WO2020114253A1 - 骨小梁结构和应用其的假体以及其制作方法 - Google Patents

骨小梁结构和应用其的假体以及其制作方法 Download PDF

Info

Publication number
WO2020114253A1
WO2020114253A1 PCT/CN2019/119619 CN2019119619W WO2020114253A1 WO 2020114253 A1 WO2020114253 A1 WO 2020114253A1 CN 2019119619 W CN2019119619 W CN 2019119619W WO 2020114253 A1 WO2020114253 A1 WO 2020114253A1
Authority
WO
WIPO (PCT)
Prior art keywords
trabecular bone
bone structure
pores
structure according
dimensional porous
Prior art date
Application number
PCT/CN2019/119619
Other languages
English (en)
French (fr)
Inventor
史春宝
许奎雪
卢小强
解凤宝
王振国
董泽宇
史文超
Original Assignee
北京市春立正达医疗器械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811475455.3A external-priority patent/CN109481092B/zh
Application filed by 北京市春立正达医疗器械股份有限公司 filed Critical 北京市春立正达医疗器械股份有限公司
Priority to US17/257,534 priority Critical patent/US20210282930A1/en
Priority to JP2020568458A priority patent/JP7225268B2/ja
Priority to AU2019393104A priority patent/AU2019393104B2/en
Priority to EP19892011.8A priority patent/EP3799840B1/en
Publication of WO2020114253A1 publication Critical patent/WO2020114253A1/zh
Priority to ZA2020/07949A priority patent/ZA202007949B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2/2846Support means for bone substitute or for bone graft implants, e.g. membranes or plates for covering bone defects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30011Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30003Material related properties of the prosthesis or of a coating on the prosthesis
    • A61F2002/30004Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis
    • A61F2002/30024Material related properties of the prosthesis or of a coating on the prosthesis the prosthesis being made from materials having different values of a given property at different locations within the same prosthesis differing in coefficient of friction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2/30942Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques
    • A61F2002/30948Designing or manufacturing processes for designing or making customized prostheses, e.g. using templates, CT or NMR scans, finite-element analysis or CAD-CAM techniques using computerized tomography, i.e. CT scans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/3094Designing or manufacturing processes
    • A61F2002/30985Designing or manufacturing processes using three dimensional printing [3DP]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0023Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in porosity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys

Definitions

  • the invention relates to the field of medical prosthesis, in particular to a trabecular bone structure, a prosthesis using the same and a manufacturing method thereof.
  • Bone cement fixed prostheses may have a greater risk of loosening the prosthesis at a later stage, resulting in failure of the operation; and Titanium powder-coated prostheses can cause corrosion of metal materials in a complex human body environment, leading to the release of toxic elements, which reduces biocompatibility.
  • the elastic modulus of metal materials is very different from human bone tissue, which is prone to stress shielding effects. It is not conducive to the growth and remodeling of new bone, and even leads to secondary fractures, and the repair of bone defects formed after bone trauma and necrosis has problems with poor mechanical and osteoinductive properties.
  • the trabecular bone structure is gradually applied to artificial prostheses in the art.
  • the trabecular bone structure is mainly used to form a number of pores that are conducive to bone ingrowth in the prosthesis. Improve the stability after implantation.
  • the pores of the existing trabecular bone structure are usually uniformly distributed with equal diameters, lacking the bionic characteristics of the actual structure of the human body. In the actual service process after implantation, due to the uneven force characteristics of the human body, some of these parts are often caused. The structural strength is insufficient, but the structural strength of other parts has been over-designed. If the structure of the trabecular bone lacks the optimal state of the surface bonded to the bone, it will directly affect the early stability of the prosthesis, which will also affect the growth of the bone. , Not conducive to long-term stable prosthesis service.
  • the present invention proposes a trabecular bone structure, a prosthesis using the same, and a manufacturing method thereof.
  • a trabecular bone structure which includes a body, the body structure is formed into a body porous structure, and the three-dimensional porous structure includes a plurality of wire diameters and a plurality of wire diameters formed by staggered connection Pores, each pore is interconnected, and the average diameter of each pore is different, wherein the average diameter of each pore ranges from 100 ⁇ m to 400 ⁇ m, and the porosity of the three-dimensional porous structure ranges from 50% to 80%.
  • the three-dimensional porous structure includes multiple regions adapted to different growth requirements of the same tissue, and the porosity of each region is different.
  • the density of pores in the direction from the outside to the inside of the three-dimensional porous structure gradually increases.
  • the diameter of the wire diameter ranges from 100 ⁇ m to 200 ⁇ m.
  • each pore is an irregular polygon.
  • a plurality of protrusions are formed on the outer peripheral wall of each wire diameter.
  • the three-dimensional porous structure is made of titanium alloy material.
  • the elastic modulus of the three-dimensional porous structure ranges from 5-30 GPa.
  • the range of the maximum static friction coefficient of the outer surface of the three-dimensional porous structure is 1.2 to 1.5.
  • the prosthesis includes a prosthesis body and the aforementioned trabecular bone structure formed on the outer surface of the prosthesis body.
  • the manufacturing method includes the following steps:
  • Step 1 Use micro-CT to perform a three-dimensional scan of the natural trabecular bone structure, and use MIMICS to reconstruct the scanned data to obtain a three-dimensional schematic model of the trabecular bone structure.
  • This step one is to obtain the trabecular bone structure in advance The basic structural model of the structure;
  • Step 2 Adjust the diameter of each wire diameter in the three-dimensional schematic model of the trabecular bone structure so that the diameter range is between 100 ⁇ m and 200 ⁇ m, and at the same time adjust the diameter of the pore formed by each wire diameter so that The average diameter of each pore ranges from 100 ⁇ m to 400 ⁇ m, and the porosity of the three-dimensional schematic model ranges from 50% to 80%;
  • Step 3 The three-dimensional schematic model of the trabecular bone is divided into regions, and the divided regions are adapted to different growth requirements of the same tissue, and the diameter of the pores in each region is further adjusted so that different regions have different pores. Rate, so that the trabecular bone structure can grow into the bone tissue more quickly under different bone growth requirements;
  • Step 4 A 3D printing device is used to generate a solid model of the trabecular bone structure.
  • the focus offset parameter of the 3D printing device By adjusting the focus offset parameter of the 3D printing device, multiple protrusions are formed on the surface of the wire diameter in the generated solid model.
  • the value of the focus offset parameter The range is 5.8mA to 6.2mA.
  • the porosity of the areas is different.
  • the cross-sectional shape of each of the pores is an irregular polygon.
  • a plurality of protrusions are formed on the outer peripheral wall of each wire diameter.
  • the wire diameter and pores form a three-dimensional porous structure, and the three-dimensional porous structure is made of titanium alloy material.
  • the elastic modulus of the three-dimensional porous structure ranges from 5-30 GPa.
  • the range of the maximum static friction coefficient of the outer surface of the three-dimensional porous structure is 1.2-1.5.
  • the trabecular bone structure of the present invention connects the pores formed by intersecting the wire diameters, and the average diameter of each pore is structurally inconsistent, and the average diameter and porosity of the pores of the three-dimensional porous structure are specifically set.
  • the structure of the trabecular bone structure is closer to the trabecular bone structure of the human body, so that the human bone can quickly and naturally grow into the pores of the three-dimensional porous structure, which is beneficial to the trabecular bone structure and the human bone after surgery
  • the tissue is quickly fused and fixed, thus effectively improving the patient's postoperative recovery effect.
  • FIG. 1 is an enlarged perspective view of a partial structure of a trabecular bone structure according to the present invention
  • FIG. 2 is a schematic front cross-sectional view of the trabecular bone structure shown in FIG. 1;
  • FIG. 3 is a flowchart of a method for manufacturing a trabecular bone structure according to the present invention.
  • FIG. 1 shows the structure of a trabecular bone structure 100 according to the present invention.
  • the trabecular bone structure 100 includes a body, and the body structure is formed into a body porous structure 1.
  • the three-dimensional porous structure 1 includes a plurality of wire diameters 11 and a plurality of pores 12 formed by intersecting the plurality of wire diameters 11, and each of the pores 12 communicates with each other.
  • the average diameter of each pore 12 is different, wherein the average diameter of each pore 12 ranges from 100 ⁇ m to 400 ⁇ m, and the porosity of the three-dimensional porous structure ranges from 50% to 80%.
  • the trabecular bone structure 100 of the present invention interconnects the pores 12 formed by intersecting the wire diameters 11, and the average diameter of the pores 12 is structurally inconsistent.
  • the average diameter of the pores 12 of the three-dimensional porous structure 1 and The range of the porosity is specifically set so that the structure of the trabecular bone structure 100 is closer to the trabecular bone structure of the human body, so that the bone of the human body can quickly and naturally grow into the pores 12 of the three-dimensional porous structure 1, which is beneficial to
  • the trabecular bone structure 100 is quickly fused and fixed with the bone tissue of the human body after the operation, thus effectively improving the recovery effect of the patient after the operation.
