WO2020113891A1 - 液体加热容器及其控制方法、计算机可读存储介质 - Google Patents

液体加热容器及其控制方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2020113891A1
WO2020113891A1 PCT/CN2019/083776 CN2019083776W WO2020113891A1 WO 2020113891 A1 WO2020113891 A1 WO 2020113891A1 CN 2019083776 W CN2019083776 W CN 2019083776W WO 2020113891 A1 WO2020113891 A1 WO 2020113891A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating container
liquid heating
water
tds
liquid
Prior art date
Application number
PCT/CN2019/083776
Other languages
English (en)
French (fr)
Inventor
罗金柳生
刘云祥
于三营
南春来
马向阳
刁飞
Original Assignee
广东美的生活电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201822021047.2U external-priority patent/CN209300803U/zh
Priority claimed from CN201811471859.5A external-priority patent/CN111248735A/zh
Priority claimed from CN201822021713.2U external-priority patent/CN209300814U/zh
Application filed by 广东美的生活电器制造有限公司 filed Critical 广东美的生活电器制造有限公司
Publication of WO2020113891A1 publication Critical patent/WO2020113891A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • A47J27/21Water-boiling vessels, e.g. kettles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present application relates to the field of household appliances, and particularly to a control method of a liquid heating container, a liquid heating container, and a computer-readable storage medium.
  • liquid heating vessels are provided with TDS sensors for detecting TDS values in water.
  • TDS sensors for detecting TDS values in water.
  • the liquid heating container directly enters the heating state while prompting the user, and cannot provide users with various options. If water with a high TDS value cannot meet the user's needs, the user can only forcibly interrupt the heating of the liquid heating container or dump the water after the liquid heating container is heated, which results in a waste of electrical energy.
  • the main purpose of the present application is to propose a control method for a liquid heating container, which aims to avoid the waste of electric energy and better meet the user's water demand.
  • control method of the liquid heating container proposed in this application includes:
  • the heating element is controlled not to heat.
  • control method of the liquid heating container further includes the following steps:
  • the heating element Based on the heating instruction that the water is heated to the boiling point, and the TDS value of the water in the liquid heating container is greater than or equal to a preset TDS value, the heating element is controlled to heat the water in the liquid heating container to a high power Boiling point
  • the heating element Based on the duration that the heating element is heated with low power reaches the first preset duration, the heating element is controlled to stop heating.
  • the low power is 1/10-1/5 of the high power.
  • control method of the liquid heating container further includes the following steps:
  • the preset temperature is less than the boiling temperature.
  • controlling the heating element to heat the water in the liquid heating container to a preset temperature, and controlling the liquid heating container to enter a heat preservation state specifically includes The following steps:
  • the heating element Based on the heating instruction that the water is heated to a preset temperature, and the TDS value of the water in the liquid heating container is greater than or equal to the preset TDS value, the heating element is controlled to heat the water in the liquid container with high power Heat to the boiling point, and then control the heating element to heat with low power;
  • the liquid heating container Based on the temperature of the water in the liquid heating container dropping to a preset temperature, the liquid heating container is controlled to enter a heat preservation state.
  • the heat preservation state is a state in which heating and standby alternately operate.
  • control method of the liquid heating container further includes the following steps:
  • the reminder device is controlled to issue a reminder.
  • This application also proposes a liquid heating container, including:
  • a TDS sensor used to detect the TDS value of the water in the liquid heating container
  • a heating element for heating the water in the liquid heating container
  • the controller is electrically connected to the TDS sensor, the alarm device and the heating element respectively, and the controller controls the alarm device based on the TDS value of the water in the liquid heating container being greater than or equal to a preset TDS value An alarm is issued; the controller is also based on the TDS value of the water in the liquid heating vessel being less than a preset TDS value, and receiving a heating command, controlling the heating element to heat, and the controller is also based on not receiving heating Instruction to control the heating element not to heat.
  • the liquid heating container includes:
  • the water In normal mode, the water is heated to the boiling point, and then cooled to the preset temperature by natural cooling or instant cooling;
  • the liquid heating container does not perform the rapid heating mode.
  • the present application also proposes a computer-readable storage medium storing a liquid heating container processing program on the computer-readable storage medium, the liquid heating container processing program is executed by the controller to realize the control of the liquid heating container as described above Method steps.
  • the alarm device issues an alarm to prompt the user to make a choice, such as replacing the water in the liquid heating container or ignoring the alarm and other operations At this time, the heating element will not work immediately, but only after the alarm is cleared, will the next operation be performed.
  • the heating element immediately enters the heating state when the TDS value is detected to be greater than or equal to the preset TDS value, in this way, when the user needs to replace the water in the liquid heating container, the user can have Multiple choices, without forcibly interrupting the heating process, or waiting for the heating process of the liquid heating container to end before pouring hot water back to boil water, so it can avoid the waste of electrical energy, save electricity costs, and can be better Meet the user's water demand.
  • FIG. 1 is a schematic flowchart of an embodiment of a control method of a liquid heating container of the present application
  • FIG. 2 is another schematic flowchart of the control method of the liquid heating container in FIG. 1;
  • FIG. 3 is another schematic flowchart of the control method of the liquid heating container in FIG. 1;
  • FIG. 4 is a detailed flowchart of step S55 in FIG. 3;
  • FIG. 5 is a schematic cross-sectional view of an embodiment of a liquid heating container of the present application.
  • FIG. 6 is an enlarged view at A in FIG. 5;
  • FIG. 7 is a schematic diagram of the structure of the TDS sensor in FIG. 5;
  • FIG. 8 is a top view of the TDS sensor in FIG. 7;
  • FIG. 9 is a top view of the TDS sensor of FIG. 7 in another embodiment
  • FIG. 10 is a schematic cross-sectional view of another embodiment of the liquid heating container of the present application.
  • FIG. 11 is an enlarged view at B in FIG. 10;
  • FIG. 12 is a partial schematic view of another embodiment of the liquid heating container of the present application.
  • FIG. 13 is a schematic diagram of a module of a liquid heating container of the present application.
  • first”, “second”, etc. are for descriptive purposes only, and cannot be understood as instructions or hints Its relative importance or implicitly indicates the number of technical features indicated.
  • the features defined with “first” and “second” may include at least one of the features either explicitly or implicitly.
  • the meaning of “and/or” appearing throughout the text is to include three parallel plans, taking “A and/or B as an example”, including plan A, or plan B, or plans that both A and B satisfy.
  • technical solutions between the various embodiments can be combined with each other, but they must be based on the ability of those skilled in the art to realize. When the combination of technical solutions contradicts or cannot be realized, it should be considered that the combination of such technical solutions does not exist , Nor within the scope of protection required by this application.
  • This application proposes a control method for a liquid heating container.
  • control method of the liquid heating container includes:
  • Step S10 Acquire the TDS value of the water in the liquid heating container.
  • the TDS sensor 30 provided in the liquid heating container detects the TDS value of the water in the liquid heating container, and sends the detected TDS value to the controller.
  • Step S20 based on the TDS value of the water in the liquid heating container being greater than or equal to the preset TDS value, controlling the alarm device to issue an alarm.
  • the alarm device is a warning light.
  • the warning light is on, or the warning light flashes to alert the user.
  • the alarm device may also be a display screen, a buzzer, etc., and the TDS value of the water in the liquid heating container is displayed on the display screen.
  • the heating element is controlled to heat.
  • the user can perform selective operations according to his own needs: for example, the user can choose to replace the water in the liquid heating container, the replacement method can be to refill pure water, or the user heats the liquid After the water in the container is poured into the purification device for purification, it is refilled into the liquid heating container.
  • the alarm can be automatically cancelled; or when the TDS sensor 30 again detects that the TDS value of the water in the liquid heating container is less than the preset TDS value, the alarm can be automatically cancelled.
  • the user can also choose not to replace the water in the liquid heating container. For example, the purpose of the user's boiling water is to wash dishes, wash the face, etc. At this time, the user can manually turn off the alarm device to cancel the alarm.
  • the preset TDS value is 10ppm-50ppm, for example, the preset TDS value is 10ppm, 20 ppm or 50ppm etc.
  • Step S30 based on the TDS value of the water in the liquid heating container being less than the preset TDS value, and receiving the heating instruction, controlling the heating element to heat.
  • the TDS value of the water in the liquid heating container is less than the preset TDS value, and the user can directly drink the water in the liquid heating container, that is, the heating element does not work; and after receiving the heating instruction, the heating element heats.
  • step S40 based on not receiving the heating instruction, the heating element is controlled not to be heated.
  • the liquid heating container can serve the purpose of detecting the water quality, so it can be used as a test. At this time, heating is not required, so after obtaining the test result, the controller does not issue a heating command to the heating element. At this time, the heating element does not work, and only when the user needs hot water, the controller issues a heating instruction to the heating element for heating. For example, when it is detected that the TDS value of the water in the liquid heating container is less than the preset TDS value, the user can directly drink the water in the liquid heating container, that is, the heating element may not work. For another example, when the TDS value of the water in the liquid heating container is greater than or equal to the preset TDS value, the water quality is poor and not suitable for drinking, so the heating element does not work at this time, but waits for the user to change the water.
  • the liquid heating container since the liquid heating container does not automatically heat the water after detecting the water, it provides the user with a variety of options, making the user have a variety of options to facilitate the user's use of the liquid heating container .
  • the alarm device issues an alarm to prompt the user to make a choice, such as replacing the water in the liquid heating container or ignoring the alarm and other operations
  • the heating element will not work immediately, but only when the TDS value of the water in the liquid heating container is less than the preset TDS value, the next operation will be performed.
  • control method of the liquid heating container further includes the following steps:
  • the heating instruction includes a specific heating temperature, and the user can set a specific heating temperature as needed, for example, 100°C, 80°C, or 50°C.
  • the heating command also includes a heating state, such as a boiling state, a heat preservation state, or a preheating state, etc.
  • the heating power or heating temperature in different states is different.
