light passing hole 313, and the other mounting portion 311 is located between the two mounting portions 311.
  • the specific position of the mounting portion 311 can also be adjusted according to the structure of the galvanometer holder 31 and the internal space of the projection device, as long as the galvanometer holder 31 can fully support the galvanometer 32 in the circumferential direction of the galvanometer 32, I won't repeat them here.
  • the galvanometer holder 31 supports the galvanometer 32 through the mounting portion 311 extending along the galvanometer axis, there may be a large distance between the galvanometer 32 and the body 312 of the galvanometer holder 31 In this interval, the galvanometer holder 31 only supports the galvanometer 32 by one or more mounting portions 311 provided at intervals, which may cause the light beam passing through the galvanometer 32 to leak out from between the mounting portions 311, causing light leakage .
  • a light shielding and connecting structure may be provided between the body 312 of the galvanometer holder 31 and the mounting portion 311.
  • the galvanometer holder 31 further includes an annular boss 314, the annular boss 314 is located inside the mounting portion 311, and the inner edge of the annular boss 314 surrounds the light through hole 313.
  • the ring-shaped boss 314 is connected to the body 312 of the galvanometer holder 31, and the ring-shaped boss 314 can surround the outer side of the light passage hole 313 and form a cylindrical structure extending along the axis of the galvanometer, so The side wall of the ring-shaped boss 314 can block the light-passing hole 313 to prevent the light beam passing through the lens assembly 2 and the galvanometer assembly 3 from leaking out of the gap between the mounting portions 311.
  • the annular boss 314 may be located inside the mounting portion 311, so that the radial distance between the annular boss 314 and the optical path passing through the prism assembly is small, and a better light blocking effect can be achieved.
  • the annular boss 314 and the outer mounting portion 311 may be a separate structure that is independent of each other, or may be an integrated molding structure.
  • the annular boss 314 may have a variety of different structures and forms.
  • the annular boss 314 may be a cylindrical structure with the same size at both ends, or the end of the annular boss 314 connected to the body 312 may have The diameter of the annular boss 314 away from the body 312 has a smaller diameter.
  • the ring-shaped boss 314 may also be a structure capable of blocking the through-hole 313, which will not be repeated here.
  • the end surface of the annular boss 314 facing the prism assembly has a distance from the galvanometer assembly 3, at this time, the axial projection of the annular boss 314 is viewed along the axial direction of the prism assembly
  • the side end surface may be lower than the height where the end of the mounting portion 311 is located. In this way, there is a certain distance between the annular boss 314 and the fulcrum of the galvanometer holder 31, thereby forming an accommodating space in the axial direction of the galvanometer, which is convenient for accommodating the portion of the galvanometer 32 that protrudes from the mounting point of the galvanometer 32.
  • the galvanometer 32 can be fixed to the top of the mounting portion 311 of the galvanometer holder 31 in many different ways.
  • the connection method between the galvanometer 32 and the top end of the mounting portion 311 may include clamping, bonding, or using a connector to achieve connection.
  • each mounting portion 311 is connected to the galvanometer 32 by a connecting member.
  • the connecting piece can generally be various standard fasteners or non-standard connecting pieces.
  • the connecting piece may be various types of threaded fasteners, riveting pieces, or fasteners.
  • the connecting member may be a screw connector 315.
  • the top of the mounting portion 311 of the galvanometer holder 31 may be provided with The threaded hole 3111 matched with the threaded connector 315, and the galvanometer 32 is provided with a through hole 321 matched with the threaded connector 315, the threaded hole 3111 and the through hole 321 are oppositely arranged, so that the threaded connector 315 can pass through the threaded hole 3111 in sequence And the through hole 321 connects the mounting portion 311 and the galvanometer 32 together.
  • the screw connector 315 may be different types such as screws and bolts.
  • the screw connector 315 is a stepped screw as an example for description.
  • the tail of the stepped screw is stepped, and its stepped surface can be positioned with different planes.
  • the stepped screw is inserted into the through hole 321 provided in the galvanometer 32, the stepped tail of the stepped screw will protrude from the through hole 321 and be screwed to the threaded hole 3111 at the end of the mounting portion 311;
  • the head of the screw is still located on the side of the galvanometer 32 facing away from the galvanometer holder 31, so that the galvanometer 32 is fixed on the end of the mounting portion 311 by the limiting effect of the stepped screw.
  • the orientation of the through-hole 321 provided in the galvanometer 32 and the threaded hole 3111 formed in the mounting portion 311 are kept the same, and both can be the same as the galvanometer 32
  • the axis direction of is parallel, in this case, the installation direction of the step screw will also be along the axis direction of the galvanometer 32.
  • connection piece, the galvanometer 32 and the mounting portion 311 of the galvanometer holder 31 are all rigid structures, in order to buffer the vibration of the vibration module when the galvanometer 32 generates vibration, optionally, the galvanometer 32 and the galvanometer A buffer can be provided at the connection of the bracket 31.
  • an elastic buffer 33 may be provided between the top of the mounting portion 311 and the galvanometer 32.
  • the tip of the mounting portion 311 and the surface of the galvanometer 32 facing the galvanometer holder 31 are not in direct contact, but are separated by the elastic buffer 33. Since the elastic buffer 33 has its own elasticity, when the vibrating mirror 32 generates vibration, the elastic buffer 33 absorbs the vibration energy of the vibrating mirror 32 through its own deformation, thereby playing the role of buffering and absorbing vibration, reducing the vibration of the vibrating mirror This causes resonance between the galvanometer holder 31 and the entire projection device.
