WO2020114003A1 - 一种随钻测量短节 - Google Patents

一种随钻测量短节 Download PDF

Info

Publication number
WO2020114003A1
WO2020114003A1 PCT/CN2019/101780 CN2019101780W WO2020114003A1 WO 2020114003 A1 WO2020114003 A1 WO 2020114003A1 CN 2019101780 W CN2019101780 W CN 2019101780W WO 2020114003 A1 WO2020114003 A1 WO 2020114003A1
Authority
WO
WIPO (PCT)
Prior art keywords
integrated housing
drilling
circuit
groove
measurement
Prior art date
Application number
PCT/CN2019/101780
Other languages
English (en)
French (fr)
Inventor
刘策
姜亚竹
Original Assignee
贝兹维仪器(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 贝兹维仪器(苏州)有限公司 filed Critical 贝兹维仪器(苏州)有限公司
Publication of WO2020114003A1 publication Critical patent/WO2020114003A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/026Determining slope or direction of penetrated ground layers

Definitions

  • the invention relates to the technical field of geological exploration drilling equipment, in particular to a measurement while drilling subsection.
  • the measurement while drilling technique is mostly used, that is, the measurement while drilling equipment is installed behind the drill bit to measure the geological parameters of the formation around the drill bit in real time to identify complex oil and gas layers with industrial exploitation value
  • the measurement while drilling equipment is installed behind the drill bit to measure the geological parameters of the formation around the drill bit in real time to identify complex oil and gas layers with industrial exploitation value
  • the position of the drill bit, drilling trajectory, well deviation, well diameter and vibration parameters, etc. In order to achieve real-time positioning and timely deviation correction.
  • the short joint device in the traditional MWD equipment is usually more than nine meters away from the drill bit, the measurement blind zone is too long, and the formation lithology is lagging, and the position of the high-quality reservoir can not be judged in time and the borehole trajectory can be adjusted.
  • the muddy interlayer cannot be found in time, resulting in irregular boreholes.
  • the device for measuring the above parameters is embedded on the outer and inner walls of the short joint, which improves the space utilization rate and shortens the measuring while drilling subsection
  • the length of the data increases the real-time and accuracy of the measured data.
  • the production cost of the measuring while drilling subsection is extremely high, especially the processing of the channel structure of the inner wall is very difficult.
  • the installation and disassembly of the equipment are complicated, on-site operations are difficult, and the cost of repair and maintenance is high.
  • the object of the present invention is to provide a measurement while drilling subsection, and the specific technical solution is as follows:
  • a measuring while drilling sub-section connected to a drill bit, characterized by comprising an integrated housing, a circuit butt tube, a probe tube assembly, a resistivity test assembly, a power supply assembly, a first control circuit element and a second control circuit element;
  • the integrated housing has a hollow inner cavity, and a plurality of in-line grooves are arranged on the outer side walls of both ends of the integrated housing along the circumferential direction, the resistivity test component is disposed in the in-line groove, and the outer side wall of the middle of the integrated housing
  • a plurality of grooves are arranged along the circumferential direction, and the probe tube assembly, the power supply assembly, and the first control circuit element are respectively disposed in the grooves;
  • the circuit butt tube is detachably connected to the hollow inner cavity of the integrated housing
  • N circuit board grooves are evenly arranged on the outer wall of the circuit butt joint in the circumferential direction
  • the second control circuit element includes N circuit boards, and the circuit boards cooperate with the circuit board grooves.
  • seals are provided at both ends of the circuit butt tube, the seals are pressed against the hollow inner cavity wall of the integrated housing in the radial direction, the seals, the wire plate grooves and the integrated housing
  • the inner wall of the is a sealed space, and the circuit butt joint is provided at the end of the integrated housing away from the drill bit.
  • radial through holes are provided at positions corresponding to each of the circuit boards, and a plurality of pipes are opened in the side wall of the integrated housing.
  • the groove is communicated through the pipe.
  • a round cover plate and a groove cover plate are further provided on the outer side wall of the integrated housing, the round cover plate is in sealing fit with the radial through hole, and the groove cover plate is sealed with the groove Cooperate.
  • the inner wall of the groove is provided with a line hole, and the line holes in the adjacent groove are communicated through a line tube opened in the side wall of the integrated housing in the circumferential direction.
  • the side walls of the circuit butt tube are provided with external threads at both ends, and the hollow inner cavity wall of the integrated housing is provided with internal threads that cooperate with the external threads.
  • the integrated housing is detachably connected through the external thread and the internal thread.
  • an elastic clamping piece is provided at both ends of the side wall of the circuit butting tube, and a clamping groove that cooperates with the elastic clamping piece is provided on the hollow inner cavity wall of the integrated housing, The circuit docking tube and the integrated housing are detachably connected through the elastic clamping piece and the clamping groove.
  • the probe assembly is used to measure the gamma, azimuth, and vibration parameters of the formation while drilling, including the probe casing, and the gamma sensor, azimuth sensor, and vibration sensor installed in the probe casing.
  • the probe tube assembly fits into one of the grooves through the probe tube housing.
  • the power supply assembly includes a first battery module and a second battery module, and the first battery module and the second battery module are respectively disposed in two grooves of the integrated housing.
  • the resistivity testing component is used to measure the resistivity of the formation while drilling, including a resistivity transmitting antenna and a resistivity receiving antenna, the resistivity transmitting antenna is used to transmit an electromagnetic wave signal to the formation, and the resistivity receiving antenna It is used to receive the electromagnetic wave signal after passing through the formation.
  • the measurement while drilling sub-section of the present invention can simultaneously measure the resistivity, gamma parameter, vibration parameter and azimuth parameter, and determine the location of the bit in the near real time whether it is an oil layer, a rock layer, a complex oil and gas layer or other geology ; At the same time, dual battery power supply is used to ensure stable and reliable power supply and provide longer battery life.
  • the power supply component, the resistivity test component, the first circuit component and the probe tube component of the present invention are all disposed on the outer wall of the integrated housing, which is easy to process and reduce production costs; at the same time, the circuit butt tube and the integrated housing are detachably connected, It can increase the number of circuit boards and increase the space utilization by increasing the stacking space.