  • the heating command may also include a specific heating duration.
  • the heating element is controlled to quickly heat the water in the liquid heating container to the boiling point with high power.
  • the boiling temperature refers to 100°C.
  • the boiling temperature varies in different altitudes.
  • the TDS value of the water in the liquid heating vessel is greater than or equal to the preset TDS value, the water quality is poor, so after heating the water to the boiling point to meet the temperature required by the user, reduce the heating power of the heating element and change to low-power heating, so that The water in the liquid heating vessel boils slowly to achieve the effect of removing chlorine. If the heating element continues to be heated with high power after the water in the liquid heating container reaches the boiling point, it will cause the water in the liquid heating container to tumbling and overflowing, so the use of low-power heating in this application can achieve small tumbling removal The effect of chlorine.
  • the high power is 1000W-1800W, for example, the high power may be 1000W, 1200W, or 1800W.
  • the power of the heating element may be fixed, for example, fixed at 1600W or other values; or, the power of the heating element may be changed, for example, the initial power of 1800W, When the temperature of the water in the liquid heating container reaches 80°, it is changed to 1000W for heating to avoid excessive water tumbling and overflow.
  • S54 Control the heating element to stop heating based on the duration that the heating element is heated at a low power to the first preset duration.
  • the low power is 1/10-1/5 of the high power.
  • the low power is 200W-600W, for example, the low power is 200W, 300W, or 600W.
  • the first preset duration is 20S-60S, or the first preset duration may be other values, and the user can customize it.
  • the heating element is controlled to heat the water in the liquid heating container to the boiling point and then stop heating.
  • control method of the liquid heating container further includes the following steps:
  • the preset temperature is less than the boiling temperature.
  • the preset temperature may be 60°C, 70°C or 80°C.
  • the liquid heating container is controlled to enter a heat preservation state, which is a state where heating and standby are alternately operated, that is, the heating element is heated at a low power for a preset time and then stops heating for a period of time, and so on.
  • the temperature of the water in the liquid heating container can be avoided to be too low, and the water in the liquid heating container can be intermittently rolled to remove chlorine.
  • the heat preservation state may also be a state where the heating element is continuously heated with low power.
  • the heating element is controlled to heat the water in the liquid heating container to a preset temperature, and the liquid heating container is controlled Entering the insulation state includes the following steps:
  • the TDS value of the water in the liquid heating vessel is greater than or equal to the preset TDS value, then by heating the water to the boiling point, it can achieve a sufficient sterilization and disinfection effect through high temperature, avoiding the health problems caused by poor water quality .
  • the water in the liquid heating container can be slowly boiled by controlling the heating element to heat with a small power to achieve the effect of removing chlorine.
  • the heating element In the process of heating the heating element with low power, because the heating power of the heating element is small, the temperature of the water in the liquid heating container will gradually decrease until it reaches the preset temperature; or in this process, when the heating element is low After the power is heated to a certain time, the heating element is controlled to stop heating, and the water in the liquid heating container is naturally cooled to the preset temperature. When the temperature of the water in the liquid heating container drops to a preset temperature, the liquid heating container is controlled to enter a heat preservation state.
  • control method of the liquid heating container further includes the following steps:
  • the reminder device may be a buzzer, a warning light, a display screen, or the like. After entering the heat preservation state, the reminding device sends out a prompt indicating that the water has been burned, avoiding the phenomenon that the user mistakenly judges that the water has been burned when the water is initially tumbled.
  • the reminder device and the alarm device are the same component, that is, the alarm device is provided on the liquid heating container, and the alarm device serves as the reminder device; of course, in other embodiments, the reminder device and the alarm can be provided on the liquid heating container at the same time Install two.
  • the heating instruction is to heat water to a preset temperature
  • the heating element is controlled to heat the liquid to the container After the water in it is heated to the preset temperature, it enters the heat preservation state.
  • the TDS value of the water in the liquid heating container is less than the preset TDS value, the water quality is better, so no chlorine removal treatment is needed, so there is no need to heat to the boiling point for sterilization and chlorine removal, so electricity can be saved.
  • the present application also proposes a liquid heating container.
  • the liquid heating container may specifically be an electric kettle or a health pot.
  • the liquid heating container includes:
  • the TDS sensor 30 is used to detect the TDS value of the water in the liquid heating container
  • Alarm device 83 set to issue an alarm
  • a heating element 82 configured to heat the water in the liquid heating container
  • the controller 81 is configured to be electrically connected to the TDS sensor 30, the alarm device 83, and the heating member 82, respectively, and the controller 81 is used to heat the water in the liquid container according to the TDS value greater than or equal to the Set a TDS value to control the alarm device 83 to issue an alarm; the controller 81 also controls the heating element 82 to heat according to the TDS value of the water in the liquid heating container being less than a preset TDS value and receiving a heating command In addition, the controller 81 also controls the heating element 82 not to heat based on the failure to receive the heating command. In addition, the controller 81 can also control the heating element 82 to heat up after the alarm is released.
  • the alarm device 83 issues an alarm to prompt the user to make a choice, such as replacing the water in the liquid heating container or ignoring the alarm, etc. Operation, at this time, the heating element 82 does not work immediately, but needs to perform the next operation after the alarm is released.
  • the heating element 82 immediately enters the heating state when the TDS value is detected to be greater than or equal to the preset TDS value, in this way, when the user needs to replace the water in the liquid heating container, the user can There are many options, without the need to forcibly interrupt the heating process, nor to wait until the heating process of the liquid heating container is completed before pouring the hot water and re-burning the water, thus avoiding the waste of electrical energy and saving electricity costs.
  • the liquid heating container includes:
  • the water In normal mode, the water is heated to the boiling point, and then cooled to the preset temperature by natural cooling or instant cooling;
  • the liquid heating container does not perform the rapid heating mode.
  • the alarm device 83 when the alarm device 83 issues an alarm, it indicates that the TDS value of the water is greater than or equal to the preset TDS value, that is, the water quality is poor, so even if the liquid heating container obtains a heating command, the rapid heating mode is not executed, but instead In the normal mode, boil the water for sterilization and dechlorination to avoid health problems caused by poor water quality.
  • the liquid heating container executes the rapid heating mode to heat the water to the temperature required by the user.
  • the instant cooling method can be implemented by the following various methods.
  • the liquid heating container further includes a cooling device.
  • the cooling device can cool the water heated in the liquid heating container.
  • the cooling device can be an electronic device. Ice bile or evaporator, etc. Or a fan can be installed in the liquid heating container to accelerate air convection and achieve rapid cooling of hot water.
  • the hot water pipe of the liquid heating container may be connected to an external cooling device for cooling.
  • the TDS sensor 30 includes a connection portion 31, a TDS probe 32, and a temperature sensor 33,
  • the TDS probe 32 is disposed on the connecting portion 31.
  • the TDS probe 32 includes a conductive housing 321 having a mounting cavity, a temperature sensor 33 is disposed in the mounting cavity, and a non-conductive layer is provided between the temperature sensor 33 and the conductive housing 321 40.
  • the connecting portion 31 is generally provided in a column shape, for example, a cylindrical shape or an elliptical column shape.
  • the connecting portion 31 may also have a shape such as a square column shape.
  • the temperature of the water detected by the temperature sensor 33 provides a temperature reference for the TDS sensor 30, which can The TDS value is corrected to keep the TDS value from changing drastically with temperature, so the accuracy of the test results can be improved.
  • the conductive housing 321 Since the housing of the TDS probe 32 that houses the temperature sensor 33 is a conductive housing 321, the conductive housing 321 has a good thermal conductivity, and can transmit the water temperature in the kettle body 10 to the temperature sensor 33 to ensure that the temperature sensor 33 can measure well The temperature in the kettle body 10 is obtained. In addition, since the non-conductive layer 40 is filled between the conductive housing 321 and the temperature sensor 33, it is possible to avoid the influence of the temperature sensor 33 on the conductive housing 321 and cause an error in the conductivity measured by the TDS probe 32.
  • two TDS probes 32 are arranged at intervals on the connecting portion 31, one of the TDS probes 32 is provided with a temperature sensor 33, and by placing the two TDS probes 32 on one of the connecting portions 31, the degree of integration is high, and Preventing the loss of one of the TDS probes 32 also facilitates the assembly of the TDS sensor 30.
  • two connection parts 31 may be provided, and one TDS probe 32 is provided on each connection part 31.
  • the two TDS probes 32 are electrically connected to the electric control board of the liquid heating container through wires.
  • the conductivity of the water increases, and between the two TDS probes 32 Through the water communication, a loop is formed between the two TDS probes 32, thereby measuring the conductivity of the water, and then obtaining the TDS value. Because the conductivity varies with the electrolyte in the water, the quantity of total dissolved solids in the water can be determined according to the conductivity to understand the water quality.
  • the temperature sensor 33 is disposed away from the center of the conductive housing 321. Specifically, the temperature sensor 33 is disposed near a side wall of the conductive housing 321, so that the distance between the temperature sensor 33 and the water in the kettle body 10 can be shortened. It is more conducive to transferring heat.
  • the temperature sensor 33 is a thermistor, and the thermistor is elongated and extends along this side wall of the conductive housing 321.
  • the non-conductive layer 40 is a resin filled between the conductive housing 321 and the temperature sensor 33, such as an epoxy resin.
  • the resin By filling the resin, the conductive housing 321 and the thermistor can be isolated and play an insulating role It can also fix the temperature sensor 33, preventing the temperature sensor 33 from shaking in the conductive housing 321.
  • the TDS sensor 30 is installed in the pot body 10 of the liquid heating container.
  • the pot body 10 is provided with a concession hole (not shown) corresponding to the TDS probe 32.
  • the TDS probe 32 extends into the pot body 10 through the concession hole, and the TDS sensor 30 Sealed with the yield hole. Since the temperature sensor 33 is integrated in one of the TDS probes 32, there is no need to re-open the temperature sensor 33 on the pot body 10. Therefore, the number of openings on the pot body 10 can be reduced, and the sealing cost of the pot body 10 can be reduced.
  • the outer periphery of the jug body 10 is also surrounded by an outer shell (not shown).
