WO2020114061A1 - 制冷系统、闭环制冷循环回路及注入制冷剂的方法 - Google Patents

制冷系统、闭环制冷循环回路及注入制冷剂的方法 Download PDF

Info

Publication number
WO2020114061A1
WO2020114061A1 PCT/CN2019/109168 CN2019109168W WO2020114061A1 WO 2020114061 A1 WO2020114061 A1 WO 2020114061A1 CN 2019109168 W CN2019109168 W CN 2019109168W WO 2020114061 A1 WO2020114061 A1 WO 2020114061A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigeration
refrigerant
refrigeration circuit
circuit
drain
Prior art date
Application number
PCT/CN2019/109168
Other languages
English (en)
French (fr)
Inventor
赵华炜
史永凌
万波
王鹏
李强
余乃君
虞维兴
Original Assignee
湖南迈太科医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南迈太科医疗科技有限公司 filed Critical 湖南迈太科医疗科技有限公司
Publication of WO2020114061A1 publication Critical patent/WO2020114061A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/046Condensers with refrigerant heat exchange tubes positioned inside or around a vessel containing water or pcm to cool the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the invention relates to the technical field of superconducting magnet coil refrigeration, in particular to a refrigeration system, a closed-loop refrigeration cycle circuit and a method of injecting refrigerant.
  • the superconductor When the superconductor is cooled to a suitable low temperature, it acts as a conductor to transmit power losslessly, and its upper resistance value is zero. This suitable temperature is called the "superconducting temperature" of the superconductor. Therefore, it is necessary to provide a cooling system for the superconductor to ensure that the superconductor operates at its superconducting temperature.
  • the superconducting magnet cooling system immerses the superconducting magnet coil in the cooling liquid, and uses the cooling liquid vaporization process to cool the superconducting magnet coil. During this process, the vaporized gas will be emitted into the air, and the coolant needs to be replenished regularly.
  • the refrigerant In order to reduce the loss of refrigerant, the refrigerant is generally sealed in a closed-loop refrigeration circuit to avoid the loss of refrigerant volatilization to the atmosphere.
  • the refrigerator cannot be cooled due to power failure or maintenance, or when the superconducting magnet loses time, the energy stored in the superconducting magnet is converted into heat energy, and the refrigerant is vaporized. If the refrigerant is still kept in a closed state, The pressure-bearing capacity of the closed-loop refrigeration circuit is high.
  • the present invention is to overcome the shortcomings of the prior art and provide a refrigeration system, a closed-loop refrigeration cycle circuit and a method of injecting refrigerant to reduce the pressure-bearing capacity requirements of the closed-loop refrigeration circuit.
  • a refrigeration system for cooling a superconducting magnet coil includes an outer container and a refrigeration circuit thermally coupled to the superconducting magnet coil.
  • the refrigeration circuit is provided in the outer container and used to communicate with the air located outside the outer container
  • the tank is connected to form a closed-loop refrigeration cycle.
  • the pressure in the refrigeration circuit increases. Because the gas tank is connected to the refrigeration circuit, the gas in the refrigeration circuit flows to the gas tank, and the gas in the refrigeration circuit is recovered by the gas tank, which can reduce the pressure requirement of the refrigeration circuit; at the same time, because the gas tank is placed outside the outer container, The size and installation position of the gas tank are not limited by the internal space of the outer container. Under certain conditions, the pressure in the refrigeration circuit can be reduced by increasing the air storage space of the gas tank as much as possible, so as to control the pressure in the refrigeration circuit within the design range.
  • the outer layer container is provided with an inner layer container, and the refrigeration circuit is disposed in the inner layer container.
  • the inner layer container and the outer layer container can provide the refrigeration circuit with a condition for shielding the heat of the external environment, so as to reduce the influence of the heat of the external environment on the refrigeration effect of the refrigeration circuit.
  • the refrigeration system further includes a pre-cooling tube, the pre-cooling tube is disposed in the outer container, one end of the pre-cooling tube communicates with the refrigeration circuit, and the other end of the pre-cooling tube It is used to communicate with the gas tank located outside the outer container to form the closed-loop refrigeration cycle circuit.
  • the refrigerant in the pre-cooling tube can reduce the temperature in the outer container, so as to reduce the temperature in the outer container.
  • the outer layer container is provided with an inner layer container
  • the refrigeration circuit is disposed in the inner layer container
  • the pre-cooling tube is disposed in the outer layer container and is thermally coupled with the inner layer container.
  • the refrigeration circuit is provided with a first diversion port and a second diversion port, both of which are used to communicate with an air tank to form the closed-loop refrigeration Circulation loop.
  • the refrigerant can maintain a smooth flow through the first diversion port and the second diversion port.
  • the refrigeration system further includes a drainage device, a drainage cavity is provided in the drainage device, the drainage cavity is in communication with the refrigeration circuit, and the drainage device is used to communicate with the gas tank outside the outer container Connected to form a closed-loop refrigeration cycle.
  • the structure that connects the outer container and the refrigeration circuit with the drain is simple, and is convenient for the installation of the communication between the refrigeration circuit and the gas tank.
  • the drain is provided with a closable drain port, and the drain port communicates with the drain cavity.
  • the drain can be connected to the drainage device to complete the evacuation of the refrigeration circuit; when cooling the superconducting magnet coil, the closed loop refrigeration loop circuit can be realized by blocking the drain, so To reduce refrigerant leakage.
  • the drain includes a drain body and a cover body, the drain body is provided with the drain cavity and a communication port communicating with the drain cavity, the cover body is detachably mounted on the drain body Upper and cooperate with the communication port to seal the communication port.
  • the refrigeration circuit communicates with the outside through the communication port, so that the processing operation of the refrigeration circuit can be realized through the communication port; when the cover is installed on the body of the drain, the drainage cavity can be separated from the outside Come.
  • the refrigeration circuit includes a liquid reservoir and a cooling tube thermally coupled to the superconducting magnet coil, the cooling tube communicates with the liquid reservoir, and the liquid reservoir is used to collect the condensed refrigerant.
  • the liquid container is used to communicate with the gas tank located outside the outer layer container to form a closed-loop refrigeration cycle circuit.
  • the refrigerant in the reservoir flows to the cooling tube, and through the thermal coupling of the cooling tube and the superconducting magnet coil, the superconducting magnet coil and the refrigerant in the cooling tube exchange heat to absorb the superconducting
  • the liquid refrigerant of the magnet conducting coil vaporizes and flows away from the cooling tube.
  • the refrigeration system further includes a first condenser, and the first condenser cooperates with the accumulator to condense the vaporized refrigerant in the accumulator.
  • the gaseous refrigerant flows from the cooling pipe to the accumulator, the gaseous refrigerant exchanges heat with the first condenser, and the gaseous refrigerant condenses into a liquid refrigerant and is stored in the accumulator In this way, the refrigerant is circulated in the cooling pipe and the accumulator.
  • the first condenser is disposed in the liquid reservoir.
  • the manner in which the first condenser is disposed in the accumulator can facilitate the condensation of the gaseous refrigerant into the liquid refrigerant.
  • a closed-loop refrigeration cycle circuit includes a connected gas tank and the refrigeration system.
  • the gas tank is provided outside the outer layer container, and the gas tank communicates with the refrigeration circuit to form a closed-loop refrigeration cycle circuit. Since the gas tank is placed outside the outer container, the size and installation position of the gas tank are not limited by the inner space of the outer container. When the allowable conditions allow, reduce the pressure in the refrigeration circuit by increasing the air storage space of the gas tank as much as possible, so as to control the pressure in the refrigeration circuit within a lower design range.
  • the working pressure in the refrigeration circuit is -1 bar to 30 bar.
  • the working pressure of the refrigeration circuit is limited to -1bar to 30bar, the safety of the refrigeration circuit can be improved and the manufacturing difficulty can be reduced.
  • a method for injecting refrigerant for cooling a superconducting magnet coil comprising the steps of injecting refrigerant: connecting a gas tank located outside the outer container and a refrigeration circuit located in the outer container to form a closed-loop refrigeration cycle circuit to The high-pressure gas refrigerant in the gas tank flows to the low-pressure refrigeration circuit; the refrigerant is condensed to condense the gas refrigerant in the refrigeration circuit into a liquid refrigerant.
