WO2020113721A1 - 保真取芯装置 - Google Patents

保真取芯装置 Download PDF

Info

Publication number
WO2020113721A1
WO2020113721A1 PCT/CN2018/124154 CN2018124154W WO2020113721A1 WO 2020113721 A1 WO2020113721 A1 WO 2020113721A1 CN 2018124154 W CN2018124154 W CN 2018124154W WO 2020113721 A1 WO2020113721 A1 WO 2020113721A1
Authority
WO
WIPO (PCT)
Prior art keywords
fidelity
liquid
core
outer cylinder
cabin
Prior art date
Application number
PCT/CN2018/124154
Other languages
English (en)
French (fr)
Inventor
谢和平
刘涛
高明忠
李存宝
朱建波
吴一凡
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201822060437.0U external-priority patent/CN210118110U/zh
Priority claimed from CN201811495103.4A external-priority patent/CN109555493B/zh
Application filed by 深圳大学 filed Critical 深圳大学
Publication of WO2020113721A1 publication Critical patent/WO2020113721A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors

Definitions

  • the purpose of the present invention is to provide a fidelity core-coring device, which can realize fidelity core-coring, especially to achieve the effects of quality preservation, moisturizing and light preservation.
  • the present invention provides the following technical solutions:
  • the invention provides a fidelity coring device, which comprises an outer cylinder and a fidelity cabin.
  • the fidelity cabin is arranged in a hollow cavity of the outer cylinder.
  • the outer cylinder is used for drilling a rock core.
  • the fidelity The cabin is used for accommodating the core, and the outer cylinder is provided with a first liquid reservoir and a second liquid reservoir.
  • the first liquid reservoir and the second liquid reservoir are connected to the True tank connection, A liquid is stored in the first liquid reservoir, and B liquid is provided in the second liquid reservoir, the A liquid and the B liquid are mixed in the fidelity chamber to cause transmission Qualitative action, which in turn produces a phase change, and forms a protective film on the surrounding surface of the core, the protective film isolates the core from the external environment.
  • the liquid A is a dripping film-forming agent
  • the liquid B is a solution
  • the solvent in the liquid A is more soluble in the liquid B, so as to separate the solute in the liquid A
  • the liquid A Mix with the B liquid and solidify to form a film to form a sealing film that wraps the core.
  • a flow channel is provided inside the side wall of the fidelity cabin, and the flow channel is provided with a plurality of wall holes communicating with the cavity of the fidelity cabin, the first liquid reservoir and the second The liquid reservoirs are all in communication with the flow channel, and the A liquid and the B liquid enter the fidelity cabin through the flow channel and the wall hole.
  • the plurality of wall holes are evenly distributed on the surrounding side walls of the fidelity cabin.
  • a liquid inlet is also provided on the top wall of the fidelity cabin, and the liquid inlet communicates with the flow channel and the pipes of the first liquid reservoir and the second liquid reservoir.
  • the fidelity coring device further includes a processing unit, the processing unit is electrically connected to the first control valve and the second control valve, and the processing unit is used to control the first control valve and the The opening and closing of the second control valve will be described.
  • the outer cylinder is also provided with a closure member, and the closure member is provided with a shrapnel.
  • the shrapnel drives the closure member to eject,
  • the space where the closing member closes the hollow cavity of the outer cylinder is a closed space.
  • the inner wall of the fidelity cabin is provided with a layer structure of graphene for reducing the friction between the core and the inner wall of the fidelity cabin.
  • the fidelity coring device further includes an inner cylinder, the inner cylinder is arranged in the hollow cavity of the outer cylinder, the fidelity cabin is a cylinder structure and is arranged in the hollow cavity of the inner cylinder, Alternatively, the fidelity cabin is a space of the hollow cavity of the inner cylinder.
  • the invention provides a fidelity coring device, by setting a fidelity cabin, and a first liquid reservoir and a second liquid reservoir, an A liquid and a second liquid reservoir in the first liquid reservoir are arranged in the outer cylinder
  • the B liquid inside can be mixed on the surrounding surface of the core in the fidelity cabin to cause mass transfer, form a protective film to isolate the external environment, and achieve the effects of quality preservation, moisture retention and light preservation.
  • FIG. 1 is a schematic diagram of a modular cross-sectional structure of the structure of a fidelity coring device according to an embodiment
  • FIG. 2 is a schematic cross-sectional structure diagram of a fidelity core-coring device according to an embodiment.
  • FIG. 3 is a schematic structural diagram of a closure according to an embodiment
  • FIG. 4 is a schematic structural view of an inner cylinder of an embodiment
  • FIG. 5 is a schematic diagram of the control part of the fidelity core-coring of an embodiment.
  • an embodiment of the present invention provides a fidelity coring device, including an outer cylinder 10, an inner cylinder 20, and a fidelity compartment 30.
  • the inner cylinder 20 is accommodated in a hollow cavity of the outer cylinder 10, and the fidelity compartment 30 It is provided in the inner tube 20.
  • the end of the outer cylinder 10 is provided with a drill bit 11.
  • the drill bit 11 is used to dig into the soil or rock and obtain a core.
  • a drill bit may also be provided on the end of the inner cylinder 20 on the same side as the outer cylinder 10 for fine cutting of the core obtained by drilling the outer cylinder 10, so that the core is formed into a predetermined shape, such as a cylindrical shape, which can be protected Real cabin 30 storage.
  • the outer cylinder 10 and the inner cylinder 20 can move relative to each other in the axial direction of the outer cylinder 10, so that the drills of the outer cylinder 10 and the inner cylinder 20 can be cut at different times to speed up the core removal efficiency.
  • a cooling liquid flow passage may be provided in the gap between the outer cylinder 10 and the inner cylinder 20 for cooling the drill bit 11.