  • the three-dimensional porous structure 1 may include a plurality of regions adapted to different growth requirements of the same tissue, and the porosity of each region is different. That is to say, for different regions of the three-dimensional porous structure 1, when facing different bone ingrowth requirements, the porosity of the different regions can be specifically set. The porosity of different areas can be set by adjusting the average diameter of the pores in the corresponding area.
  • the range of the average diameter of the pores in the area is set between 200 ⁇ m and 400 ⁇ m, further preferably between 300 ⁇ m and 400 ⁇ m, and the porosity of the area can be controlled between 50% and 60%; when the trabecular bone structure 100 A certain area does not need to be in contact with bone, but it needs to be beneficial for bone crawling. It may be preferable to set the average diameter of the pores in this area between 100 ⁇ m and 200 ⁇ m.
  • the porosity of this area can be controlled at 70% to 75%
  • the porosity can be controlled between 75% and 80%.
  • the density of the pores 12 in the direction from the outside to the inside of the three-dimensional porous structure 1 gradually increases, so that during the process of human bone growth, the bone tissue can be more smoothly moved from the three-dimensional porous structure 1
  • the range of the diameter of the wire diameter 11 may be set between 100 ⁇ m and 200 ⁇ m.
  • the range of the diameter of the wire diameter 11 is set between 150 ⁇ m and 200 ⁇ m, further preferably, the diameter of the wire diameter 11 is 180 ⁇ m.
  • each pore 12 of the three-dimensional porous structure 1 is an irregular polygon, and its specific shape may be roughly tetrahedral or hexahedral.
  • a plurality of convex portions may be formed on the outer peripheral wall of each wire diameter 11, and the plurality of convex portions are provided to increase the roughness of the outer peripheral wall of the wire diameter 11 In order to increase the friction of the outer peripheral wall, in this way, during the process of bone growth, the fixation of bone tissue and wire diameter 11 is more firm and stable.
  • the convex portion may be a circular convex point or a conical convex point.
  • shape of the convex portion is not limited to the above shape, as long as the convex portion can effectively increase the outer surface area of the wire diameter 11 to achieve the purpose of increasing the frictional force of its outer peripheral wall, here is no longer Repeat.
  • width of the maximum profile shape of the cross section of the convex portion is 5-50 ⁇ m, and the maximum height is 10-50 ⁇ m.
  • the convex portions may be evenly distributed along the outer surface of the wire diameter 11, or may be distributed discretely. It is also preferred that the number of protrusions of the wire diameter 11 in the region with a large porosity of the trabecular bone structure 100 may be greater than the number of protrusions of the wire diameter 11 in the region with a small porosity of the trabecular bone structure 100 Count to make the bones grow stronger. It is also preferable that the density of the convex portions on the wire diameter 11 on the outer edge of the auto-stereoscopic porous structure 1 is greater than the density inside the auto-stereoscopic porous structure 1.
  • the three-dimensional porous structure 1 may be made of metal powder, which may be titanium alloy, pure titanium, tantalum metal, or the like.
  • the three-dimensional porous structure 1 is made of titanium alloy material, preferably Ti6Al4V.
  • the elastic modulus of the three-dimensional porous structure 1 ranges from 5 to 30 GPa.
  • the setting of the elastic modulus can make the trabecular bone structure 100 have better mechanical properties, that is, have better compression and torsion resistance, thereby helping to ensure that the trabecular bone structure 100 itself is used after implantation in the human body stability.
  • the maximum static friction coefficient of the outer surface of the three-dimensional porous structure 1 ranges from 1.2 to 1.5. With this arrangement, the outer surface of the trabecular bone structure 100 has a roughness more suitable for bone ingrowth or bone crawling, thereby helping to further improve the speed and stability of bone ingrowth.
  • the three-dimensional porous structure 1 of the present invention has a maximum static friction force on the outer surface far exceeding the maximum static friction on the outer surface of the trabecular bone structure in the prior art This makes the trabecular bone structure 100 of the present invention greatly different from the prior art, thereby making the trabecular bone structure 100 of the present invention more suitable for human bone ingrowth and bone crawling conditions. It has been proved by experiments that under the same test conditions, the maximum static friction coefficient of the trabecular bone structure 100 of the present invention under unit pressure is 1.35, while the maximum static friction coefficient of the prior art trabecular bone structure 100 under unit pressure is only 1.08.
  • the present invention also proposes a prosthesis (not shown in the figure).
  • the prosthesis includes a prosthesis body and the trabecular bone structure 100 formed on the outer surface of the prosthesis body. Since the trabecular structure 100 of the present invention is closer to the trabecular structure of the human body, the bone of the human body can quickly and naturally grow into the pores 12 of the three-dimensional porous structure 1, thereby facilitating the prosthesis and the human body after surgery The bone tissue is quickly fused and fixed, thus effectively improving the patient's postoperative recovery effect.
  • FIG. 3 shows a flowchart of a method for manufacturing a trabecular bone structure according to the present invention. As shown in FIG. 3, the manufacturing method of the trabecular bone structure includes the following steps:
  • Step 1 Use micro-CT to perform a three-dimensional scan of the natural trabecular structure, and use MIMICS to reconstruct the scanned data to obtain a three-dimensional schematic model of the trabecular structure. This step is used to obtain the trabecular structure in advance The basic structure model.
  • Step 2 Adjust the diameter of each wire diameter 11 in the three-dimensional schematic model of the trabecular bone structure so that the diameter ranges from 100 ⁇ m to 200 ⁇ m, and adjust the diameter of the pore 12 formed by each wire diameter 11 at the same time So that the average diameter of each pore 12 ranges from 100 ⁇ m to 400 ⁇ m, and the porosity of the three-dimensional schematic model ranges from 50% to 80%.
  • Step 3 The three-dimensional schematic model of the trabecular bone is divided into regions, and the divided regions are adapted to the different growth requirements of the same tissue, and the diameter of the pores 12 in each region is further adjusted so that different regions have different Porosity, so that the trabecular bone structure can grow into bone tissue more quickly under different bone growth requirements.
  • Step 4 A 3D printing device is used to generate a solid model of the trabecular bone structure 100.
  • the focus offset parameter of the 3D printing device By adjusting the focus offset parameter of the 3D printing device, multiple protrusions are formed on the surface of the wire diameter 11 in the generated solid model, of which the focus offset parameter The value range is 5.8mA to 6.2mA.
  • the trabecular bone structure 100 of the present invention has good initial stability and good bone ingrowth performance, and the bone ingrowth depth can reach 60% to 80%.
  • the effect of the body after implantation is very stable, which effectively reduces the recovery time of the patient after surgery and improves the recovery effect of the patient after surgery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Vascular Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Prostheses (AREA)