  • the gaseous refrigerant is helium. After condensing helium into liquid helium, its temperature is low. Using liquid helium can provide the required low-temperature environment for the superconducting magnet coil; this can ensure the normal use of the superconducting magnet coil.
  • the following step is further included to pre-cool the refrigeration circuit.
  • pre-cooling the refrigeration circuit the temperature in the outer container can be reduced; during the injection of refrigerant into the refrigeration circuit, due to the lower temperature in the inner container, this can increase the condensation rate of the gaseous refrigerant in the refrigeration circuit, and thus Reduce the time of refrigerant injection.
  • the pre-cooling refrigeration circuit includes the steps of injecting a pre-coolant into the refrigeration circuit to reduce the temperature of the refrigeration circuit; removing the pre-coolant in the refrigeration circuit.
  • Using the refrigeration circuit as a pre-coolant to pre-cool the outer container and the refrigeration circuit has a simple structure; at the same time, this type of use of the refrigeration circuit to complete both the pre-refrigerant delivery and the refrigerant delivery can simplify the internal structure of the outer container.
  • the pre-coolant is liquid nitrogen.
  • Liquid nitrogen has the characteristics of low boiling point and low cost. Selecting liquid nitrogen as the pre-cooling agent can save the pre-cooling cost.
  • the method before the pre-cooling refrigeration circuit, further includes the steps of purging and removing impurities: introducing gaseous pre-coolant into the refrigeration circuit, and removing the refrigerant circuit by filling the refrigeration circuit with gaseous pre-coolant Impurities.
  • the method of purging and removing impurities by the gaseous pre-coolant can prevent the liquid pre-coolant injected into a gas from condensing into solid impurities, so the solid impurities affect the normal use of the refrigeration circuit.
  • FIG. 1 is a schematic structural diagram of a refrigeration system according to an embodiment
  • Figure 2 is the internal structure of the outer container
  • FIG. 3 is a partially enlarged view at A in FIG. 2.
  • an embodiment provides a refrigeration system for superconducting magnet coil refrigeration, including an outer container 110 and a refrigeration circuit 210 thermally coupled with the superconducting magnet coil 300, the refrigeration The circuit 210 is disposed in the outer container 110 and is used to communicate with the gas tank 220 located outside the outer container 110 to form a closed-loop refrigeration cycle circuit.
  • the refrigerant in the closed-loop refrigeration circuit 210 is heated to evaporate from the liquid state to gas, and the pressure in the refrigeration circuit 210 increases. Since the gas tank 220 communicates with the refrigeration circuit 210, the gas in the refrigeration circuit 210 flows into the gas tank 220, and the gas in the refrigeration circuit 210 is recovered by the gas tank 220, which can reduce the pressure requirement of the refrigeration circuit 210; at the same time, due to the gas tank 220 is placed outside the outer container 110, and the size and installation position of the gas tank 220 are not limited by the internal space of the outer container 110. When conditions permit, the pressure in the refrigeration circuit 210 can be reduced by increasing the air storage space of the gas tank 220 as much as possible, so as to control the pressure in the refrigeration circuit 210 within the design range.
  • the outer container 110 is provided with an inner container 120, and the refrigeration circuit 210 is provided in the inner container 120.
  • the inner layer container 120 and the outer layer container 110 can provide the refrigeration circuit 210 with a condition for shielding the external ambient heat, so as to reduce the influence of the external ambient heat on the refrigeration effect of the refrigeration circuit 210.
  • the refrigeration system further includes a pre-cooling tube 230, the pre-cooling tube 230 is disposed in the outer container 110, one end of the pre-cooling tube 230 is in communication with the refrigeration circuit 210, so The other end of the pre-cooling tube 230 is used to communicate with the gas tank 220 located outside the outer container 110 to form the closed-loop refrigeration cycle circuit.
  • the refrigerant in the pre-cooling tube 230 can reduce the temperature in the outer layer container 110, so as to reduce the temperature in the outer layer container 110.
  • the outer container 110 is provided with an inner container 120
  • the refrigeration circuit 210 is provided in the inner container 120
  • the pre-cooling tube 230 is provided in the outer container 110 and Thermally coupled with inner container 120.
  • the refrigerant in the pre-cooling tube 230 flows in the outer container 110, thereby controlling the temperature in the inner container 120, so that under the conditions of the external environment changing, the inner container 120 and the The low temperature environment between the outer containers 110 reduces the influence of the external ambient temperature on the refrigeration effect of the refrigeration circuit 210.
  • the pre-cooling tube 230 may be located between the inner container 120 and the outer container 110, or may be located in the inner container 120.
  • the precooling tube 230 When the precooling tube 230 is located in the inner container 120, the refrigerant flows in the inner container 120; when the precooling tube 230 is located between the inner container 120 and the outer container 110, the refrigerant is in the inner container 120 and the outer layer Flow between the containers 110; when there are cooling tubes 230 between the inner container 120 and the outer container 110, and in the inner container 120, the refrigerant between the inner container 120 and the outer container 110, and the inner container Flow within 120.
  • the above-mentioned outer container 110 refers to a 300K container, and 300k is 300 Kelvin (temperature); that is, the external environment where the 300K container is located is room temperature.
  • the inner container 120 refers to a 50K container, and 50K is 50 Kelvin (temperature); that is, the external environment in which the 50K container is located is 50K.
  • the outer layer container 110 is provided with at least one air extraction hole 110a, and the air extraction hole 110a is used to exhaust the gas between the inner layer container 120 and the outer layer container 110, so that the two are in a vacuum state, so as to achieve a vacuum Thermal insulation.
  • the refrigeration circuit 210 is provided with a first diversion port 210a and a second diversion port 210b.
  • the first diversion port 210a and the second diversion port 210b are both used for Communicating with the gas tank 220 forms the closed-loop refrigeration cycle circuit.
  • the refrigerant in the gas tank 220 and the refrigerant circuit 210 relatively flows, the refrigerant can maintain a smooth flow through the first and second guide openings 210a and 210b.
  • the refrigeration system further includes a drain 240, and a drain cavity 240a is provided in the drain 240, the drain cavity 240a communicates with the refrigeration circuit 210, and the drain 240 It is used to communicate with the gas tank 220 located outside the outer container 110 to form a closed-loop refrigeration cycle circuit.
  • the structure that connects the outer layer container 110 and the refrigeration circuit 210 with the flow guide 240 is simple, and facilitates the communication and installation of the refrigeration circuit 210 and the gas tank 220.
  • the refrigeration circuit 210 includes the pre-cooling tube 230 and the communication tube 260, one end of the communication tube 260 communicates with the first diversion port 210a, and the other end of the pre-cooling tube 230 is The drainage cavity 240a is in communication; one end of the pre-cooling tube 230 is in communication with the second diversion port 201b, and the other end of the pre-cooling tube 230 is in communication with the drainage cavity 240a.
  • one end of the communication tube 260 communicates with the top of the drainage cavity 240a, and one end of the pre-cooling tube 230 communicates with the top of the drainage cavity 240a.
  • the drain 240 is provided with a closable drain port 240b, and the drain port 240b communicates with the drain cavity 240a.
  • the drainage circuit 240b can be connected to the drainage device to complete the evacuation of the refrigeration circuit 210; when the superconducting magnet coil 300 is cooled, the closed loop is closed by the drainage port 240b Refrigeration cycle circuit, so as to reduce refrigerant leakage.
  • the drain 240 includes a drain body 241 and a cover 242.
  • the drain body 241 is provided with the drain cavity 240a and a communication port 241a communicating with the drain cavity 240a.
  • the cover 242 may It is detachably mounted on the drain body 241 and cooperates with the communication port 241a to seal the communication port 241a.
  • the refrigeration circuit 210 communicates with the outside through the communication port 241a, so that the processing operation of the refrigeration circuit 210 can be realized through the communication port 241a; when the cover 242 is installed on the drain body 241, the The drainage cavity 240a is separated from the outside world.
  • the drainage port 240b is opened on the cover 242.