  • the purpose of the fidelity coring device provided by the embodiment of the present invention is to obtain the same core as the actual environment of the original location of soil or rock, so as to provide a basis for subsequent research on the properties of the soil or rock there. Based on the research of the core obtained by the fidelity coring device provided by the embodiment of the present invention, it can be applied to the fields of oil and gas resource exploration, geological structure analysis, deep microbial research and other fields.
  • the fidelity compartment 30 may be the space of the hollow cavity of the inner cylinder 20 itself, or may be an independent cylinder structure provided in the hollow cavity of the inner cylinder 20, the cylinder structure having a cavity can accommodate Core.
  • the fidelity cabin 30 is integrally disposed in the outer cylinder 10, and a closure member 3 may be provided on the outer cylinder 10.
  • the closure member 3 is opened to allow the core to pass through
  • the outer cylinder 10 extends into the cavity of the fidelity compartment 30, and the closing member 3 closes the outer cylinder 10 after the core completely enters the fidelity compartment 30, so that the fidelity compartment 30 is accommodated in the hollow cavity of the closed outer cylinder 10 .
  • the fidelity compartment 30 may also be provided with a closure member 3, and when the core of the outer cylinder 10 or the inner cylinder 20 is drilled, the closure member 3 is opened until the core completely enters the fidelity compartment 30.
  • the closing member 3 closes the fidelity cabin 30 so that the core is accommodated in the closed cavity of the fidelity cabin 30.
  • the closing member 3 of the above embodiment may adopt a suitable structure.
  • the closing member 3 may be a flap structure.
  • the closing member 3 When the outer cylinder 10 is in an open state, the closing member 3 is attached to the inner wall of the outer cylinder 3 When the outer cylinder 10 is in a closed state, the closing member 3 pops out from the inner wall of the outer cylinder 3 to close the outer cylinder 10.
  • the closing member 3 may be provided with a structure such as an elastic sheet 31 to drive the movement of the closing member 3.
  • the elastic sheet 31 is disposed on a surface of the closing member 3 facing away from the inner cylinder 20.
  • the shrapnel 31 has a compressed structure; when the outer cylinder 10 needs to be closed, the elasticity of the shrapnel 31 is released to eject the closing member 3 and close the outer cylinder 10.
  • the closing member 3 rotates under the elastic action of the elastic sheet 31.
  • the state shown in FIG. 3 is the state when the closing member 31 is attached to the outer cylinder 3.
  • the closing member shown in FIG. 3 The lower end of 31 rotates at the center of the circle, the rotation angle is 90°, and finally the structure of the closure 3 shown in FIG. 2 is formed.
  • the elastic sheet 31 abuts against the inner wall of the outer cylinder 3. Due to the relative movement between the inner cylinder 20 and the outer cylinder 10, the inner cylinder 20 can be closed
  • the piece 3 has a resisting force, which restricts the shrapnel 31 of the closing piece 3 to be in a compressed state; when the inner barrel 20 moves to a specific position, the inner barrel 20 gradually moves away from the closing piece 3, so that the closing piece 3 loses the restriction of the inner barrel 20, the shrapnel 31
  • the elasticity can be released, so that the closing member 3 pops out and closes the outer cylinder 10, so that the closing member 3 is automatically ejected.
  • the switch is closed and energized to relieve the pressure on the shrapnel 31 (Or pulling force), the elastic force of the shrapnel 31 drives the closing member 3 to move, thereby closing the outer cylinder 10, and the control of the electric release structure may be controlled by the processing unit 100 described later.
  • the closing member 3 can also be other types of structures.
  • a sealing structure such as a sealing ring, may be enclosed on the side of the closing member 3.
  • the closing member 3 is in the state of closing the outer cylinder 10, the side surface of the closing member 3 is in close contact with the inner wall of the outer cylinder 10, and a ring sealing structure is provided, so that the closing member 3 can be in closer contact with the outer cylinder 10, and the sealing effect better.
  • a first reservoir 40 and a second reservoir 50 are provided in the outer cylinder 10, and the first reservoir 40 and the second reservoir 50 are filled with liquid, and the first reservoir 40 and the second reservoir 50 and the fidelity compartment 30 are connected by a structure such as a pipe, so that liquid can enter the fidelity compartment 30, and the liquid in the first reservoir 40 and the second reservoir 50 The liquid can undergo mass transfer in the fidelity chamber 30, and then produce a phase change, and finally form a protective film on the surrounding surface of the core to ensure that the core composition, humidity, etc. are consistent with the soil or the original location of the core The rock composition and humidity are consistent to achieve a fidelity effect.
  • the liquid stored in the first liquid reservoir 40 is liquid A
  • the liquid stored in the second liquid reservoir 50 is liquid B.
  • the liquid A may specifically be a dripping film-forming agent, such as polysulfone and DMF(N,N -Dimethylformamide (N,N-dimethylformamide) mixed solution
  • liquid B can be water or ethanol solution.
  • the principle of mass transfer is that the solvent in liquid A is more soluble in liquid B, and the solute in liquid A can be separated.
  • the two liquids are mixed and solidified to form a film to form a sealing film that wraps the core.
  • the liquid A and the liquid B do not flow into the liquid inlet 24 at the same time, but flow in order, that is to say, the position where the liquid transfer between the liquid A and the liquid B generates a phase change does not occur in the flow channel 22, and It is in the hollow cavity of the inner barrel 20. Since the core is contained in the hollow cavity of the inner barrel 20, liquid A and liquid B will undergo mass transfer on the surface of the core and cause a phase change, forming a core wrapped around the core.