  • the structure is compact and the length is very short (not more than 1.2 meters). It has little effect on the trajectory of the borehole during the drilling process; Convenient and easy to maintain, effectively reducing time and labor costs.
  • Figure 1 a side view of the present invention
  • Figure 2 is a front view of the present invention
  • FIG. 3 is a cross-sectional view of the B-B section in FIG. 1;
  • FIG. 4 Exploded view of the structure of the present invention.
  • 100-integrated housing 200-circuit butt tube, 300-probe tube assembly, 110-groove, 120-slot, 130-groove cover plate, 140-round cover plate, 150-connector, 160- Interface, 210-wire board groove, 220-seal, 410-first control circuit element, 420-second control circuit element, 421-circuit board, 510-first battery module, 520-second battery module.
  • a measurement while drilling subsection connected to a drill bit, is used to measure formation parameters while drilling, including integrated housing 100, circuit butt joint 200, probe tube assembly 300, resistivity test assembly, power supply assembly , The first control circuit element 410 and the second control circuit element 420; the integrated housing 100 has a hollow inner cavity, the outer side walls of the two ends of the integrated housing 100 are circumferentially arranged with a number of slot 120, the resistivity The test assembly is arranged in the slot 120, and a plurality of grooves 110 are arranged on the outer side wall of the central part of the integrated housing 100 along the circumferential direction.
  • the probe assembly 300, the power supply assembly, and the first control circuit element 410 are respectively provided In the groove 110; the circuit butt tube 200 is detachably connected in the hollow inner cavity of the integrated housing 100, and the outer wall of the circuit butt tube 200 is evenly arranged with N wire plate grooves along the circumferential direction 210.
  • the second control circuit element 420 includes N circuit boards 421, and the circuit board 421 cooperates with the wire board groove 210.
  • N is equal to 4, and four of the wire plate grooves 210 are elongated, and the length direction of the wire plate grooves 210 is arranged along the axial direction of the circuit butt tube 200, adjacent to each other.
  • the longitudinal symmetry planes of the wire groove 210 are perpendicular to each other.
  • both ends of the integrated housing 100 and the circuit butt tube 200 are provided with openings, and the circuit butt tube 200 also has a hollow structure, and mud and slag generated during drilling can pass through the hollow cavity and the hollow structure discharge.
  • a plurality of the grooves 110 are evenly spaced along the circumferential direction of the integrated housing 100. In this way, the same centripetal force can be ensured as much as possible while measuring the spool rotation while drilling while avoiding the occurrence of eccentric vibration.
  • the proximal end of the integrated housing 100 is provided with a joint 150 for connecting a drill bit.
  • the outer diameter of the joint 150 gradually decreases in a direction close to the drill bit.
  • the end of the integrated housing 100 away from the drill bit is provided with an interface 160 for switching to other equipment, and the inner diameter of the interface 160 gradually decreases in a direction close to the near-drill end.
  • the circuit butt joint 200 is disposed on a side of the interface 160 facing the joint 150.
  • the inner wall of the integrated housing 100 is provided with a ring-shaped cavity at a position corresponding to the circuit butt tube 200, and the depth of the cavity is consistent with the maximum thickness of the circuit butt tube 200.
  • the inner diameter of the remaining part is the same as the inner diameter of the circuit butt joint 200. In this way, the residue after the passage of mud or slag is reduced, and it is easy to clean and maintain.
  • the depth of the wire board groove 210 is greater than the thickness of the circuit board 421. That is, the circuit board 421 is embedded in the wire board groove 210. Preferably, the circuit board 421 is tiled in the wire board groove 210. This ensures that the circuit docking tube 200 does not rub or damage the circuit board 421 when extending into the hollow cavity of the integrated housing 100.
  • a slot matching the circuit board 421 is provided in the wire board groove 210.
  • a clamping member for clamping the circuit board 421 is also provided on the slot.
  • seals 220 are provided at both ends of the circuit butt joint 200, and the seals 220 abut against the hollow inner cavity wall of the integrated housing 100 in the radial direction.
  • the seals 220 and the wire plate form a sealed space.
  • the sealing member 220 is made of an elastic material, and at the same time plays a role of shock absorption.
  • the sealing member 220 is a sealing retaining ring, and the two ends of the side wall of the circuit butt tube 200 are provided with sealing grooves 110 that cooperate with the sealing retaining ring, and the thickness of the sealing retaining ring in the radial direction is greater than Describe the depth of the sealing groove 110. In this way, the sealing retaining ring can bear against the inner wall of the integrated housing 100.
  • the sealing groove 110 is provided near the end surfaces of the two ends of the circuit butt tube 200, that is, the sealing member 220 is provided at the edges of both ends of the circuit butt tube 200, so that the sealing ring and the integrated housing are sealed
  • the inner wall of 100 and the wire plate groove 210 can seal the circuit board 421 to prevent mud from entering the integrated casing 100 and the circuit butt 200 when the drilling is extended into the formation, thereby damaging the circuit board 421.
  • the power supply component includes a first battery module 510 and a second battery module 520.
  • dual battery power supply is used to improve the reliability and continuous working time of the system power supply.
  • the first battery module 510 and the second battery module 520 are respectively disposed in the two grooves 110 of the integrated housing 100.
  • the power supply component is electrically connected to the probe tube component 300, the resistivity test component, the first circuit component, and the second circuit component through lines.
  • the probe assembly 300 is used to measure the gamma, azimuth and vibration parameters of the formation while drilling, including the probe casing, and the gamma sensor, azimuth sensor and vibration sensor installed in the probe casing.
  • the tube assembly 300 fits into one of the grooves 110 through the probe tube housing. In this way, the integrated installation of collection devices with different functions reduces the difficulty of disassembling the short section on site, makes wiring within the short section convenient, and increases the reliability of the equipment.
  • the resistivity testing component is used for measuring the resistivity of the formation while drilling, including a resistivity transmitting antenna and a resistivity receiving antenna matched in a plurality of slotted grooves 120.
  • the resistivity transmitting antenna is used to transmit electromagnetic wave signals to the formation.
  • the resistivity receiving antenna is used to receive the electromagnetic wave signal after passing through the formation.
  • the resistivity receiving antenna is disposed at an end of the integrated housing 100 near the drill bit, and the resistivity transmitting antenna is disposed at an end of the integrated housing 100 away from the drill bit.