  • the jug body 10 is a liner provided in the outer shell.
  • the liner has a bottom wall and a side wall.
  • the bottom wall and the side wall are connected to each other to surround It is provided to form a containing cavity for containing liquid such as water.
  • the liner is a stainless steel liner
  • the bottom wall is a thermally conductive bottom wall, which can transfer the heat generated by the heating element below the bottom wall to the liquid in the liner.
  • the TDS sensor 30 is installed on the bottom wall of the pot body 10, that is, a yield hole is provided on the bottom wall; of course, the TDS sensor 30 can also be installed on the side wall of the pot body 10.
  • An elastic seal can be provided between the connecting portion 31 and the yield hole for sealing.
  • the connecting portion 31 and the yield hole can also be sealed by viscose or welding.
  • the connecting portion 31 may be located outside the pot body 10, that is, only the TDS probe 32 extends into the pot body 10 from the concession hole, and one end surface of the connecting portion 31 is in sealing contact with the outer surface of the pot body 10;
  • the part of the relief hole can also be extended into the pot body 10, and the outer peripheral surface of the connecting portion 31 is in sealing contact with the hole wall of the relief hole.
  • the liquid heating container further includes an insulating member 50.
  • the insulating member 50 is sleeved outside the TDS probe 32, and the pot body 10 is a conductive member.
  • the function of the insulating member 50 is to electrically isolate the TDS probe 32 from the pot body 10 of conductive material to prevent the TDS probe 32 from contacting the pot body 10. Therefore, the material of the insulating member 50 may be a non-conductive material, for example .
  • the insulating member 50 is a sealing ring, and the material of the sealing ring is silicone, rubber, silicone rubber, etc., so as to play the role of isolation, it can also play a sealing role, avoiding the gap between the insulating member 50 and the TDS probe 32 And leaking.
  • the insulating member 50 may also be a plastic member or the like.
  • the TDS probe 32 is insulated from the TDS probe 32 and the pot body 10 by the insulating member 50 to prevent the TDS probe 32 from contacting the pot body 10, thereby avoiding the conductivity measured by the TDS probe 32 from being affected
  • the influence of the kettle body 10 itself ensures that the conductivity measured by the TDS probe 32 is the conductivity of the water body, rather than the conductivity of the kettle body 10, thereby improving the accuracy of the detection result of the TDS sensor 30.
  • the insulating member 50 is disposed near the root of the TDS probe 32 so that the TDS probe 32 and the pot body 10 are isolated to avoid the TDS probe 32 from contacting the wall surface of the pot body 10.
  • the insulating member 50 may be an integral part, and two through holes are opened on the insulating member 50, and the two TDS probes 32 are sealed through the two through holes in one-to-one correspondence; in other embodiments,
  • the insulating member 50 may include two independently disposed isolation sleeves, and the two isolation sleeves are connected to the two TDS probes 32 in a one-to-one correspondence.
  • the insulating member 50 is an elastic seal.
  • the material of the elastic seal is silicone, rubber, silicone rubber, etc. In this way, it can play the role of isolation at the same time, and can also play a sealing role to avoid the gap between the insulating member 50 and the TDS probe 32 and water leakage.
  • the insulating member 50 is in sealing contact with the hole wall of the yield hole.
  • the insulating member 50 includes an insulating sleeve 51 and a sealing sleeve 52 connected to each other.
  • the insulating sleeve 51 is sleeved on the TDS probe 32.
  • the insulating sleeve 51 is in sealing contact with the hole wall of the yield hole.
  • the sealing sleeve The barrel 52 is sleeved on the connecting portion 31, and the sealing sleeve 52 is in sealing engagement with the yield hole.
  • the outer diameter of the sealing sleeve 52 is larger than the outer diameter of the insulating sleeve 51, so that the connection between the sealing sleeve 52 and the insulating sleeve 51 forms a sealing shoulder 53, the sealing shoulder 53 and the body 10
  • the outer surface is sealed and abutted, which increases the contact area between the insulating sleeve 51 and the outer surface of the pot body 10, and plays a better sealing effect.
  • the sealing sleeve 52 is restricted from moving toward the yield hole, and at the same time, the sealing sleeve 52 can also limit the insulating sleeve 51 to avoid the insulating sleeve 51
  • the package of the TDS probe 32 is detached toward the inside of the kettle body 10.
  • the sealing sleeve 52 and the insulating sleeve 51 are connected to each other to avoid the occurrence of a connection gap between the two, so a better sealing effect can be achieved.
  • the sealing sleeve 52 may partially extend into the yield hole and sealingly abut the hole wall of the yield hole.
  • the material of the connection portion 31 is a non-conductive material, such as silicone, rubber, or plastic.
  • At least one sealing protrusion 54 is provided on the sealing shoulder 53.
  • the sealing protrusion 54 extends annularly along the circumferential direction of the sealing sleeve 52, and the sealing protrusion 54 seals with the outer surface of the kettle body 10 Abut. Since the width of the sealing protrusion 54 is narrow, the sealing protrusion 54 can collapse along the inner and outer sides of the sealing sleeve 52 in the radial direction when being squeezed, the deformation space of the sealing protrusion 54 is large, and the deformation is more flexible Therefore, even in the case where the outer surface of the pot body 10 is not flat, the sealing protrusion 54 can play a good sealing role by adjusting its deformation.
  • the width of the sealing protrusion 54 gradually decreases, which can make the deformation of the sealing protrusion 54 more flexible.
  • a plurality of sealing protrusions 54 may be provided on the sealing cover, and the plurality of sealing protrusions 54 are arranged in a concentric ring shape.
  • the insulating sleeve 51 can be in sealing contact with the hole wall of the yield hole on the kettle body 10, so that the insulating sleeve 51 forms a first seal to prevent water from TDS Leakage between the probe 32 and the hole wall of the relief hole; the sealing sleeve 52, the sealing shoulder 53 and the sealing protrusion 54 form a second seal to prevent water from leaking from the connection between the relief hole and the connection portion 31 To multiple sealing effects.
  • the end of the connecting portion 31 away from the TDS probe 32 is exposed outside the sealing sleeve 52, and the end of the connecting portion 31 is provided with a mounting lug 311, the mounting lug 311
  • the first installation position is an installation hole 311a
  • the second installation position is a screw hole column 13 protrudingly provided on the outer surface of the pot body 10, and the screw penetrates the installation hole 311a and the screw hole column 13 in order to fix the TDS sensor 30 On the screw hole column 13.
  • the mounting hole 311a may be a round hole opened on the mounting lug 311. Since the round hole is opposed to the screw hole column 13, the installation accuracy of the TDS sensor 30 can be improved, and the TDS probe can be guaranteed 32 can be accurately extended into the yield hole.
  • the mounting hole 311a may also be a mounting notch formed on the mounting lug 311, which is convenient for mold release and easy to close the deviation of the screw value relative to the yield hole.
  • the first installation position may also be a slot
  • the second installation position may be a structure such as a buckle.
  • two mounting lugs 311 are provided on the outer peripheral wall of the connecting portion 31, and the two mounting lugs 311 are arranged symmetrically with the axis of the connecting portion 31 as the center.
  • the connecting portion 31 is an elastic seal and is integrally formed with the insulating member 50.
  • the connecting portion 31 itself is made of silicone, rubber, or silicone rubber.
  • the sealing member is made, so that no structure such as a sealing ring needs to be set outside the connecting portion 31 to seal the yield hole, and the sealing effect can be achieved only by the connecting portion 31 itself.
  • the connecting portion 31 extends at least partially into the pot body 10, and the outer peripheral surface of the connecting portion 31 is in sealing contact with the hole wall of the yield hole.
  • the connecting portion 31 may also be located outside the pot body 10, and the end surface of the connecting portion 31 is in sealing contact with the outer surface of the pot body 10.
  • the connecting portion 31 may be provided in a block shape.
  • the connecting portion 31 is provided in a plate shape, and the connecting portion 31 is provided with two fixing holes.
  • the two TDS probes 32 and the two fixing holes correspond to each other to tightly fit.
  • the insulating member 50 will The connection portion 31 is wrapped.
  • the connecting portion 31 is a plastic plate or a plate made of other materials, and is used to provide a fixed carrier for the two TDS probes 32. Both ends of the TDS probe 32 are exposed outside the insulating member 50 to facilitate the connection of the wires.
  • a limiting shoulder 55 is provided on the outer peripheral wall of the insulating member 50, and one side of the limiting shoulder 55 is in contact with the outer surface of the pot body 10.
  • the liquid heating container further includes a fixing plate 70, and one end of the fixing plate 70 The other end of the pot body 10 is fixed with a fitting hole for the fitting portion 31 to fit through. The edge of the fitting hole abuts the opposite side of the limiting shoulder 55.
  • the TDS sensor 30 can be restricted from moving toward the inside of the pot body 10; since the other side of the limiting shoulder 55 is in contact with the fixing plate 70 Therefore, the fixing plate 70 can restrict the TDS sensor 30 from moving away from the pot body 10, thereby fixing the TDS sensor 30.
  • the fixing plate 70 can be specifically screwed or snapped with the pot body 10.
  • the outer surface of the pot body 10 is convexly provided with a screw hole column 13, and one end of the fixing plate 70 is provided with a connecting hole 70a corresponding to the screw hole of the screw hole column 13, and the screw is penetrated through the connecting hole 70a and the screw hole in order 70 is fixed on the screw hole column 13.
  • the lid 20 of the liquid heating container includes a fixed lid portion 21 and a movable lid portion 22 that cover the kettle body 10 together.
  • the fixed lid portion 21 is fixed to the kettle body 10, and the movable lid portion 22 and the fixed lid portion 21 are movable
  • the connection is preferably a pivot connection. Of course, it can also be screwed or snapped.
  • a display device 60 is provided on the fixed cover 21, and the display device 60 is electrically connected to the TDS sensor 30.
  • the pot cover 20 may be a unitary body and pivotally connected to the pot body 10 to achieve full opening of the pot mouth.
  • the pot lid 20 is divided into two parts: a fixed lid part 21 and a movable lid part 22, the movable lid part 22 is pivotally connected to the fixed lid part 21, and the pot mouth is opened and opened by turning the movable lid part 22 up and down Closed to achieve normal use of the liquid heating container.
  • the fixed cover part 21 is fixedly connected to the pot body 10, and there is no need to reserve a movable gap between the fixed cover part 21 and the pot body 10, by setting the display device 60 on the fixed cover part 21, the display device 60 and the bottom of the pot body 10
  • the TDS sensor 30 and other electrical components of the electrical connection line need not be provided with an exposed active section to adapt to the opening and closing of the lid 20, which can facilitate the setting of the electrical connection line.
  • the width of the handle is narrow, which is not conducive to the installation of a display device with a large area.
  • the top surface area of the fixed cover 21 can be relatively large.
  • a display device with a larger area can be correspondingly adopted, so that the content displayed by the display device is more eye-catching.
  • the display device in this application refers to a display screen.
  • the present application also proposes a computer-readable storage medium on which a liquid heating container processing program is stored, which is implemented by the controller 81 when the liquid heating container processing program is executed by the controller 81 as described in the above embodiments Documented method.