  • the protective film can isolate the external environmental conditions and maintain the composition, humidity and luminous flux of the core are the same as the soil or rock at the core.
  • the first reservoir 40 is disposed on the top of the inner cylinder 20 and the two are disposed adjacent to each other.
  • the first reservoir 40 and the liquid inlet on the inner cylinder 20 24 can be directly connected.
  • the second reservoir 50 is provided above the first reservoir 40.
  • the second reservoir 50 is connected to the liquid inlet 23 through a pipe.
  • a second control valve 51 may also be provided on the pipe. In order to control whether the liquid B flows to the liquid inlet 24.
  • a third liquid reservoir 60 is provided in the outer cylinder 10.
  • the third liquid reservoir 60 is used to store coolant.
  • the coolant may be liquid nitrogen, for example,
  • the inner cylinder 20 is cooled, and then the fidelity compartment 30 is cooled, and finally the core is cooled.
  • a heater 12 is provided on the outer periphery of the inner cylinder 20.
  • the heater 12 may be, for example, a resistance wire.
  • the heater 12 may heat the inner cylinder 20, further heat the fidelity chamber 30, and finally heat the core.
  • a temperature sensor 4 is also provided in the outer cylinder 10. The temperature sensor 4 is used to detect the temperature of the core in the fidelity compartment 30 and can also be used to detect the temperature of the soil or rock at the core during drilling.
  • the third reservoir 60 is disposed above the second reservoir 50, and the third reservoir 60 is connected to the outer wall of the inner cylinder 20 through a pipe, and the outer wall of the inner cylinder 20 A net-shaped capillary channel can be arranged around, and after the coolant enters the capillary channel, the inner cylinder 20 can be uniformly cooled.
  • the heater 12 provided around the outer wall of the inner cylinder 20 may also have a mesh structure, which can uniformly heat the inner cylinder 20. To avoid short circuits, the heater 12 is coated with an insulating layer. In one embodiment, the heater 12 may also be disposed on the inner wall of the outer cylinder 10.
  • an accumulator 70 is further provided in the outer cylinder 10.
  • the accumulator 70 is connected to the fidelity compartment 30.
  • the accumulator 70 is used to pressurize the fidelity compartment 30.
  • the pressure may be reduced so that the pressure in the fidelity compartment 30 is the same as the pressure at the core.
  • a pressure regulator (not shown) is provided between the accumulator 70 and the fidelity compartment 30, and the pressure regulator is driven by the accumulator 70 to adjust the pressure of the fidelity compartment 30, so that the fidelity compartment The pressure of 30 is balanced.
  • the pressure regulating member may be, for example, a piston, and the accumulator 70 may provide compressed gas to push the piston, or draw air to pull the piston back.
  • the accumulator 70 When the pressure in the fidelity compartment 30 drops, the accumulator 70 provides compressed gas to push the piston, which can cause the fidelity compartment 30 to be compressed and reduce its volume, thereby keeping the pressure of the fidelity compartment 30 unchanged. When the pressure in the fidelity compartment 30 rises, the accumulator evacuates and pulls back the piston, which can cause the fidelity compartment 30 to lose pressure and increase in volume, thereby keeping the fidelity compartment 30 pressure unchanged.
  • a pressure sensor 5 is also provided in the outer cylinder 10, and the pressure sensor 5 is used to detect the pressure in the fidelity compartment 30, and can also be used to detect the pressure of the soil or rock at the core. When the core contains a lot of water (or liquid components), the pressure here refers to osmotic pressure.
  • the pressure in the fidelity compartment 30 By comparing the pressure in the fidelity compartment 30 with the pressure of the soil or rock at the core, and adjusting it by means of the accumulator 70 adjusting the pressure regulator, the pressure in the fidelity compartment 30 and the core The pressure of the soil or rock is the same, so that the function of maintaining the original pressure condition is realized.
  • the accumulator 70 is provided on the upper portion of the inner cylinder 20, preferably above the third reservoir 60.
  • the pressure regulator may be provided in the space between the inner cylinder 20 and the accumulator 70.
  • the pressure sensor 5 may be disposed on the outer cylinder 10 near the outlet of the lower end of the inner cylinder 20, and located inside the outer cylinder 10 after the closure member 3 is closed, to It is close to the fidelity compartment 30 and does not block the movement of the inner cylinder 20 relative to the outer cylinder 10.
  • the pressure sensor 5 is disposed on the top wall of the fidelity compartment 30 (which may also be the inner cylinder 20), and may directly contact the core.
  • the above embodiments have introduced fidelity means for coring soil or rock, and the principles of the solutions of the embodiments of the present invention may also be used for the detection of oil or natural gas containing a large amount of liquid or gas.
  • the difference is that proper adjustments are made according to the composition of the core. For example, when detecting oil or natural gas, oil is liquid and natural gas is gas, the fidelity compartment 30 needs better sealing. While maintaining the composition, humidity and luminous flux, liquid A and liquid B can not directly contact the core, and the formed protective film can be wrapped on the outer wall of the fidelity compartment 30.
  • a lubricating member is also provided on the inner wall of the fidelity compartment 30.
  • the lubricating member in this embodiment may be a graphene layer structure.
  • the control part of the fidelity core-coring device of the embodiment of the present invention includes a processing unit 100, a power supply 200, a connecting wire, and various valves.
  • the processing unit 100 has a preset program, and the preset program can issue specific instructions as needed.