  • the integrated housing 100 is provided with two rounds of the one-slot 120 in the circumferential direction of the side wall away from the end of the drill bit, and correspondingly two rounds of resistivity transmitting antennas.
  • a ring-shaped slot 120 is provided at the end of the resistivity transmitting antenna near the drill bit, and a ring of resistivity receiving antenna is correspondingly provided.
  • the first circuit component includes an integrated circuit board 421, and the integrated circuit board 421 and the circuit board 421 of the second circuit component jointly control the operation of the measurement while drilling spool.
  • the first circuit component and the second circuit component together include a data receiving unit, a data processing unit, and a data storage unit, and the signal receiving unit is used to receive the data collected by the resistivity test component and the probe tube component 300.
  • Data related to resistivity, gamma, azimuth, and vibration the data processing unit is used to obtain calculation results including resistivity, gamma parameter, azimuth parameter, and vibration parameter of the formation based on the data, and the data storage unit Used to store the data and calculation results.
  • the resistivity of the formation near the drill bit is obtained through correlation calculation, and the formation of the formation is judged Sexual structure.
  • the data storage unit includes a buffer unit and a permanent storage unit.
  • the buffer unit can send the buffered calculation result to the signal transmission device and finally send it to the ground equipment.
  • the permanent storage unit is used to store all The data and calculation results are permanently stored for backup.
  • the data storage unit is also provided with a port for outputting the data and calculation results. The port supports downloading and deletion of data and calculation results stored in the storage unit from the outside.
  • the data storage unit is provided on the circuit board 421 of the circuit butt joint 200.
  • the circuit pair takeover 200 can be disassembled and transferred to other computing devices for data download and processing.
  • radial through holes are opened at positions corresponding to each of the circuit boards 421, and a plurality of pipes are opened in the side wall of the integrated housing 100.
  • the groove 110 communicates through the pipe.
  • the wire plate groove 210 and the groove 110 are arranged along the same axis of the integrated housing 100, and the pipe is opened along the axial direction of the integrated housing 100, that is, one end of the pipe is provided at the On the side wall of the radial through hole, the other end opening of the pipe is provided in the groove 110 adjacent to the radial through hole, and the line can enter the radial through hole through the pipe from the groove 110 and then penetrate into the wire plate
  • the groove 210 is connected to the circuit board 421.
  • the inner wall of the groove 110 is provided with a line hole, and the line holes in the adjacent groove 110 communicate with each other through a line pipe opened in the side wall of the integrated housing 100 in the circumferential direction.
  • the wire can pass through the wire tube to connect the electronic devices in the groove 110, and the wire can also enter the wire plate groove 210 through the pipe.
  • the outer side wall of the integrated housing 100 is further provided with a round cover plate 140 and a groove cover plate 130, the round cover plate 140 is in sealing fit with the radial through hole, the groove cover plate 130 and the groove 110 sealed fit.
  • the groove cover plates 130 corresponding to the first battery module 510 and the second battery module 520 are provided with battery explosion-proof openings to avoid explosion caused by transient pressure exceeding a safety threshold and improve operation safety.
  • a damping device is provided in the groove 110.
  • the shock absorber is a two-way shock absorber, capable of absorbing or transforming harmful vibrations generated when the drill bit extends into the formation, thus reducing the possibility of vibrations causing loosening or damage of electronic devices.
  • the integrated housing 100 and the circuit docking tube 200 are made of non-magnetic materials. In this way, it ensures that it will not interfere with the transmitted and received signals, such as the electromagnetic wave signal emitted by the resistivity test component to the formation.
  • the two ends of the side wall of the circuit butt tube 200 are provided with external threads, and the hollow inner cavity wall of the integrated housing 100 is provided with the external thread
  • the circuit butt tube 200 and the integrated housing 100 are detachably connected through the external thread and the internal thread.
  • the circuit butt tube 200 is disposed at the end of the integrated housing 100 away from the drill bit.
  • the external threads of the two ends of the circuit butt joint 200 are rotated in the same direction.
  • elastic clamping members are provided at both ends of the side wall of the circuit butt joint 200, and the hollow inner cavity wall of the integrated housing 100 is provided with
  • the circuit butt tube 200 and the integrated housing 100 are detachably connected through the elastic snap-fit piece and the snap-fit groove.
  • the elastic clamping pieces are a plurality of elastic flanges arranged along the circumferential direction of the circuit butt tube 200, and both sides of the elastic flanges along the axial direction of the circuit butt tube 200 are guide inclined surfaces, so that the circuit is realized
  • the butt tube 200 enters and exits the inner cavity of the integrated housing 100.
  • the elastic clamping member is not only an implementation method of an elastic flange, but also any other type of clamping member that has elasticity and can clamp the circuit butt tube 200 on the inner wall of the integrated housing 100 .
  • the measurement while drilling sub-section of the present invention can simultaneously measure resistivity, gamma parameters, vibration parameters and azimuth parameters, and determine the location of the drill bit in near real time whether it is an oil layer, a rock layer, a complex oil and gas layer, or other geology; at the same time, dual batteries are used Power supply to ensure stable and reliable power supply and provide longer battery life.
  • the power supply assembly, the resistivity test assembly, the first circuit assembly, and the probe assembly 300 of the present invention are all disposed on the outer wall of the integrated housing 100, which is easy to process and reduce production costs; at the same time, the circuit butt joint 200 and the integrated housing 100
  • the detachable connection can increase the number of circuit boards 421, and increase the space utilization by increasing the stacking space.
  • the structure is compact and the length is very short (not more than 1.2 meters). It has little effect on the trajectory of the borehole during drilling; The short section is easy to disassemble and install on site, easy to maintain, and effectively reduces time and labor costs.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种随钻测量短节,包括集成外壳(100)、电路对接管(200)、探管组件(300)、电阻率测试组件、电源组件、第一控制电路元件(410)和第二控制电路元件(420);集成外壳(100)具有中空内腔,集成外壳(100)两端的外侧壁上沿周向布置有若干一字槽(120),电阻率测试组件设置在一字槽(120)内,集成外壳(100)中部的外侧壁上沿周向布置有若干凹槽(110),探管组件(300)、电源组件和第一控制电路元件(410)分别设置在凹槽(110)内;电路对接管(200)可拆卸连接在集成外壳(100)的中空内腔中,电路对接管(200)的外壁上沿周向均匀布置有N个线板凹槽(210),第二控制电路元件(420)包括N块电路板(421),电路板(421)与线板凹槽(210)配合。该随钻测量短节近乎实时的测得钻头所在地层的参数,其尺寸较小,结构紧凑,易于拆装且生产成本低。