Abstract

一种液体加热容器的控制方法、液体加热容器和计算机可读存储介质,液体加热容器的控制方法包括:获取液体加热容器内水的TDS值;基于液体加热容器内水的TDS值大于或等于预设TDS值,控制报警装置发出警报;基于液体加热容器内水的TDS值小于预设TDS值,且接收到加热指令,控制加热件进行加热;基于未接收到加热指令,控制加热件不进行加热。

Description

液体加热容器及其控制方法、计算机可读存储介质
本申请要求于2018年12月3日提交中国专利局、申请号为201811471859.5、发明名称为“液体加热容器及其控制方法、计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请还要求于2018年12月3日提交中国专利局、申请号为201822021047.2、发明名称为“探头组件和液体加热容器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请还要求于2018年12月3日提交中国专利局、申请号为201822021713.2、发明名称为“液体加热容器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及家用电器领域,特别涉及一种液体加热容器的控制方法、液体加热容器和计算机可读存储介质。
背景技术
现如今,由于健康意识的逐渐加强,用户对水质的要求越来越高,因此用户往往希望能够直观了解到所喝的水是否干净。针对此,目前较多的液体加热容器上都设有TDS传感器用于检测水中的TDS值。但是一般的液体加热容器中,即使检测到水的TDS值较高,在提示用户的同时,液体加热容器是直接进入加热状态的,并不能够为用户提供多种选择。若TDS值较高的水不能够满足用户的需求,用户只能够强行中断液体加热容器的加热或是待液体加热容器加热完成后再将水倒掉,如此导致电能的浪费。
申请内容
本申请的主要目的是提出一种液体加热容器的控制方法,旨在避免电能的浪费,且能够更好的达到用户用水的需求。
为实现上述目的,本申请提出的液体加热容器的控制方法,包括:
获取所述液体加热容器内水的TDS值;
基于所述液体加热容器内水的TDS值大于或等于预设TDS值,控制报警装置发出警报;
基于所述液体加热容器内水的TDS值小于预设TDS值,且接收到加热指令,控制加热件进行加热;
基于未接收到加热指令,控制加热件不进行加热。
可选地,所述液体加热容器的控制方法还包括以下步骤:
获取所述液体加热容器的加热指令;
基于所述加热指令为将水加热到沸点,且所述液体加热容器内水的TDS值大于或等于预设TDS值,控制所述加热件以大功率将所述液体加热容器内的水加热到沸点;
基于所述液体加热容器内的水温达到沸点,控制所述加热件以小功率加热;
基于所述加热件以小功率加热的时长达到第一预设时长,控制所述加热件停止加热。
可选地,所述小功率为所述大功率的1/10-1/5。
可选地,所述液体加热容器的控制方法还包括以下步骤:
获取所述液体加热容器的加热指令;
基于所述加热指令为将水加热到预设温度,控制所述加热件将所述液体加热容器内的水加热到预设温度,并控制所述液体加热容器进入保温状态;
其中,所述预设温度小于沸点温度。
可选地,基于所述加热指令为将水加热到预设温度,控制所述加热件将所述液体加热容器内的水加热到预设温度,并控制所述液体加热容器进入保温状态具体包括以下步骤:
基于所述加热指令为将水加热到预设温度,且所述液体加热容器内水的TDS值大于或等于预设TDS值,控制所述加热件以大功率将所述液体加热容器内的水加热到沸点,再控制所述加热件以小功率加热;
基于所述液体加热容器内水温下降到预设温度,控制所述液体加热容器进入保温状态。
可选地,所述保温状态为加热与待机交替运行的状态。
可选地,所述液体加热容器的控制方法还包括以下步骤:
基于所述液体加热容器进入保温状态,控制提醒装置发出提示。
本申请还提出一种液体加热容器,包括:
TDS传感器,用于检测所述液体加热容器内水的TDS值;
报警装置,用于发出警报;
加热件,用于对所述液体加热容器内的水进行加热;以及,
控制器,分别与所述TDS传感器、所述报警装置和所述加热件电连接,所述控制器基于所述液体加热容器内水的TDS值大于或等于预设TDS值,控制所述报警装置发出警报;所述控制器还基于所述液体加热容器内水的TDS值小于预设TDS值,且接收到加热指令,控制所述加热件进行加热,且所述控制器还基于未接收到加热指令,控制所述加热件不进行加热。
可选地,所述液体加热容器包括:
速热模式,将TDS值小于预设TDS值的水加热到预设温度;和
常规模式,将水加热到沸点,再自然冷却或即冷方式降至预设温度;
若所述报警装置发出警报后,所述液体加热容器不进行速热模式。
本申请还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有液体加热容器处理程序,所述液体加热容器处理程序被控制器执行时实现如上所述的液体加热容器的控制方法的步骤。
本申请中,当液体加热容器内水的TDS值大于或等于预设TDS值时,报警装置发出警报,提示用户做出选择,例如重新替换液体加热容器内的水或者是忽略此次报警等操作,此时加热件并不会立即进行工作,而是需要在警报解除后,才会进行下一步操作。如此,相对于检测到TDS值大于或等于预设TDS值时,加热件即刻进入加热状态的情况而言,采用本申请这种方式,当用户需要替换液体加热容器内的水时,用户可具有多种选择,而不需要强行中断加热的过程,也不需要等到液体加热容器的加热过程完结再将热水倒掉重新烧水,因此能够避免电能的浪费,节约用电成本,且能够更好的达到用户用水的需求。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请液体加热容器的控制方法一实施例的流程示意图;
图2为图1中液体加热容器的控制方法的另一流程示意图;
图3为图1中液体加热容器的控制方法的又一流程示意图;
图4为图3中步骤S55的细化流程示意图;
图5为本申请液体加热容器一实施例的剖切示意图;
图6为图5中A处的放大图;
图7为图5中TDS传感器的结构示意图;
图8为图7中TDS传感器的俯视图;
图9为图7中TDS传感器于另一实施例的俯视图;
图10为本申请液体加热容器另一实施例的剖切示意图;
图11为图10中B处的放大图;
图12为本申请液体加热容器又一实施例的局部示意图;
图13为本申请液体加热容器的模块示意图。
附图标号说明:
标号 名称 标号 名称
10 壶体 50 绝缘件
13 螺孔柱 51 绝缘套筒
20 壶盖 52 密封套筒
21 固定盖部 53 密封肩部
22 活动盖部 54 密封凸起
30 TDS传感器 55 限位轴肩
31 连接部 60 显示装置
311 安装凸耳 70 固定板
311a 安装孔 70a 连接孔
32 TDS探头 81 控制器
321 导电壳体 82 加热件
33 温度传感器 83 报警装置
40 不导电层
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B为例”,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种液体加热容器的控制方法。
在本申请实施例中,如图1所示,该液体加热容器的控制方法包括:
步骤S10,获取所述液体加热容器内水的TDS值。
在液体加热容器内装好水后,设置在液体加热容器的TDS传感器30则检测液体加热容器内水的TDS值,并将检测到的TDS值发送给控制器。
步骤S20,基于所述液体加热容器内水的TDS值大于或等于预设TDS值,控制报警装置发出警报。
在一实施例中,报警装置为警示灯,当液体加热容器内水的TDS值大于或等于预设TDS值时,警示灯亮起,或者警示灯闪烁对用户进行提示。在其它实施例中,报警装置也可为显示屏、蜂鸣器等,液体加热容器内水的TDS值在显示屏上进行显示。
可选地,当警报解除后,控制加热件进行加热。具体地,当报警装置发出警报后,用户可根据自身需求进行选择性操作:例如,用户可选择替换液体加热容器内的水,该替换的方式可以是重新装入纯净水,或者用户将液体加热容器内的水倒入净化装置中进行净化后,再重新装入液体加热容器。当用户将壶身从底座上拿开后,警报能够自动解除;或者当TDS传感器30再次检测到所述液体加热容器内水的TDS值小于预设TDS值时,警报能够自动解除。另外,在一些情境下,用户也可选择不替换液体加热容器内的水,例如,用户烧水的目的是为了洗碗、洗脸等,此时用户可通过手动关闭报警装置来解除警报。
本实施例中,所述预设TDS值为10ppm -50ppm,例如,所述预设TDS值为10ppm、20 ppm或50ppm等。
步骤S30,基于所述液体加热容器内水的TDS值小于预设TDS值,且接收到加热指令,控制加热件进行加热。
该步骤中,在液体加热容器内水的TDS值小于预设TDS值,用户可直接饮用液体加热容器内的水,即加热件不进行工作;而在收到加热指令后,加热件进行加热。
步骤S40,基于未接收到加热指令,控制加热件不进行加热。
该步骤中,液体加热容器能够起到对水质进行检测的目的,故可将其作为检测使用,此时并不需要进行加热,故得到检测结果后,控制器并不对加热件下发加热指令,此时加热件不进行工作,仅在用户需要热水的时候,控制器才下发加热指令给加热件来进行加热。例如,当检测到液体加热容器内水的TDS值小于预设TDS值,用户可直接饮用液体加热容器内的水,即加热件可不进行工作。又例如,当所述液体加热容器内水的TDS值大于或等于预设TDS值时,水质较差不适合饮用,故此时加热件也不进行工作,而是等待用户更换水。
本实施例中,由于液体加热容器对水进行检测之后并不会自动对水进行加热,因此为用户提供了多种选择的可能性,使得用户具有多种选择,方便用户对液体加热容器的使用。