Abstract

一种骨小梁结构和应用其的假体以及其制作方法。该骨小梁结构(100)包括本体,本体构造成立体多孔结构(1),立体多孔结构(1)包括多条丝径(11)和由多条丝径(11)相互交错连接形成的多个孔隙(12),各孔隙(12)相互连通,且各孔隙(12)的平均直径不同,其中,各孔隙(12)的平均直径范围为100μm至400μm,且立体多孔结构的孔隙率范围为50%至80%。该骨小梁结构更利于患者在术后的骨长入,从而可提高患者术后的恢复效果。

Description

骨小梁结构和应用其的假体以及其制作方法
相关申请的交叉引用
本申请要求北京市春立正达医疗器械股份有限公司于2018年12月4日提交的、发明名称为“骨小梁结构和应用其的假体”、申请号为“201811475455.3”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医用假体领域,具体涉及一种骨小梁结构和应用其的假体以及其制作方法。
背景技术
在外科医疗手术中,当人体的肢体骨干部位发生肿瘤、骨折后骨不连或其他病变导致部分骨缺损或手术切除时,需要以人工假体替换。在进行置换假体的手术中,需要将人工假体与骨组织连接固定并融为一体,以恢复肢体骨干的生理功能。
目前现有的假体多为骨水泥固定假体和以钛粉为涂层的生物固定型假体,骨水泥固定假体在后期可能存在较大的假体松动风险,从而导致手术失败;而钛粉涂层假体在复杂的人体内环境会产生金属材料腐蚀而导致有毒元素的释放,生物相容性因此降低,此外金属材料的弹性模量与人体骨组织相差甚大,易产生应力屏蔽效应,不利于新骨生长和重塑,甚至导致二次骨折,而且骨创伤及坏死后形成的骨缺损修复存在力学及骨诱导性能不佳的问题。
为了提高假体植入后的骨长入效果,本领域中逐渐将骨小梁结构应用在人工假体中,该骨小梁结构主要用于使假体形成若干利于骨长入的孔隙,以提高假体植入后的稳定性。然而,现有的骨小梁结构的孔隙通常为均匀等径分布,缺少人体真实结构的仿生特性,在植入后实际服役过程中往往由于人体不均等的受力特性,导致其中的某些部位结构强度不足,但其它部位的结构强度又出现过设计现象,如果骨小梁的结构缺少与骨骼结合的面的最佳状态,会直接影响假体的早期稳定性,进而也会影响骨骼的生长,不利于长期稳定的假体服役。
针对现有技术的不足之处,本领域的技术人员迫切希望寻求一种能够更利于骨长入以提高术后恢复效果的骨小梁结构,以弥补现有技术的不足之处。
发明内容
为了能够更利于骨长入以提高患者术后恢复效果,本发明提出了一种骨小梁结构和应用其的假体以及其制作方法。
根据本发明的第一个方面,提出了一种骨小梁结构,其包括本体,本体构造成立体多孔结构,立体多孔结构包括多条丝径和由多条丝径相互交错连接形成的多个孔隙,各孔隙相互连通,且各孔隙的平均直径不同,其中,各孔隙的平均直径范围为100μm至400μm,且立体多孔结构的孔隙率的范围为50%至80%。
进一步地,立体多孔结构包括适应于同一种组织的不同长入要求的多个区域,各区域的孔隙率不同。
进一步地,在同一区域内,自立体多孔结构的外部至内部的方向上的孔隙的密度逐渐增大。
进一步地,丝径的直径的范围为100μm至200μm。
进一步地,各孔隙的横截面形状为不规则的多边形。
进一步地,各丝径的外周壁上形成有多个凸部。
进一步地,立体多孔结构由钛合金材料制成。
进一步地,立体多孔结构的弹性模量的范围为5-30GPa。
进一步地,立体多孔结构的外表面的最大静摩擦系数的范围为1.2~1.5。
根据本发明的第二个方面,提出了一种假体。该假体包括假体本体和形成在假体本体的外表面的上述骨小梁结构。
根据本发明的第三个方面,提出了一种骨小梁结构的制作方法,该制作方法包括以下步骤:
步骤一:采用显微CT对天然的骨小梁结构进行三维扫描,并采用MIMICS对扫描的数据进行模型重建,以获得骨小梁结构的三维示意模型,该步骤一用于预先获得骨小梁结构的基础结构模型;
步骤二:对骨小梁结构的三维示意模型中的各丝径的直径进行调整,以使其直径范围在100μm至200μm之间,同时对由各丝径形成的孔隙的直径进行调整,以使各孔隙的平均直径范围为100μm至400μm,且使三维示意模型的孔隙率的范围为50%至80%;
步骤三:对骨小梁结构的三维示意模型进行区域划分,划分的各区域分别 适应于同一种组织的不同长入要求,进一步调整各区域的孔隙的直径,以使不同的区域具有不同的孔隙率,从而使骨小梁结构在不同的骨长入需求下能够更快速适应地长入骨组织;
步骤四:采用3D打印设备来生成骨小梁结构的实体模型,通过调整3D打印设备的focus offset参数使得生成的实体模型中的丝径的表面形成多个凸起,其中focus offset参数的取值范围为5.8mA至6.2mA。
进一步地,所述的步骤三划分的各区域中,各所述区域的孔隙率不同。
进一步地,在同一区域内,自外部至内部的方向上的孔隙的密度逐渐增大。
进一步地,各所述孔隙的横截面形状为不规则的多边形。
进一步地,各所述丝径的外周壁上形成有多个凸部。
进一步地,所述的丝径和孔隙形成立体多孔结构,所述立体多孔结构由钛合金材料制成。
进一步地,所述立体多孔结构的弹性模量的范围为5-30GPa。
进一步地,所述立体多孔结构的外表面的最大静摩擦系数的范围为1.2-1.5。
本发明的骨小梁结构通过将由丝径相互交错连接形成的各孔隙相互连通,且将各孔隙的平均直径大小构造地不一致,并对立体多孔结构的孔隙的平均直径和孔隙率进行具体设置,使得骨小梁结构的结构与人体的骨小梁结构更为接近,这样人体的骨质可快速自然地长入立体多孔结构的孔隙中,从而有利于骨小梁结构在术后与人体的骨组织快速融合和固定,因此有效地提高了患者术后的恢复效果。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍。在所有附图中,类似的元件或部分一般由类似的附图标记标识。附图中,各元件或部分并不一定按照实际的比例绘制。
图1为根据本发明的骨小梁结构的部分结构的放大立体图;
图2为图1所示的骨小梁结构的主视截面示意图;
图3为根据本发明的骨小梁结构的制作方法的流程图。
具体实施方式
下面将结合附图对本发明技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本发明的技术方案,因此只作为示例,而不能以此来限制本发明的保护范围。