  • the processing unit 100 may be a PLC board installed in the outer cylinder 10 or an electronic computer installed in a human activity area.
  • the power supply 200 supplies power to the processing unit 100 and the heater 12, and a connection line is connected between the processing unit 100 and each valve to transmit instructions of the processing unit 100. After receiving the instruction from the processing unit 100, the valve performs an action of opening or closing the valve, thereby realizing the fidelity function described in the above embodiment.
  • a third control valve 61 is provided on the pipeline connecting the third reservoir 60 to the fidelity compartment 30, and a fourth control valve 71 is provided on the pipeline connecting the accumulator 70 to the fidelity compartment 30.
  • the control valve 61 and the fourth control valve 71 are electric control valves.
  • the processing unit 100 is electrically connected to the power supply 200, the temperature sensor 4, the pressure sensor 5, the first control valve 25, the second control valve 51, the third control valve 61, and the fourth control valve 71.
  • a switch 201 is provided on the connecting line between the power supply 200 and the heater 12, and the control unit 100 controls the opening and closing of the switch 201.
  • the switch 201 is used to turn on and off the power supply 200 to realize heating or non-heating of the heater 12.
  • the first control valve 25 and the second control valve 51 are electric control valves.
  • the processing unit 100 controls the first control valve 25 to open, and the first storage
  • the A liquid in the liquid container 40 enters the fidelity compartment 30, and then the processing unit 100 controls the second control valve 51 to open, the B liquid in the second reservoir 50 enters the fidelity compartment 30, and the transmission of the A liquid and the B liquid occurs.
  • the qualitative action is then phase-changed, forming a protective film covering the core, which isolates the core from the outside environment.
  • the temperature sensor 4 and the pressure sensor 5 can be electrically connected to the processing unit 100 in a wireless manner to realize a communication function.
  • the temperature sensor 4 transmits the electrical signal of the temperature in the fidelity cabin 30 to the processing unit 100, and the processing unit 100 compares the temperature in the fidelity cabin 30 with the temperature of the soil or rock at the core to determine the need for the fidelity cabin 30 warm up or cool down. Further, if the temperature needs to be increased, the processing unit 100 controls the switch 201 to close, and the heater 12 heats the fidelity compartment 30 until the temperature of the fidelity compartment 30 is the same as the temperature of the soil or rock at the core.
  • the processing unit 100 controls the third control valve 61 to open, the coolant in the third reservoir 60 flows to the fidelity compartment 30 and takes away the heat of the fidelity compartment 30, and cools down until the fidelity compartment 30
  • the temperature is the same as the temperature of the soil or rock at the core.
  • the temperature sensor 4 can feed back the temperature of the fidelity cabin 30 to the processing unit 100 in real time, so that the instructions of the processing unit 100 to control heating or cooling are updated in real time to reduce errors.
  • the pressure sensor 5 transmits the electrical signal of the pressure in the fidelity compartment 30 to the processing unit 100, and the processing unit 100 compares the temperature in the fidelity compartment 30 with the pressure of the soil or rock at the core to determine the need for the fidelity compartment 30 boost or reduce pressure. Further, if pressurization is required, the processing unit 100 controls the fourth control valve 71 to open, the compression control in the accumulator 70 enters the fidelity compartment 30, and pressurizes the core until the fidelity compartment 30 pressure and The pressure of the soil or rock at the core is the same. If the pressure needs to be reduced, the fourth control valve 71 is closed, and a pressure relief valve 72 is also provided on the pipeline connecting the accumulator 70 and the fidelity compartment 30.
  • the pressure relief valve 72 is an electric control valve, which is controlled by the processing unit 100
  • the pressure relief valve 72 is opened, and the gas in the fidelity compartment 30 is discharged through the pressure relief valve 72 through the pipeline until the pressure of the fidelity compartment 30 is the same as the pressure of the soil or rock at the core.
  • the pressure sensor 5 can feed back the pressure of the fidelity cabin 30 to the processing unit 100 in real time, so that the processing unit 100 commands for controlling the pressurization or depressurization are updated in real time to reduce errors.
  • the first control valve 25, the second control valve 51, the third control valve 61, and the fourth control valve 71 may be shut-off valves, wherein the fourth control valve 71 may be a three-way shut-off valve, and a joint of the fourth control valve 71 Connected to the pressure relief valve 72.
  • a fifth control valve 15 can also be connected to the fidelity compartment 30.
  • the fifth control valve 15 can also be a three-way shut-off valve, and an interface is connected to the pressure gauge 151.
  • the gauge is set at a position that can be observed by the person, and the pressure gauge 151 can display the pressure in the fidelity compartment 30 in real time, which is convenient for people to observe the pressure change of the fidelity compartment 30 and prevent the pressure sensor 5, the fourth control valve 71 or the accumulator
  • the pressure in the fidelity compartment 30 caused by a failure such as 70 is inconsistent with the actual situation.
  • each of the above valves can be adjusted as required, so that the temperature, pressure or mass transfer phase change rate is different.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种保真取芯装置,包括外筒(10)和保真舱(30),所述保真舱(30)设置于所述外筒(10)的中空腔体内,所述外筒(10)用于钻取岩芯,所述保真舱(30)用于容置所述岩芯,所述外筒(10)内设有第一储液器(40)和第二储液器(50),第一储液器(40)和第二储液器(50)通过管道与所述保真舱(30)连接,所述第一储液器(40)内储存有A液,所述第二储液器(50)内设有B液,所述A液和所述B液在所述保真舱(30)内混合而发生传质作用,进而产生相变,并在所述岩芯的四周表面形成一层保护膜,所述保护膜使得所述岩芯与外界环境隔离。通过设置保真舱,第一储液器内的A液和第二储液器内的B液可以在保真舱内的岩芯的四周表面混合而发生传质作用,形成保护膜而隔绝外界环境,达到保质、保湿和保光的作用。