  • the cover body 242 is further provided with a conduction port 240c for communicating with the gas tank 220.
  • the drain port 240b is used for vacuum pump connection; the conducting port 240c is used to communicate with the gas tank 220.
  • the gas tank 220 may also communicate with the drain port 240b.
  • the refrigeration circuit 210 includes a liquid reservoir 211 and a cooling tube 212 thermally coupled to the superconducting magnet coil 300.
  • the cooling tube 212 communicates with the liquid reservoir 211, and the liquid reservoir 211 is used for collection.
  • the condensed refrigerant, the accumulator 211 is used to communicate with the gas tank 220 located outside the outer container 110 to form a closed-loop refrigeration cycle circuit.
  • the refrigerant in the accumulator 211 flows to the cooling tube 212, and through the thermal coupling of the cooling tube 212 and the superconducting magnet coil 300, the superconducting magnet coil 300 and the cooling tube 212
  • one end of the cooling tube 212 communicates with the top of the drainage cavity 240a, and the other end of the cooling tube 212 communicates with the bottom of the drainage cavity 240a.
  • the liquid refrigerant flows into the cooling pipe 212 from the bottom of the drainage chamber 240a, and the gaseous refrigerant in the cooling pipe 212 flows into the drainage chamber 240a from the top of the drainage chamber 240a.
  • a self-cooling superconducting switch 400 is provided between the inlet end and the outlet end of the cooling tube 212.
  • the refrigeration system further includes a first condenser 251.
  • the first condenser 251 cooperates with the accumulator 211 to condense the vaporized refrigerant in the accumulator 211.
  • the gaseous refrigerant flows from the cooling tube 212 to the accumulator 211, the gaseous refrigerant exchanges heat with the first condenser 251, and the gaseous refrigerant is condensed into a liquid refrigerant and stored In the accumulator 211, the refrigerant circulates in the cooling pipe 212 and the accumulator 211 in this way.
  • the first condenser 251 is disposed in the liquid reservoir 211.
  • the manner in which the first condenser 251 is disposed in the accumulator 211 can facilitate the condensation of the gaseous refrigerant into the liquid refrigerant.
  • a second condenser 252 is provided between the outer layer container 110 and the inner layer container 120, and the second condenser 252 is disposed between the inner layer container 120 and the outer layer container 110 .
  • the second condenser 252 is thermally coupled with the cooling pipe 230 and the pre-cooling pipe 230.
  • the refrigeration system includes a refrigerator 250.
  • the refrigerator 250 is provided with a primary cold head and a secondary cold head.
  • the primary cold head is the second condenser 252.
  • the secondary cold head is the first condenser 252.
  • Yet another embodiment provides a closed-loop refrigeration cycle circuit including a connected gas tank 220 and the refrigeration system described in any one of the foregoing embodiments.
  • the gas tank 220 is disposed outside the outer container 110, and the gas tank 220 communicates with the refrigeration circuit 210 to form a closed-loop refrigeration cycle circuit. Since the gas tank 220 is placed outside the outer container 110, the size and installation position of the gas tank 220 are not limited by the internal space of the outer container 110. When the allowable conditions allow, reduce the pressure in the refrigeration circuit 210 by increasing the air storage space of the gas tank 220 as much as possible, so as to control the pressure in the refrigeration circuit 210 within a lower design range.
  • the working pressure in the refrigeration circuit is -1 bar to 30 bar.
  • the working pressure of the refrigeration circuit is limited to -1bar to 30bar, the safety of the refrigeration circuit can be improved and the manufacturing difficulty can be reduced.
  • the maximum amount of liquid helium stored in the accumulator 211 is 10L. If the volume of the gas tank 220 is greater than 500L, the maximum working pressure in the closed-loop refrigeration cycle is less than 16 bar.
  • an air guide tube 500 is provided between the gas tank 220 and the deflector 240.
  • One end of the air guide tube 500 communicates with the deflector 240, and the other end of the air guide tube 500 communicates with the gas tank 220.
  • the air guide tube 500 makes the gas tank 220 and the refrigeration circuit 210 form a closed-loop refrigeration cycle circuit.
  • the air guide tube 500 can also adopt other structures to achieve communication between the gas tank 220 and the drain 240; for example, the gas tank 220 is directly disposed on the drain 240.
  • an air tank 220 is provided.
  • the air tank 220 is provided with an air guide port 221 and a guide hole 225.
  • the air guide port 221 is used to inflate or exhaust the air tank 220; the guide hole 225 is used to communicate with the refrigeration circuit 210 to form a closed-loop refrigeration cycle circuit.
  • the gas tank 220 is also provided with a pressure gauge 222 and a first pressure relief valve 223.
  • the pressure gauge 222 is used to monitor and display the pressure value in the gas tank 220; when the air pressure in the gas tank 220 is greater than the first preset value, the first pressure relief valve 223 opens the pressure relief.
  • the gas tank 220 further includes a second pressure relief valve 224.
  • the second pressure relief valve 224 opens the pressure relief.
  • the first preset value is less than the second preset value
  • the first pressure relief valve 223 is compared with the second pressure relief valve 224
  • the pressure relief speed of the first pressure relief valve 223 is less than the pressure relief speed of the second pressure relief valve 224.
  • all the gas refrigerant in the gas tank 220 can be stored in the accumulator 211 after being liquefied into a liquid refrigerant.
  • a method for injecting refrigerant, used for superconducting magnet coil cooling includes the following steps:
  • Inject refrigerant Connect the gas tank 220 located outside the outer container 110 and the refrigeration circuit 210 located inside the outer container 110 to form a closed-loop refrigeration cycle circuit, so that the high-pressure gas refrigerant in the gas tank 220 flows to the low-pressure refrigeration circuit 210 ; Condensing the refrigerant to condense the gaseous refrigerant in the refrigeration circuit 210 into a liquid refrigerant.
  • the gaseous refrigerant in the gas tank 220 will Quickly flow from the high-pressure gas tank 220 to the low-pressure refrigeration circuit 210, so that the air pressure in the gas tank 220 and the refrigeration circuit 210 is in a relatively balanced state; by condensing the gaseous refrigerant in the refrigeration circuit 210 into a liquid refrigerant, The air pressure in the refrigeration circuit 210 is continuously kept lower than the air pressure in the gas tank 220, so that the gaseous refrigerant is automatically flown to the refrigeration circuit 210 by using the pressure difference.
  • Case 1 When the refrigerant storage capacity in the closed-loop refrigeration cycle circuit is lower than the preset amount, the gaseous refrigerant is injected into the gas tank 220, so that the air pressure in the gas tank 220 will be higher than the air pressure in the refrigeration circuit 210.
  • the gaseous refrigerant is helium. After the helium gas is condensed into liquid helium, its temperature is low. Using liquid helium can provide the required low-temperature environment for the superconducting magnet coil 300; this can ensure the normal use of the superconducting magnet coil 300.
  • Pre-cooling refrigeration circuit 210 through the pre-cooling refrigeration circuit 210, the temperature in the outer layer container 110 can be reduced; during the injection of refrigerant into the refrigeration circuit 210, since the temperature in the inner layer container 120 is lower, this can improve gaseous refrigeration The speed of condensation of the refrigerant in the refrigeration circuit 210, thereby reducing the time of refrigerant injection.
  • the pre-cooling refrigeration circuit 210 includes the following steps,
  • Pre-coolant is injected into the refrigeration circuit 210 to reduce the temperature of the refrigeration circuit 210;
  • the pre-coolant in the refrigeration circuit 210 is removed.
  • the refrigeration circuit 210 as a pre-coolant to pre-cool the outer container 110 and the refrigeration circuit 210 has a simple structure; at the same time, the use of the refrigeration circuit 210 to complete both the pre-refrigerant delivery and the refrigerant delivery can simplify the interior of the outer container 110 structure.
  • the pre-coolant is liquid nitrogen.
  • Liquid nitrogen has the characteristics of low boiling point and low cost. Selecting liquid nitrogen as the pre-cooling agent can save the pre-cooling cost.
  • the gaseous pre-coolant is introduced into the refrigeration circuit 210, and the impurities in the refrigeration circuit 210 are removed in such a way that the gaseous pre-refrigerant fills the refrigeration circuit 210.
  • the method of purging and removing impurities by the gaseous pre-coolant can prevent the liquid pre-coolant injected into a gas from condensing into solid impurities, so that the solid impurities affect the normal use of the refrigeration circuit 210.
  • the superconducting magnet coil 300 is made of superconducting material. When the preset amount of liquid helium is stored in the liquid reservoir 211, the superconducting coil can be energized to increase the field.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

公开了一种制冷系统、闭环制冷循环回路及注入制冷剂的方法。该制冷系统用于超导磁体线圈制冷,其包括外层容器(110)及与超导磁铁线圈(300)耦合的制冷回路(210),所述制冷回路(210)设置于外层容器(110)内并与外层容器(110)外的气罐(220)连通形成闭环制冷循环回路。使用中,当遇到超导磁铁线圈(300)失超时,电能转换成热能,闭环制冷回路中的制冷剂受热由液态蒸发成气体,制冷回路(210)中的压强增大。由于气罐(220)与制冷回路(210)连通,制冷回路(210)中的气体流向气罐(220)中,以气罐(220)回收制冷回路(210)中的气体,可降低对制冷回路(210)的承压要求;同时,由于气罐(220)置于外层容器(110)外,气罐(220)的尺寸、安装位置不受外层容器(110)内部空间的限定。

Description

制冷系统、闭环制冷循环回路及注入制冷剂的方法 技术领域
本发明涉及超导磁体线圈制冷技术领域,特别是涉及一种制冷系统、闭环制冷循环回路及注入制冷剂的方法。
背景技术
当超导体被冷却到合适的低温时,其作为导体无损传输电能,其上阻值为零,该合适的温度被称之为超导体的“超导温度”。因此,需要为超导体提供冷却系统,以确保超导体在其超导温度下工作。
一般超导磁体冷却系统是将超导磁体线圈浸在冷却液中,利用冷却液的气化过程为超导磁体线圈降温。在此过程中,气化的气体会散发至空气中,需要定期补充冷却液。
为了减少制冷剂的流失,一般是将制冷剂封存在闭环制冷回路中,来避免制冷剂的挥发流失至大气中。但在制冷机因断电、处于维护期间而不能制冷时,或者当超导磁体发生失超时,超导磁体存储的能量转化为热能,气化制冷剂,如果依旧保持制冷剂的封闭状态,对闭环制冷回路的承压能力要求较高。
发明内容
基于此,本发明在于克服现有技术的缺陷,提供一种制冷系统、闭环制冷循环回路及注入制冷剂的方法,来降低对闭环制冷回路的承压能力要求。
一种制冷系统,用于超导磁体线圈的制冷,包括外层容器及与超导磁体线圈热耦合的制冷回路,所述制冷回路设置于外层容器内并用于与位于外层容器 外的气罐连通形成闭环制冷循环回路。
上述制冷系统,使用中,当遇到超导磁体线圈失超时,电能转换成热能,闭环制冷回路中的制冷剂受热由液态蒸发成气体,制冷回路中的压强增大。由于气罐与制冷回路连通,制冷回路中的气体流向气罐中,以气罐回收制冷回路中的气体,可降低对制冷回路的承压要求;同时,由于气罐置于外层容器外,气罐的尺寸、安装位置不受外层容器内部空间的限定。在一些条件允许的情况下,可以通过尽可能地增大气罐的储气空间来降低制冷回路内的压力,以实现将制冷回路内的压力控制于设计范围内。
在其中一个实施例中,所述外层容器内设有内层容器,所述制冷回路设置于内层容器内。使用中,内层容器和外层容器能为制冷回路提供屏蔽外部环境热量的条件,以降低外部环境热量对制冷回路制冷效果的影响。
在其中一个实施例中,所述的制冷系统还包括预冷管,所述预冷管设置于外层容器内,所述预冷管的一端与制冷回路连通,所述预冷管的另一端用于与位于外层容器外的气罐连通形成所述闭环制冷循环回路。使用中,在预冷管的引流下,预冷管内的冷媒能降低外层容器内的温度,如此以降低外层容器内的温度。
在其中一个实施例中,所述外层容器内设有内层容器,所述制冷回路设置于内层容器内,所述预冷管设置于外层容器内并与内层容器热耦合。使用中,在预冷管的引流下,预冷管内的冷媒在外层容器内流动,进而控制外层容器内的温度,如此在外部环境变化的条件下,通过内层容器和外层容器之间的低温环境来降低外部环境温度对制冷回路制冷效果的影响。
在其中一个实施例中,所述制冷回路设有第一导流口和第二导流口,所述第一导流口和第二导流口均用于与气罐连通形成所述闭环制冷循环回路。使用 中,当气罐和制冷回路中的制冷剂相对流动时,制冷剂能通过第一导流口和第二导流口保持顺畅的流动。
在其中一个实施例中,所述的制冷系统还包括引流器,所述引流器内设有引流腔,所述引流腔与制冷回路连通,所述引流器用于与位于外层容器外的气罐连通形成闭环制冷循环回路。以引流器连通外层容器和制冷回路的结构简单,且便于制冷回路和气罐连通安装。
在其中一个实施例中,所述引流器上设有可封堵的排流口,所述排流口与引流腔连通。在需要排空制冷回路时,可通过排流口接通引流装置的方式完成制冷回路内的排空;在对超导磁体线圈进行冷却时,通过封堵排流口实现闭环制冷循环回路,如此以降低制冷剂外泄。
在其中一个实施例中,所述引流器包括引流器本体及盖体,所述引流器本体设有所述引流腔及与引流腔连通的连通口,所述盖体可拆卸安装于引流器本体上并与连通口配合以密封连通口。当卸下盖体时,制冷回路通过连通口与外界连通,如此可通过连通口实现对制冷回路的处理操作;当将盖体安装于引流器本体上时,可使引流腔与外界分隔开来。
在其中一个实施例中,所述制冷回路包括储液器及与超导磁体线圈热耦合的冷却管,所述冷却管与储液器连通,所述储液器用于收集冷凝的制冷剂,储液器用于与位于外层容器外的气罐连通形成闭环制冷循环回路。在对超导磁体线圈进行冷却的过程中,储液器内的制冷剂流向冷却管,通过冷却管与超导磁体线圈的热耦合,超导磁体线圈与冷却管内的制冷剂热交换,吸收超导磁体线圈热量的液态制冷剂气化流离冷却管。
在其中一个实施例中,所述的制冷系统还包括第一冷凝器,所述第一冷凝器与所述储液器配合以冷凝储液器内气化的制冷剂。在对超导磁体线圈进行冷 却的过程中,气态制冷剂沿从冷却管流向储液器,气态制冷剂与第一冷凝器发生热交换,气态制冷剂冷凝成液态制冷剂并存储于储液器中,如此实现了制冷剂在冷却管及储液器内循环流动。
在其中一个实施例中,所述第一冷凝器设置于储液器内。第一冷凝器设置于储液器内的方式能有利于气态制冷剂冷凝成液态制冷剂。
一种闭环制冷循环回路,包括连通的气罐及所述的制冷系统。
上述闭环制冷循环回路,所述气罐设置于外层容器外,所述气罐与制冷回路连通形成闭环制冷循环回路。由于气罐置于外层容器外,气罐的尺寸、安装位置不受外层容器内部空间的限定。在允许的条件允许的情况下,通过尽可能地增大气罐的储气空间来降低制冷回路内的压力,以实现将制冷回路内的压力控制于较低的设计范围内。
在其中一个实施例中,所述制冷回路内的工作压力为-1bar~30bar。将制冷回路的工作压力限制于-1bar~30bar时,能提高制冷回路的安全性并降低制造难度。
一种注入制冷剂的方法,用于超导磁体线圈的制冷,包括如下步骤,注入制冷剂:连通位于外层容器外的气罐和位于外层容器内的制冷回路形成闭环制冷循环回路,以使气罐内的高压的气态制冷剂流向低压的制冷回路;冷凝制冷剂以使制冷回路内的气态制冷剂冷凝成液态制冷剂。
上述注入制冷剂的方法,由于气罐内的气压较高,制冷循环回路内的气压较低,在气罐与制冷回路连通形成闭环冷却回路时,气罐内的气态制冷剂会迅速地从高压的气罐流向低压的制冷回路,以使气罐内和制冷回路内的气压处于相对平衡的状态;通过将制冷回路内的气态制冷剂冷凝成液态制冷剂,使得制冷回路内的气压持续保持低于气罐内气压的状态,如此以利用压差实现气态制 冷剂自动流向制冷回路。
在其中一个实施例中,所述气态制冷剂为氦气。氦气冷凝成液氦后,其温度低,利用液氦能为超导磁体线圈提供需要的低温环境;如此能保证超导磁体线圈的正常使用。
在其中一个实施例中,在注入制冷剂前还包括以下步骤,预冷制冷回路。通过预冷制冷回路,能降低外层容器内的温度;在向制冷回路注入制冷剂的过程中,由于内层容器内温度较低,如此能提高气态制冷剂在制冷回路中的冷凝速度,进而减小注入制冷剂的时间。
在其中一个实施例中,所述预冷制冷回路包括以下步骤,向制冷回路中注入预冷剂以降低制冷回路的温度;除去制冷回路中的预冷剂。以制冷回路作为预冷剂预冷外层容器及制冷回路的结构简单;同时,此种利用制冷回路既完成预冷剂输送又完成制冷剂输送能便于简化外层容器的内部结构。
在其中一个实施例中,所述预冷剂为液氮。液氮具有沸点低且成本低廉的特点,选用液氮为预冷剂能够节省预冷成本。
在其中一个实施例中,在预冷制冷回路前,还包括以下步骤,吹洗除杂:向制冷回路中通入气态预冷剂,以气态预冷剂填充制冷回路的方式去除制冷回路中的杂质。以气态预冷剂吹洗除杂的方式,能够防止某气体被注入的液态预冷剂冷凝成固体杂质,如此固体杂质影响制冷回路的正常使用。
附图说明
图1为一实施例所述的制冷系统的结构示意图;
图2为外层容器的内部结构图;
图3为图2中A处的局部放大图。
附图标记说明:
110、外层容器,110a、抽气孔,120、内层容器,210、制冷回路,210a、第一导流口,210b、第二导流口,211、储液器,212、冷却管,220、气罐,221、抽气口,222、压力表,223、第一泄压阀,224、第二泄压阀,225、导流孔,230、预冷管,240、引流器,240a、引流腔,240b、排流口,240c、导通口,241、引流器本体,241a、连通口,242、盖体,250、制冷机,251、第一冷凝器,252、第二冷凝器,260、连通管,300、超导磁体线圈,400、自冷却超导开关,500、导气管。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用 的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
结合图1及图2所示,在一实施例中提供一种制冷系统,用于超导磁体线圈制冷,包括外层容器110及与超导磁体线圈300热耦合的制冷回路210,所述制冷回路210设置于外层容器110内并用于与位于外层容器110外的气罐220连通形成闭环制冷循环回路。
上述制冷系统,使用中,当遇到超导磁体线圈300失超时,电能转换成热能,闭环制冷回路210中的制冷剂受热由液态蒸发成气体,制冷回路210中的压强增大。由于气罐220与制冷回路210连通,制冷回路210中的气体流向气罐220中,以气罐220回收制冷回路210中的气体,可降低对制冷回路210的承压要求;同时,由于气罐220置于外层容器110外,气罐220的尺寸、安装位置不受外层容器110内部空间的限定。在一些条件允许的情况下,可以通过尽可能地增大气罐220的储气空间来降低制冷回路210内的压力,以实现将制冷回路210内的压力控制于设计范围内。
一实施例中,所述外层容器110内设有内层容器120,所述制冷回路210设置于内层容器120内。使用中,内层容器120和外层容器110能为制冷回路210提供屏蔽外部环境热量的条件,以降低外部环境热量对制冷回路210制冷效果的影响。
具体地,在本实施例中,所述的制冷系统还包括预冷管230,所述预冷管230设置于外层容器110内,所述预冷管230的一端与制冷回路210连通,所述预冷管230的另一端用于与位于外层容器110外的气罐220连通形成所述闭环制冷循环回路。使用中,在预冷管230的引流下,预冷管230内的冷媒能降低外层容器110内的温度,如此以降低外层容器110内的温度。
进一步地,在本实施例中,所述外层容器110内设有内层容器120,所述制 冷回路210设置于内层容器120内,所述预冷管230设置于外层容器110内并与内层容器120热耦合。使用中,在预冷管230的引流下,预冷管230内的冷媒在外层容器110内流动,进而控制内层容器120内温度,如此在外部环境变化的条件下,通过内层容器120和外层容器110之间的低温环境来降低外部环境温度对制冷回路210制冷效果的影响。
需要说明的是,预冷管230可位于内层容器120和外层容器110之间,也可以位于内层容器120内。当预冷管230位于内层容器120内时,冷媒在内层容器120内流动;当预冷管230位于内层容器120和外层容器110之间时,冷媒在内层容器120和外层容器110之间流动;当内层容器120和外层容器110之间、及内层容器120内均有冷却管230时,冷媒在内层容器120和外层容器110之间、及内层容器120内流动。
需要说明的是,一般使用中,上述的外层容器110是指300K容器,300k是300开尔文(温度);也就是说,300K容器所处的外部环境是室温。内层容器120是指50K容器,50K是50开尔文(温度);也就是说,50K容器所处的外部环境是50K。
所述外层容器110上开设有至少一个抽气孔110a,所述抽气孔110a用于排出内层容器120和外层容器110之间的气体,使二者之间呈真空状态,如此以实现真空隔热。
结合图3所示,一实施例中,所述制冷回路210设有第一导流口210a和第二导流口210b,所述第一导流口210a和第二导流口210b均用于与气罐220连通形成所述闭环制冷循环回路。使用中,当气罐220和制冷回路210中的制冷剂相对流动时,制冷剂能通过第一导流口210a和第二导流口210b保持顺畅的流动。
结合图3所示,一实施例中,所述的制冷系统还包括引流器240,所述引流器240内设有引流腔240a,所述引流腔240a与制冷回路210连通,所述引流器240用于与位于外层容器110外的气罐220连通形成闭环制冷循环回路。以引流器240连通外层容器110和制冷回路210的结构简单,且便于制冷回路210和气罐220连通安装。
具体地,在本实施例中,所述制冷回路210包括上述的预冷管230及连通管260,所述连通管260的一端与第一导流口210a连通,预冷管230的另一端与引流腔240a连通;预冷管230的一端与第二导流口201b连通,预冷管230的另一端与引流腔240a连通。