图1示出了根据本发明的骨小梁结构100的结构。该骨小梁结构100包括本体,本体构造成立体多孔结构1,立体多孔结构1包括多条丝径11和由多条丝径11相互交错连接形成的多个孔隙12,各孔隙12相互连通,且各孔隙12的平均直径不同,其中,各孔隙12的平均直径范围为100μm至400μm,且立体多孔结构的孔隙率的范围为50%至80%。
本发明的骨小梁结构100通过将由丝径11相互交错连接形成的各孔隙12相互连通,且将各孔隙12的平均直径大小构造地不一致,并对立体多孔结构1的孔隙12的平均直径和孔隙率的范围进行具体设置,使得骨小梁结构100的结构与人体的骨小梁结构更为接近,这样人体的骨质可快速自然地长入立体多孔结构1的孔隙12中,从而有利于骨小梁结构100在术后与人体的骨组织快速融合和固定,因此有效地提高了患者术后的恢复效果。
在一个优选的实施方式中,立体多孔结构1可包括适应于同一种组织的不同长入要求的多个区域,各区域的孔隙率不同。也就是说,对于立体多孔结构1的不同区域,当面临不同的骨长入需求的情况下,可针对不同的区域的孔隙率进行具体设置。不同区域的孔隙率的设置可通过调控相应区域内的各孔隙的平均直径来实现,例如当骨小梁结构100的某一区域需要与骨接触时,为了实现快速的骨长入,优选将该区域的孔隙的平均直径的范围设置在200μm至400μm之间,进一步优选为300μm至400μm之间,此时该区域的孔隙率可控制在50%至60%之间;当骨小梁结构100的某一区域不需要与骨接触,但需要利于骨爬行,可优选将该区域的孔隙的平均直径的范围设置在100μm至200μm之间,此时该区域的孔隙率可控制在70%至75%之间;而当骨小梁结构100的某一区域不需要与骨接触,也不需要骨爬行,可优选将该区域的孔隙的平均直径的范围设置在100μm至150μm之间,此时该区域的孔隙率可控制在75%至80%之间。
优选地,在同一区域内,自立体多孔结构1的外部至内部的方向上的孔隙12的密度逐渐增大,从而使人体骨长入的过程中,骨组织能够更顺利地由立体多孔结构1的外部快速长入立体多孔结构1的内部中心,以提高骨小梁结构100与人体骨组织的融合与固定。
还优选地,为了确保立体多孔结构1的结构强度,可将丝径11的直径的范围设置在100μm至200μm之间。优选地,丝径11的直径的范围设置在150 μm至200μm之间,进一步优选地,丝径11的直径为180μm。
如图1所示,立体多孔结构1的各孔隙12的横截面形状为不规则的多边形,其具体形状可以大致呈四面体或六面体。
在一个优选的实施例中,各丝径11的外周壁上可形成有多个凸部(图中未示出),该多个凸部的设置用于增加丝径11的外周壁的粗糙度,以增大其外周壁的摩擦力,这样,在骨长入的过程中,骨组织与丝径11的固定更为牢固和稳定。
优选地,该凸部可以是圆形的凸点,也可以是锥状的凸点。值得注意的是,该凸部的形状并不仅仅局限于上述形状,只要该凸部能够有效地增加丝径11的外表面积以实现增大其外周壁的摩擦力的目的即可,这里不再赘述。进一步地,该凸部的横截面的最大轮廓形状的宽度范围为5-50μm,最大高度范围为10-50μm。
还优选地,凸部可沿丝径11的外表面均匀分布,也可以离散式分布。还优选地,在骨小梁结构100的孔隙率较大的区域的丝径11的凸部的个数可大于骨小梁结构100的孔隙率较小的区域的丝径11的凸部的个数,以使骨长入更为牢固。还优选地,自立体多孔结构1的外边缘上的丝径11上的凸部的密度大于自立体多孔结构1的内部的密度。
根据本发明,立体多孔结构1可由金属粉末制成,该金属粉末可以是钛合金、纯钛或钽金属等。优选地,立体多孔结构1由钛合金材料制成,优选由Ti6Al4V制成。
根据本发明,立体多孔结构1的弹性模量的范围为5-30GPa。该弹性模量的设置可使骨小梁结构100具有较好的力学性能,即具有较好的抗压和抗扭能力,从而有利于确保骨小梁结构100植入人体后其自身的使用的稳定性。
进一步地,立体多孔结构1的外表面的最大静摩擦系数的范围为1.2-1.5。通过该设置,使得骨小梁结构100的外表面具有更适于骨长入或骨爬行的粗糙度,从而有助于进一步提高骨长入的速度和稳定度。同时,本发明的立体多孔结构1相比于现有技术中的骨小梁结构来说,其外表面具有的最大静摩擦力远远超过现有技术中的骨小梁结构的外表面的最大静摩擦力,这使得本发明的骨小梁结构100极大地区别于现有技术,从而使得本发明的骨小梁结构100具备更适宜人体骨长入和骨爬行的条件。经过试验证明,在相同的试验条件下,本发明的骨小梁结构100在单位压力下的最大静摩擦系数为1.35,而现有技术的骨小梁结构100在单位压力下的最大静摩擦系数仅为1.08。
此外,本发明还提出了一种假体(图中未示出)。该假体包括假体本体和形成在假体本体的外表面的上述骨小梁结构100。由于本发明的骨小梁结构100与人体的骨小梁结构更为接近,这样人体的骨质可快速自然地长入立体多孔结构1的孔隙12中,从而有利于假体在术后与人体的骨组织快速融合和固定,因此有效地提高了患者术后的恢复效果。
图3示出了根据本发明的骨小梁结构的制作方法的流程图。如图3所示,该骨小梁结构的制作方法包括以下步骤:
步骤一:采用显微CT对天然的骨小梁结构进行三维扫描,并采用MIMICS对扫描的数据进行模型重建,以获得骨小梁结构的三维示意模型,该步骤用于预先获得骨小梁结构的基础结构模型。
步骤二:对骨小梁结构的三维示意模型中的各丝径11的直径进行调整,以使其直径范围在100μm至200μm之间,同时对由各丝径11形成的孔隙12的直径进行调整,以使各孔隙12的平均直径范围为100μm至400μm,且使三维示意模型的孔隙率的范围为50%至80%。
步骤三:对骨小梁结构的三维示意模型进行区域划分,划分的各区域分别适应于同一种组织的不同长入要求,进一步调整各区域的孔隙12的直径,以使不同的区域具有不同的孔隙率,从而使骨小梁结构在不同的骨长入需求下能够更快速适应地长入骨组织。
步骤四:采用3D打印设备来生成骨小梁结构100的实体模型,通过调整3D打印设备的focus offset参数使得生成的实体模型中的丝径11的表面形成多个凸起,其中focus offset参数的取值范围为5.8mA至6.2mA。
经试验证明,本发明的骨小梁结构100具备了良好的初始稳定性及良好的骨长入性能,骨长入深度可达60%至80%,应用本发明的骨小梁结构100的假体在植入后的效果非常稳定,有效地降低了患者术后的恢复时间,且提高了患者术后的恢复效果。