Description

保真取芯装置
本申请要求于2018年12月07日提交中国专利局、申请号为201811495103.4、名称为“保真取芯装置”的中国发明专利申请,以及同日提交中国专利局,申请号为201822060437.0、名称为“保真取芯装置”的中国实用新型专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明属于地质探测技术领域,尤其涉及一种保真取芯装置。
背景技术
目前在国内外深钻获取的“普通岩芯”释放了压力、温度、孔隙水等成份,已严重失真,已与所处深部原位环境无关。采用普通岩芯进行科学研究会导致以下四个方面的问题:1)无效岩芯(由于应力释放,到地面已破碎);2)油气资源的储量评估失真,测不准算不准;3)深部岩层可能存在的生命体(微生物、病毒等)消亡;4)测不到不同深度真实状态的岩层物理力学参数。
其中,保质、保湿、保光是亟待解决的一大难题。
发明内容
本发明的目的是提供一种保真取芯装置,能实现保真取芯,特别是实现保质、保湿、保光效果。
为实现本发明的目的,本发明提供了如下的技术方案:
本发明提供一种保真取芯装置,包括外筒和保真舱,所述保真舱设置于所述外筒的中空腔体内,所述外筒用于钻取岩芯,所述保真舱用于容置所述岩芯,所述外筒内设有第一储液器和第二储液器,所述第一储液器和所述第二储液器通过管道与所述保真舱连接,所述第一储液器内储存有A液,所述第二储液器内设有B液,所述A液和所述B液在所述保真舱内混合而发生传质作用,进而产生相变,并在所述岩芯的四周表面形成一层保护膜,所述保护膜使得所述岩芯与外界环境隔离。
其中,所述A液为滴水成膜剂,所述B液为溶液,所述A液中的溶剂更溶于所述B液,以把所述A液中的溶质分离出来,所述A液和所述B液混合并固化成膜,形成一层包裹所述岩芯的密封膜。
其中,所述保真舱的侧壁的内部设有流道,所述流道上设有联通所述保真舱的腔体的多个壁孔,所述第一储液器和所述第二储液器均与所述流道联通,所述A液和所述B液通过所述流道和所述壁孔进入所述保真舱内。
其中,所述多个壁孔均匀分布在所述保真舱的四周侧壁上。
其中,所述保真舱的顶壁上还设有进液口,所述进液口联通所述流道和所述第一储液器和所述第二储液器的管道。
其中,所述进液口上设有第一控制阀,所述第二储液器与所述进液口连接的管道上还设有第二控制阀,所述第一控制阀和所述第二控制阀依次打开,且两者不同时打开。
其中,所述保真取芯装置还包括处理单元,所述处理单元与所述第一控制阀和所述第二控制阀电连接,所述处理单元用于控制所述第一控制阀和所述第二控制阀的开闭。
其中,所述外筒上还设有封闭件,所述封闭件上设有弹片,当所述保真舱完全进入所述外筒的中空腔体内后,所述弹片驱动所述封闭件弹出,使得所述封闭件封闭所述外筒的中空腔体的空间呈封闭空间。
其中,所述保真舱的内壁设有石墨烯的层结构,用于减小所述岩芯与所述保真舱的内壁之间的摩擦。
其中,所述保真取芯装置还包括内筒,所述内筒设置于所述外筒的中空腔体内,所述保真舱为筒体结构并设置于所述内筒的中空腔体内,或者,所述保真舱为所述内筒的中空腔体的空间。
本发明提供的一种保真取芯装置,通过设置保真舱,并在外筒内设置第一储液器和第二储液器,第一储液器内的A液和第二储液器内的B液可以在保真舱内的岩芯的四周表面混合而发生传质作用,形成保护膜而隔绝外界环境,达到保质、保湿和保光的效果。
附图说明
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种实施例的保真取芯装置的结构的剖面结构的模块化的示意图;
图2是一种实施例的的保真取芯装置的剖面结构示意图。
图3是一种实施例的封闭件的结构示意图;
图4是一种实施例的内筒的结构示意图;
图5是一种实施例的保真取芯的控制部分的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1,本发明实施例提供一种保真取芯装置,包括外筒10、内筒20和保真舱30,内筒20容置于外筒10的中空腔体内,保真舱30设于内筒20内。
请结合图1和图2,外筒10的端部设有钻头11,钻头11用于掘进土壤或岩石内部,并获得岩芯。内筒20上与外筒10同侧的端部也可以设置钻头,用于对外筒10钻探获得的岩芯进行精细切削加工,使得岩芯形成预设的形状,如圆柱形,从而可以被保真舱30收纳。外筒10和内筒20可以相对的移动,移动方向为沿外筒10的轴向,使得外筒10和内筒20的钻头可以在不同的时间进行切削,加快取芯效率。为了使得钻头11的钻削温度保持在正常范围,在外筒10和内筒20之间的间隙内还可设有冷却液流道,用于对钻头11进行冷却。
本发明实施例所提供的保真取芯装置的目的是为了获得和土壤或者岩石等原位置的实际环境相同的岩芯,从而可以为后续研究该处土壤或者岩石的性质提供依据。基于对本发明实施例提供的保真取芯装置所获得的岩芯的研究, 可以应用于油气资源探测、地质结构分析、深部微生物研究等领域。
进一步而言,本发明实施例提供的保真取芯装置的“保真”可以包括保温、保压、保质、保湿或保光等,即获得的岩芯可以与取芯的原位置的土壤或岩石的温度、压力、成分、湿度或光通量一致。
请参考图1,保真舱30可以为内筒20自身的中空腔体的空间,也可以为一个独立的筒体结构设置在内筒20的中空腔体内,该筒体结构具有腔体可容纳岩芯。
一种实施例中,请参考图1和图2,保真舱30整体设置在外筒10内,在外筒10上可设封闭件3,取芯过程中,封闭件3打开以使得岩芯可以通过外筒10而伸入保真舱30的腔体内,封闭件3在岩芯完全进入保真舱30后将外筒10封闭,使得保真舱30容置在封闭的外筒10的中空腔体内。
一种实施例中,保真舱30整体设置在内筒20内,封闭件3可设置在内筒20上,取芯过程中,封闭件3打开以使得岩芯可以通过内筒20而伸入保真舱30的腔体内,岩芯完全进入保真舱30后,封闭件3将内筒20封闭,使得保真舱30容置在封闭的内筒20的中空腔体内。
一种实施例中,还可在保真舱30上设置封闭件3,在外筒10或内筒20的钻头钻取岩芯时,封闭件3打开,直至岩芯完全进入保真舱30后,封闭件3将保真舱30封闭,使得岩芯被容置在保真舱30的封闭的腔体内。
以上实施例的封闭件3可以采用合适的结构。以外筒10上设置封闭件3的实施例为例,请参考图3,封闭件3可以为一种翻板结构,当外筒10呈打开状态时,封闭件3贴合在外筒3的内壁上;当外筒10呈封闭状态时,封闭件3从外筒3的内壁上弹出而将外筒10封闭。封闭件3上可以设有弹片31等驱动封闭件3运动的结构,弹片31设置在封闭件3的背向内筒20的一侧表面,在封闭件3贴合在外筒3的内壁上时,弹片31呈被压缩的结构;当需要封闭外筒10时,弹片31的弹性释放而将封闭件3弹出而将外筒10封闭。封闭件3在弹片31的弹性作用下做旋转运动,如图3所示时的状态为封闭件31贴合在外筒3上时的状态,封闭件31旋转时,以图3所示的封闭件31的下端为圆心旋转,旋转角度为90°,最终形成如图2所示的封闭件3的结构。一种实施例中,封闭件3贴合在外筒3的内壁上时,弹片31抵持在外筒3的内 壁上,由于内筒20和外筒10之间有相对移动,内筒20可以对封闭件3有抵持力,限制封闭件3的弹片31处于压缩状态;当内筒20移动到特定位置时,内筒20逐渐远离封闭件3,使得封闭件3失去内筒20的限制,弹片31可以释放弹性,从而使得封闭件3弹出而封闭外筒10,实现封闭件3的自动弹出。一种实施例中,封闭件3的弹片31的释放通过其他手段进行自动控制,例如,弹片31上设有电动释放结构,电动释放结构可以为电动控制的弹簧,弹簧的两端连接在弹片31上,通电时弹簧释放,解除对弹片31的压力(或拉力);电动释放结构断电时保持对弹片31的压力(或拉力),使得弹片31保持压缩状态。电动释放结构可以包括电源、开关和位置传感器,位置传感器设置在外筒10上,用于感测岩芯是否已经全部进入保真舱30中,如是,则开关闭合而通电,解除对弹片31的压力(或拉力),弹片31的弹力驱动封闭件3运动,从而封闭外筒10,电动释放结构的控制可以采用后文中的处理单元100进行控制。其他实施例中,封闭件3还可以为其他类型的结构。
一种实施例中,为了使得封闭件3可以有效的进行封闭,以封闭件3设置在外筒10的内壁上为例,封闭件3的侧面上还可围设一圈密封结构,如密封圈。当封闭件3处于封闭外筒10的状态时,封闭件3的侧面与外筒10的内壁贴合,设置一圈密封结构,可以使得封闭件3可以与外筒10接触的更紧密,密封效果更好。
请参考图1和图2,在外筒10内设有第一储液器40和第二储液器50,第一储液器40和第二储液器50内装有液体,第一储液器40和第二储液器50与保真舱30之间通过管道等结构连通,使得液体可以进入到保真舱30内,而第一储液器40内的液体与第二储液器50内的液体可以在保真舱30内发生传质作用,进而产生相变,最终在岩芯的四周表面形成一层保护膜,以保证岩芯的成分、湿度等与取芯的原位置的土壤或岩石成分和湿度一致,实现保真效果。
具体而言,第一储液器40内储存的液体为A液,第二储液器50储存的液体为B液,A液具体可以为滴水成膜剂,如聚砜与DMF(N,N-Dimethylformamide N,N-二甲基甲酰胺)相混合后形成的溶液;B液具体可以为水或乙醇溶液。传质的原理为A液中溶剂更溶于B液,可把A液中的溶质分离出来,两种液体混合并固化成膜,形成一层包裹岩芯的密封膜。
请参考图1、图2和图4,以内筒20的内腔容置岩芯为例(即保真舱30为内筒20的中空腔体)说明,内筒20的侧壁的内部设有流道22,流道22环绕在内筒20的顶壁和四周侧壁。在内筒20的内壁上还设有多个壁孔23,多个壁孔23均匀分布在内筒20的四周侧壁上,当然,顶壁上也可以分布有壁孔23。壁孔联通流道22和内筒20的中空腔体。在内筒20上还设有进液口24,进液口24上设有第一控制阀25,第一控制阀25可以控制进液口24的开闭。进液口24优选开设在内筒20的顶壁上,且进液口24联通外界与流道22,此时进液口24进液后液体可在重力作用下往下流而充满流道22,并从壁孔23处流入内筒20的中空腔体内。第一储液器40和第二储液器50均通过管道与进液口24连接,使得A液和B液均可以通过进液口24流入内筒20的中空腔体内。优选的,A液和B液不同时流入进液口24,而是依次流入,也就是说,A液和B液发生传质作用进而产生相变的位置不会产生在流道22内,而是在内筒20的中空腔体内,由于岩芯容置在内筒20的中空腔体内,因此,A液和B液会在岩芯表面发生传质作用进而产生相变,形成包裹岩芯的保护膜,保护膜可以隔绝外界的环境条件,实现保持岩芯的成分、湿度和光通量等与取芯处的土壤或岩石等相同。
一种实施例中,请参考图2和图4,第一储液器40设置在内筒20的顶部,且两者相邻设置,第一储液器40与内筒20上的进液口24可以直接连接。第二储液器50设置在第一储液器40上方,第二储液器50通过管道与进液口23连接,在管道上还可设置有第二控制阀51,第二控制阀51用于控制B液是否向进液口24流动。
请参考图1和图2,一种实施例中,在外筒10内设有第三储液器60,第三储液器60用于储存冷却剂,冷却剂例如可以是液氮,用于对内筒20冷却,进而对保真舱30冷却,最终对岩芯进行冷却。在内筒20外周设有加热器12,加热器12例如可以是电阻丝,加热器12可以对内筒20加热,进而对保真舱30加热,最终对岩芯进行加热。在外筒10内还设有温度传感器4,温度传感器4用于检测保真舱30内的岩芯的温度,还可以用于在钻探时检测取芯处的土壤或岩石的温度。通过对保真舱30内的温度和取芯处的土壤或岩石的温度进行对比,并通过第三储液器60释放冷却剂进行冷却或加热器12加热的手段 进行调节,使得保真舱30内的温度和取芯处的土壤或岩石的温度相同,从而实现保持原始温度条件的功能。
具体而言,请参考图1和图2,第三储液器60设置在第二储液器50的上方,第三储液器60通过管道与内筒20的外壁连接,内筒20的外壁四周可设置网状的毛细管道,冷却剂进入毛细管道内后,可对内筒20进行均匀的冷却。同样的,在内筒20的外壁四周设置的加热器12也可以为网状的结构,可对内筒20进行均匀的加热。为了避免短路,加热器12表面涂覆绝缘层。一种实施例中,加热器12还可以设置在外筒10的内壁上。温度传感器4设置在外筒10上的靠近内筒20的下端部出口的位置,且位于封闭件3封闭后的外筒10的内部,以接近保真舱30且不阻挡内筒20相对外筒10的移动。
请参考图1和图2,一种实施例中,外筒10内还设有蓄能器70,蓄能器70与保真舱30连接,蓄能器70用于对保真舱30增压或者减压,以使保真舱30内的压力与取芯处的压力相同。具体而言,蓄能器70与保真舱30之间设有压力调节件(图中未示出),通过蓄能器70驱动压力调节件调节保真舱30的压力,以使保真舱30的压力保持平衡。压力调节件例如可以为活塞,蓄能器70可以提供压缩气体以推动活塞,或者抽气而拉回活塞。当保真舱30内的压力下降时,蓄能器70提供压缩气体推动活塞,可以使得保真舱30受压而体积缩小,从而保持保真舱30的压力不变。当保真舱30内的压力上升时,蓄能器抽气而拉回活塞,可以使得保真舱30失压而体积增大,从而保持保真舱30的压力不变。外筒10内还设有压力传感器5,压力传感器5用于检测保真舱30内的压力,也可以用于检测取芯处的土壤或岩石的压力。当岩芯内含有大量水分(或者液体成分)时,此处的压力是指渗透压。通过对保真舱30内的压力和取芯处的土壤或岩石的压力进行对比,并通过蓄能器70调节压力调节件的手段进行调节,使得保真舱30内的压力和取芯处的土壤或岩石的压力相同,从而实现保持原始压力条件的功能。
具体而言,请参考图2,蓄能器70设置在内筒20上部,优选为在第三储液器60上方。压力调节件可以设置在内筒20与蓄能器70之间的空间内。一种实施例中,请参考图1和图2,压力传感器5可设置在外筒10上的靠近内筒20的下端部出口的位置,且位于封闭件3封闭后的外筒10的内部,以接近 保真舱30且不阻挡内筒20相对外筒10的移动。另一种实施例中,压力传感器5设置在保真舱30(也可以为内筒20)的顶壁上,可直接与岩芯接触。
上述各实施例介绍了对于土壤或者岩石取芯的保真手段,对于含有大量液体或气体,如探测石油、天然气时,本发明实施例的方案的原理也可以使用。区别在于,根据岩芯的成分不同进行适当调整,例如,探测石油或天然气时,石油为液体,天然气为气体,则保真舱30需要更好的密封。在保持成分、湿度和光通量时,A液和B液可与岩芯不直接接触,形成的保护膜可以包裹在保真舱30外壁上。
请参考图2,为了减小岩芯与保真舱30内壁之间的摩擦,在保真舱30的内壁上还设有润滑件,本实施例的润滑件可以为石墨烯的层结构。
请参考图5,并结合图1和图2,本发明实施例的保真取芯装置的控制部分包括处理单元100、电源200、连接线和各种阀门。处理单元100具有预设程序,预设程序可根据需要发出特定的指令。具体的,处理单元100可以为设置在外筒10内的PLC板或者设置在人活动区域的电子计算机等。电源200为处理单元100和加热器12供电,连接线连接在处理单元100和各个阀门之间,用于传递处理单元100的指令。阀门接收到处理单元100的指令后,执行打开或者关闭阀门的动作,从而实现上述实施例中所述的保真的功能。
具体而言,第三储液器60与保真舱30连接的管道上设有第三控制阀61,蓄能器70与保真舱30连接的管道上设有第四控制阀71,第三控制阀61和第四控制阀71为电控阀。处理单元100与电源200、温度传感器4、压力传感器5、第一控制阀25、第二控制阀51、第三控制阀61和第四控制阀71电连接。
电源200与加热器12之间连接的连接线上设有开关201,控制单元100控制开关201的开闭,开关201用于接通和断开电源200,实现加热器12的加热或者不加热。
第一控制阀25和第二控制阀51为电控阀,当岩芯完全进入保真舱30后,封闭件3将外筒10封闭,处理单元100控制第一控制阀25打开,第一储液器40内的A液进入保真舱30内,接着处理单元100控制第二控制阀51打开,第二储液器50内的B液进入保真舱30内,A液与B液发生传质作用进而相变,形成保护膜覆盖在岩芯上,实现岩芯与外界环境的隔绝。
温度传感器4和压力传感器5与处理单元100之间可以通过无线方式进行电连接,实现通信功能。
温度传感器4将保真舱30内的温度的电信号传递至处理单元100,处理单元100根据保真舱30内的温度与取芯处的土壤或岩石的温度进行对比,确定需要对保真舱30升温或降温。进一步的,如需升温,则处理单元100控制开关201闭合,加热器12对保真舱30加热,直至保真舱30的温度与取芯处的土壤或岩石的温度相同。如需降温,则处理单元100控制第三控制阀61打开,第三储液器60内的冷却剂流动到保真舱30并带走保真舱30的热量,进行降温,直至保真舱30的温度与取芯处的土壤或岩石的温度相同。上述进行升温和降温过程中,温度传感器4可实时反馈保真舱30的温度给处理单元100,以使得处理单元100的控制升温或降温的指令实时更新,以减小误差。
压力传感器5将保真舱30内的压力的电信号传递至处理单元100,处理单元100根据保真舱30内的温度与取芯处的土壤或岩石的压力进行对比,确定需要对保真舱30增压或降压。进一步的,如需增压,则处理单元100控制第四控制阀71打开,蓄能器70内的压缩控制进入保真舱30内,对岩芯增压,直至保真舱30的压力与取芯处的土壤或岩石的压力相同。如需降压,则关闭第四控制阀71,在蓄能器70与保真舱30之间连接的管道上还设有泄压阀72,泄压阀72为电控阀,处理单元100控制泄压阀72打开,保真舱30内的气体经管道通过泄压阀72卸掉,直至保真舱30的压力与取芯处的土壤或岩石的压力相同。上述增压或者降压过程中,压力传感器5可实时反馈保真舱30的压力给处理单元100,以使得处理单元100的控制增压或降压的指令实时更新,以减小误差。
上述第一控制阀25、第二控制阀51、第三控制阀61和第四控制阀71可以为截止阀,其中第四控制阀71可以为三通截止阀,第四控制阀71的一个接头连接至泄压阀72。
为了能实时观察保真舱30内的压力,还可设第五控制阀15连接至保真舱30内,第五控制阀15也可以为三通截止阀,其一个接口连接压力表151,压力表设置在人可以观察到的位置,压力表151可以实时显示保真舱30内的压力,便于人进行观察保真舱30的压力变化,防止压力传感器5、第四控制阀 71或蓄能器70等故障而造成保真舱30内的压力与实际不符。
上述各个阀门可根据需要调节开度,使得调节温度、压力或者传质相变的速率不同。
以上所揭露的仅为本申请一种较佳实施方式而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施方式的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。