本申请中,当液体加热容器内水的TDS值大于或等于预设TDS值时,报警装置发出警报,提示用户做出选择,例如重新替换液体加热容器内的水或者是忽略此次报警等操作,此时加热件并不会立即进行工作,而是需要在液体加热容器内水的TDS值小于预设TDS值时,才会进行下一步操作。如此,相对于检测到TDS值大于或等于预设TDS值时,加热件即刻进入加热状态的情况而言,采用本申请这种方式,当用户需要替换液体加热容器内的水时,用户可具有多种选择,而不需要强行中断加热的过程,也不需要等到液体加热容器的加热过程完结再将热水倒掉重新烧水,因此能够避免电能的浪费,节约用电成本。
如图2所示,进一步地,所述液体加热容器的控制方法还包括以下步骤:
S51,获取所述液体加热容器的加热指令。
其中,加热指令包括具体的加热温度,用户可根据需要,设定具体的加热温度,例如100℃、80℃或者是50℃等等。此外,加热指令也包括加热状态,例如沸腾状态、保温状态或预热状态等,不同状态下的加热功率或加热温度是不同的。另外,加热指令还可包括具体的加热时长。
S52,基于所述加热指令为将水加热到沸点,且所述液体加热容器内水的TDS值大于或等于预设TDS值,控制所述加热件以大功率将所述液体加热容器内的水加热到沸点。
由于加热指令需要将水加热到沸点,故控制加热件以大功率快速将所述液体加热容器内的水加热到沸点。一般地,沸点温度指的是100℃,当然不同海拔地区的沸点温度各不相同。
S53,基于所述液体加热容器内的水温达到沸点,控制所述加热件以小功率加热。
由于液体加热容器内水的TDS值大于或等于预设TDS值,水质较差,故在将水加热到沸点满足用户所需的温度后,降低加热件的加热功率,改为小功率加热,使得液体加热容器内的水缓慢沸腾,达到除氯的效果。若在液体加热容器内的水达到沸点后,加热件继续以大功率加热,则会使得液体加热容器内的水大幅度翻滚而溢出,因而本申请中改用小功率加热能够达到小幅度翻滚除氯的效果。
本实施例中,大功率为1000W-1800W,例如,大功率可为1000W、1200W或者是1800W等等。在以大功率将水加热到沸点的过程中,加热件的功率可以是固定的,例如固定在1600W或其它数值;或者,加热件的功率是变化的,例如在初始以1800W的功率进行加热,在液体加热容器内的水温达到80°时改为1000W加热,以避免水过度翻滚溢出。
S54,基于所述加热件以小功率加热的时长达到第一预设时长,控制所述加热件停止加热。
本实施例中,小功率为大功率的1/10-1/5。具体地,小功率为200W-600W,例如,小功率为200W、300W或600W等数值。第一预设时长为20S-60S,或者第一预设时长还可为其它数值,用户能够进行自定义。
另外,基于所述加热指令为将水加热到沸点,且所述液体加热容器内水的TDS值小于预设TDS值,控制加热件将液体加热容器内的水加热到沸点后停止加热。
如图3所示,进一步地,所述液体加热容器的控制方法还包括以下步骤:
S51,获取所述液体加热容器的加热指令。
S55,基于所述加热指令为将水加热到预设温度,控制所述加热件将所述液体加热容器内的水加热到预设温度,并控制所述液体加热容器进入保温状态;
其中,所述预设温度小于沸点温度。
本实施例中,预设温度可为60℃、70℃或是80℃等。当加热到预设温度后,控制液体加热容器进入保温状态,该保温状态为加热与待机交替运行的状态,即加热件以小功率加热一预设时长后再停止加热一段时间,如此反复,既能够避免液体加热容器内水的温度过低,又可使液体加热容器内的水间歇性翻滚而除氯。当然,保温状态也可以是加热件以小功率持续加热的状态。
如图4所示,上述中,基于所述加热指令为将水加热到预设温度,控制所述加热件将所述液体加热容器内的水加热到预设温度,并控制所述液体加热容器进入保温状态具体包括以下步骤:
S551,基于所述加热指令为将水加热到预设温度,且所述液体加热容器内水的TDS值大于或等于预设TDS值,控制所述加热件以大功率将所述液体加热容器内的水加热到沸点,再控制所述加热件以小功率加热。
该实施例中,若液体加热容器内水的TDS值大于或等于预设TDS值,则通过将水加热到沸点能够通过高温起到充分的杀菌消毒的效果,避免水质较差带来的健康问题。其次,在达到沸点后,通过控制加热件以小功率加热能够使得液体加热容器内的水缓慢沸腾,达到除氯的效果。
S552,基于所述液体加热容器内水温下降到预设温度,控制所述液体加热容器进入保温状态。
在加热件以小功率进行加热的过程中,由于加热件的加热功率较小,故液体加热容器内的水温会逐渐降低,直至降低到预设温度;或者在这个过程中,当加热件以小功率加热到一定时间后,控制加热件停止加热,让液体加热容器内的水自然冷却到预设温度。当所述液体加热容器内水温下降到预设温度时,控制所述液体加热容器进入保温状态。
进一步地,所述液体加热容器的控制方法还包括以下步骤:
S56,基于所述液体加热容器进入保温状态后,控制提醒装置发出提示。
提醒装置可为蜂鸣器、警示灯或者显示屏等等。进入保温状态后,提醒装置发出提示表明水已烧好,避免了在水在最初进行翻滚时,用户误判水已经烧好的现象。本实施例中,提醒装置和报警装置为同一部件,即在液体加热容器上设置报警装置,该报警装置作为提醒装置;当然,其它实施例中,可在液体加热容器上同时设置提醒装置和报警装置两个。
另外,还需说明的是,当所述加热指令为将水加热到预设温度,且当所述液体加热容器内水的TDS值小于预设TDS值时,控制所述加热件将液体加热容器内的水加热到预设温度后即进入保温状态。由于液体加热容器内水的TDS值小于预设TDS值时,水质较好,故不需要进行除氯处理,因此不需要加热到沸点进行杀菌除氯,故可节省电能。
请结合参考图5至图7以及图13,本申请还提出一种液体加热容器,液体加热容器具体可为电水壶或养生壶等,液体加热容器包括:
TDS传感器30,用于检测所述液体加热容器内水的TDS值;
报警装置83,设置为发出警报;
加热件82,设置为对所述液体加热容器内的水进行加热;以及,
控制器81,设置为分别与所述TDS传感器30、所述报警装置83和所述加热件82电连接,所述控制器81用以根据所述液体加热容器内水的TDS值大于或等于预设TDS值,控制所述报警装置83发出警报;所述控制器81还根据所述液体加热容器内水的TDS值小于预设TDS值,且接收到加热指令,控制所述加热件82进行加热;此外,所述控制器81还基于未接收到加热指令,控制所述加热件82不进行加热。另外,控制器81还可根据所述警报解除后控制所述加热件82加热。
本申请中,当液体加热容器内水的TDS值大于或等于预设TDS值时,报警装置83发出警报,提示用户做出选择,例如重新替换液体加热容器内的水或者是忽略此次报警等操作,此时加热件82并不会立即进行工作,而是需要在警报解除后,才会进行下一步操作。如此,相对于检测到TDS值大于或等于预设TDS值时,加热件82即刻进入加热状态的情况而言,采用本申请这种方式,当用户需要替换液体加热容器内的水时,用户可具有多种选择,而不需要强行中断加热的过程,也不需要等到液体加热容器的加热过程完结再将热水倒掉重新烧水,因此能够避免电能的浪费,节约用电成本。
本实施例中,液体加热容器包括:
速热模式,将TDS值小于预设TDS值的水加热到预设温度;以及
常规模式,将水加热到沸点,再自然冷却或即冷方式降至预设温度;
若所述报警装置83发出警报后,所述液体加热容器不进行速热模式。
该实施例中,当报警装置83发出警报后,表明水的TDS值大于或等于预设TDS值,即水质较差,故即使液体加热容器获取到加热指令也不执行速热模式,而是进行常规模式,将水烧开进行杀菌除氯等,从而避免水质较差带来的健康问题。通常,在TDS值小于预设TDS值时,液体加热容器执行速热模式,将水加热到用户需要的温度即可。
本实施例中,即冷方式可通过以下多种手段进行实现,例如,该液体加热容器还包括一制冷装置,制冷装置可对液体加热容器内加热后的水进行制冷,该制冷装置可为电子冰胆或蒸发器等。或者在液体加热容器内设置风扇来加快空气对流,实现热水的快速冷却。另外,也可将液体加热容器的热水管连接外部的制冷装置来进行冷却。
具体地,TDS传感器30包括连接部31、TDS探头32以及温度传感器33, TDS探头32设置在连接部31上,TDS探头32包括具有一安装腔的导电壳体321,温度传感器33设于所述安装腔内,温度传感器33与导电壳体321之间设有不导电层40。
本实施例中,连接部31通常呈柱状设置,例如圆柱状或是椭圆柱状,当然,连接部31还可呈方形柱状等形状。
由于在温度升高时,水的电导率也会升高,若不考虑温度对水的电导率的影响,将导致TDS传感器30的检测结果偏差较大,故在电控板上可预存一关于温度的函数Y=f(x)进行调整,其中x为温度,通过将温度传感器33与电控板电连接,温度传感器33所检测到的水温为TDS传感器30提供温度参考,从而能够对水的TDS值进行校正,保持TDS值不随温度的变化而剧烈变化,故可提高检测结果的准确性。由于容置温度传感器33的TDS探头32其壳体是导电壳体321,导电壳体321的导热性能较好,能够将壶体10内水温传递给温度传感器33,保证温度传感器33能够较好测得壶体10内温度。另外,由于在导电壳体321和温度传感器33之间填充有不导电层40,故可避免温度传感器33对导电壳体321造成影响而导致TDS探头32测得的电导率的误差。
可选地,连接部31上间隔设有两TDS探头32,其中一TDS探头32内设有温度传感器33,通过将两个TDS探头32设置在其中一个连接部31上,集成化程度高,可防止其中一个TDS探头32丢失,同时也利于TDS传感器30的组装。另外,在其它实施例中,可设置两个连接部31,每一连接部31上设置一个TDS探头32。
具体而言,两个TDS探头32通过导线电连接到液体加热容器的电控板上,当水质被污染或者融进了其它电解质时,水的电导率升高,则两个TDS探头32之间通过水连通,两个TDS探头32之间形成回路,从而测得水的电导率,进而得出TDS值。由于电导率随水中电解质的不同而不同,从而可以根据电导率判定水中总溶解性固体的数量,了解水质。
本实施例中,温度传感器33偏离导电壳体321的中心设置,具体而言,温度传感器33靠近导电壳体321的一侧壁设置,如此能够缩短温度传感器33与壶体10内水的距离,更有利于传递热量。可选地,温度传感器33为热敏电阻,且热敏电阻呈长条状,并沿导电壳体321的这一侧壁延伸。
可选地,不导电层40为填充于导电壳体321和温度传感器33之间的树脂,例如环氧树脂,通过填充树脂,既能够隔离导电壳体321和热敏电阻,起到绝缘的作用,又可对温度传感器33起到固定作用,防止了温度传感器33在导电壳体321内的晃动。
具体地,TDS传感器30安装于液体加热容器的壶体10,壶体10对应TDS探头32设有让位孔(未标示),TDS探头32经让位孔伸入壶体10内,TDS传感器30与让位孔密封配合。由于温度传感器33是集成在其中一个TDS探头32内的,在壶体10上不需要针对温度传感器33重新开孔,故可减少壶体10上开孔的数量,降低壶体10的密封成本。本实施例中,壶体10的外围还围设有外壳(未标示),壶体10为设置在外壳内的内胆,内胆具有底壁和侧壁,底壁和侧壁相互连接而围设形成一用于容置液体例如水的容置腔。通常内胆为不锈钢内胆,底壁为导热底壁,能够将位于底壁下方的加热件所产生的热量传递到内胆内的液体中。可选地,TDS传感器30安装于壶体10的底壁上,即在底壁上设有让位孔;当然,TDS传感器30也可安装于壶体10的侧壁上。
连接部31与让位孔之间可设置弹性密封件进行密封,当然,连接部31与让位孔之间还可通过粘胶密封或焊接密封等。连接部31可位于壶体10的外侧,即仅TDS探头32自让位孔伸入到壶体10内,连接部31的一端面与壶体10的外表面密封抵接;另外,连接部31也可自让位孔部分伸入到壶体10内,连接部31的外周面与让位孔的孔壁密封抵接。
进一步地,液体加热容器还包括绝缘件50,绝缘件50套设于TDS探头32外,该壶体10为导电件。本实施例中,绝缘件50的作用是将TDS探头32和导电材质的壶体10进行电隔离,避免TDS探头32接触到壶体10,故绝缘件50的材质为非导电材质即可,例如,绝缘件50为密封圈,密封圈的材质为硅胶、橡胶、硅橡胶等等,如此在起到隔离作用的同时,还能够起到密封作用,避免绝缘件50与TDS探头32之间产生间隙而漏水。此外,绝缘件50也可为塑料件等。
本申请中,通过在TDS探头32外套设绝缘件50,使得TDS探头32和壶体10被隔离开来,避免TDS探头32与壶体10接触,从而避免了TDS探头32测得的电导率受到壶体10自身的影响,如此保证了TDS探头32测得的电导率为水体的电导率,而不是壶体10的电导率,从而提高了TDS传感器30检测结果的准确性。
可选地,绝缘件50靠近TDS探头32的根部设置,使得TDS探头32和壶体10被隔离开来,以避免TDS探头32与壶体10的壁面接触。
本实施例中,绝缘件50可为一个整体部分,且在绝缘件50上开设有两个贯孔,两个TDS探头32一一对应从两贯孔中密封穿设;在其它实施例中,绝缘件50可包括两个独立设置的隔离套,两个隔离套一一对应套接在两个TDS探头32上。
在一些实施例中,绝缘件50为弹性密封件。弹性密封件的材质为硅胶、橡胶、硅橡胶等等,如此在起到隔离作用的同时,还能够起到密封作用,避免绝缘件50与TDS探头32之间产生间隙而漏水。可选地,绝缘件50与让位孔的孔壁密封抵接。
一实施例中,绝缘件50包括相互连接的绝缘套筒51和密封套筒52,绝缘套筒51套设于TDS探头32,绝缘套筒51与让位孔的孔壁密封抵接,密封套筒52套设于连接部31,密封套筒52与让位孔密封配合。可选地,密封套筒52的外径大于绝缘套筒51的外径,以使得密封套筒52和绝缘套筒51的连接处形成一密封肩部53,密封肩部53与壶体10的外表面密封抵接,如此增大了绝缘套筒51与壶体10外表面的接触面积,起到了更好的密封效果。且由于绝缘套筒51抵接在壶体10外表面,从而限制了密封套筒52朝让位孔内移动,同时密封套筒52还可对绝缘套筒51进行限位,避免绝缘套筒51朝壶体10内脱离对TDS探头32的包裹。再者,密封套筒52和绝缘套筒51相互连接能够避免两者之间连接缝隙的产生,因此可以起到更好的密封效果。在其它实施例中,密封套筒52可部分伸入到让位孔内,并与让位孔的孔壁密封抵接。本实施例中,连接部31的材质为非导电材质,例如硅胶、橡胶或塑料等。
一实施例中,密封肩部53上设有至少一密封凸起54,密封凸起54沿密封套筒52的周向延伸而呈环状设置,密封凸起54与壶体10的外表面密封抵接。由于密封凸起54的宽度较窄,在被挤压时,密封凸起54能够沿密封套筒52的径向方向上的内外两侧坍塌,密封凸起54的可变形空间大,形变更加灵活,故即使在壶体10的外表面不平整的情况下,密封凸起54也能够通过调整自身形变来起到很好的密封作用。可选地,在远离密封套筒52的方向上,密封凸起54的宽度逐渐减小,如此可使得密封凸起54形变更加灵活。在密封盖上可设置多个密封凸起54,多个密封凸起54呈同心环状设置。
在连接部31位于壶体10外的实施例中,绝缘套筒51可与壶体10上的让位孔的孔壁密封抵接,如此绝缘套筒51形成第一道密封,避免水从TDS探头32与让位孔的孔壁之间漏出;密封套筒52、密封肩部53以及密封凸起54形成第二道密封,避免水从让位孔与连接部31的连接处漏出,从而起到多重密封作用。
一实施例中,请结合参考图4和图5,连接部31的远离TDS探头32的一端显露在密封套筒52外,且连接部31的该端设有安装凸耳311,安装凸耳311上设有第一安装位,壶体10上设有与第一安装位安装的第二安装位。可选地,第一安装位为安装孔311a,第二安装位为凸设在壶体10外表面的螺孔柱13,螺钉依次穿设安装孔311a和螺孔柱13,将TDS传感器30固定在螺孔柱13上。
本实施例中,如图8所示,安装孔311a可为开设在安装凸耳311上的圆孔,由于圆孔与螺孔柱13相对,如此可提高TDS传感器30安装准确性,保证TDS探头32可准确伸入到让位孔。另外,如图9所示,安装孔311a也可为开设在安装凸耳311上的安装缺口,既方便出模也容易中合掉螺值相对让位孔的偏差。在其它实施例中,第一安装位也可为卡槽,第二安装位为卡扣等结构。为保证安装稳定性,连接部31的外周壁上设有两安装凸耳311,且两安装凸耳311以连接部31的轴线为中心呈中心对称设置。
请结合参考图10和图11,在另一些实施例中,连接部31为弹性密封件,并与绝缘件50一体成型,例如连接部31本身采用硅胶、橡胶或是硅橡胶这类具有弹性的密封件制成,如此在连接部31外不需要额外套设密封圈等结构来对让位孔进行密封,仅通过连接部31自身即可起到密封作用。可选地,连接部31至少部分伸入壶体10内设置,且连接部31的外周面与让位孔的孔壁密封抵接。在其它实施例中,连接部31也可位于壶体10外,连接部31的端面与壶体10的外表面密封抵接。上述实施例中,连接部31可呈块状设置。
请结合参考图12,在又一些实施例中,连接部31呈板状设置,连接部31上设有两固定孔,两TDS探头32与两固定孔一一对应紧致配合,绝缘件50将连接部31包裹在内。该实施例中,连接部31为塑料板体或是其它材质的板体,用于为两TDS探头32提供固定载体。TDS探头32的两端是显露在绝缘件50外的,便于导线的连接。
一实施例中,绝缘件50的外周壁上设有限位轴肩55,限位轴肩55一侧与壶体10的外表面抵接,液体加热容器还包括固定板70,固定板70的一端固定于壶体10,另一端设有供连接部31适配穿设的装配孔,装配孔的边沿抵接于限位轴肩55相对的另一侧。由于限位轴肩55一侧是抵接在壶体10的外表面的,故能够限制TDS传感器30朝壶体10内移动;由于限位轴肩55的另一侧是与固定板70抵接的,因此固定板70能够限制TDS传感器30朝远离壶体10的方向移动,从而将TDS传感器30进行固定。
本实施例中,固定板70具体可与壶体10螺接、卡接等。优选地,壶体10的外表面凸设有螺孔柱13,固定板70的一端对应螺孔柱13的螺纹孔设有连接孔70a,螺钉依次穿设连接孔70a和螺纹孔,将固定板70固定在螺孔柱13上。
本实施例中,液体加热容器的壶盖20包括共同盖合壶体10的固定盖部21和活动盖部22,固定盖部21与壶体10固定,活动盖部22与固定盖部21活动连接,优选为枢接,当然,也可通过螺纹连接或卡接。固定盖部21上设有显示装置60,显示装置60与TDS传感器30电性连接。在其它实施例中,壶盖20可为一个整体,并与壶体10枢接,以实现壶口的全部打开。
本申请中,通过将壶盖20分为固定盖部21和活动盖部22两个部分,活动盖部22与固定盖部21枢接,通过上下翻转活动盖部22,实现壶口的打开和闭合,以实现液体加热容器的正常使用。固定盖部21与壶体10固定连接,固定盖部21与壶体10之间不需要预留活动间隙,则通过将显示装置60设置在固定盖部21上,显示装置60与壶体10底部的TDS传感器30等其它电器件的电连接线无需设置显露在外的活动段来适应壶盖20的开合,如此能够方便电连接线的设置。同时,若将显示装置设置在壶体10把手上,由于把手宽度较窄,故不利于设置面积较大的显示装置,而本申请中固定盖部21的顶面面积可相对设置得较大,则可对应采用面积较大的显示装置,从而使得显示装置所显示的内容更加醒目。本申请中的显示装置指的是显示屏。
本申请还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有液体加热容器处理程序,所述液体加热容器处理程序被控制器81执行时实现如上所描述的各实施例所记载的方法。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (20)

  1. 一种液体加热容器的控制方法,其中,包括:
    获取所述液体加热容器内水的TDS值;
    基于所述液体加热容器内水的TDS值大于或等于预设TDS值,控制报警装置发出警报;
    基于所述液体加热容器内水的TDS值小于预设TDS值,且接收到加热指令,控制加热件进行加热;
    基于未接收到加热指令,控制加热件不进行加热。
  2. 如权利要求1所述的液体加热容器的控制方法,其中,所述液体加热容器的控制方法还包括以下步骤:
    获取所述液体加热容器的加热指令;
    基于所述加热指令为将水加热到沸点,且所述液体加热容器内水的TDS值大于或等于预设TDS值,控制所述加热件以大功率将所述液体加热容器内的水加热到沸点;
    基于所述液体加热容器内的水温达到沸点,控制所述加热件以小功率加热;
    基于所述加热件以小功率加热的时长达到第一预设时长,控制所述加热件停止加热。
  3. 如权利要求2所述的液体加热容器的控制方法,其中,所述小功率为所述大功率的1/10-1/5。
  4. 如权利要求1所述的液体加热容器的控制方法,其中,所述液体加热容器的控制方法还包括以下步骤:
    获取所述液体加热容器的加热指令;
    基于所述加热指令为将水加热到预设温度,控制所述加热件将所述液体加热容器内的水加热到预设温度,并控制所述液体加热容器进入保温状态;
    其中,所述预设温度小于沸点温度。
  5. 如权利要求4所述的液体加热容器的控制方法,其中,基于所述加热指令为将水加热到预设温度,控制所述加热件将所述液体加热容器内的水加热到预设温度,并控制所述液体加热容器进入保温状态具体包括以下步骤:
    基于所述加热指令为将水加热到预设温度,且所述液体加热容器内水的TDS值大于或等于预设TDS值,控制所述加热件以大功率将所述液体加热容器内的水加热到沸点,再控制所述加热件以小功率加热;
    基于所述液体加热容器内水温下降到预设温度,控制所述液体加热容器进入保温状态。
  6. 如权利要求5所述的液体加热容器的控制方法,其中,所述保温状态为加热与待机交替运行的状态。
  7. 如权利要求5所述的液体加热容器的控制方法,其中,所述液体加热容器的控制方法还包括以下步骤:
    基于所述液体加热容器进入保温状态,控制提醒装置发出提示。
  8. 一种液体加热容器,其中,包括:
    TDS传感器,设置为检测所述液体加热容器内水的TDS值;
    报警装置,设置为发出警报;
    加热件,设置为对所述液体加热容器内的水进行加热;以及,
    控制器,分别与所述TDS传感器、所述报警装置和所述加热件电连接,所述控制器基于所述液体加热容器内水的TDS值大于或等于预设TDS值,控制所述报警装置发出警报;所述控制器还基于所述液体加热容器内水的TDS值小于预设TDS值,且接收到加热指令,控制所述加热件进行加热,且所述控制器还基于未接收到加热指令,控制所述加热件不进行加热。
  9. 如权利要求8所述的液体加热容器,其中,所述液体加热容器还包括:
    速热模式,将TDS值小于预设TDS值的水加热到预设温度;和
    常规模式,将水加热到沸点,再自然冷却或即冷方式降至预设温度;
    若所述报警装置发出警报后,所述液体加热容器不进行速热模式。
  10. 如权利要求8所述的液体加热容器,其中,所述液体加热容器的壶体上设有让位孔,所述TDS传感器包括相互连接的连接部和TDS探头,所述TDS探头经所述让位孔伸入所述壶体内,所述连接部与所述壶体固定,且所述传感器与所述让位孔密封配合;所述壶体为导电件,所述液体加热容器还包括绝缘件,所述绝缘件套设于所述TDS探头外周。
  11. 如权利要求10所述的液体加热容器,其中,所述绝缘件包括相互连接的绝缘套筒和密封套筒,所述绝缘套筒套设于所述TDS探头,并与所述让位孔的孔壁密封抵接,所述密封套筒套设于所述连接部,并与所述让位孔密封配合。
  12. 如权利要求11所述的液体加热容器,其中,所述连接部的远离所述TDS探头的一端显露在所述密封套筒外,且所述连接部的该端设有安装凸耳,所述安装凸耳上设有第一安装位,所述壶体上设有与所述第一安装位安装的第二安装位。
  13. 如权利要求11所述的液体加热容器,其中,所述连接部呈板状设置,所述绝缘件将所述连接部包裹在内;和/或,所述连接部为弹性密封件,并与所述绝缘件一体成型。
  14. 如权利要求13所述的液体加热容器,其中,所述绝缘件的外周面上设有限位轴肩,所述限位轴肩的一侧与所述壶体的外表面抵接,所述液体加热容器还包括固定板,所述固定板的一端固定于所述壶体,另一端设有供所述绝缘件适配穿设的装配孔,所述装配孔的边沿抵接于所述限位轴肩相对的另一侧。
  15. 如权利要求10所述的液体加热容器,其中,所述TDS探头包括具有一安装腔的导电壳体;
    所述液体加热容器还包括温度传感器,所述温度传感器设于所述安装腔内,所述温度传感器与所述导电壳体之间设有不导电层。
  16. 如权利要求15所述的液体加热容器,其中,所述连接部上间隔设有两所述TDS探头,其中一所述TDS探头内设有所述温度传感器。
  17. 如权利要求16所述的液体加热容器,其中,两所述TDS探头均为金属探头。
  18. 如权利要求15所述的液体加热容器,其中,所述不导电层为填充于所述导电壳体和所述温度传感器之间的树脂。
  19. 如权利要求10所述的液体加热容器,其中,所述液体加热容器还包括盖合所述壶体的壶盖,所述壶盖包括共同盖合所述壶体的固定盖部和活动盖部,所述固定盖部与所述壶体固定,所述活动盖部与所述固定盖部活动连接,所述固定盖部上设有显示装置,所述显示装置与所述传感器电性连接。
  20. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有液体加热容器处理程序,所述液体加热容器处理程序被控制器执行时实现如下操作:
    获取所述液体加热容器内水的TDS值;
    基于所述液体加热容器内水的TDS值大于或等于预设TDS值,控制报警装置发出警报;
    基于所述液体加热容器内水的TDS值小于预设TDS值,且接收到加热指令,控制加热件进行加热;
    基于未接收到加热指令,控制加热件不进行加热。
PCT/CN2019/083776 2018-12-03 2019-04-23 液体加热容器及其控制方法、计算机可读存储介质 WO2020113891A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201822021047.2U CN209300803U (zh) 2018-12-03 2018-12-03 探头组件和液体加热容器
CN201811471859.5A CN111248735A (zh) 2018-12-03 2018-12-03 液体加热容器及其控制方法、计算机可读存储介质
CN201822021713.2 2018-12-03
CN201822021047.2 2018-12-03
CN201811471859.5 2018-12-03
CN201822021713.2U CN209300814U (zh) 2018-12-03 2018-12-03 液体加热容器

Publications (1)

Publication Number Publication Date
WO2020113891A1 true WO2020113891A1 (zh) 2020-06-11

Family

ID=70973556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083776 WO2020113891A1 (zh) 2018-12-03 2019-04-23 液体加热容器及其控制方法、计算机可读存储介质

Country Status (1)

Country Link
WO (1) WO2020113891A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020267A (zh) * 2014-05-27 2014-09-03 苏州国华环境技术有限公司 一种能够智能监测水质的水壶
CN104783653A (zh) * 2015-04-01 2015-07-22 广东新宝电器股份有限公司 带水质检测功能的电水壶
CN105716286A (zh) * 2014-12-01 2016-06-29 芜湖美的厨卫电器制造有限公司 热水器系统和热水器
CN206080160U (zh) * 2016-07-15 2017-04-12 新东海(佛山)五金电器制造有限公司 一种可检测tds的水壶
CN106724805A (zh) * 2017-01-05 2017-05-31 朱建钦 智能真空电热水壶
CN206541151U (zh) * 2017-01-17 2017-10-03 成都明道食品有限公司 一种饮水机智能控制系统
CN206671255U (zh) * 2017-03-28 2017-11-24 广东万家乐燃气具有限公司 一种可监测电热水器内胆水质的系统
CN107581901A (zh) * 2017-10-18 2018-01-16 上海浩泽康福特环境科技有限公司 一种具有tds和温度检测功能的智能恒温热水壶
CN207084696U (zh) * 2017-01-17 2018-03-13 成都明道食品有限公司 一种智能即热式无内胆饮水机
CN107969913A (zh) * 2017-12-05 2018-05-01 珠海格力电器股份有限公司 一种电水壶及电水壶的控制方法
CN108107950A (zh) * 2018-01-30 2018-06-01 江苏信息职业技术学院 新型功率热水壶

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020267A (zh) * 2014-05-27 2014-09-03 苏州国华环境技术有限公司 一种能够智能监测水质的水壶
CN105716286A (zh) * 2014-12-01 2016-06-29 芜湖美的厨卫电器制造有限公司 热水器系统和热水器
CN104783653A (zh) * 2015-04-01 2015-07-22 广东新宝电器股份有限公司 带水质检测功能的电水壶
CN206080160U (zh) * 2016-07-15 2017-04-12 新东海(佛山)五金电器制造有限公司 一种可检测tds的水壶
CN106724805A (zh) * 2017-01-05 2017-05-31 朱建钦 智能真空电热水壶
CN206541151U (zh) * 2017-01-17 2017-10-03 成都明道食品有限公司 一种饮水机智能控制系统
CN207084696U (zh) * 2017-01-17 2018-03-13 成都明道食品有限公司 一种智能即热式无内胆饮水机
CN206671255U (zh) * 2017-03-28 2017-11-24 广东万家乐燃气具有限公司 一种可监测电热水器内胆水质的系统
CN107581901A (zh) * 2017-10-18 2018-01-16 上海浩泽康福特环境科技有限公司 一种具有tds和温度检测功能的智能恒温热水壶
CN107969913A (zh) * 2017-12-05 2018-05-01 珠海格力电器股份有限公司 一种电水壶及电水壶的控制方法
CN108107950A (zh) * 2018-01-30 2018-06-01 江苏信息职业技术学院 新型功率热水壶

Similar Documents

Publication Publication Date Title
WO2018048094A1 (en) Cook top, range hood and control methods thereof
WO2018028538A1 (zh) 食物料理机
WO2017094968A1 (ko) 전기밥솥용 면상발열체의 고정구조
WO2018006776A1 (zh) 破壁机
WO2019205769A1 (zh) 低温烹饪装置、温度控制方法、微波炉、终端及存储介质
WO2020113891A1 (zh) 液体加热容器及其控制方法、计算机可读存储介质
WO2019059429A1 (ko) 정수기능을 갖는 다기능 식품 조리기
WO2011087311A2 (ko) 자율적인 물공급스팀발생장치
WO2018001282A1 (zh) 一种辐射式加热的红外线盘电热食品加工器具及应用于红外线盘的电炖锅
GB2422770A (en) Electric boiler
WO2021080202A1 (ko) 보온 기능을 갖는 전기 주전자 및 그 동작 방법
CN215225356U (zh) 一种随行便携烧水保温杯
JPH06319637A (ja) 電気煮込み調理器
JPH02239818A (ja) 調理器の感熱装置
JP2715925B2 (ja) 電気ポット
WO2019117392A1 (ko) 유수 분리식 전기 튀김 장치
WO2014193113A1 (ko) 조리용 가열기구 안전 제어 방법 및 장치
US20230389138A1 (en) Power supply device for warm-keeping and heating of container
WO2013005957A2 (ko) 식품 보관장치
CN209460576U (zh) 用于光刻加工的烘胶台
WO2021187688A1 (ko) 캔 가열 장치
WO2020111758A1 (ko) 릴레이 설치 위치가 개선된 전기 포트
WO2022215848A1 (ko) 무선전력전송장치 및 무선전력전송장치의 제어 방법
WO2023224315A1 (en) Aerosol generating device
WO2019080590A1 (zh) 内胆组件以及液体加热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 27.07.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19893450

Country of ref document: EP

Kind code of ref document: A1