需要注意的是,除非另有说明,本申请使用的技术术语或者科学术语应当为本发明所属领域技术人员所理解的通常意义。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明 的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本发明并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种骨小梁结构,其特征在于,该骨小梁结构包括本体,所述本体构造成立体多孔结构,所述立体多孔结构包括多条丝径和由多条丝径相互交错连接形成的多个孔隙,各所述孔隙相互连通,且各所述孔隙的平均直径不同,其中,各所述孔隙的平均直径范围为100μm至400μm,且所述立体多孔结构的孔隙率的范围为50%至80%。
  2. 根据权利要求1所述的骨小梁结构,其特征在于,所述立体多孔结构包括适应于同一种组织的不同长入要求的多个区域,各所述区域的孔隙率不同。
  3. 根据权利要求2所述的骨小梁结构,其特征在于,在同一区域内,自所述立体多孔结构的外部至内部的方向上的孔隙的密度逐渐增大。
  4. 根据权利要求1所述的骨小梁结构,其特征在于,所述丝径的直径的范围为100μm至200μm。
  5. 根据权利要求1所述的骨小梁结构,其特征在于,各所述孔隙的横截面形状为不规则的多边形。
  6. 根据权利要求1至5中任一项所述的骨小梁结构,其特征在于,各所述丝径的外周壁上形成有多个凸部。
  7. 根据权利要求1至5中任一项所述的骨小梁结构,其特征在于,所述立体多孔结构由钛合金材料制成。
  8. 根据权利要求7所述的骨小梁结构,其特征在于,所述立体多孔结构的弹性模量的范围为5-30GPa。
  9. 根据权利要求1至5中任一项所述的骨小梁结构,其特征在于,所述立体多孔结构的外表面的最大静摩擦系数的范围为1.2-1.5。
  10. 一种假体,其特征在于,该假体包括假体本体和形成在所述假体本体的外表面的根据权利要求1至9中任一项所述的骨小梁结构。
  11. 一种骨小梁结构的制作方法,其特征在于,该制作方法包括以下步骤:
    步骤一:采用显微CT对天然的骨小梁结构进行三维扫描,并采用MIMICS对扫描的数据进行模型重建,以获得骨小梁结构的三维示意模型,该步骤一用于预先获得骨小梁结构的基础结构模型;
    步骤二:对骨小梁结构的三维示意模型中的各丝径的直径进行调整,以使其直径范围在100μm至200μm之间,同时对由各丝径形成的孔隙的直径进行调整,以使各孔隙的平均直径范围为100μm至400μm,且使三维示意模型的孔隙率的范围为50%至80%;
    步骤三:对骨小梁结构的三维示意模型进行区域划分,划分的各区域分别适应于同一种组织的不同长入要求,进一步调整各区域的孔隙的直径,以使不同 的区域具有不同的孔隙率,从而使骨小梁结构在不同的骨长入需求下能够更快速适应地长入骨组织;
    步骤四:采用3D打印设备来生成骨小梁结构的实体模型,通过调整3D打印设备的focusoffset参数使得生成的实体模型中的丝径的表面形成多个凸起,其中focusoffset参数的取值范围为5.8mA至6.2mA。
  12. 根据权利要求11所述的骨小梁结构的制作方法,其特征在于,所述的步骤三划分的各区域中,各所述区域的孔隙率不同。
  13. 根据权利要求12所述的骨小梁结构的制作方法,其特征在于,在同一区域内,自外部至内部的方向上的孔隙的密度逐渐增大。
  14. 根据权利要求11所述的骨小梁结构的制作方法,其特征在于,各所述孔隙的横截面形状为不规则的多边形。
  15. 根据权利要求11所述的骨小梁结构的制作方法,其特征在于,各所述丝径的外周壁上形成有多个凸部。
  16. 根据权利要求11所述的骨小梁结构的制作方法,其特征在于,所述的丝径和孔隙形成立体多孔结构,所述立体多孔结构由钛合金材料制成。
  17. 根据权利要求16所述的骨小梁结构的制作方法,其特征在于,所述立体多孔结构的弹性模量的范围为5-30GPa。
  18. 根据权利要求16所述的骨小梁结构的制作方法,其特征在于,所述立体多孔结构的外表面的最大静摩擦系数的范围为1.2-1.5。
PCT/CN2019/119619 2018-12-04 2019-11-20 骨小梁结构和应用其的假体以及其制作方法 WO2020114253A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/257,534 US20210282930A1 (en) 2018-12-04 2019-11-20 Bone trabecula structure and prosthesis using same and manufacturing method therefor
JP2020568458A JP7225268B2 (ja) 2018-12-04 2019-11-20 骨小柱構造、それを用いたプロテーゼ及びその製造方法
AU2019393104A AU2019393104B2 (en) 2018-12-04 2019-11-20 Bone trabecula structure and prosthesis using same and manufacturing method therefor
EP19892011.8A EP3799840B1 (en) 2018-12-04 2019-11-20 Bone trabecula structure and prosthesis using same and manufacturing method therefor
ZA2020/07949A ZA202007949B (en) 2018-12-04 2020-12-18 Bone trabecula structure and prosthesis using same and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811475455.3 2018-12-04
CN201811475455.3A CN109481092B (zh) 2018-12-04 骨小梁结构和应用其的假体