Description

一种随钻测量短节 技术领域
本发明涉及地质勘探钻井设备技术领域,特别涉及一种随钻测量短节。
背景技术
在地址勘探领域尤其是油气勘探过程中多采用随钻测量技术,即在钻头后安装随钻测量设备,以实时测得钻头周边地层的地质参数,以识别具有工业开采价值的复杂油、气层,使钻头及时停止在所需储层内;同时监测钻头的位置、钻井轨迹、井斜、井径及振动参数等,以实现实时定位和及时纠偏。
传统随钻测量设备中的短节装置通常离钻头的距离在九米以上,测量盲区过长,判断地层岩性滞后,不能及时判断优质储层位置并调整井眼轨迹,且在水平段钻井时不能及时发现泥质夹层,导致井眼不规则等。现有技术中,通过在随钻测量短节的内壁和外壁开设槽道,将用于测量上述参数的装置嵌设在短节的外壁和内壁上,提高空间利用率,缩短随钻测量短节的长度,提高测得数据的实时性和准确性。但该随钻测量短节的生产成本极高,尤其是内壁的槽道结构加工十分困难。此外,该设备安装和拆卸复杂,现场作业困难,维修维护时间成本高。
发明内容
针对现有技术的上述问题,本发明的目的在于,提供一种随钻测量短节,具体技术方案如下:
一种随钻测量短节,连接在钻头上,其特征在于,包括集成外壳、电路对接管、探管组件、电阻率测试组件、电源组件、第一控制电路元件和第二控制电路元件;所述集成外壳具有中空内腔,所述集成外壳两端的外侧壁上沿周向布置有若干一字槽,所述电阻率测试组件设置在所述一字槽内,所述集成外壳中部的外侧壁上沿周向布置有若干凹槽,所述探管组件、电源组件和第一控制电路元件分别设置在所述凹槽内;所述电路对接管可拆卸连接在所述集成外壳的中空内腔中,所述电路对接管的外壁上沿周向均匀布置有N个线板凹槽,所 述第二控制电路元件包括N块电路板,所述电路板与所述线板凹槽配合。
进一步地,所述电路对接管的两端设有密封件,所述密封件沿其径向抵紧在所述集成外壳的中空内腔壁上,所述密封件、线板凹槽和集成外壳的内壁形成密封空间,所述电路对接管设置在所述集成外壳的远离钻头的一端。
进一步地,所述集成外壳的侧壁上,与每个所述电路板对应的位置均开设有径向通孔,所述集成外壳的侧壁内开设有若干管道,所述径向通孔与所述凹槽通过所述管道连通。
进一步地,所述集成外壳的外侧壁上还设置有圆盖板和凹槽盖板,所述圆盖板与所述径向通孔密封配合,所述凹槽盖板与所述凹槽密封配合。
进一步地,所述凹槽的内壁上设有线孔,相邻所述凹槽内的线孔通过所述集成外壳侧壁内沿周向开设的线管连通。
在一个具体实施方式中,所述电路对接管的侧壁两端设有外螺纹,所述集成外壳的中空内腔壁上设有与所述外螺纹配合的内螺纹,所述电路对接管与所述集成外壳通过所述外螺纹和内螺纹可拆卸连接。
在另一个具体实施方式中,所述电路对接管侧壁的两端设有弹性卡接件,所述集成外壳的中空内腔壁上设有与所述弹性卡接件配合的卡接槽,所述电路对接管与所述集成外壳通过所述弹性卡接件和卡接槽可拆卸连接。
具体地,所述探管组件用于随钻测量地层的伽马、方位和振动参数,包括探管壳体,以及安装在所述探管壳体内的伽马传感器、方位传感器和振动传感器,所述探管组件通过所述探管壳体配合在一个所述凹槽内。
具体地,所述电源组件包括第一电池模块和第二电池模块,所述第一电池模块和第二电池模块分别设置在所述集成外壳的两个凹槽内。
具体地,所述电阻率测试组件用于随钻测量地层的电阻率,包括电阻率发射天线和电阻率接收天线,所述电阻率发射天线用于向地层发射电磁波信号,所述电阻率接收天线用于接收通过地层后的所述电磁波信号。
采用上述技术方案,本发明的随钻测量短节能够同时测得电阻率、伽马参数、振动参数和方位参数,近乎实时的判断钻头所在地层是油层、岩层、复杂油气层或是其它地性;同时采用双电池供电,确保电源稳定可靠,提供更长的续航能力。
此外,本发明的电源组件、电阻率测试组件、第一电路组件和探管组件均 设置在所述集成外壳的外壁上,易于加工,降低生产成本;同时电路对接管与集成外壳可拆卸连接,能够增加电路板的数量,利用增加层叠空间提高了空间利用率,结构紧凑,长度很短(不超过1.2米),在钻井过程中对井眼轨迹的影响很小;并且该短节现场拆装方便,易于维护保养,有效降低时间和人力成本。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1本发明的侧视图;
图2本发明的主视图;
图3是图1中B-B截面的剖视图;
图4本发明的结构爆炸图。
图中:100-集成外壳,200-电路对接管,300-探管组件,110-凹槽,120-一字槽,130-凹槽盖板,140-圆盖板,150-接头,160-接口,210-线板凹槽,220-密封件,410-第一控制电路元件,420-第二控制电路元件,421-电路板,510-第一电池模块,520-第二电池模块。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那 些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
参考图1-图4,一种随钻测量短节,连接在钻头上,用于随钻测量地层参数,包括集成外壳100、电路对接管200、探管组件300、电阻率测试组件、电源组件、第一控制电路元件410和第二控制电路元件420;所述集成外壳100具有中空内腔,所述集成外壳100两端的外侧壁上沿周向布置有若干一字槽120,所述电阻率测试组件设置在所述一字槽120内,所述集成外壳100中部的外侧壁上沿周向布置有若干凹槽110,所述探管组件300、电源组件和第一控制电路元件410分别设置在所述凹槽110内;所述电路对接管200可拆卸连接在所述集成外壳100的中空内腔中,所述电路对接管200的外壁上沿周向均匀布置有N个线板凹槽210,所述第二控制电路元件420包括N块电路板421,所述电路板421与所述线板凹槽210配合。
在一个具体实施例中,N等于4,4个所述线板凹槽210为长条状,所述线板凹槽210的长度方向沿所述电路对接管200的轴向设置,相邻所述线板凹槽210的纵向对称面互相垂直。如此对称设置,能够确保其随钻旋转时各向具有相同的向心力,避免出现偏心振动等。
具体地,所述集成外壳100和电路对接管200的两端均为开口设置,且所述电路对接管200也具有中空结构,钻井时产生的泥浆和渣滓能够通过所述中空内腔和中空结构排出。