进一步地,所述连通管260的一端与引流腔240a的顶部连通,所述预冷管230的一端与引流腔240a的顶部连通。
一实施例中,所述引流器240上设有可封堵的排流口240b,所述排流口240b与引流腔240a连通。在需要排空制冷回路210时,可通过排流口240b接通引流装置的方式完成制冷回路210内的排空;在对超导磁体线圈300进行冷却时,通过封堵排流口240b实现闭环制冷循环回路,如此以降低制冷剂外泄。
一实施例中,所述引流器240包括引流器本体241及盖体242,所述引流器本体241设有所述引流腔240a及与引流腔240a连通的连通口241a,所述盖体242可拆卸安装于引流器本体241上并与连通口241a配合以密封连通口241a。当卸下盖体242时,制冷回路210通过连通口241a与外界连通,如此可通过连通口241a实现对制冷回路210的处理操作;当将盖体242安装于引流器本体241上时,可使引流腔240a与外界分隔开来。
具体地,在本实施例中,所述排流口240b开设于盖体242上。在所述盖体242上还开设有导通口240c,所述导通口240c用于与气罐220连通。
需要说明的是,一般不同的设备具有不同型号规格的接头。在本实施例中,排流口240b是用于真空泵连接;所述导通口240c用于与气罐220连通。当然,若是采用接头转接器,所述气罐220也可以与排流口240b连通。
一实施例中,所述制冷回路210包括储液器211及与超导磁体线圈300热耦合的冷却管212,所述冷却管212与储液器211连通,所述储液器211用于收集冷凝的制冷剂,储液器211用于与位于外层容器110外的气罐220连通形成闭环制冷循环回路。在对超导磁体线圈300进行冷却的过程中,储液器211内的制冷剂流向冷却管212,通过冷却管212与超导磁体线圈300的热耦合,超导磁体线圈300与冷却管212内的制冷剂热交换,吸收超导磁体线圈300热量的液态制冷剂气化流离冷却管212。
具体地,在本实施例中,所述冷却管212的一端与引流腔240a的顶部连通,所述冷却管212的另一端与引流腔240a的底部连通。使用中,液态制冷剂从引流腔240a的底部流入冷却管212,冷却管212内的气态的制冷从引流腔240a的顶部流入引流腔240a。
需要解释的是,前述的“与引流腔240a的顶部连通”及“与引流腔240a的底部连通”是相对概念,这里要表达的是两个位置有高度差,也就是引流腔240a的顶部高于引流腔240a的底部。
进一步地,在本实施例中,所述冷却管212的进口端和出口端之间设置有自冷却超导开关400。
一实施例中,所述的制冷系统还包括第一冷凝器251,所述第一冷凝器251与所述储液器211配合以冷凝储液器211内气化的制冷剂。在对超导磁体线圈300进行冷却的过程中,气态制冷剂沿从冷却管212流向储液器211,气态制冷剂与第一冷凝器251发生热交换,气态制冷剂冷凝成液态制冷剂并存储于储液 器211中,如此实现了制冷剂在冷却管212及储液器211内循环流动。
一实施例中,所述第一冷凝器251设置于储液器211内。第一冷凝器251设置于储液器211内的方式能有利于气态制冷剂冷凝成液态制冷剂。
具体地,在本实施例中,所述外层容器110和内层容器120之间设有第二冷凝器252,所述第二冷凝器252设置于内层容器120和外层容器110之间。所述第二冷凝器252与冷却管230及预冷管230热耦合。
具体地,在本实施例中,所述制冷系统包括制冷机250,所述制冷机250设有一级冷头和二级冷头,所述一级冷头为所述第二冷凝器252,所述二级冷头为所述第一冷凝器252。
再一实施例提供一种闭环制冷循环回路包括连通的气罐220及前述任一项实施例所述的制冷系统。
上述的闭环制冷循环回路,所述气罐220设置于外层容器110外,所述气罐220与制冷回路210连通形成闭环制冷循环回路。由于气罐220置于外层容器110外,气罐220的尺寸、安装位置不受外层容器110内部空间的限定。在允许的条件允许的情况下,通过尽可能地增大气罐220的储气空间来降低制冷回路210内的压力,以实现将制冷回路210内的压力控制于较低的设计范围内。
一实施例中,所述制冷回路内的工作压力为-1bar~30bar。将制冷回路的工作压力限制于-1bar~30bar时,能提高制冷回路的安全性并降低制造难度。
例如,储液器211内最大存储液氦量为10L,若是气罐220的体积大于500L,此时闭环制冷循环回路内的最大工作压力小于16bar。
具体地,在本实施例中,所述气罐220和引流器240之间设有导气管500,导气管500的一端与引流器240连通,导气管500的另一端与气罐220连通,通过导气管500使气罐220与制冷回路210形成闭环制冷循环回路。当然,在 其他实施例中,所述导气管500也可以采用其他结构替代实现气罐220与引流器240之间的连通;例如气罐220直接设置于引流器240上。
又一实施例中提供一种气罐220,该气罐220上设导气口221及导流孔225,所述导气口221用于对气罐220进行充气或排气处理;所述导流孔225用于与制冷回路210连通形成闭环制冷循环回路。所述气罐220上还设有压力表222、第一泄压阀223。所述压力表222用于监测并显示气罐220内的压力值;当气罐220内的气压大于第一预设值时,所述第一泄压阀223开启泄压。
进一步地,所述气罐220还包括第二泄压阀224,当气罐220内的气压大于第二预设值时,所述第二泄压阀224开启泄压。第一预设值小于第二预设值,第一泄压阀223与第二泄压阀224相较,第一泄压阀223的泄压速度小于第二泄压阀224的泄压速度。
一般气罐220内的所有气体制冷剂液化成液态制冷剂后均能存储于储液器211内。
一种注入制冷剂的方法,用于超导磁体线圈制冷,包括以下步骤:
注入制冷剂:连通位于外层容器110外的气罐220和位于外层容器110内的制冷回路210形成闭环制冷循环回路,以使气罐220内的高压的气态制冷剂流向低压的制冷回路210;冷凝制冷剂以使制冷回路210内的气态制冷剂冷凝成液态制冷剂。
上述注入制冷剂的方法,由于气罐220内的气压较高,制冷循环回路内的气压较低,在气罐220与制冷回路210连通形成闭环冷却回路时,气罐220内的气态制冷剂会迅速地从高压的气罐220流向低压的制冷回路210,以使气罐220内和制冷回路210内的气压处于相对平衡的状态;通过将制冷回路210内的气态制冷剂冷凝成液态制冷剂,使得制冷回路210内的气压持续保持低于气罐 220内气压的状态,如此以利用压差实现气态制冷剂自动流向制冷回路210。
下面结合上述的制冷系统说明上述方法:
气罐220内气压高于制冷回路210内气压的情况包括以下两种:
情况一:当闭环制冷循环回路内出现制冷剂存储量低于预设量时,向气罐220内注入气态制冷剂,如此气罐220内的气压会高于制冷回路210内的气压。
情况二:当制冷回路与大气连通时,以抽真空的方式排出制冷回路210内的空气,如此气罐220内的气压会高于制冷回路210内的气压。
一实施例中,所述气态制冷剂为氦气。氦气冷凝成液氦后,其温度低,利用液氦能为超导磁体线圈300提供需要的低温环境;如此能保证超导磁体线圈300的正常使用。
一实施例中,在注入制冷剂前,还包括以下步骤,
预冷制冷回路210;通过预冷制冷回路210,能降低外层容器110内的温度;在向制冷回路210注入制冷剂的过程中,由于内层容器120内温度较低,如此能提高气态制冷剂在制冷回路210中的冷凝速度,进而减小注入制冷剂的时间。
一实施例中,所述预冷制冷回路210包括以下步骤,
向制冷回路210中注入预冷剂以降低制冷回路210的温度;
除去制冷回路210中的预冷剂。
以制冷回路210作为预冷剂预冷外层容器110及制冷回路210的结构简单;同时,此种利用制冷回路210既完成预冷剂输送又完成制冷剂输送能便于简化外层容器110的内部结构。
一实施例中,所述预冷剂为液氮。液氮具有沸点低且成本低廉的特点,选用液氮为预冷剂能够节省预冷成本。
下面结合上述的制冷系统说明上述方法:在向制冷回路210内注入液氮时, 打开盖体242,液氮从与引流腔240a连通的预冷管230的端口处注入,进入冷却管212的预冷剂流向储液器211及冷却管212;液氮在吸热量后气化成氮气,氮气从引流腔240a连通的连通管260的管口排出。
需要说明的是,在将液氮注入预冷管230内时,由于外层容器110内的温度处于270K~300K,液氮温度为77K,进入的液氮迅速汽化,汽化后形成的氮气温度接近100K,270K与100K存在较大温差,制冷回路210内形成强制对流;以致将外层容器110内的温度降至77K。
一实施例中,在预冷制冷回路210前,还包括以下步骤,
吹洗除杂:向制冷回路210中通入气态预冷剂,以气态预冷剂填充制冷回路210的方式去除制冷回路210中的杂质。
以气态预冷剂吹洗除杂的方式,能够防止某气体被注入的液态预冷剂冷凝成固体杂质,如此固体杂质影响制冷回路210的正常使用。
需要说明的是,所述超导磁体线圈300采用超导材料制成。当储液器211内存储有预设液氦量时方可对超导线圈进行加电流励磁升场。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种制冷系统,用于超导磁体线圈的制冷,其特征在于,包括外层容器及与超导磁体线圈热耦合的制冷回路,所述制冷回路设置于外层容器内并用于与位于外层容器外的气罐连通形成闭环制冷循环回路。
  2. 根据权利要求1所述的制冷系统,其特征在于,所述外层容器内设有内层容器,所述制冷回路设置于内层容器内。
  3. 根据权利要求1所述的制冷系统,其特征在于,还包括预冷管,所述预冷管设置于外层容器内,所述预冷管的一端与制冷回路连通,所述预冷管的另一端用于与位于外层容器外的气罐连通形成所述闭环制冷循环回路。
  4. 根据权利要求3所述的制冷系统,其特征在于,所述外层容器内设有内层容器,所述制冷回路设置于外层容器内并与内层容器热耦合。
  5. 根据权利要求1所述的制冷系统,其特征在于,所述制冷回路设有第一导流口和第二导流口,所述第一导流口和第二导流口均用于与气罐连通形成闭环制冷循环回路。
  6. 根据权利要求1-5任一项所述的制冷系统,其特征在于,还包括引流器,所述引流器内设有引流腔,所述引流腔与制冷回路连通,所述引流器用于与位于外层容器外的气罐连通形成闭环制冷循环回路。
  7. 根据权利要求6所述的制冷系统,其特征在于,所述引流器上设有可封堵的排流口,所述排流口与引流腔连通。
  8. 根据权利要求6所述的制冷系统,其特征在于,所述引流器包括引流器本体及盖体,所述引流器本体设有所述引流腔及与引流腔连通的连通口,所述盖体可拆卸安装于引流器本体上并与连通口配合以密封连通口。
  9. 根据权利要求1所述的制冷系统,其特征在于,所述制冷回路包括储液 器及与超导磁体线圈热耦合的冷却管,所述冷却管与储液器连通,所述储液器用于收集冷凝的制冷剂,储液器用于与位于外层容器外的气罐连通形成闭环制冷循环回路。
  10. 根据权利要求9所述的制冷系统,其特征在于,还包括第一冷凝器,所述第一冷凝器与所述储液器配合以冷凝储液器内气化的制冷剂。
  11. 根据权利要求10所述的制冷系统,其特征在于,所述第一冷凝器设置于储液器内。
  12. 一种闭环制冷循环回路,其特征在于,包括连通的气罐及权利要求1-11任一项所述的制冷系统。
  13. 根据权利要求12所述的闭环制冷循环回路,其特征在于,所述制冷回路内的工作压力为-1bar~30bar。
  14. 一种注入制冷剂的方法,用于超导磁体线圈制冷,其特征在于,包括以下步骤,
    注入制冷剂:连通位于外层容器外的气罐和位于外层容器内的制冷回路形成闭环制冷循环回路,以使气罐内的高压的气态制冷剂流向低压的制冷回路;冷凝制冷剂以使制冷回路内的气态制冷剂冷凝成液态制冷剂。
  15. 根据权利要求14所述的注入制冷剂的方法,其特征在于,所述气态制冷剂为氦气。
  16. 根据权利要求15所述的注入制冷剂的方法,其特征在于,在注入制冷剂前,还包括以下步骤,
    预冷制冷回路。
  17. 根据权利要求16所述的注入制冷剂的方法,其特征在于,所述预冷制冷回路包括以下步骤,
    向制冷回路中注入预冷剂以降低外层容器内的温度;
    除去制冷回路中的预冷剂。
  18. 根据权利要求17所述的注入制冷剂的方法,其特征在于,所述预冷剂为液氮。
  19. 根据权利要求17所述的注入制冷剂的方法,其特征在于,在预冷制冷回路前,还包括以下步骤,
    吹洗除杂:向制冷回路中通入气态预冷剂,以气态预冷剂填充制冷回路的方式去除制冷回路中的杂质。
PCT/CN2019/109168 2018-12-05 2019-09-29 制冷系统、闭环制冷循环回路及注入制冷剂的方法 WO2020114061A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811485657.6 2018-12-05
CN201811485657.6A CN109442798B (zh) 2018-12-05 2018-12-05 制冷系统、闭环制冷循环回路及注入制冷剂的方法

Publications (1)

Publication Number Publication Date
WO2020114061A1 true WO2020114061A1 (zh) 2020-06-11

Family

ID=65557189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109168 WO2020114061A1 (zh) 2018-12-05 2019-09-29 制冷系统、闭环制冷循环回路及注入制冷剂的方法

Country Status (2)

Country Link
CN (1) CN109442798B (zh)
WO (1) WO2020114061A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442798B (zh) * 2018-12-05 2024-04-09 湖南迈太科医疗科技有限公司 制冷系统、闭环制冷循环回路及注入制冷剂的方法
CN213483505U (zh) * 2020-09-30 2021-06-18 西门子医疗有限公司 用于超导磁体的制冷剂冷却系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1971774A (zh) * 2005-11-10 2007-05-30 通用电气公司 用于超导磁体的冷却系统
CN102054555A (zh) * 2009-10-30 2011-05-11 通用电气公司 超导磁体的制冷系统、制冷方法以及核磁共振成像系统
CN102959423A (zh) * 2010-06-16 2013-03-06 琳德股份公司 用于填充超导磁体的方法与装置
CN103890870A (zh) * 2011-01-31 2014-06-25 通用电气公司 冷却系统以及用于冷却超导磁体装置的方法
CN105122487A (zh) * 2013-03-27 2015-12-02 日本超导体技术公司 低温恒温器
CN106158228A (zh) * 2015-04-16 2016-11-23 通用电气公司 用于超导磁体的冷却系统及磁体系统
CN107003373A (zh) * 2014-12-23 2017-08-01 通用电气公司 用于冷却磁共振成像装置的系统和方法
CN109442798A (zh) * 2018-12-05 2019-03-08 湖南迈太科医疗科技有限公司 制冷系统、闭环制冷循环回路及注入制冷剂的方法
CN209165834U (zh) * 2018-12-05 2019-07-26 湖南迈太科医疗科技有限公司 制冷系统及闭环制冷循环回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009022933B4 (de) * 2009-05-27 2011-09-01 Institut für Luft- und Kältetechnik gGmbH Pulse-Tube-Kaltkopf
WO2013172148A1 (ja) * 2012-05-14 2013-11-21 株式会社 日立メディコ 磁気共鳴イメージング装置、磁気共鳴イメージング装置用ガス回収装置、および、磁気共鳴イメージング装置の運転方法
CN104534811B (zh) * 2014-12-26 2016-07-13 宁波健信核磁技术有限公司 低温液态流体制取装置
CN108870821B (zh) * 2018-06-27 2020-06-02 中国科学院理化技术研究所 一种以制冷机为冷源的低温冷却设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1971774A (zh) * 2005-11-10 2007-05-30 通用电气公司 用于超导磁体的冷却系统
CN102054555A (zh) * 2009-10-30 2011-05-11 通用电气公司 超导磁体的制冷系统、制冷方法以及核磁共振成像系统
CN102959423A (zh) * 2010-06-16 2013-03-06 琳德股份公司 用于填充超导磁体的方法与装置
CN103890870A (zh) * 2011-01-31 2014-06-25 通用电气公司 冷却系统以及用于冷却超导磁体装置的方法
CN105122487A (zh) * 2013-03-27 2015-12-02 日本超导体技术公司 低温恒温器
CN107003373A (zh) * 2014-12-23 2017-08-01 通用电气公司 用于冷却磁共振成像装置的系统和方法
CN106158228A (zh) * 2015-04-16 2016-11-23 通用电气公司 用于超导磁体的冷却系统及磁体系统
CN109442798A (zh) * 2018-12-05 2019-03-08 湖南迈太科医疗科技有限公司 制冷系统、闭环制冷循环回路及注入制冷剂的方法
CN209165834U (zh) * 2018-12-05 2019-07-26 湖南迈太科医疗科技有限公司 制冷系统及闭环制冷循环回路

Also Published As

Publication number Publication date
CN109442798A (zh) 2019-03-08
CN109442798B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
KR102506491B1 (ko) 결함-감내형 극저온 냉각 시스템
US9234691B2 (en) Method and apparatus for controlling temperature in a cryocooled cryostat using static and moving gas
CN102290187B (zh) 对低温冷却设备进行闭环预冷的装置和方法
JP4854396B2 (ja) 低温冷凍機を備えたクライオスタット構造
JP2007194258A (ja) 超伝導磁石装置
CA2461827C (en) Method for providing cooling to superconduction cable
JP4174917B2 (ja) 冷却システム
JPH07283022A (ja) 超電導マグネット並びに該マグネット用の蓄冷型冷凍機
CN106196778A (zh) 一种冷媒循环系统及其控制方法
WO2020114061A1 (zh) 制冷系统、闭环制冷循环回路及注入制冷剂的方法
US10030919B2 (en) Cooling apparatus for superconductor
US20140069116A1 (en) Cryogenic cooling device and method
US10704809B2 (en) System for warming-up and cooling-down a superconducting magnet
CN107110928A (zh) 用于冷却磁共振成像装置的系统和方法
US20100236260A1 (en) Undercooled horizontal cryostat configuration
EP1825485A1 (en) Magnetic apparatus and method
CN209165834U (zh) 制冷系统及闭环制冷循环回路
JPH07234027A (ja) 多元冷凍装置
WO2005066554A1 (ja) 超低温冷凍装置、冷凍システム及び真空装置
CN212538458U (zh) 氖气液化装置
JP2007078310A (ja) 極低温冷却装置
CN209804584U (zh) 基于低温液体冷却的扫描电子显微镜制冷系统
CN104106202B (zh) 用于冷却超导机的装置
US11749435B2 (en) Pre-cooling and removing ice build-up from cryogenic cooling arrangements
JP3043009B1 (ja) 液体ヘリウムの回収・再凝縮補給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892736

Country of ref document: EP

Kind code of ref document: A1