Publications (1)

Publication Number Publication Date
WO2020114253A1 true WO2020114253A1 (zh) 2020-06-11

Family

ID=65698215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119619 WO2020114253A1 (zh) 2018-12-04 2019-11-20 骨小梁结构和应用其的假体以及其制作方法

Country Status (6)

Country Link
US (1) US20210282930A1 (zh)
EP (1) EP3799840B1 (zh)
JP (1) JP7225268B2 (zh)
AU (1) AU2019393104B2 (zh)
WO (1) WO2020114253A1 (zh)
ZA (1) ZA202007949B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112075990A (zh) * 2020-09-29 2020-12-15 华侨大学 一种球体多孔填充结构跟骨假体及其优化设计方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8728387B2 (en) * 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
CN114748686B (zh) * 2022-04-18 2023-02-03 北京大学 一种个性化锌合金骨植入物及其制备方法与应用
CN115740495A (zh) * 2022-11-02 2023-03-07 大博医疗科技股份有限公司 一种3d打印骨小梁口腔种植体的方法
CN115814151A (zh) * 2022-12-21 2023-03-21 北京市春立正达医疗器械股份有限公司 一种3d打印骨植入物表面多级微米结构的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416906A (zh) * 2008-11-26 2009-04-29 北京天新福医疗器材有限公司 医用金属人工骨小梁的制备及应用
CN101980214A (zh) * 2010-05-26 2011-02-23 上海大学 孔隙率可控的仿生支架的构建方法
CN106388976A (zh) * 2016-04-11 2017-02-15 四川大学华西医院 3d打印仿骨小梁多孔承重增强金属假体
US20170156880A1 (en) * 2015-12-07 2017-06-08 Nexus Spine, L.L.C. Porous Interbody Spacer
US20180263785A1 (en) * 2017-03-14 2018-09-20 Alphatec Spine, Inc. Intervertebral cage with porosity gradient
CN108578018A (zh) * 2018-04-04 2018-09-28 北京市春立正达医疗器械股份有限公司 假体和假体的制作方法
CN109481092A (zh) * 2018-12-04 2019-03-19 北京市春立正达医疗器械股份有限公司 骨小梁结构和应用其的假体
CN209678760U (zh) * 2018-12-04 2019-11-26 北京市春立正达医疗器械股份有限公司 骨小梁结构和应用其的假体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1264674A (en) 1984-10-17 1990-01-23 Paul Ducheyne Porous flexible metal fiber material for surgical implantation
US6087553A (en) * 1996-02-26 2000-07-11 Implex Corporation Implantable metallic open-celled lattice/polyethylene composite material and devices
EP1584337B1 (en) * 2003-01-10 2016-11-02 Osaka Yakin Kogyo Co., Ltd. Artificial bone capable of inducing natural bone and method for preparation thereof
US8728387B2 (en) 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
US8871142B2 (en) 2008-05-22 2014-10-28 DePuy Synthes Products, LLC Implants with roughened surfaces
SG195588A1 (en) 2008-10-17 2013-12-30 Univ Singapore Resorbable scaffolds for bone repair and long bone tissue engineering
US9278000B2 (en) 2012-02-09 2016-03-08 Mx Orthopedics, Corp. Porous coating for orthopedic implant utilizing porous, shape memory materials
US9155819B2 (en) * 2012-02-09 2015-10-13 Mx Orthopedics, Corp. Dynamic porous coating for orthopedic implant
US8843229B2 (en) * 2012-07-20 2014-09-23 Biomet Manufacturing, Llc Metallic structures having porous regions from imaged bone at pre-defined anatomic locations