具体地,若干所述凹槽110沿所述集成外壳100的周向均匀间隔布置。如此,能够尽量保证随钻测量短节旋转时各向具有相同的向心力,避免出现偏心振动等情况。
在一个具体实施例中,所述集成外壳100的近钻端设有用于连接钻头的接头150,优选地,所述接头150的外径沿靠近钻头的方向逐渐减小。所述集成外壳100的远离钻头的一端设有用于转接其他设备的接口160,所述接口160的内径沿靠近所述近钻端的方向逐渐减小。优选地,所述电路对接管200设置在所述接口160的朝向所述接头150的一侧。
优选地,所述集成外壳100内壁的与所述电路对接管200对应的位置上,设有环状凹腔,该凹腔的深度与所述电路对接管200的最大厚度一致,集成外壳100的除接头150处、接口160处以及和电路对接管200对应的位置外,其 余部分的内径与电路对接管200的内径相同。如此,减少泥浆或渣滓通过后的残留,易于清洁维护。
具体地,所述线板凹槽210的深度大于所述电路板421的厚度。即所述电路板421嵌设在该线板凹槽210中,优选地,电路板421平铺在线板凹槽210中。如此确保电路对接管200伸入所述集成外壳100的中空内腔时不会摩擦或损坏电路板421。
具体地,所述线板凹槽210内设置有与所述电路板421相匹配的插槽。优选地,所述插槽上还设有用于卡紧所述电路板421的卡紧件。
具体地,所述电路对接管200的两端设有密封件220,所述密封件220沿其径向抵紧在所述集成外壳100的中空内腔壁上,所述密封件220、线板凹槽210和集成外壳100的内壁形成密封空间。
优选地,该密封件220采用弹性材料制成,同时起到减震的作用。
优选地,所述密封件220为密封挡圈,所述电路对接管200侧壁的两端设有与所述密封挡圈配合的密封凹槽110,所述密封挡圈径向上的厚度大于所述密封凹槽110的深度。如此,所述密封挡圈能够抵紧在集成外壳100的内壁上。
优选地,所述密封凹槽110设置在所述电路对接管200两端的靠近端面处,即所述密封件220设置在所述电路对接管200两端的边缘处,如此,密封挡圈、集成外壳100的内壁以及线板凹槽210能够将电路板421密封在内,避免随钻伸入地层时,泥浆进入集成外壳100和电路对接管200之间,损坏电路板421。
在一个具体实施例中,所述电源组件包括第一电池模块510和第二电池模块520,如此,采用双电池供电,提升系统供电的可靠性和持续工作时间。所述第一电池模块510和第二电池模块520分别设置在所述集成外壳100的两个凹槽110内。所述电源组件分别和所述探管组件300、电阻率测试组件、第一电路组件和第二电路组件通过线路电性连接。
所述探管组件300用于随钻测量地层的伽马、方位和振动参数,包括探管壳体,以及安装在所述探管壳体内的伽马传感器、方位传感器和振动传感器,所述探管组件300通过所述探管壳体配合在一个所述凹槽110内。如此,集成化安装具有不同功能的采集装置,降低现场拆装该短节的难度,使短节内走线方便,增加设备的可靠性。
所述电阻率测试组件用于随钻测量地层的电阻率,包括配合在若干一字槽 120内电阻率发射天线和电阻率接收天线,所述电阻率发射天线用于向地层发射电磁波信号,所述电阻率接收天线用于接收通过地层后的所述电磁波信号。所述电阻率接收天线设置在所述集成外壳100的靠近钻头的一端,所述电阻率发射天线设置在所述集成外壳100的远离钻头的一端。
在一个具体实施例中,所述集成外壳100远离钻头钻的一端的侧壁的周向上设有两圈所述一字槽120,相应的设有两圈电阻率发射天线。在所述电阻率发射天线靠近钻头的一端的设置有一圈一字槽120,相应的设有一圈电阻率接收天线。
具体地,所述第一电路组件包括集成电路板421,所述集成电路板421与所述第二电路组件的电路板421共同控制随钻测量短节的运行。
具体地,所述第一电路组件和第二电路组件共同包括数据接收单元、数据处理单元和数据存储单元,所述信号接收单元用于接收所述电阻率测试组件和探管组件300采集的包括与电阻率、伽马、方位和振动相关的数据,所述数据处理单元用于基于所述数据获得包括地层的电阻率、伽马参数、方位参数和振动参数的计算结果,所述数据存储单元用于存储所述数据和计算结果。例如,根据所述电阻率发射天线所发射的电磁波信号和所述电阻率接收天线所接收到的经过地层后返回的电磁波信号,通过相关运算得出钻头附近地层的电阻率,判断该地层的地性结构。
优选地,所述数据存储单元包括缓存单元和永久存储单元,所述缓存单元能够将缓存的计算结果发送至信号发射装置,最终发送到地面的仪器设备中,所述永久存储单元用于将所述数据和计算结果永久存储用于备份。所述数据存储单元还设有用于输出所述数据和计算结果的端口,该端口支持从外部将该存储单元中存储的数据和计算结果下载和删除。
优选地,所述数据存储单元设置在所述电路对接管200的电路板421上。如此,可将所述电路对接管200拆卸后转移至其它计算设备处,进行数据下载和处理。
所述集成外壳100的侧壁上,与每个所述电路板421对应的位置均开设有径向通孔,所述集成外壳100的侧壁内开设有若干管道,所述径向通孔与所述凹槽110通过所述管道连通。优选地,所述线板凹槽210与所述凹槽110沿所述集成外壳100的同一轴线设置,所述管道沿所述集成外壳100的轴向开设, 即所述管道一端开口设置在所述径向通孔的侧壁上,所述管道的另一端开口设置在于该径向通孔相邻的凹槽110内,线路能够从凹槽110内通过管道进入径向通孔,再穿入线板凹槽210内与电路板421连接。
所述凹槽110的内壁上设有线孔,相邻所述凹槽110内的线孔通过所述集成外壳100侧壁内沿周向开设的线管连通。线路能够穿过线管将凹槽110内的电子器件连接,并且线路还能够通过管道进入线板凹槽210内。
所述集成外壳100的外侧壁还设置有圆盖板140和凹槽盖板130,所述圆盖板140与所述径向通孔密封配合,所述凹槽盖板130与所述凹槽110密封配合。优选地,所述第一电池模块510和第二电池模块520所对应的凹槽盖板130上均设有电池防爆口,避免瞬压超过安全阈值引起爆炸,提高运行的安全性。
在一个具体实施例中,所述凹槽110内设有减震装置。优选地,所述所述减震装置为双向减震器,能够吸收或转化钻头伸入地层所产生的有害振动,如此,降低振动造成电子器件松脱或损坏的可能性。
进一步地,所述集成外壳100和电路对接管200为无磁材料制成。如此,确保其不会对发射和接收的信号造成干扰,例如电阻率测试组件向地层发射的电磁波信号。
在上述具体实施方式的基础上,本说明书的一个实施例中,所述电路对接管200侧壁的两端设有外螺纹,所述集成外壳100的中空内腔壁上设有与所述外螺纹配合的内螺纹,所述电路对接管200与所述集成外壳100通过所述外螺纹和内螺纹可拆卸连接,所述电路对接管200设置在所述集成外壳100远离钻头的一端。优选地,所述电路对接管200两端的外螺纹旋向相同。
在上述具体实施方式的基础上,本说明书的另一个实施例中,所述电路对接管200侧壁的两端设有弹性卡接件,所述集成外壳100的中空内腔壁上设有与所述弹性卡接件配合的卡接槽,所述电路对接管200与所述集成外壳100通过所述弹性卡接件和卡接槽可拆卸连接。优选地,所述弹性卡接件为沿电路对接管200周向布置的若干弹性凸缘,所述弹性凸缘沿所述电路对接管200轴向上的两侧均为导向斜面,如此实现电路对接管200进入和脱出集成外壳100的内腔。
需要注意的是,所述弹性卡接件不仅仅只有弹性凸缘一种实现方式,也可以是其他具备弹性,能够将电路对接管200卡接在集成外壳100内壁上的任意 一种卡接件。
本发明的随钻测量短节能够同时测得电阻率、伽马参数、振动参数和方位参数,近乎实时的判断钻头所在地层是油层、岩层、复杂油气层或是其它地性;同时采用双电池供电,确保电源稳定可靠,提供更长的续航能力。
此外,本发明的电源组件、电阻率测试组件、第一电路组件和探管组件300均设置在所述集成外壳100的外壁上,易于加工,降低生产成本;同时电路对接管200与集成外壳100可拆卸连接,能够增加电路板421的数量,利用增加层叠空间提高了空间利用率,结构紧凑,长度很短(不超过1.2米),在钻井过程中对井眼轨迹的影响很小;并且该短节现场拆装方便,易于维护保养,有效降低时间和人力成本。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种随钻测量短节,连接在钻头上,其特征在于,包括集成外壳(100)、电路对接管(200)、探管组件(300)、电阻率测试组件、电源组件、第一控制电路元件(410)和第二控制电路元件(420);
    所述集成外壳(100)具有中空内腔,所述集成外壳(100)两端的外侧壁上沿周向布置有若干一字槽(120),所述电阻率测试组件设置在所述一字槽(120)内,所述集成外壳(100)中部的外侧壁上沿周向布置有若干凹槽(110),所述探管组件(300)、电源组件和第一控制电路元件(410)分别设置在所述凹槽(110)内;
    所述电路对接管(200)可拆卸连接在所述集成外壳(100)的中空内腔中,所述电路对接管(200)的外壁上沿周向均匀布置有N个线板凹槽(210),所述第二控制电路元件(420)包括N块电路板(421),所述电路板(421)与所述线板凹槽(210)配合。
  2. 根据权利要求1所述的随钻测量短节,其特征在于,所述电路对接管(200)的两端设有密封件(220),所述密封件(220)沿其径向抵紧在所述集成外壳(100)的中空内腔壁上,所述密封件(220)、线板凹槽(210)和集成外壳(100)的内壁形成密封空间,所述电路对接管(200)设置在所述集成外壳(100)的远离钻头的一端。
  3. 根据权利要求2所述的随钻测量短节,其特征在于,所述集成外壳(100)的侧壁上,与每个所述电路板(421)对应的位置均开设有径向通孔,所述集成外壳(100)的侧壁内开设有若干管道,所述径向通孔与所述凹槽(110)通过所述管道连通。
  4. 根据权利要求3所述的随钻测量短节,其特征在于,所述集成外壳(100)的外侧壁上还设置有圆盖板(140)和凹槽盖板(130),所述圆盖板(140)与所述径向通孔密封配合,所述凹槽盖板(130)与所述凹槽(110)密封配合。
  5. 根据权利要求4所述的随钻测量短节,其特征在于,所述凹槽(110)的内壁上设有线孔,相邻所述凹槽(110)内的线孔通过所述集成外壳(100)侧壁内沿周向开设的线管连通。
  6. 根据权利要求1-5项中任一所述的随钻测量短节,其特征在于,所述电路对接管(200)的侧壁两端设有外螺纹,所述集成外壳(100)的中空内腔壁上设有与所述外螺纹配合的内螺纹,所述电路对接管(200)与所述集成外壳(100)通过所述外螺纹和内螺纹可拆卸连接。
  7. 根据权利要求1-5项中任一所述的随钻测量短节,其特征在于,所述电路对接管(200)侧壁的两端设有弹性卡接件,所述集成外壳(100)的中空内腔壁上设有与所述弹性卡接件配合的卡接槽,所述电路对接管(200)与所述集成外壳(100)通过所述弹性卡接件和卡接槽可拆卸连接。
  8. 根据权利要求1所述的随钻测量短节,其特征在于,所述探管组件(300)用于随钻测量地层的伽马、方位和振动参数,包括探管壳体,以及安装在所述探管壳体内的伽马传感器、方位传感器和振动传感器,所述探管组件(300)通过所述探管壳体配合在一个所述凹槽(110)内。
  9. 根据权利要求1所述的随钻测量短节,其特征在于,所述电源组件包括第一电池模块(510)和第二电池模块(520),所述第一电池模块(510)和第二电池模块(520)分别设置在所述集成外壳(100)的两个凹槽(110)内。
  10. 根据权利要求1所述的随钻测量短节,其特征在于,所述电阻率测试组件用于随钻测量地层的电阻率,包括电阻率发射天线和电阻率接收天线,所述电阻率发射天线用于向地层发射电磁波信号,所述电阻率接收天线用于接收通过地层后的所述电磁波信号。
PCT/CN2019/101780 2018-12-05 2019-08-21 一种随钻测量短节 WO2020114003A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811478648.4 2018-12-05
CN201811478648.4A CN109322662A (zh) 2018-12-05 2018-12-05 一种随钻测量短节

Publications (1)

Publication Number Publication Date
WO2020114003A1 true WO2020114003A1 (zh) 2020-06-11

Family

ID=65256941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101780 WO2020114003A1 (zh) 2018-12-05 2019-08-21 一种随钻测量短节

Country Status (2)

Country Link
CN (1) CN109322662A (zh)
WO (1) WO2020114003A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109322662A (zh) * 2018-12-05 2019-02-12 贝兹维仪器(苏州)有限公司 一种随钻测量短节
CN109488289A (zh) * 2018-12-05 2019-03-19 贝兹维仪器(苏州)有限公司 一种多参数随钻测量设备
CN113027437A (zh) * 2021-04-01 2021-06-25 徐州瑞拓勘探技术开发有限公司 一种基于随钻测井仪器实现电阻率测量的方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120031669A1 (en) * 2010-08-06 2012-02-09 The Gearhart Companies, Inc. Memory Logging Drill Bit With Connectable Pulser
CN205100962U (zh) * 2015-11-04 2016-03-23 东营仪锦能源科技有限公司 近钻头随钻地质导向测井仪
CN106522922A (zh) * 2016-11-23 2017-03-22 中国石油集团长城钻探工程有限公司 一种连续管钻井随钻测量工具
CN206158733U (zh) * 2016-08-31 2017-05-10 中国科学院地质与地球物理研究所 一种适用于井下近钻头无线短传发射的机械装置
CN109322662A (zh) * 2018-12-05 2019-02-12 贝兹维仪器(苏州)有限公司 一种随钻测量短节
CN209385122U (zh) * 2018-12-05 2019-09-13 贝兹维仪器(苏州)有限公司 一种随钻测量短节

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201221354Y (zh) * 2008-06-11 2009-04-15 中国石油集团钻井工程技术研究院 一种近钻头地质导向探测系统
CN103061755B (zh) * 2011-10-19 2016-01-13 中国石油化工股份有限公司 一种井下近钻头无线电磁波信号短距离传输系统及方法
CN202832517U (zh) * 2012-07-26 2013-03-27 中国石油天然气股份有限公司 声波随钻测量短节
CN103696760B (zh) * 2012-09-28 2017-07-14 中国石油天然气股份有限公司 近钻头随钻测量声波短距离传输方法和传输装置
CN102979518B (zh) * 2012-12-14 2015-12-30 上海神开石油化工装备股份有限公司 一种方位伽玛探管
CN203201549U (zh) * 2013-03-15 2013-09-18 中国石油化工股份有限公司 钻铤式伽马测量仪
CN104373119B (zh) * 2014-10-11 2017-03-08 中国地质大学(武汉) 一种基于岩心钻探的随钻自然伽马测铀仪
CN204253027U (zh) * 2014-11-20 2015-04-08 北京捷威思特科技有限公司 π近钻头伽玛测井仪
CN204591259U (zh) * 2015-03-25 2015-08-26 山东齐天石油技术有限公司 一种定向井随钻测量系统
CN205135607U (zh) * 2015-11-03 2016-04-06 中国石油天然气集团公司 一种新型随钻方位伽马成像仪器
CN106014391B (zh) * 2016-07-26 2023-03-28 奥瑞拓能源科技股份有限公司 一种近钻头随钻测量系统
CN106246169B (zh) * 2016-08-31 2017-09-01 中国科学院地质与地球物理研究所 一种适用于井下近钻头无线短传发射的机械装置
CN207093075U (zh) * 2017-07-07 2018-03-13 贝兹维仪器(苏州)有限公司 一种带有电阻率测量功能的近钻头测量仪器
CN207093071U (zh) * 2017-07-07 2018-03-13 贝兹维仪器(苏州)有限公司 一种带有伽马测量功能的近钻头测量仪器
CN107313771B (zh) * 2017-07-07 2023-09-26 贝兹维仪器(苏州)有限公司 一种带有电阻率测量功能的近钻头测量仪器
CN107313768B (zh) * 2017-07-07 2023-12-05 东营市广利机电设备有限公司 一种带有伽马测量功能的近钻头测量仪器
CN108442926A (zh) * 2018-06-05 2018-08-24 北京捷威思特科技有限公司 一种近钻头电磁波电阻率加伽玛测井仪
CN108678733A (zh) * 2018-06-22 2018-10-19 中国电子科技集团公司第二十二研究所 近钻头多参数随钻测量设备、方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120031669A1 (en) * 2010-08-06 2012-02-09 The Gearhart Companies, Inc. Memory Logging Drill Bit With Connectable Pulser
CN205100962U (zh) * 2015-11-04 2016-03-23 东营仪锦能源科技有限公司 近钻头随钻地质导向测井仪
CN206158733U (zh) * 2016-08-31 2017-05-10 中国科学院地质与地球物理研究所 一种适用于井下近钻头无线短传发射的机械装置
CN106522922A (zh) * 2016-11-23 2017-03-22 中国石油集团长城钻探工程有限公司 一种连续管钻井随钻测量工具
CN109322662A (zh) * 2018-12-05 2019-02-12 贝兹维仪器(苏州)有限公司 一种随钻测量短节
CN209385122U (zh) * 2018-12-05 2019-09-13 贝兹维仪器(苏州)有限公司 一种随钻测量短节

Also Published As

Publication number Publication date
CN109322662A (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
WO2020114003A1 (zh) 一种随钻测量短节
WO2020114004A1 (zh) 一种多参数随钻测量设备
US20160223703A1 (en) Borehole while drilling electromagnetic tomography advanced detection apparatus and method
CN107313768B (zh) 一种带有伽马测量功能的近钻头测量仪器
CA3055546C (en) Wireless communication between downhole components and surface systems
CN106522929B (zh) 一种超声井径随钻测井装置
CN103061753A (zh) 一种随钻井下流量测量监测早期溢流的装置
US10364606B2 (en) Systems and methods for directional drilling
CN104179491A (zh) 井下岩体裂隙钻孔超声波探测装置和系统
CN111852444A (zh) 随钻近钻头测量下短节以及随钻近钻头测量装置
CN109113727B (zh) 基于声波时差的钻杆刺漏点位置检测装置及检测方法
CN103510949A (zh) 一种定向钻孔洞剖面测量检测系统及方法
CN206931743U (zh) 一种随钻测控仪器跨钻铤旋转连接器
CN204754993U (zh) 一种信号收发装置及软土地质隧道掘进中地质勘探系统
CN211115977U (zh) 一种随钻电磁波方位电阻率测量仪器
US20150204990A1 (en) Borehole Seismic System
CN206158733U (zh) 一种适用于井下近钻头无线短传发射的机械装置
CN209385117U (zh) 一种多参数随钻测量设备
CN209385122U (zh) 一种随钻测量短节
CN114646411B (zh) 一种智能无线多向连续钻孔应力监测装置
CN106401573A (zh) 井下信息声波信号发生系统
CN111456712A (zh) 一种新型随钻井径成像测量装置
RU2480583C1 (ru) Телеметрическая система контроля параметров забоя
CN101509351B (zh) 无损伤钻探钻头设备
CN206146882U (zh) 一种风钻孔声波测试装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893574

Country of ref document: EP

Kind code of ref document: A1