  • the elastic buffer member 33 may be disposed on the side of the screw connection member 315, for example, the elastic buffer member 33 is an annular member, and is sleeved on the circumferential outer side of the screw connection member 315 . At this time, the elastic buffer 33 can be fixed by the screw connection 315.
  • an elastic buffer member 33 may also be provided between the galvanometer mirror 32 and the connecting member.
  • the connecting piece is a step screw or other structure, since there may be a space between the head of the step screw and the surface of the galvanometer 32, it may be between the head of the step screw and the side of the galvanometer 32 facing the head of the step screw
  • An elastic buffer 33 is provided to avoid direct contact between the head of the step screw and the surface of the galvanometer 32.
  • the elastic buffer member 33 can generally be made of a material with elasticity.
  • the elastic buffer member 33 can be a rubber member or a silicone member.
  • the elastic buffer member 33 can also be an elastic structure such as a spring or an elastic sheet.
  • the elastic buffer 33 when the elastic buffer 33 is provided between the tip of the mounting portion 311 and the galvanometer 32, and between the galvanometer 32 and the connecting member, the elastic buffer 33 may be provided at both of the above connection positions, or The elastic buffer member 33 is only provided at one of the connection positions, and the specific setting method can be determined according to the specific structure of the galvanometer 32. In this embodiment, the elastic cushion member 33 is provided at the two connection positions as an example for description.
  • a gap greater than about 0.3 mm can be reserved between the elastic buffer 33 and the galvanometer 32 In order to reduce the shock caused by the vibration of the galvanometer 32.
  • the galvanometer assembly 3 and the optical machine assembly 1 or the lens assembly 2 can also have a variety of different installation methods and installation positions.
  • the optomechanical assembly 1 is generally used as the basis for the main structure and connection, so the galvanometer assembly 3 connected between the optomechanical assembly 1 and the lens assembly 2 can also be used as the connection basis for the lens assembly 2.
  • the galvanometer holder 31 in the galvanometer assembly 3 may be fixedly connected to the mounting surface of the lens assembly 2.
  • the lens assembly 2 uses the galvanometer holder 31 of the galvanometer assembly 3 as a mounting base, and is fixedly connected to the galvanometer holder 31 through the mounting surface.
  • the galvanometer holder 31 connected between the optical machine assembly 1 and the lens assembly 2 can fix and support the lens assembly 2, so that the optical machine assembly 1, the lens assembly 2 and the galvanometer assembly 3 form a unified structural whole.
  • the galvanometer assembly 3 can also be connected to other parts of the lens assembly 2, such as a lens barrel and other structures, which is not limited here.
  • the galvanometer bracket 31 It can form a fixed connection with the housing 12 of the optomechanical component 1.
  • the housing 12 of the optomechanical assembly 1 may have an opening end facing the galvanometer assembly 3 and the lens assembly 2, the opening end has an opening for light to pass through, and the galvanometer holder 31 can be connected with the opening end .
  • the shape and size of the body 312 of the galvanometer holder 31 can match the shape and size of the opening of the housing 12 of the optomechanical assembly 1, so that the body 312 of the galvanometer holder 31 can be covered on the opening, so that the lens assembly 2.
  • the galvanometer assembly 3 and the housing 12 of the optomechanical assembly 1 together form a closed cavity, so as to prevent outside dust or impurities from entering the projection device.
  • the galvanometer holder 31 may also be fixedly connected to the mounting surface where the light output port of the optomechanical component 1 is located. Specifically, the light output port of the optomechanical component 1 is opened toward the lens component 2, and the end surface where the light output port of the optomechanical component 1 is located, that is, the mounting surface can be connected to the galvanometer holder 31.
  • the projection device includes an optical machine assembly, a lens assembly, and a galvanometer assembly.
  • the galvanometer assembly includes a galvanometer holder and a galvanometer arranged on the galvanometer holder.
  • the galvanometer holder has a first The first side and the second side are oppositely arranged along the axial direction of the galvanometer assembly, and the first side is fixedly connected to the optomechanical assembly, and the second side is fixedly connected to the lens assembly.
  • the galvanometer bracket is located on the side of the galvanometer, and the galvanometer bracket is fixedly connected to other heavy-weight structures such as the optomechanical component and the lens assembly.
  • the galvanometer bracket can transfer the vibration energy from multiple circumferential directions of the galvanometer. Different directions are dispersed to other structures connected to the galvanometer bracket, which effectively transmits the load and energy when the galvanometer vibrates to other parts of the projection device; at the same time, compared to the fixed structure of the extended cantilever shown in FIG. 1,
  • the location of the connection point of the galvanometer on the galvanometer bracket is closer to other structures, and the vibration torque is also smaller, to avoid the oscillating and elastic deformation of the galvanometer bracket itself under the driving of the galvanometer, so that the galvanometer bracket And the entire fixed structure connected has strong structural rigidity, reducing the generation of resonance and noise.
  • the galvanometer holder is connected to the optomechanical component on one side and the lens component on one side, so that when the optomechanical component and/or the lens component are designed for miniaturization, they will be different
  • the optomechanical components and lens components of the size mounting surface are better matched and connected together to realize the assembly of the projection equipment and the structural requirements of miniaturization.
  • the galvanometer bracket is used to install and support the galvanometer. The space inside the component is reserved for the galvanometer, which is conducive to the reduction of the volume of the optomechanical component; thereby achieving the versatility of the components and reducing the volume of the projection device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

一种投影设备,包括光机组件(1)、镜头组件(2)和振镜组件(3)。振镜组件(3)包括振镜支架(31)和设置在振镜支架(31)上的振镜(10、32)。振镜支架(31)具有第一侧和第二侧,第一侧和第二侧沿振镜组件(3)的轴向相对设置,第一侧和光机组件(1)固定连接,第二侧和镜头组件(2)固定连接。这种投影设备能够减少振镜振动带来的共振和噪声。

Description

投影设备
本申请要求于2018年12月05日提交中国专利局、申请号为201811482194.8,申请名称为“投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及投影设备领域,尤其涉及一种投影设备。
背景技术
随着科技的不断发展,投影装置以其画面尺寸较大、视觉效果好的优点,得到了越来越广泛的应用。
目前,为了提升投影装置的画面分辨率,在投影装置中设置有振镜。振镜是投射性元件,将振镜设置在投影装置的光机组件和镜头之间,光机组件反射的光束会先经过振镜,再射入镜头之中。由于振镜发生振动,会让光束产生整体位移,并产生相互叠加的画面,由此提升画面的清晰度。图1是相关技术中一种振镜装置的结构示意图。如图1所示,目前,振镜10通常采用悬臂式的振镜支撑架20设置在光机组件和镜头之间,振镜支架20一端固定在整个投影装置的壳体顶面,另一端沿振镜10的径向伸出。振镜10可以通过紧固件30设置在振镜支撑架20上,且为了避免振镜10的振动传递至振镜支撑架20,在振镜支撑架20和振镜10之间设置有缓冲材料。
然而,由于振镜的振动频率较快,且振镜的整体质量较轻,因而振镜的振幅通常较大,缓冲材料对振动的抑制效果有限。
发明内容
本申请提供一种投影设备,能够较好的减少振镜振动引起的共振和噪声。
本申请提供一种投影设备,包括光机组件、镜头组件和振镜组件,振镜组件包括振镜支架和设置在振镜支架上的振镜,振镜支架具有第一侧和第二侧,第一侧和第二侧沿振镜组件的轴向相对设置,且第一侧和光机组件固定连接,第二侧和镜头组件固定连接。
本申请的投影设备包括光机组件、镜头组件和振镜组件,振镜组件包括振镜支架和设置在振镜支架上的振镜,振镜支架具有第一侧和第二侧,第一侧和第二侧沿振镜组件的轴向相对设置,且第一侧和光机组件固定连接,第二侧和镜头组件固定连接。这样振镜支架位于振镜轴向上的一侧,且振镜支架与光机组件和镜头组件等其它重量较大的结构均固定连接,此时,振镜支架能够将振动能量从振镜周向上的多个不同方向分散至与振镜支架连接的其它结构,有效的将振镜振动时的载荷和能量传递给投影装置的其它部分;同时,相比于图1所示的伸出式悬臂的固定结构,振镜在振镜支架上的连接固定点的位置,会与振镜支架所连接固定结构距离较近,振动的力矩较小,能够避免振镜支架自身在振镜的带动下出现摆动和弹性变形等现象,使振镜支架以及所连接的固定结构整体具有较强的结构刚度,由此减少共振和噪音的产生。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些 实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是相关技术中一种振镜装置的结构示意图;
图2是本申请一实施例提供的投影设备的结构示意图;
图3是图2中的投影设备的爆炸示意图;
图4是本申请一实施例提供的投影设备中振镜组件的结构示意图;
图5是图4中振镜组件的爆炸示意图;
图6是图4中的振镜组件的面向振镜轴向方向的结构示意图;
图7是本申请一实施例提供的投影设备中振镜支架和振镜的连接示意图。
图8-1,8-2,8-3为本申请一实施例提供的振镜工作过程示意图。
附图标记说明:
1—光机组件;2—镜头组件;3—振镜组件;11—数字微镜器件;12—壳体;20—振镜支撑架;30—紧固件;31—振镜支架;10、32——振镜;33—弹性缓冲件;311—安装部;312—本体;313—通光孔;314—环形凸台;315—螺纹连接件;321—通孔;3111—螺纹孔。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图2是本申请一具体实施例提供的投影设备的结构示意图。图3是图2中的投影设备的爆炸示意图。图4是本申请一具体实施例提供的投影设备中振镜组件的结构示意图。图5是图4中振镜组件的爆炸示意图。图6是图4中的振镜组件的面向振镜轴向方向的结构示意图。图7是本申请一具体实施例提供的投影设备中振镜支架和振镜的连接示意图。
如图2至图7所示,本实施例提供的投影设备,包括光机组件1、镜头组件2和振镜组件3,振镜组件3包括振镜支架31和设置在振镜支架31上的振镜32,振镜32包括振镜镜片321,振镜支架31具有第一侧和第二侧,第一侧和第二侧沿振镜组件3轴向相对设置,且第一侧与光机组件1固定连接,而第二侧与镜头组件2固定连接。
以及,如图2至图7所示的投影设备中,沿光轴方向,光机组件1和镜头组件2通常具有不同尺寸的安装面,光机组件1通常具有较大的光口径出光面,投影组件2通常具有较小的光口径入光面,且投影组件2垂直于光轴所在的面的尺寸小于光机组件垂直于光轴所在的面的尺寸。由于振镜支架31具有第一侧和第二侧,其中,第一侧和光机组件2固定连接,第二侧和镜头组件3固定连接,这样振镜支架31在作为振镜32支撑件的同时,还同时作为连接光机组件和镜头组件的连接件,在光机组件和/或镜头组件都朝向小型化设计时,将不同尺寸安装面的光机组件和镜头组件较好的匹配连接在一起,实现投影设备的组装,实现小型化的结构要求。
具体的,投影设备通常可以为激光电视、投影仪或者其它能够进行影像投影的装置。为了实现画面的投影,投影设备中包括有光机组件1,光机组件1通常也称为光学引擎,其中包括有数字微镜器件11(Digital Micromirror Device, DMD)、前端的照明光路以及壳体12等器件。其中,照明光路能够作为光源提供光线;而数字微镜器件中布满了微型光阀或者是光路开关,因而可以用于进行光路的开闭,以使照明光路所发出的光线被选择性的通过,从而形成图像画面。而为了对从光机组件1中出射的光线进行聚焦、变焦等操作,使其在投影屏幕上投影出正常显示的画面图像,投影设备还包括有镜头组件2。镜头组件2内包含有多组镜片,各组镜片中均包括有一个或一个以上镜片,这样通过不同镜片之间的折射,能够让从光学组件中出射的光线在投影屏幕上实现聚焦,从而显示正常的画面。
而为了提高投影设备的画面分辨率,投影设备中还包括有振镜组件3,振镜组件3中包括有振镜32。振镜32可以通过振动将光机组件1所产生的光束偏转一定角度,形成位置偏移的像素点,经过偏转后的像素点会与光机组件1所产生的原像素点叠加,从而形成叠加的画面,画面的清晰度得到提升,从视觉上达到提升画面的分辨率的目的。在一种具体实施中,振镜镜片为一透光平片结构,该透光平片通过电磁驱动在不同的两个位置来回振动,随着平片在两个位置切换,透过该平片的两个图像的光束会发生错位,这两幅连续的图像光束会产生叠加效果,形成一幅画面,对应地,这两幅画面是源自同一幅高分辨率图像分解得到的,分解算法也是基于振镜的偏振角度对像素移位的影响而进行,因此这两幅图像叠加后不会造成图像显示的混乱。以及,在另一具体实施中,振镜镜片可以在四个不同的位置循环移动,分别是上下左右四个位置。如图8-3所示,待显示图像分解成子图像A,子图像B,子图像C,子图像D四幅图像。如图8-1所示,当振镜在上下两个位置变化时,子图像A和子图像C的光束相继透过振镜后,发生上下错位叠加。如图8-2所示,当振镜在左右两个位置变 化时,子图像B和子图像D的光束相继透过振镜后,发生左右错位叠加。随着振镜在上下左右四个位置循环移动,从而子图像A,子图像B,子图像C,子图像D四幅图像的光束依次透过振镜后,发生不同方向的错位叠加,最终如图8-3所示,利用人眼视觉暂留,叠加形成一幅图像,该图像的清晰度提升,从视觉上感觉到分辨率进行了四倍增的效果。
待显示图像为60HZ时,根据图像分解得到四幅子图像的显示频率为120HZ,则振镜也需要同频振动。
在具体应用中,振镜32通常包括有镜片以及用于固定镜片的框架等结构。
当振镜32工作时,会产生高频振动,如果振镜32得不到良好的固定和支撑,振镜32所产生的高频振动就会一直传递至投影设备的其它结构,造成噪音和共振现象,影响投影设备的正常工作。为了减少和避免振镜32所带来的造型和共振现象,在振镜组件3中还包括有振镜支架31,振镜支架31能够形成较为稳固的支撑点,从而作为振镜32的固定和支撑基础,使振镜32得到稳固的支撑,而减少共振现象。
在图1所示的振镜固定方案中,采用支架对振镜32进行固定时,由于用于固定振镜32的支架和振镜32的轴线方向垂直或接近垂直,且支架的一端与投影设备中的其它部件固定,而固定有振镜32的一端为悬空的自由端,因而支架整体会形成一个类似于悬臂梁的结构,即支架的和其它部件固定的一端与振镜32之间具有较长的力臂。当振镜振动时,会在垂直于振镜轴向的方向上产生较大的偏转力矩,此时支架由于一端缺乏支撑,因而会在该偏转力矩的带动下产生相应的位移摆动,形成共振。当支架振动幅度较大时,就会造成较大的噪音以及整体振动。
而为了让振镜支架31稳固的支撑和固定振镜32,避免振镜支架31被振镜32带动而产生较大的噪音和共振现象。具体的,本实施例中的振镜支架31可以包括有安装部311,安装部311会沿振镜组件3的轴向凸出,而振镜组件3即可设置在安装部311上,并得到安装部311的支撑和固定。
其中,安装部311可以朝向光机组件1的方向凸出,也可以朝向镜头组件2的方向凸出。例如,本实施例中,可以让安装部311的底端固定在振镜支架31的本体上,而安装部311的顶端沿着振镜组件的轴向向光机组件1凸出。由于光机组件1一般具有较大的尺寸和安装面面积,所以安装部311朝向光机组件1凸出时,光机组件1可以对振镜组件3进行遮挡和覆盖,以避免外界灰尘和杂质影响到振镜组件3的正常工作。
本实施例中,当振镜组件3振动时,由于振镜支架31在振镜组件3的轴向上与光机组件1以及镜头组件2均连接固定在一起,因而振镜组件3产生的振动会分别由自身周向上的多个不同方向传递给振镜支架31以及振镜支架31所连接的其它结构上,而振镜支架31连接的镜头组件2和光机组件1均具有较大的质量,由此振动时的载荷和能量分散到镜头组件2和光机组件1等结构上,并被这些质量较大的结构有效吸收,减少振镜支架31自身的振动;同时,振镜支架31和其它固定结构(例如是光机组件1和镜头组件2)连接并得到这些固定结构的固定与支撑,而振镜支架31与固定结构的连接固定点均距离振镜32较近,因而振镜32在振动时,振镜32的振动作用力相对于振镜支架31与固定结构之间的固定连接位置具有较短的力臂,由此产生的振动力矩也较小,从而让振镜支架31对振镜32形成有效的支撑,减少共振和噪音的产生。