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101416906A (zh) * 2008-11-26 2009-04-29 北京天新福医疗器材有限公司 医用金属人工骨小梁的制备及应用
CN101980214A (zh) * 2010-05-26 2011-02-23 上海大学 孔隙率可控的仿生支架的构建方法
US20170156880A1 (en) * 2015-12-07 2017-06-08 Nexus Spine, L.L.C. Porous Interbody Spacer
CN106388976A (zh) * 2016-04-11 2017-02-15 四川大学华西医院 3d打印仿骨小梁多孔承重增强金属假体
US20180263785A1 (en) * 2017-03-14 2018-09-20 Alphatec Spine, Inc. Intervertebral cage with porosity gradient
CN108578018A (zh) * 2018-04-04 2018-09-28 北京市春立正达医疗器械股份有限公司 假体和假体的制作方法
CN109481092A (zh) * 2018-12-04 2019-03-19 北京市春立正达医疗器械股份有限公司 骨小梁结构和应用其的假体
CN209678760U (zh) * 2018-12-04 2019-11-26 北京市春立正达医疗器械股份有限公司 骨小梁结构和应用其的假体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112075990A (zh) * 2020-09-29 2020-12-15 华侨大学 一种球体多孔填充结构跟骨假体及其优化设计方法

Also Published As

Publication number Publication date
JP2021526059A (ja) 2021-09-30
EP3799840A1 (en) 2021-04-07
JP7225268B2 (ja) 2023-02-20
CN109481092A (zh) 2019-03-19
US20210282930A1 (en) 2021-09-16
EP3799840A4 (en) 2021-07-07
EP3799840B1 (en) 2023-10-11
AU2019393104B2 (en) 2022-05-19
ZA202007949B (en) 2021-10-27
EP3799840C0 (en) 2023-10-11
AU2019393104A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2020114253A1 (zh) 骨小梁结构和应用其的假体以及其制作方法
US4011602A (en) Porous expandable device for attachment to bone tissue
WO2020114252A1 (zh) 趾关节假体及其制作方法
CN107349034A (zh) 一种具有ha涂层的多孔钛颈椎融合器及其制备方法
CN104758042A (zh) 一种具有三维贯通多孔结构的骨螺钉
JP6219926B2 (ja) 手指又は足指等の骨末端用、又は歯用の補綴要素、及び対応する生産方法
CN209678760U (zh) 骨小梁结构和应用其的假体
JP6275437B2 (ja) 可変a/pテーパ角を用いた大腿骨ステムコンポーネントを有する整形外科用股関節プロテーゼ
CN111449808A (zh) 一种增材制造多孔钽金属髋臼外杯及其制备方法
CN106510903B (zh) 一种自适应后期稳定型股骨柄假体
CN106890037A (zh) 一种体内可延长人工椎体
CN110584838A (zh) 髋臼假体
CN208598587U (zh) 一种具有羟基磷灰石涂层的多孔钛颈椎融合器
CN107569308B (zh) 多孔一体化颈椎融合器
CN109481092B (zh) 骨小梁结构和应用其的假体
CN211156481U (zh) 髋臼假体
CN204542468U (zh) 人工髋关节假体
JP6728554B2 (ja) コブラ型大腿ステムプロテーゼ
CN208989261U (zh) 股骨髁及具有其的膝关节假体
CN215019767U (zh) 一种金属微孔干骺端假体
CN111281616A (zh) 一种全髋金属杯假体及其制作方法
CN219720964U (zh) 定制式填充假体
CN215960468U (zh) 一种修复髋臼骨缺损的种植式生物学金属棒
CN215080281U (zh) 一种外侧倒角相等股骨柄
RU2785011C1 (ru) Индивидуальный имплантат проксимального суставного конца плечевой кости с биоактивными свойствами

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892011

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568458

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019892011

Country of ref document: EP

Effective date: 20201207

ENP Entry into the national phase

Ref document number: 2019393104

Country of ref document: AU

Date of ref document: 20191120

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE