WO2020114004A1 - 一种多参数随钻测量设备 - Google Patents

一种多参数随钻测量设备 Download PDF

Info

Publication number
WO2020114004A1
WO2020114004A1 PCT/CN2019/101789 CN2019101789W WO2020114004A1 WO 2020114004 A1 WO2020114004 A1 WO 2020114004A1 CN 2019101789 W CN2019101789 W CN 2019101789W WO 2020114004 A1 WO2020114004 A1 WO 2020114004A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
groove
resistivity
drilling
circuit module
Prior art date
Application number
PCT/CN2019/101789
Other languages
English (en)
French (fr)
Inventor
刘策
姜亚竹
Original Assignee
贝兹维仪器(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贝兹维仪器(苏州)有限公司 filed Critical 贝兹维仪器(苏州)有限公司
Publication of WO2020114004A1 publication Critical patent/WO2020114004A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/13Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling by electromagnetic energy, e.g. radio frequency
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/026Determining slope or direction of penetrated ground layers
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • the invention relates to the technical field of geological exploration drilling equipment, in particular to a multi-parameter measurement while drilling equipment.
  • the measurement while drilling technique is mostly used, that is, the measurement while drilling equipment is installed behind the drill bit to measure the geological parameters of the formation around the drill bit in real time to identify complex oil and gas layers with industrial exploitation value
  • the measurement while drilling equipment is installed behind the drill bit to measure the geological parameters of the formation around the drill bit in real time to identify complex oil and gas layers with industrial exploitation value
  • the position of the drill bit, drilling trajectory, well deviation, well diameter and vibration parameters, etc. In order to achieve real-time positioning and timely deviation correction.
  • the object of the present invention is to provide a multi-parameter measurement-while-drilling measurement device that is compact in structure, easy to disassemble and easy to process and produce.
  • a multi-parameter measurement while drilling device connected to a drill bit for real-time measurement and sending of the drill bit, formation and drilling parameters while drilling including: a housing, including a first sleeve and a second sleeve, the second The sleeve is detachably connected in the inner cavity of the first sleeve, the second sleeve is located at the far-drilling end of the first sleeve; a multi-parameter acquisition module is provided outside the first sleeve On the wall, used to collect gamma, azimuth, vibration and resistivity data while drilling, including resistivity sensor, gamma sensor, azimuth sensor and vibration sensor; circuit module, including the first circuit module and the second circuit module, said The first circuit module is arranged in the first groove of the outer wall of the first sleeve, the second circuit module is arranged on the second sleeve; the transmitting antenna is used to send data to the receiving spool, It is arranged at the near-dr
  • the multi-parameter measurement-while-drilling measurement device further includes a power supply module, including a first battery and a second battery, respectively disposed in the second groove and the third groove on the outer sidewall of the first sleeve, the The power supply module is electrically connected to the multi-parameter acquisition module, the circuit module and the transmitting antenna through lines.
  • a power supply module including a first battery and a second battery, respectively disposed in the second groove and the third groove on the outer sidewall of the first sleeve, the The power supply module is electrically connected to the multi-parameter acquisition module, the circuit module and the transmitting antenna through lines.
  • the circuit module includes a data receiving unit, a data processing unit, and a data storage unit
  • the data receiving unit is configured to receive data collected by the multi-parameter module including resistivity, gamma, orientation, and vibration
  • the data processing module is used to obtain calculation results including resistivity, gamma parameters, azimuth parameters and vibration parameters of the formation based on the data
  • the data storage unit is used to store the data and calculation results.
  • the outer wall of the second sleeve is provided with N wire plate grooves, and the N wire plate grooves are evenly arranged along the circumferential direction of the second sleeve, and the second circuit module includes N circuit boards, the circuit board cooperates with the groove of the wire board.
  • the gamma sensor, the vibration sensor and the orientation sensor are integratedly installed in a probe tube, and the probe tube is disposed in a fourth groove on the outer side wall of the first sleeve.
  • first groove, the second groove, the third groove, and the fourth groove are provided in the middle of the first sleeve, and are evenly spaced along the circumferential direction of the first sleeve,
  • the first sleeve is also provided with a sealing cover plate matched with the first groove, the second groove, the third groove and the fourth groove respectively.
  • the transmitting antenna is a wireless ring-shaped transmitting antenna
  • the outer wall of the first sleeve near the drilling end is provided with an annular groove
  • the wireless ring-shaped transmitting antenna cooperates with the annular groove
  • the transmitting antenna is used for The resistivity, gamma parameter, azimuth parameter and vibration parameter of the formation obtained by the data processing unit are sent to the receiving subsection.
  • the resistivity sensor includes a resistivity transmitting antenna and a resistivity receiving antenna, and the outer wall of the first sleeve near the drill end and the far drill end are provided with several straight grooves along the circumferential direction, and the resistivity transmit antenna
  • the resistivity receiving antenna is arranged in a slot in the near-drilling end, and the resistivity receiving antenna is arranged in a slot in the near-drilling end.
  • the resistivity transmitting antenna is used to transmit an electromagnetic wave signal to the formation, the resistivity The receiving antenna is used to receive the electromagnetic wave signal after passing through the formation.
  • seals are provided at both ends of the second sleeve, and the seals are pressed against the inner wall of the first sleeve in the radial direction; the second sleeve passes through the seal and The first sleeve is hermetically connected, and the inner wall of the first sleeve, the wire plate groove and the seal form a sealed space.
  • the side wall of the first sleeve is provided with radial through holes at positions corresponding to each of the circuit boards, and the first sleeve is provided with A round cover plate, the round cover plate is hermetically connected with the radial through hole; a plurality of line tubes for line passing are also opened in the side wall of the first sleeve, and the radial through hole is The first groove, the second groove, the third groove, or the fourth groove communicate through the wire tube.
  • the multi-parameter measurement-while-drilling device of the present invention is closest to the drill bit, and can simultaneously measure resistivity, gamma parameter, vibration parameter and azimuth parameter, and judge the layer where the drill bit is located in near real time as an oil layer, rock layer, complex oil and gas layer Or other locality; using dual battery power supply to ensure stable and reliable power supply and provide longer battery life.
  • the power supply module, the multi-parameter acquisition module and the first circuit module of the present invention are all provided on the outer wall of the first sleeve, that is, the first sleeve only needs to be grooved or opened from the outer wall.
  • the sleeve and the second sleeve are easy to process and reduce the production cost; the second sleeve and the first sleeve are detachably connected, and a part of the circuit board is integrated on the outer wall of the second sleeve, the utilization of the stacking space improves the space utilization,
  • the structure is compact, shortening the total length of the equipment, and has little effect on the trajectory of the borehole during the drilling process; and the equipment is easy to disassemble on site, easy to maintain, and effectively reduces time and labor costs.
  • Figure 1 is a front view of the device of the present invention
  • Figure 2 is a side view of the device of the present invention.
  • FIG. 3 another side view of the device of the present invention.
  • FIG. 4 is a side cross-sectional view of the A-A section in FIG. 2;
  • FIG. 5 is a cross-sectional view of the B-B section in FIG. 1;
  • FIG. 6 is a schematic diagram of the structure of the device of the present invention exploded.
  • a multi-parameter measurement while drilling device is connected to a drill bit for real-time measurement and transmission of the drill bit, formation and drilling parameters while drilling, including: a housing, including a first sleeve 100 and a first Two sleeves 200, the second sleeve 200 is detachably connected in the inner cavity of the first sleeve 100, the second sleeve 200 is located at the distal end 120 of the first sleeve 100;
  • the parameter collection module 300 is arranged on the outer side wall of the first sleeve 100 and is used for collecting gamma, azimuth, vibration and resistivity data while drilling, including resistivity sensor, gamma sensor, azimuth sensor and vibration sensor;
  • the circuit module includes a first circuit module 410 and a second circuit module 420, the first circuit module 410 is disposed in the first groove 131 on the outer sidewall of the first sleeve 100, and the second circuit module 420 is disposed On the second sleeve 200
  • both ends of the first sleeve 100 and the second sleeve 200 are open, and both have hollow cavities for the passage of mud and slag generated during drilling.
  • the multi-parameter measurement-while-drilling measurement device further includes a power supply module, including a first battery 610 and a second battery 620, respectively disposed in the second groove 132 and the third groove of the outer wall of the first sleeve 100
  • the power module is electrically connected to the multi-parameter acquisition module 300, the circuit module, and the transmitting antenna 500 through lines, respectively. In this way, the dual battery power supply is adopted to improve the reliability and continuous working time of the system power supply.
  • the transmitting antenna 500 is a wireless ring-shaped transmitting antenna 500
  • an annular groove 160 is provided on an outer wall of the first sleeve 100 near the drill end 110, and the wireless ring-shaped transmitting antenna 500 and the annular groove 160
  • the transmitting antenna 500 is used to send the resistivity, gamma parameter, azimuth parameter and vibration parameter of the formation obtained by the data processing unit to the receiving stub.
  • the proximal end 110 of the first sleeve 100 is provided with a joint 191 for connecting a drill bit.
  • the outer diameter of the joint 191 is close to the drill bit The direction gradually decreases.
  • the annular groove 160 is disposed close to the joint 191, and the bottom surface of the annular groove 160 and the inner wall of the transmitting antenna 500 are provided with limiting protrusions on one side, and the other is provided with Describe the limit card slot with the limit protrusion. In this way, the connection between the transmitting antenna 500 and the first sleeve 100 is stabilized to prevent shaking.
  • the gamma sensor, the vibration sensor and the orientation sensor are integratedly installed in a probe tube, and the probe tube is disposed in the fourth groove 134 on the outer side wall of the first sleeve 100.
  • the integrated installation of collection devices with different functions reduces the difficulty of disassembling and disassembling equipment on site, makes wiring inside the equipment convenient, and increases the reliability of the equipment.
  • the multi-parameter module is provided with a first orientation sensor and a second orientation sensor, which are used to measure the orientation data of the measurement-while-drilling equipment, such as the equipment The inclination, depth and borehole diameter of the drilling.
  • the first groove 131, the second groove 132, the third groove 133, and the fourth groove 134 are disposed in the middle of the first sleeve 100, and along the Evenly spaced in the circumferential direction, the first sleeve 100 is also provided with a sealing cover plate 151 which cooperates with the first groove 131, the second groove 132, the third groove 133 and the fourth groove 134, respectively . In this way, it can try to ensure that the equipment has the same centripetal force in all directions when rotating while drilling, avoiding the occurrence of eccentric vibration and the like.
  • the sealing cover plates 151 of the second groove 132 and the third groove 133 are provided with battery explosion-proof openings to avoid explosion caused by the transient pressure exceeding the safety threshold and improve the safety of the equipment.
  • the second groove 132 and the third groove 133 are relatively disposed on the side wall of the first sleeve 100, that is, the first battery 610 and The second battery 620 is relatively arranged, so that it is beneficial to improve the stability of the device while rotating while drilling.
  • both ends of the second groove 132 and the third groove 133 are provided with electrodes.
  • the first groove 131, the second groove 132, the third groove 133, and the fourth groove 134 are provided with shock absorbing devices.
  • the shock absorber is a two-way shock absorber, which can absorb or convert the harmful vibration generated by the drill bit protruding into the formation, thus reducing the possibility of vibration loosening or damaging the electronic device.
  • the resistivity sensor includes a resistivity transmitting antenna 500 and a resistivity receiving antenna, and the outer wall of the first sleeve 100 near the drill end 110 and the far drill end 120 are provided with a number of slot 140 along the circumferential direction,
  • the resistivity transmitting antenna 500 is disposed in a slot 140 at the far drilling end 120, and the resistivity receiving antenna is disposed in a slot 140 at the near drilling end 110, the resistivity transmitting The antenna 500 is used to transmit an electromagnetic wave signal to the formation, and the resistivity receiving antenna is used to receive the electromagnetic wave signal after passing through the formation.
  • the first sleeve 100 is provided with two rounds of the one-slot groove 140 in the circumferential direction of the side wall of the far drilling end 120, and the one-slot groove there In 140, a resistivity transmitting antenna 500 is provided.
  • a ring-shaped slot 140 is adjacently arranged on the side of the transmitting antenna 500 close to the far drilling end 120, and a resistive receiving antenna is provided in the slot 140.
  • the outer wall of the second sleeve 200 is provided with N wire plate grooves 210, and the N wire plate grooves 210 are evenly arranged along the circumferential direction of the second sleeve 200.
  • the second circuit module 420 includes N circuit boards 421, and the circuit boards 421 cooperate with the wire groove 210. Preferably, there is a gap between adjacent wire plate grooves 210.
  • the first circuit module 410 includes an integrated circuit board 421, and the integrated circuit board 421 and the upper circuit board 421 of the second sleeve 200 jointly control the operation of the entire device.
  • the circuit module includes a data receiving unit, a data processing unit, and a data storage unit
  • the data receiving unit is configured to receive data collected by the multi-parameter module including resistivity, gamma, orientation, and vibration
  • the data processing unit is used to obtain calculation results including resistivity, gamma parameters, azimuth parameters and vibration parameters of the formation based on the data
  • the data storage unit is used to store the data and calculation results. For example, according to the electromagnetic wave signal transmitted by the resistivity transmitting antenna 500 and the electromagnetic wave signal received by the resistivity receiving antenna after passing through the formation, the resistivity of the formation near the drill bit is obtained through correlation calculation, and the formation of the formation is judged Geomorphic structure.
  • the data storage unit includes a cache unit and a permanent storage unit
  • the cache unit can send the cached calculation results to the transmitting antenna 500
  • the permanent storage unit is used to permanently store the data and calculation results for Backup.
  • the data storage unit is also provided with a port for outputting the data and calculation results. The port supports downloading and deletion of data and calculation results stored in the storage unit from the outside.
  • the data storage unit is provided on the circuit board 421 of the second sleeve 200.
  • the second sleeve 200 can be disassembled and transferred to other computing devices for data download and processing.
  • the distal end 120 of the first sleeve 100 is provided with an interface 192 for transferring to other equipment, and the inner diameter of the interface 192 is close to the near The direction of the drill tip 110 gradually decreases.
  • the second sleeve 200 is disposed on a side of the interface 192 facing the near-drilling end 110.
  • an annular cavity is provided at a position of the inner wall of the first sleeve 100 corresponding to the second sleeve 200, and the depth of the cavity Consistent with the maximum thickness of the second sleeve 200, except for the joint 191, the interface 192, and the position corresponding to the second sleeve 200, the inner diameter of the remaining portion of the first sleeve 100 is the same as that of the second sleeve 200. The inner diameter is the same. In this way, the residue after the passage of mud or slag is reduced, and it is easy to clean and maintain.
  • the depth of the wire board groove 210 is greater than the thickness of the circuit board 421. That is, the circuit board 421 is embedded in the wire board groove 210. Preferably, the circuit board 421 is tiled in the wire board groove 210. This ensures that the second sleeve 200 does not rub or damage the circuit board 421 when extending into the inner cavity of the first sleeve 100.
  • a slot matching the circuit board 421 is provided in the wire board groove 210.
  • a clamping member for clamping the circuit board 421 is also provided on the slot.
  • the slot is provided on both sides of the circuit board 421, and the clamping members are provided at both ends of the slot.
  • the clamping member may be a buckle that is rotationally connected to the slot. The buckle is interference fit with the side of the circuit board 421. Of course, it may be any other clamping member that can enhance the stability of the circuit board 421 in the slot.
  • seals 220 are provided at both ends of the second sleeve 200, and the seals 220 bear against the inner wall of the first sleeve 100 in the radial direction; the second sleeve 200 passes
  • the sealing member 220 is sealingly connected to the first sleeve 100, and the inner wall of the first sleeve 100, the wire plate groove 210, and the sealing member 220 form a sealed space.
  • the sealing member 220 is made of an elastic material, and at the same time plays a role of shock absorption.
  • the sealing member 220 is a sealing ring, and the two ends of the side wall of the second sleeve 200 are provided with grooves that cooperate with the sealing ring , The thickness of the sealing ring in the radial direction is greater than the depth of the groove. In this way, the sealing retaining ring can be pressed against the inner wall of the first sleeve 100.
  • the groove is provided at both ends of the second sleeve 200 near the end surface, that is, the sealing member 220 is provided at the edge of both ends of the second sleeve 200.
  • the seal ring, the first The inner wall of the sleeve 100 and the groove 210 of the wire plate can form a sealed space to seal the circuit board 421 to prevent mud from entering between the second sleeve 200 and the first sleeve 100 when the drill is extended into the formation, damaging the circuit ⁇ 421.
  • the first sleeve 100 is screwed or clamped with the second sleeve 200.
  • the two ends of the second sleeve 200 are provided with a first external thread and a second external thread, respectively, the first external thread and the second
  • the rotation direction of the external thread is the same.
  • the inner wall of the first sleeve 100 is provided with threads matching with the first external thread and the second external thread, the first sleeve 100 can be screwed in or out of the first sleeve 100 Lumen.
  • the physical parameters of the first external thread and the second external thread are the same.
  • elastic clamping members are provided on the outer sidewalls of both ends of the second sleeve 200.
  • the inner wall of the corresponding first sleeve 100 is provided with a clamping groove matched with the elastic clamping member.
  • the elastic clamping pieces are a plurality of elastic flanges arranged along the circumferential direction of the second sleeve 200, and both sides of the elastic flange along the axial direction of the second sleeve 200 are guide inclined surfaces, so The second sleeve 200 enters and exits the inner cavity of the first sleeve 100.
  • clamping member is not only an implementation method of the elastic flange, but also any other clamping member capable of clamping the second sleeve 200 on the inner wall of the first sleeve 100.
  • the side wall of the first sleeve 100 is provided with radial through holes 170 at positions corresponding to each of the circuit boards 421, and the first sleeve 100 is provided with A round cover plate 152 matched with the through hole 170, the round cover plate 152 is sealingly connected with the radial through hole 170; a plurality of wire tubes for passing through lines are also opened in the side wall of the first sleeve 100 180, the radial through hole 170 communicates with the first groove 131, the second groove 132, the third groove 133 or the fourth groove 134 through the wire tube 180.
  • each of the radial through holes and one of the first groove 131, the second groove 132, the third groove 133, or the fourth groove 134 pass through the
  • the axially arranged wire tubes 180 communicate with each other, and the line can enter the radial through hole 170 from the groove through the wire tube 180, and then penetrate into the wire plate groove 210 to be connected with the circuit board 421.
  • a line tube 180 opened along the circumferential direction of the first sleeve 100 is provided in the adjacent interval Of the first groove 131, the second groove 132, the third groove 133, and the fourth groove 134, any two adjacent grooves are communicated through the circumferentially-arranged line tube 180, and the line can pass through
  • the circumferentially arranged wire tube 180 connects the electronic devices in the groove, and the circuit can also enter the wire plate groove 210 through the axially arranged wire tube 180.
  • first sleeve 100 and the second sleeve 200 are made of non-magnetic materials. In this way, it is ensured that it will not interfere with the transmitted and received signals, such as the electromagnetic wave signal transmitted by the resistivity sensor to the formation and the data signal sent by the transmitting antenna 500.
  • N is equal to 4, and the four wire grooves 210 are elongated, and the length direction of the wire groove 210 is along the second set
  • the barrel 200 is disposed in the axial direction, and the longitudinal symmetry planes of the adjacent wire plate grooves 210 are perpendicular to each other.
  • Such a symmetrical setting can ensure that it has the same centripetal force in all directions when rotating while drilling, and avoid eccentric vibration.
  • the four wire plate grooves 210 are respectively arranged corresponding to the first groove 131, the second groove 132, the third groove 133 and the fourth groove 134, namely the second sleeve 200
  • the longitudinal section of each wire groove 210 is on the same plane as the longitudinal section of a groove on the first sleeve 100. In this way, it is conducive to the installation of lines.
  • the multi-parameter measurement-while-drilling equipment of the present invention is closest to the drill bit, and can simultaneously measure resistivity, gamma parameter, vibration parameter and azimuth parameter, and judge the ground property of the drill bit location in near real time; at the same time, dual battery power supply is adopted to ensure stable power Reliable and provide longer battery life.
  • the power module and the multi-parameter acquisition module 300 of the present invention are both disposed on the outer wall of the first sleeve 100, that is, the first sleeve 100 only needs to be slotted or bored from the outer wall.
  • 100 and the second sleeve 200 are easy to process and reduce the production cost; at the same time, the second sleeve 200 is detachably connected to the first sleeve 100, and a part of the circuit board 421 is integrated on the outer wall of the second sleeve 200 to increase the stacking space
  • the space utilization rate is improved, the structure is compact, the length of the equipment does not exceed 1.2 meters, and the impact on the borehole trajectory is small during the drilling process; and the equipment is easy to disassemble on site, easy to maintain, and effectively reduces time and labor costs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种多参数随钻测量设备,包括:外壳,包括第一套筒(100)和第二套筒(200),所述第二套筒可拆卸连接在所述第一套筒的内腔中,所述第二套筒位于所述第一套筒的远钻端(120);多参数采集模块(300),设置在所述第一套筒的外侧壁上,用于随钻采集伽马、方位、振动和电阻率数据,包括电阻率传感器、伽马传感器、方位传感器和振动传感器;电路模块,包括第一电路模块(410)和第二电路模块(420),第一电路模块设置在所述第一套筒外侧壁的第一凹槽(131)内,第二电路模块设置在所述第二套筒上;发射天线(500),用于将数据发送至接收短节,设置在第一套筒的近钻端(110)。该设备近乎实时地判断钻头所在地层的地性,尺寸较小,结构紧凑,易于拆装且生产成本低。

Description

一种多参数随钻测量设备 技术领域
本发明涉及地质勘探钻井设备技术领域,特别涉及一种多参数随钻测量设备。
背景技术
在地址勘探领域尤其是油气勘探过程中多采用随钻测量技术,即在钻头后安装随钻测量设备,以实时测得钻头周边地层的地质参数,以识别具有工业开采价值的复杂油、气层,使钻头及时停止在所需储层内;同时监测钻头的位置、钻井轨迹、井斜、井径及振动参数等,以实现实时定位和及时纠偏。
传统的随钻测量设备通常离钻头的距离在九米以上,随钻测量盲区过长,判断地层岩性滞后,不能及时判断优质储层位置并调整井眼轨迹,且在水平段钻井时不能及时发现泥质夹层,导致井眼不规则等。现有技术中,通过在随钻测量设备的短节内壁和外壁开设槽道,将用于测量上述参数的装置嵌设在短节的外壁和内壁上,提高空间利用率,缩短随钻测量设备的长度,提高测得数据的实时性和准确性。但该随钻测量设备的生产成本极高,尤其是内壁的槽道结构加工十分困难。此外,该设备安装和拆卸复杂,现场作业困难,维修维护时间成本高,且不能灵活更换配件和适配不同需求。
发明内容
针对现有技术的上述问题,本发明的目的在于,提供一种结构紧凑、易于拆装且易于加工生产的多参数随钻测量设备。
为了解决上述技术问题,本发明的具体技术方案如下:
一种多参数随钻测量设备,连接在钻头上,用于随钻实时测量并发送所述钻头、地层及钻井参数,包括:外壳,包括第一套筒和第二套筒,所述第二套筒可拆卸连接在所述第一套筒的内腔中,所述第二套筒位于所述第一套筒的远钻端;多参数采集模块,设置在所述第一套筒的外侧壁上,用于随钻采集伽马、方位、振动和电阻率数据,包括电阻率传感器、伽马传感器、方位传感器和振 动传感器;电路模块,包括第一电路模块和第二电路模块,所述第一电路模块设置在所述第一套筒外侧壁的第一凹槽内,所述第二电路模块设置在所述第二套筒上;发射天线,用于将数据发送至接收短节,设置在所述第一套筒的近钻端;所述多参数采集模块、发射天线分别与所述电路模块通过线路电性连接。
进一步地,所述多参数随钻测量设备还包括电源模块,包括第一电池和第二电池,分别设置在所述第一套筒外侧壁的第二凹槽和第三凹槽内,所述电源模块分别和所述多参数采集模块、电路模块及发射天线通过线路电性连接。
具体地,所述电路模块包括数据接收单元、数据处理单元和数据存储单元,所述数据接收单元用于接收所述多参数模块采集的包括与电阻率、伽马、方位和振动相关的数据,所述数据处理模块用于基于所述数据获得包括地层的电阻率、伽马参数、方位参数和振动参数的计算结果,所述数据存储单元用于存储所述数据和计算结果。
具体地,所述第二套筒的外侧壁上设有N个线板凹槽,N个所述线板凹槽沿所述第二套筒的周向均匀布置,所述第二电路模块包括N块电路板,所述电路板与所述线板凹槽配合。
具体地,所述伽马传感器、振动传感器和方位传感器集成安装在探管内,所述探管设置在所述第一套筒外侧壁的第四凹槽内。
具体地,所述第一凹槽、第二凹槽、第三凹槽和第四凹槽设置在所述第一套筒的中部,且沿所述第一套筒的周向均匀间隔布置,所述第一套筒上还分别设有与所述第一凹槽、第二凹槽、第三凹槽和第四凹槽配合的密封盖板。
优选地,所述发射天线为无线环状发射天线,所述第一套筒近钻端的外壁上设有环形槽,所述无线环状发射天线与所述环形槽配合,所述发射天线用于将所述数据处理单元所获得的地层的电阻率、伽马参数、方位参数和振动参数发送至接收短节。
具体地,所述电阻率传感器包括电阻率发射天线和电阻率接收天线,所述第一套筒近钻端和远钻端的外侧壁上均沿周向设有若干一字槽,所述电阻率发射天线设置在位于所述远钻端的一字槽内,所述电阻率接收天线设置在位于所述近钻端的一字槽内,所述电阻率发射天线用于向地层发射电磁波信号,所述电阻率接收天线用于接收通过地层后的所述电磁波信号。
具体地,所述第二套筒的两端设有密封件,所述密封件沿其径向抵紧在所 述第一套筒的内壁上;所述第二套筒通过所述密封件与所述第一套筒密封连接,所述第一套筒内壁、所述线板凹槽和所述密封件形成密闭空间。
进一步地,所述第一套筒的侧壁上,与每个所述电路板对应的位置均开设有径向通孔,所述第一套筒上设有与所述径向通孔配合的圆盖板,所述圆盖板与所述径向通孔密封连接;所述第一套筒的侧壁内还开设有若干用于线路穿过的线管,所述径向通孔与所述第一凹槽、第二凹槽、第三凹槽或第四凹槽通过所述线管连通。
采用上述技术方案,本发明的多参数随钻测量设备离钻头最近,能够同时测得电阻率、伽马参数、振动参数和方位参数,近乎实时的判断钻头所在地层是油层、岩层、复杂油气层或是其它地性;采用双电池供电,确保电源稳定可靠,提供更长的续航能力。
此外,本发明的电源模块、多参数采集模块和第一电路模块均设置在所述第一套筒的外壁上,即第一套筒只需从外壁上开槽或开孔即可,第一套筒和第二套筒易于加工,降低生产成本;第二套筒与第一套筒可拆卸连接,将部分电路板集成到第二套筒的外壁上,利用层叠空间提高了空间利用率,结构紧凑,缩短了设备的总长度,在钻井过程中对井眼轨迹的影响很小;并且该设备现场拆装方便,易于维护保养,有效降低时间和人力成本。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1本发明所述设备的主视图;
图2本发明所述设备的侧视图;
图3本发明所述设备的另一侧视图;
图4是图2中A-A截面的侧剖图;
图5是图1中B-B截面的剖视图;
图6是本发明设备的结构爆炸示意图。
图中:100-第一套筒,200-第二套筒,300-多参数采集模块,500-发射天线, 110-近钻端,120-远钻端,131-第一凹槽,132-第二凹槽,133-第三凹槽,134-第四凹槽,140-一字槽,151-密封盖板,152-圆盖板,160-环形槽,170-径向通孔,180-线管,191-接头,192-接口,210-线板凹槽,220-密封件,410-第一电路模块,420-第二电路模块,421-电路板,610-第一电池,620-第二电池。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
参考图1-图6,一种多参数随钻测量设备,连接在钻头上,用于随钻实时测量并发送所述钻头、地层及钻井参数,包括:外壳,包括第一套筒100和第二套筒200,所述第二套筒200可拆卸连接在所述第一套筒100的内腔中,所述第二套筒200位于所述第一套筒100的远钻端120;多参数采集模块300,设置在所述第一套筒100的外侧壁上,用于随钻采集伽马、方位、振动和电阻率数据,包括电阻率传感器、伽马传感器、方位传感器和振动传感器;电路模块,包括第一电路模块410和第二电路模块420,所述第一电路模块410设置在所述第一套筒100外侧壁的第一凹槽131内,所述第二电路模块420设置在所述第二套筒200上;发射天线500,用于将数据发送至接收短节,设置在所述第一套筒100的近钻端110;所述多参数采集模块300、发射天线500分别与所述电路模块通过线路电性连接。
具体地,所述第一套筒100和第二套筒200的两端均为开口设置,且均具 有中空内腔,用于钻井时产生的泥浆和渣滓通过。
进一步地,所述多参数随钻测量设备还包括电源模块,包括第一电池610和第二电池620,分别设置在所述第一套筒100外侧壁的第二凹槽132和第三凹槽133内,所述电源模块分别和所述多参数采集模块300、电路模块及发射天线500通过线路电性连接。如此,采用双电池供电,提升系统供电的可靠性和持续工作时间。
具体地,所述发射天线500为无线环状发射天线500,所述第一套筒100近钻端110的外壁上设有环形槽160,所述无线环状发射天线500与所述环形槽160配合,所述发射天线500用于将所述数据处理单元所获得的地层的电阻率、伽马参数、方位参数和振动参数发送至接收短节。
在上述实施方式的基础上,本说明书的一个实施例中,所述第一套筒100的近钻端110设有用于连接钻头的接头191,优选地,所述接头191的外径沿靠近钻头的方向逐渐减小。优选地,所述环形槽160靠近所述接头191设置,所述环形槽160的底面上和所述发射天线500的内壁上,二者泽一地设有限位凸起,另一设有与所述限位凸起配合的限位卡槽。如此稳固所述发射天线500与所述第一套筒100的连接,防止晃动。
具体地,所述伽马传感器、振动传感器和方位传感器集成安装在探管内,所述探管设置在所述第一套筒100外侧壁的第四凹槽134内。如此,集成化安装具有不同功能的采集装置,降低现场拆装设备的难度,使设备内走线方便,增加设备的可靠性。
在上述实施方式的基础上,本说明书的一个实施例中,所述多参数模块设有第一方位传感器和第二方位传感器,用于测量所述随钻测量设备的方位数据,如所述设备的斜度、深度和所在钻井的井径等。
具体地,所述第一凹槽131、第二凹槽132、第三凹槽133和第四凹槽134设置在所述第一套筒100的中部,且沿所述第一套筒100的周向均匀间隔布置,所述第一套筒100上还分别设有与所述第一凹槽131、第二凹槽132、第三凹槽133和第四凹槽134配合的密封盖板151。如此,能够尽量保证设备随钻旋转时各向具有相同的向心力,避免出现偏心振动等情况。
优选地,所述第二凹槽132和第三凹槽133的密封盖板151上均设有电池防爆口,避免瞬压超过安全阈值引起爆炸,提高设备的安全性。
在上述实施方式的基础上,本说明书的一个实施例中,所述第二凹槽132、第三凹槽133相对设置在所述第一套筒100的侧壁上,即第一电池610和第二电池620相对设置,如此,有利于提高设备随钻旋转时的稳定性。且所述第二凹槽132和第三凹槽133的两端均设有电极。
在上述实施方式的基础上,本说明书的一个实施例中,所述第一凹槽131、第二凹槽132、第三凹槽133和第四凹槽134内设有减震装置。在一个具体实现形式中,所述减震装置为有双向减震器,能够吸收或转化钻头伸入地层所产生的有害振动,如此,降低振动造成电子器件松脱或损坏的可能性。
进一步地,所述电阻率传感器包括电阻率发射天线500和电阻率接收天线,所述第一套筒100近钻端110和远钻端120的外侧壁上均沿周向设有若干一字槽140,所述电阻率发射天线500设置在位于所述远钻端120的一字槽140内,所述电阻率接收天线设置在位于所述近钻端110的一字槽140内,所述电阻率发射天线500用于向地层发射电磁波信号,所述电阻率接收天线用于接收通过地层后的所述电磁波信号。
在上述实施方式的基础上,本说明书的一个实施例中,所述第一套筒100远钻端120的侧壁的周向上设有两圈所述一字槽140,该处的一字槽140中设置电阻率发射天线500。在所述发射天线500靠近所述远钻端120的一侧相邻设置有一圈一字槽140,该处的一字槽140内设有电阻率接收天线。
进一步地,所述第二套筒200的外侧壁上设有N个线板凹槽210,N个所述线板凹槽210沿所述第二套筒200的周向均匀布置,所述第二电路模块420包括N块电路板421,所述电路板421与所述线板凹槽210配合。优选地,相邻线板凹槽210之间具有间隔。
具体地,所述第一电路模块410包括集成电路板421,所述集成电路板421与所述第二套筒200的上电路板421共同控制整个设备的运行。
具体地,所述电路模块包括数据接收单元、数据处理单元和数据存储单元,所述数据接收单元用于接收所述多参数模块采集的包括与电阻率、伽马、方位和振动相关的数据,所述数据处理单元用于基于所述数据获得包括地层的电阻率、伽马参数、方位参数和振动参数的计算结果,所述数据存储单元用于存储所述数据和计算结果。例如,根据所述电阻率发射天线500所发射的电磁波信号和所述电阻率接收天线所接收到的经过地层后返回的电磁波信号,通过相关 运算得出钻头附近地层的电阻率,判断该地层的地性结构。
优选地,所述数据存储单元包括缓存单元和永久存储单元,所述缓存单元能够将缓存的计算结果发送至发射天线500,所述永久存储单元用于将所述数据和计算结果永久存储用于备份。所述数据存储单元还设有用于输出所述数据和计算结果的端口,该端口支持从外部将该存储单元中存储的数据和计算结果下载和删除。
优选地,所述数据存储单元设置在所述第二套筒200的电路板421上。如此,可将所述第二套筒200拆卸后转移至其它计算设备处,进行数据下载和处理。
在上述实施方式的基础上,本说明书的一个实施例中,所述第一套筒100的远钻端120设有用于转接其他设备的接口192,所述接口192的内径沿靠近所述近钻端110的方向逐渐减小。优选地,所述第二套筒200设置在所述接口192的朝向所述近钻端110的一侧。
在上述实施方式的基础上,本说明书的一个实施例中,所述第一套筒100内壁的与所述第二套筒200对应的位置上,设有环状凹腔,该凹腔的深度与所述第二套筒200的最大厚度一致,第一套筒100的除接头191处、接口192处以及和第二套筒200对应的位置外,其余部分的内径与第二套筒200的内径相同。如此,减少泥浆或渣滓通过后的残留,易于清洁维护。
具体地,所述线板凹槽210的深度大于所述电路板421的厚度。即所述电路板421嵌设在该线板凹槽210中,优选地,电路板421平铺在线板凹槽210中。如此确保第二套筒200伸入所述第一套筒100内腔时不会摩擦或损坏电路板421。
具体地,所述线板凹槽210内设置有与所述电路板421相匹配的插槽。优选地,所述插槽上还设有用于卡紧所述电路板421的卡紧件。在一个优选实施例中,该插槽设置在所述电路板421的两侧边,插槽的两端设有该卡紧件,所述卡紧件可以是与插槽转动连接的卡扣,该卡扣与电路板421侧边过盈配合。当然也可以是其它能够加强电路板421在插槽内稳定性的任意一种卡紧件。
进一步地,所述第二套筒200的两端设有密封件220,所述密封件220沿其径向抵紧在所述第一套筒100的内壁上;所述第二套筒200通过所述密封件220与所述第一套筒100密封连接,所述第一套筒100内壁、所述线板凹槽210和 所述密封件220形成密闭空间。
优选地,该密封件220采用弹性材料制成,同时起到减震的作用。
在上述实施方式的基础上,本说明书的一个实施例中,所述密封件220为密封挡圈,所述第二套筒200侧壁的两端设有与所述密封挡圈配合的凹槽,所述密封挡圈径向上的厚度大于所述凹槽的深度。如此,所述密封挡圈能够抵紧在第一套筒100的内壁上。优选地,所述凹槽设置在所述第二套筒200两端靠近端面处,即所述密封件220设置在所述第二套筒200两端的边缘处,如此,密封挡圈、第一套筒100的内壁以及线板凹槽210能够形成密闭空间,将电路板421密封在内,避免随钻伸入地层时,泥浆进入第二套筒200和第一套筒100之间,损坏电路板421。
可选地,所述第一套筒100与所述第二套筒200螺接或卡接。
在上述实施方式的基础上,本说明书的一个实施例中,所述第二套筒200的两端分别设有第一外螺纹和第二外螺纹,所述第一外螺纹和所述第二外螺纹的旋向相同。相应的所述第一套筒100的内壁上设有与上述第一外螺纹和第二外螺纹配合的螺纹,所述第一套筒100能够旋入或旋出所述第一套筒100的内腔。优选地,所述第一外螺纹和所述第二外螺纹的各物理参数均相同。
在上述实施方式的基础上,本说明书的另一个实施例中,所述第二套筒200的两端外侧壁上设有弹性卡接件。相应的第一套筒100的内壁上设有与所述弹性卡接件相配合的卡槽。优选地,所述弹性卡接件为沿第二套筒200周向布置的若干弹性凸缘,所述弹性凸缘沿所述第二套筒200轴向上的两侧均为导向斜面,如此实现第二套筒200进入和脱出第一套筒100的内腔。
需要注意的是,所述卡接件不仅仅只有弹性凸缘一种实现方式,也可以是其他能够将第二套筒200卡接在第一套筒100内壁上的任意一种卡接件。
具体地,所述第一套筒100的侧壁上,与每个所述电路板421对应的位置均开设有径向通孔170,所述第一套筒100上设有与所述径向通孔170配合的圆盖板152,所述圆盖板152与所述径向通孔170密封连接;所述第一套筒100的侧壁内还开设有若干用于线路穿过的线管180,所述径向通孔170与所述第一凹槽131、第二凹槽132、第三凹槽133或第四凹槽134通过所述线管180连通。
优选地,每个所述径相通孔与所述第一凹槽131、第二凹槽132、第三凹槽133或第四凹槽134中的一个,通过沿所述第一套筒100的轴向设置的线管180 连通,线路能够从凹槽内通过线管180进入径向通孔170,再穿入线板凹槽210内与电路板421连接。所述第一凹槽131、第二凹槽132、第三凹槽133和第四凹槽134中,其相邻的间隔中设有沿第一套筒100周向开设的线管180,所述第一凹槽131、第二凹槽132、第三凹槽133和第四凹槽134中,任意相邻的两个凹槽通过所述周向设置的线管180连通,线路能够穿过周向设置的线管180将凹槽内的电子器件连接,并且线路还能够通过轴向设置的线管180进入线板凹槽210内。
进一步地,所述第一套筒100和第二套筒200为无磁材料制成。如此,确保其不会对发射和接收的信号造成干扰,例如电阻率传感器向地层发射的电磁波信号和发射天线500发出的数据信号等。
在上述实施方式的基础上,本说明书的一个实施例中,N等于4,4个所述线板凹槽210为长条状,所述线板凹槽210的长度方向沿所述第二套筒200的轴向设置,相邻所述线板凹槽210的纵向对称面互相垂直。如此对称设置,能够确保其随钻旋转时各向具有相同的向心力,避免出现偏心振动等。优选地,4个所述线板凹槽210分别与所述第一凹槽131、第二凹槽132、第三凹槽133和第四凹槽134对应设置,即所述第二套筒200安装到所述第一套筒100上后,每个线板凹槽210的纵切面都与第一套筒100上一个凹槽的纵切面在同一平面上。如此,有利于线路的安装。
本发明的多参数随钻测量设备离钻头最近,能够同时测得电阻率、伽马参数、振动参数和方位参数,近乎实时的判断钻头所在地层的地性;同时采用双电池供电,确保电源稳定可靠,提供更长的续航能力。
此外,本发明的电源模块、多参数采集模块300均设置在所述第一套筒100的外壁上,即第一套筒100只需从外壁上开槽或开孔即可,第一套筒100和第二套筒200易于加工,降低生产成本;同时第二套筒200与第一套筒100可拆卸连接,将部分电路板421集成到第二套筒200的外壁上,利用增加层叠空间提高了空间利用率,结构紧凑,该设备的长度不超过1.2米,在钻井过程中对井眼轨迹的影响很小;并且该设备现场拆装方便,易于维护保养,有效降低时间和人力成本。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的 保护范围之内。

Claims (10)

  1. 一种多参数随钻测量设备,连接在钻头上,用于随钻实时测量并发送所述钻头、地层及钻井参数,其特征在于,包括:
    外壳,包括第一套筒(100)和第二套筒(200),所述第二套筒(200)可拆卸连接在所述第一套筒(100)的内腔中,所述第二套筒(200)位于所述第一套筒(100)的远钻端(120);
    多参数采集模块(300),设置在所述第一套筒(100)的外侧壁上,用于随钻采集伽马、方位、振动和电阻率数据,包括电阻率传感器、伽马传感器、方位传感器和振动传感器;
    电路模块,包括第一电路模块(410)和第二电路模块(420),所述第一电路模块(410)设置在所述第一套筒(100)外侧壁的第一凹槽(131)内,所述第二电路模块(420)设置在所述第二套筒(200)上;
    发射天线(500),用于将数据发送至接收短节,设置在所述第一套筒(100)的近钻端(110);
    所述多参数采集模块(300)、发射天线(500)分别与所述电路模块通过线路电性连接。
  2. 根据权利要求1所述的设备,其特征在于,还包括电源模块,包括第一电池(610)和第二电池(620),分别设置在所述第一套筒(100)外侧壁的第二凹槽(132)和第三凹槽(133)内,所述电源模块分别和所述多参数采集模块(300)、电路模块及发射天线(500)通过线路电性连接。
  3. 根据权利要求1所述的设备,其特征在于,所述电路模块包括数据接收单元、数据处理单元和数据存储单元,所述数据接收单元用于接收所述多参数模块采集的包括与电阻率、伽马、方位和振动相关的数据,所述数据处理模块用于基于所述数据获得包括地层的电阻率、伽马参数、方位参数和振动参数的计算结果,所述数据存储单元用于存储所述数据和计算结果。
  4. 根据权利要求1所述的设备,其特征在于,所述第二套筒(200)的外侧壁上设有N个线板凹槽(210),N个所述线板凹槽(210)沿所述第二套筒 (200)的周向均匀布置,所述第二电路模块(420)包括N块电路板(421),所述电路板(421)与所述线板凹槽(210)配合。
  5. 根据权利要求4所述的设备,其特征在于,所述第二套筒(200)的两端设有密封件(220),所述密封件(220)沿其径向抵紧在所述第一套筒(100)的内壁上;所述第二套筒(200)通过所述密封件(220)与所述第一套筒(100)密封连接,所述第一套筒(100)内壁、所述线板凹槽(210)和所述密封件(220)形成密闭空间。
  6. 根据权利要求1所述的设备,其特征在于,所述伽马传感器、振动传感器和方位传感器集成安装在探管内,所述探管设置在所述第一套筒(100)外侧壁的第四凹槽(134)内。
  7. 根据权利要求1所述的设备,其特征在于,所述第一凹槽(131)、第二凹槽(132)、第三凹槽(133)和第四凹槽(134)设置在所述第一套筒(100)的中部,且沿所述第一套筒(100)的周向均匀间隔布置,所述第一套筒(100)上还分别设有与所述第一凹槽(131)、第二凹槽(132)、第三凹槽(133)和第四凹槽(134)配合的密封盖板(151)。
  8. 根据权利要求1所述的设备,其特征在于,所述发射天线(500)为无线环状发射天线(500),所述第一套筒(100)近钻端(110)的外壁上设有环形槽(160),所述无线环状发射天线(500)与所述环形槽(160)配合,所述发射天线(500)用于将所述数据处理单元所获得的地层的电阻率、伽马参数、方位参数和振动参数发送至接收短节。
  9. 根据权利要求1所述的设备,其特征在于,所述电阻率传感器包括电阻率发射天线(500)和电阻率接收天线,所述第一套筒(100)近钻端(110)和远钻端(120)的外侧壁上均沿周向设有若干一字槽(140),所述电阻率发射天线(500)设置在位于所述远钻端(120)的一字槽(140)内,所述电阻率接收天线设置在位于所述近钻端(110)的一字槽(140)内,所述电阻率发射天 线(500)用于向地层发射电磁波信号,所述电阻率接收天线用于接收通过地层后的所述电磁波信号。
  10. 根据权利要求1所述的设备,其特征在于,所述第一套筒(100)的侧壁上,与每个所述电路板(421)对应的位置均开设有径向通孔(170),所述第一套筒(100)上设有与所述径向通孔(170)配合的圆盖板(152),所述圆盖板(152)与所述径向通孔(170)密封连接;所述第一套筒(100)的侧壁内还开设有若干用于线路穿过的线管(180),所述径向通孔(170)与所述第一凹槽(131)、第二凹槽(132)、第三凹槽(133)或第四凹槽(134)通过所述线管(180)连通。
PCT/CN2019/101789 2018-12-05 2019-08-21 一种多参数随钻测量设备 WO2020114004A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811478487.9 2018-12-05
CN201811478487.9A CN109488289A (zh) 2018-12-05 2018-12-05 一种多参数随钻测量设备

Publications (1)

Publication Number Publication Date
WO2020114004A1 true WO2020114004A1 (zh) 2020-06-11

Family

ID=65699231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101789 WO2020114004A1 (zh) 2018-12-05 2019-08-21 一种多参数随钻测量设备

Country Status (2)

Country Link
CN (1) CN109488289A (zh)
WO (1) WO2020114004A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109488289A (zh) * 2018-12-05 2019-03-19 贝兹维仪器(苏州)有限公司 一种多参数随钻测量设备
CN111852443B (zh) * 2020-06-11 2023-08-11 中国海洋石油集团有限公司 近钻头测量下短节以及近钻头测量装置
CN111852444A (zh) * 2020-06-11 2020-10-30 中国海洋石油集团有限公司 随钻近钻头测量下短节以及随钻近钻头测量装置
CN112228048B (zh) * 2020-09-29 2023-07-11 中铁大桥局集团有限公司 一种用于大桥桩基打孔随钻仪器的无线通讯方法
CN114575757B (zh) * 2020-11-30 2023-02-03 四川宏华石油设备有限公司 一种智能钻柱及井下数据传输系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004478A2 (en) * 2011-07-06 2013-01-10 Interwell Technology As Inductive connection
CN205100962U (zh) * 2015-11-04 2016-03-23 东营仪锦能源科技有限公司 近钻头随钻地质导向测井仪
US20160230546A1 (en) * 2015-02-10 2016-08-11 Pulse Directional Technologies, Inc. At-bit downhole sensor and transmitter
CN107313771A (zh) * 2017-07-07 2017-11-03 贝兹维仪器(苏州)有限公司 一种带有电阻率测量功能的近钻头测量仪器
CN108678733A (zh) * 2018-06-22 2018-10-19 中国电子科技集团公司第二十二研究所 近钻头多参数随钻测量设备、方法及装置
CN109322662A (zh) * 2018-12-05 2019-02-12 贝兹维仪器(苏州)有限公司 一种随钻测量短节
CN109356571A (zh) * 2018-12-05 2019-02-19 贝兹维仪器(苏州)有限公司 用于随钻测量设备的安装骨架
CN109488289A (zh) * 2018-12-05 2019-03-19 贝兹维仪器(苏州)有限公司 一种多参数随钻测量设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202832517U (zh) * 2012-07-26 2013-03-27 中国石油天然气股份有限公司 声波随钻测量短节
CN102979518B (zh) * 2012-12-14 2015-12-30 上海神开石油化工装备股份有限公司 一种方位伽玛探管
CN203201549U (zh) * 2013-03-15 2013-09-18 中国石油化工股份有限公司 钻铤式伽马测量仪
CN103693760B (zh) * 2014-01-21 2016-05-04 威士邦(厦门)环境科技有限公司 一种缓释填料及其制备方法
CN205858331U (zh) * 2016-07-26 2017-01-04 奥瑞拓能源科技股份有限公司 一种近钻头随钻测量系统
CN106014391B (zh) * 2016-07-26 2023-03-28 奥瑞拓能源科技股份有限公司 一种近钻头随钻测量系统
CN107313768B (zh) * 2017-07-07 2023-12-05 东营市广利机电设备有限公司 一种带有伽马测量功能的近钻头测量仪器
CN108756864B (zh) * 2018-04-27 2021-08-27 中国石油天然气集团有限公司 一种方位电磁波电阻率成像随钻测井仪
CN209385117U (zh) * 2018-12-05 2019-09-13 贝兹维仪器(苏州)有限公司 一种多参数随钻测量设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013004478A2 (en) * 2011-07-06 2013-01-10 Interwell Technology As Inductive connection
US20160230546A1 (en) * 2015-02-10 2016-08-11 Pulse Directional Technologies, Inc. At-bit downhole sensor and transmitter
CN205100962U (zh) * 2015-11-04 2016-03-23 东营仪锦能源科技有限公司 近钻头随钻地质导向测井仪
CN107313771A (zh) * 2017-07-07 2017-11-03 贝兹维仪器(苏州)有限公司 一种带有电阻率测量功能的近钻头测量仪器
CN108678733A (zh) * 2018-06-22 2018-10-19 中国电子科技集团公司第二十二研究所 近钻头多参数随钻测量设备、方法及装置
CN109322662A (zh) * 2018-12-05 2019-02-12 贝兹维仪器(苏州)有限公司 一种随钻测量短节
CN109356571A (zh) * 2018-12-05 2019-02-19 贝兹维仪器(苏州)有限公司 用于随钻测量设备的安装骨架
CN109488289A (zh) * 2018-12-05 2019-03-19 贝兹维仪器(苏州)有限公司 一种多参数随钻测量设备

Also Published As

Publication number Publication date
CN109488289A (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
WO2020114004A1 (zh) 一种多参数随钻测量设备
RU2682400C1 (ru) Система измерения в процессе бурения вблизи от долота
CN205100962U (zh) 近钻头随钻地质导向测井仪
CA3055546C (en) Wireless communication between downhole components and surface systems
CN103233722B (zh) 一种煤矿井下防爆型电磁波无线随钻测量系统及其使用方法
CN204253027U (zh) π近钻头伽玛测井仪
CN101291015A (zh) 随钻电磁发射天线、井下数据传输系统和方法
WO2020114003A1 (zh) 一种随钻测量短节
CN103912264A (zh) 一种随钻电阻率近钻头测量装置
CN111852444A (zh) 随钻近钻头测量下短节以及随钻近钻头测量装置
CN103835705A (zh) 井下测量信息传输系统
CN106499386A (zh) 一种基于耦合通信的近钻头测井系统和方法
US11840893B2 (en) Direct contact telemetry system for wired drill pipe
CN209385122U (zh) 一种随钻测量短节
CN209385117U (zh) 一种多参数随钻测量设备
CN202954809U (zh) 井下测量信息传输系统
CN102425410A (zh) 一种随钻测量超声波数据传输方法及装置
CN211115977U (zh) 一种随钻电磁波方位电阻率测量仪器
CN115126476A (zh) 一种近钻头工程参数测量工具及使用方法
CN202220566U (zh) 有线通信螺杆
CN209385118U (zh) 用于随钻测量设备的安装骨架
US11066927B2 (en) Wired drill pipe connector and sensor system
CN111927427A (zh) 一种油气井光缆多参数测量装置
CN110700818A (zh) 一种井下可滑动的旋转阀脉冲器
CN111456712A (zh) 一种新型随钻井径成像测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893307

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893307

Country of ref document: EP

Kind code of ref document: A1