为了对振镜32进行固定,并减少振镜支架31自身的振动和噪音,振镜支 架31可以具有多种不同的形状和结构,以下对振镜支架31的结构进行详细说明。
其中,为了让振镜支架31得到光机组件1以及镜头组件2的固定,振镜支架31上具有用于和光机组件1或镜头组件2连接的结构。作为一种可选的方式,振镜支架31还包括本体312,本体312具有用于供振镜32通光的通光孔313,且本体312的沿振镜组件3轴向的第一端与光机组件1,本体312的沿振镜组件3的轴向的第二端和镜头组件2固定连接。
具体的,本体312可以为多种不同的形状和结构。由于振镜支架31的本体312连接在光机组件1和镜头组件2之间,为了缩短投影装置内部的光路,振镜支架31在振镜的轴线方向上应具有较小的尺寸。此时,可以让本体312为板状结构,且本体312的厚度方向与振镜的轴线方向保持一致。这样振镜支架31在振镜轴线方向上所占的尺寸较小,可以让光机组件1和镜头组件2之间具有较小的间距,缩短投影装置内部的光路长度。而当振镜支架31的本体312为板状结构时,本体312在厚度方向上的两个侧面具有面积较大的安装面,可以方便的与光机组件1以及镜头组件2固定连接。
由于振镜组件3固定在光机组件1和镜头组件2之间,为了避免振镜支架31遮挡到投影装置的光束,振镜支架31上设置有通光孔313,通光孔313的朝向与振镜的轴向保持一致。
其中,通光孔313的形状可以和振镜的外形相匹配,例如为圆形,此外,通光孔313也可以是矩形等不同形状,只要不会让振镜支架31影响到振镜的正常工作即可,此处不加以限制。
此外,振镜支架31的本体312也可以为其它不同结构,例如整体可以形成 安装块或者安装凸台等,只要振镜支架31能够连接固定在光机组件1和镜头组件2之间,且能够作为安装部311的固定和支撑基础即可,此处对振镜支架31本体312的具体结构不加以限制。
具体的,振镜支架31可以通过安装部311对振镜32进行支撑。其中,安装部311同样可以具有不同的结构和形状。
其中,作为其中一种可选的实施方式,安装部311可以为多个,且设置在通光孔313的周向外侧,安装部311沿振镜组件3的凸出,安装部311的顶端形成用于固定振镜32的支点。
这样振镜支架31的安装部311数量为多个时,多个安装部311可以支撑在振镜32的不同部位,以提高对振镜32的支撑稳定性。此时,由于振镜32通常呈扁平状结构,因而多个安装部311可以同时抵接或固定在振镜32同侧的不同部位,以共同对振镜32形成支撑。其中,安装部311的底端可以和本体312的朝向光机组件1的一端连接,而安装部311的顶端朝向光机组件1凸出,并形成能够固定振镜32的支点。此时,由于安装部311为多个,因而能够对振镜32形成多点支撑,相较对振镜32单点支撑的方案而言,多个支点能够避免振镜32产生摆动和姿态变化,对振镜32具有较好的支撑效果。
其中,安装部311的数量可以根据振镜组件3的具体结构和安装空间进行相应的设置。可选的,安装部311的数量可以为三个及三个以上,例如可以为三个,这样三个安装部311的顶端所构成的三个支点可以形成三角形的三个顶点,这样可以将振镜32固定在三个安装部311顶端所确定的平面上,能够有效的避免振镜32在振动时,振镜32产生摆动和旋转等姿态偏移现象,振镜支架31的支撑较为稳固。
而由于振镜32中的振镜需要通过光束,因而安装部311的设置位置也需要避免遮挡住振镜的光路。具体的,安装部311可以设置在振镜支架31的通光孔313的周向外侧,例如多个安装部311可以共同位于和通光孔313同心设置的同一圆周上。此时,多个安装部311会共同围绕振镜32的光路设置,在支撑振镜32的同时,避免对整个投影设备的光路造成影响。其中,安装部311的具体位置可以根据振镜支架31的结构以及投影设备的内部空间而相应设置,此处不加以限制。
当安装部311均支撑在振镜32在沿振镜径向的同一侧时,振镜32的沿振镜径向的另一侧可能会因缺乏支撑而悬空设置,此时,振镜32的悬空设置的一侧在振动时,仍可能产生振动幅度过大的现象,并由此引起振镜支架31的以及整个投影设备的共振。且因为此时振镜32仅为局部部位振幅较大,而其它部位振幅较小,所以可能对振镜32造成损坏。为了对振镜32进行全面支撑,减少振镜引起的噪音和共振,可选的,多个安装部311可以分布在通光孔313的周向上的不同位置。具体的,不同安装部311可以位于振镜支架31的通光孔313的沿径向的不同侧。
仍然以安装部311的数量为三个为例进行说明。三个安装部311可以环绕在振镜支架31的通光孔313的周向外侧,而三个安装部311可以在圆周方向上均匀排布,也可以是为其它排布形式。例如三个安装部311中的两个安装部311可以设置在通光孔313的径向的相对两侧,而另一个安装部311位于这两个安装部311之间。此外,安装部311的具体位置还可以根据振镜支架31的结构以及投影设备的内部空间而相应调整,只要振镜支架31能够在振镜32的周向上对振镜32进行全面支撑即可,此处不再赘述。
这样在振镜支架31中,通过让安装部311环绕在振镜支架31通光孔313周向外侧,一方面,能够避免振镜32因单侧局部部位悬空而造成振动幅度过大;另一方面,也能够加大安装部311顶端所形成的支点之间的间距,提高振镜支架31的支撑稳定性。
在振镜组件3中,由于振镜支架31通过沿振镜轴线延伸的安装部311对振镜32进行支撑,因而振镜32和振镜支架31的本体312之间可能存在距离较大的间隔,在该间隔中,振镜支架31仅依靠一个或者多个间隔设置的安装部311对振镜32进行支撑,可能会让通过振镜32的光束从安装部311之间泄漏出去,造成漏光现象。为了避免漏光现象,可以在振镜支架31的本体312和安装部311之间设置遮光和连接结构。
具体的,在一种可选的振镜支架31结构中,振镜支架31还包括环形凸台314,环形凸台314位于安装部311的内侧,且环形凸台314的内缘围绕通光孔313。
此时,环形凸台314连接在振镜支架31的本体312上,且环形凸台314可以围设在通光孔313的外侧,并形成一个沿着振镜轴向延伸的筒状结构,这样环形凸台314的侧壁即可对通光孔313进行遮光,避免经由镜头组件2和振镜组件3的光束从安装部311之间的间隙中泄漏出去。
其中,环形凸台314可以位于安装部311的内侧,这样环形凸台314与通过棱镜组件的光路之间的径向间距较小,能够实现较好的遮光效果。此时,可选的,环形凸台314可以和外侧的安装部311为相互独立的分体式结构,也可以为一体成型结构。
具体的,环形凸台314可以具有多种不同的结构及形式,例如,环形凸台 314可以为两端相同大小的圆柱状结构,也可以让环形凸台314的与本体312相连的一端具有较大的直径,而环形凸台314的远离本体312的一端具有较小的直径。或者,环形凸台314也可以为能够起到遮挡通光孔313效果的结构,此处不再赘述。
在其中一种可选的方式中,环形凸台314的朝向棱镜组件的一侧端面与振镜组件3之间具有间距,此时,沿棱镜组件的轴向方向看,环形凸台314的该侧端面会低于安装部311的端部所在的高度。这样环形凸台314与振镜支架31的支点之间具有一定的间距,从而在振镜轴向上形成了容纳空间,便于容纳振镜32中凸出于振镜32的安装点的部位。
而在连接振镜支架31和振镜32时,振镜32可以通过多种不同的方式固定在振镜支架31的安装部311顶端。具体的,振镜32和安装部311顶端之间的连接方式可以包括卡接、粘接或者是利用连接件实现连接等。
在其中一种可选的连接方式中,每个安装部311的顶端均与振镜32之间通过连接件连接。连接件一般可以为各种标准紧固件或者非标准连接件等。例如连接件可以为各类不同的螺纹紧固件、铆接件或者是卡固件等。这样通过独立的连接件实现振镜32和安装部311之间的连接,振镜32和安装部311上只需要设置与连接件匹配连接的结构即可,而不需要较为复杂的连接结构,使得安装部311和振镜32的结构均较为紧凑。
其中,作为连接件的一种可选的实施方式,连接件可以为螺纹连接件315,此时,为了与螺纹连接件315匹配安装,在振镜支架31的安装部311的顶端可以设置有与螺纹连接件315匹配的螺纹孔3111,且振镜32上设置有与螺纹连接件315匹配的通孔321,螺纹孔3111和通孔321相对设置,这样螺纹连接件315 可以依次穿过螺纹孔3111以及通孔321,将安装部311和振镜32连接在一起。
具体的,螺纹连接件315可以为螺钉、螺栓等不同类型,本实施例中,以螺纹连接件315为阶梯螺钉为例进行说明。阶梯螺钉的尾部为阶梯状,其阶梯面可以和不同平面进行定位。阶梯螺钉插入振镜32上所设置的通孔321后,阶梯螺钉的呈阶梯状的尾部会从通孔321中伸出,并与位于安装部311端部位置的螺纹孔3111旋合连接;阶梯螺钉的头部仍然位于振镜32的背离振镜支架31的一侧,这样通过阶梯螺钉的限位作用,让振镜32固定在安装部311的端部之上。
为了让阶梯螺钉连接振镜32和振镜支架31的安装部311,振镜32上所开设的通孔321以及安装部311上开设的螺纹孔3111的朝向保持一致,且均可以与振镜32的轴线方向平行,此时,阶梯螺钉的安装方向也会沿着振镜32的轴线方向。
因为连接件、振镜32和振镜支架31的安装部311均为刚性结构,为了在振镜32产生振动时,对振动模组的振动进行缓冲,可选的,在振镜32和振镜支架31的连接处可以设置有缓冲件。
可选的,安装部311的顶端和振镜32之间可以设置有弹性缓冲件33。此时,安装部311顶端和振镜32的面向振镜支架31的表面之间并非直接接触,而是通过弹性缓冲件33进行隔离。由于弹性缓冲件33自身具有弹性,所以当振镜32产生振动时,弹性缓冲件33会通过自身的形变吸收振镜32的振动能量,从而起到缓冲和吸振的效果,减少由振镜的振动而引起的振镜支架31和投影设备整机的共振。
具体的,当连接件为螺纹连接件315时,弹性缓冲件33可以设置在螺纹连 接件315的侧方,例如是弹性缓冲件33为环形件,且套设在螺纹连接件315的周向外侧。此时,弹性缓冲件33可以通过螺纹连接件315得到固定。
此外,可选的,振镜32和连接件之间也可以设置有弹性缓冲件33。当连接件为阶梯螺钉等结构时,由于阶梯螺钉的头部和振镜32表面之间可能存在活动空间,因而可以在阶梯螺钉的头部和振镜32的朝向阶梯螺钉头部的一面之间设置弹性缓冲件33,以避免阶梯螺钉的头部与振镜32表面之间直接接触。
其中,弹性缓冲件33一般可以为具有弹性的材料制成,例如弹性缓冲件33可以是橡胶件,或者是硅胶件等;或者,弹性缓冲件33也可以为弹簧或弹片等弹性结构。
需要说明的是,在安装部311的顶端和振镜32之间,以及振镜32和连接件之间设置弹性缓冲件33时,可以在上述两个连接位置均设置弹性缓冲件33,也可以仅在其中一个连接位置设置弹性缓冲件33,其具体设置方式可以根据振镜32的具体结构而定,本实施例中,以上述两个连接位置均设置弹性缓冲件33为例进行说明。
其中,在安装部311顶端和振镜32之间,或者在振镜32和连接件之间设置弹性缓冲件33时,弹性缓冲件33和振镜32之间可以预留大于0.3mm左右的间隙,以减缓振镜32振动时带来的冲击。
而为了实现振镜组件3在整个投影设备中的固定和连接,振镜组件3和光机组件1或者镜头组件2之间也可以具有多种不同的安装方式和安装位置。
在投影设备中,通常以光机组件1作为主体结构和连接的基础,因而连接在光机组件1和镜头组件2之间的振镜组件3同样可以作为镜头组件2的连接基础。例如,在一种可选的连接方式中,振镜组件3中的振镜支架31可以与镜 头组件2的安装面固定连接。此时,镜头组件2以振镜组件3的振镜支架31作为安装基础,且通过安装面固定连接在振镜支架31上。此时,连接在光机组件1和镜头组件2之间的振镜支架31可以对镜头组件2实现固定和支撑,使光机组件1、镜头组件2与振镜组件3形成统一的结构整体。
此外,振镜组件3还可以与镜头组件2的其它部分,例如镜头筒等结构连接,此处不加以限制。
而在实现光机组件1与振镜组件3之间的连接时,由于光机组件1一般在数字微镜器件11外设置有尺寸较大的壳体12,因而可选的,振镜支架31与可以与光机组件1的壳体12之间形成固定连接。具体的,光机组件1的壳体12可以具有朝向振镜组件3以及镜头组件2的开口端,开口端具有用于通光的开口,而振镜支架31即可与该开口端连接在一起。
其中,振镜支架31的本体312的形状和大小可以和光机组件1的壳体12的开口的形状及大小相匹配,这样振镜支架31的本体312可以盖设在开口上,从而让镜头组件2、振镜组件3与光机组件1的壳体12共同形成密闭的腔体,从而避免外界的灰尘或杂质进入投影设备内部。
此外,在另一种可选的实施方式中,振镜支架31也可以和光机组件1的光输出口所在的安装面固定连接。具体的,光机组件1的光输出口朝向镜头组件2开设,而光机组件1的光输出口所在的端面,也就是安装面即可与振镜支架31连接。
在上述提供的一个及多个实施例中,投影设备包括光机组件、镜头组件和振镜组件,振镜组件包括振镜支架和设置在振镜支架上的振镜,振镜支架具有第一侧和第二侧,第一侧和第二侧沿振镜组件的轴向相对设置,且第一侧和光 机组件固定连接,第二侧和镜头组件固定连接。这样振镜支架位于振镜一侧,且振镜支架与光机组件和镜头组件等其它重量较大的结构均固定连接,此时,振镜支架能够将振动能量从振镜周向上的多个不同方向分散至与振镜支架连接的其它结构,有效的将振镜振动时的载荷和能量传递给投影装置的其它部分;同时,相比于图1所示的伸出式悬臂的固定结构,振镜在振镜支架上的连接固定点的位置与其它结构距离较近,振动的力矩也较小,避免振镜支架自身在振镜的带动下出现摆动和弹性变形等现象,使振镜支架以及所连接的整个固定结构具有较强的结构刚度,减少共振和噪音的产生。
以及,在上述提供的一个及多个实施例中,振镜支架一侧连接光机组件,一侧连接镜头组件,从而能够在光机组件和/或镜头组件都朝向小型化设计时,将不同尺寸安装面的光机组件和镜头组件较好的匹配连接在一起,实现投影设备的组装,实现小型化的结构要求,同时,振镜支架用于安装支撑振镜,一方面可以不必在光机组件内部为振镜预留空间,利于光机组件体积的减小;从而实现了部件的多功用化,利于投影设备体积的减小。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种投影设备,其特征在于,包括光机组件、镜头组件和振镜组件,
    所述振镜组件包括振镜支架和设置在所述振镜支架上的振镜,所述振镜支架具有第一侧和第二侧,所述第一侧和所述第二侧沿所述振镜组件的轴向相对设置,且所述第一侧和所述光机组件固定连接,所述第二侧和所述镜头组件固定连接。
  2. 根据权利要求1所述的投影设备,其特征在于,所述振镜支架还包括本体,所述本体具有用于供所述振镜通光的通光孔,且所述本体的沿所述振镜组件轴向的第一端与所述光机组件固定连接,所述本体的沿所述振镜组件轴向的第二端与所述镜头组件固定连接。
  3. 根据权利要求2所述的投影设备,其特征在于,所述振镜支架具有安装部,且设置在所述通光孔的周向外侧,所述安装部沿所述振镜组件的轴向凸出,所述安装部的顶端形成用于固定所述振镜的支点。
  4. 根据权利要求3所述的投影设备,其特征在于,多个所述安装部分布在所述通光孔的周向上的不同位置。
  5. 根据权利要求2-4任一项所述的投影设备,其特征在于,所述振镜支架还包括环形凸台,所述环形凸台位于所述安装部的内侧,且所述环形凸台的内缘围绕所述通光孔。
  6. 根据权利要求2-4任一项所述的投影设备,其特征在于,每个所述安装部的顶端均与所述振镜通过连接件连接。
  7. 根据权利要求6所述的投影设备,其特征在于,所述连接件为螺纹连接件,所述安装部的顶端设置有与所述螺纹连接件匹配的螺纹孔,且所述振镜上设置有与所述螺纹连接件匹配的通孔,所述螺纹连接件依次穿过所述螺纹孔以及所 述通孔,以连接所述安装部和所述振镜。
  8. 根据权利要求6所述的投影设备,其特征在于,所述安装部顶端和所述振镜之间设置有弹性缓冲件;和/或,所述振镜和所述连接件之间设置有弹性缓冲件。
  9. 根据权利要求1-4任一项所述的投影设备,其特征在于,所述振镜支架与所述镜头组件的安装面固定连接。
  10. 根据权利要求1-4任一项所述的投影设备,其特征在于,所述光机组件包括壳体,所述振镜支架与所述壳体固定连接;或者,所述振镜支架与所述光机组件的光输出口所在的安装面固定连接。
PCT/CN2019/120138 2018-12-05 2019-11-22 投影设备 WO2020114263A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811482194.8 2018-12-05
CN201811482194.8A CN109270781A (zh) 2018-12-05 2018-12-05 投影设备

Publications (1)

Publication Number Publication Date
WO2020114263A1 true WO2020114263A1 (zh) 2020-06-11

Family

ID=65187021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120138 WO2020114263A1 (zh) 2018-12-05 2019-11-22 投影设备

Country Status (2)

Country Link
CN (1) CN109270781A (zh)
WO (1) WO2020114263A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270781A (zh) * 2018-12-05 2019-01-25 青岛海信激光显示股份有限公司 投影设备
CN109597271A (zh) * 2019-01-31 2019-04-09 苏州佳世达光电有限公司 投影设备
CN112612171B (zh) * 2020-12-25 2022-04-12 成都极米科技股份有限公司 一种投影仪及与其配合使用的振镜组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671198A (zh) * 2004-03-17 2005-09-21 扬明光学股份有限公司 显示装置的投影方法
CN105842845A (zh) * 2015-01-30 2016-08-10 精工爱普生株式会社 图像显示装置
CN205721053U (zh) * 2016-06-07 2016-11-23 海信集团有限公司 成像位移组件和投影装置
US20170003579A1 (en) * 2015-07-03 2017-01-05 Panasonic Intellectual Property Management Co., Ltd. Optical path changing device and projection image display apparatus
JP2018120176A (ja) * 2017-01-27 2018-08-02 パナソニックIpマネジメント株式会社 光学部材駆動装置、投写型映像表示装置
CN109270781A (zh) * 2018-12-05 2019-01-25 青岛海信激光显示股份有限公司 投影设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671198A (zh) * 2004-03-17 2005-09-21 扬明光学股份有限公司 显示装置的投影方法
CN105842845A (zh) * 2015-01-30 2016-08-10 精工爱普生株式会社 图像显示装置
US20170003579A1 (en) * 2015-07-03 2017-01-05 Panasonic Intellectual Property Management Co., Ltd. Optical path changing device and projection image display apparatus
CN205721053U (zh) * 2016-06-07 2016-11-23 海信集团有限公司 成像位移组件和投影装置
JP2018120176A (ja) * 2017-01-27 2018-08-02 パナソニックIpマネジメント株式会社 光学部材駆動装置、投写型映像表示装置
CN109270781A (zh) * 2018-12-05 2019-01-25 青岛海信激光显示股份有限公司 投影设备

Also Published As

Publication number Publication date
CN109270781A (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
WO2020114263A1 (zh) 投影设备
KR0181724B1 (ko) 헤드/헬멧 탑재식 디스플레이를 위한 광 섬유 리본 초소형 디스플레이
TWI408413B (zh) 二維掃描反射裝置
CN210428058U (zh) 光学模块以及投影机
JP2015148665A (ja) ヘッドアップディスプレイ装置
TWI798391B (zh) 光路調整機構及其製造方法
US20160377962A1 (en) Optical device and image display apparatus
US10739667B2 (en) Projector, optical engine, and pixel offset device
US9625797B2 (en) Projection optical device and image projection apparatus
US11209723B2 (en) Optical module and projector
KR20100003560A (ko) 스캐닝 디스플레이
CN109557746A (zh) 投影设备
US9983405B2 (en) Optical device and image display apparatus
WO2020244050A1 (zh) 激光投影设备
CN208636638U (zh) 投影装置及其成像模块
CN213780563U (zh) 激光散斑消除装置
CN209281138U (zh) 激光投影光学模组及激光投影设备
KR20070100579A (ko) 화소 증진 조립체 및 이를 포함하는 영상투사장치
US11143940B2 (en) Optical module and projector
JP2007163654A (ja) プロジェクタ
CN209281094U (zh) 激光投影光学模组及激光投影设备
CN110658665A (zh) 投影装置及其成像模块
TWI765235B (zh) 光路調整機構及其製造方法
JP6579230B2 (ja) ヘッドアップディスプレイ装置
JP2008180749A (ja) リアプロジェクション装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893924

Country of ref document: EP

Kind code of ref document: A1