Claims (10)

  1. 一种保真取芯装置,其特征在于,包括外筒和保真舱,所述保真舱设置于所述外筒的中空腔体内,所述外筒用于钻取岩芯,所述保真舱用于容置所述岩芯,所述外筒内设有第一储液器和第二储液器,所述第一储液器和所述第二储液器通过管道与所述保真舱连接,所述第一储液器内储存有A液,所述第二储液器内设有B液,所述A液和所述B液在所述保真舱内混合而发生传质作用,进而产生相变,并在所述岩芯的四周表面形成一层保护膜,所述保护膜使得所述岩芯与外界环境隔离。
  2. 如权利要求1所述的保真取芯装置,其特征在于,所述A液为滴水成膜剂,所述B液为溶液,所述A液中的溶剂更溶于所述B液,以把所述A液中的溶质分离出来,所述A液和所述B液混合并固化成膜,形成一层包裹所述岩芯的密封膜。
  3. 如权利要求2所述的保真取芯装置,其特征在于,所述保真舱的侧壁的内部设有流道,所述流道上设有联通所述保真舱的腔体的多个壁孔,所述第一储液器和所述第二储液器均与所述流道联通,所述A液和所述B液通过所述流道和所述壁孔进入所述保真舱内。
  4. 如权利要求3所述的保真取芯装置,其特征在于,所述多个壁孔均匀分布在所述保真舱的四周侧壁上。
  5. 如权利要求3所述的保真取芯装置,其特征在于,所述保真舱的顶壁上还设有进液口,所述进液口联通所述流道和所述第一储液器和所述第二储液器的管道。
  6. 如权利要求5所述的保真取芯装置,其特征在于,所述进液口上设有第一控制阀,所述第二储液器与所述进液口连接的管道上还设有第二控制阀,所述第一控制阀和所述第二控制阀依次打开,且两者不同时打开。
  7. 如权利要求6所述的保真取芯装置,其特征在于,所述保真取芯装置还包括处理单元,所述处理单元与所述第一控制阀和所述第二控制阀电连接,所述处理单元用于控制所述第一控制阀和所述第二控制阀的开闭。
  8. 如权利要求1所述的保真取芯装置,其特征在于,所述外筒上还设有 封闭件,所述封闭件上设有弹片,当所述保真舱完全进入所述外筒的中空腔体内后,所述弹片驱动所述封闭件弹出,使得所述封闭件封闭所述外筒的中空腔体的空间呈封闭空间。
  9. 如权利要求1所述的保真取芯装置,其特征在于,所述保真舱的内壁设有石墨烯的层结构,用于减小所述岩芯与所述保真舱的内壁之间的摩擦。
  10. 如权利要求1至9任一项所述的保真取芯装置,其特征在于,所述保真取芯装置还包括内筒,所述内筒设置于所述外筒的中空腔体内,所述保真舱为筒体结构并设置于所述内筒的中空腔体内,或者,所述保真舱为所述内筒的中空腔体的空间。
PCT/CN2018/124154 2018-12-07 2018-12-27 保真取芯装置 WO2020113721A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811495103.4 2018-12-07
CN201822060437.0 2018-12-07
CN201822060437.0U CN210118110U (zh) 2018-12-07 2018-12-07 保真取芯装置
CN201811495103.4A CN109555493B (zh) 2018-12-07 2018-12-07 保真取芯装置

Publications (1)

Publication Number Publication Date
WO2020113721A1 true WO2020113721A1 (zh) 2020-06-11

Family

ID=70975230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124154 WO2020113721A1 (zh) 2018-12-07 2018-12-27 保真取芯装置

Country Status (1)

Country Link
WO (1) WO2020113721A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113153196A (zh) * 2021-01-04 2021-07-23 成都理工大学 一种保应力取心的岩心智能提取系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334429A (en) * 1979-06-26 1982-06-15 Bureau De Recherches Geologiques Et Minieres Method and apparatus for locating the position of a drill core sample
CN102418520A (zh) * 2011-12-31 2012-04-18 中国地质大学(北京) 锁水型松散地层取样钻具
CN205503067U (zh) * 2016-02-02 2016-08-24 兴和鹏能源技术(北京)股份有限公司 一种取芯筒
CN106124242A (zh) * 2016-06-01 2016-11-16 四川大学 原位保真取芯系统及取芯方法
CN205785892U (zh) * 2016-06-01 2016-12-07 四川大学 原位保真取芯系统
CN106761382A (zh) * 2016-12-20 2017-05-31 西南石油大学 一种深井取芯装置及其操作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334429A (en) * 1979-06-26 1982-06-15 Bureau De Recherches Geologiques Et Minieres Method and apparatus for locating the position of a drill core sample
CN102418520A (zh) * 2011-12-31 2012-04-18 中国地质大学(北京) 锁水型松散地层取样钻具
CN205503067U (zh) * 2016-02-02 2016-08-24 兴和鹏能源技术(北京)股份有限公司 一种取芯筒
CN106124242A (zh) * 2016-06-01 2016-11-16 四川大学 原位保真取芯系统及取芯方法
CN205785892U (zh) * 2016-06-01 2016-12-07 四川大学 原位保真取芯系统
CN106761382A (zh) * 2016-12-20 2017-05-31 西南石油大学 一种深井取芯装置及其操作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113153196A (zh) * 2021-01-04 2021-07-23 成都理工大学 一种保应力取心的岩心智能提取系统及方法

Similar Documents

Publication Publication Date Title
CN109488241B (zh) 保真取芯装置
CN109555494B (zh) 保真取芯装置
CN109973034B (zh) 岩样原位保真取芯系统
CN109681140B (zh) 岩样保真取芯装置
CN109555493B (zh) 保真取芯装置
WO2020133725A1 (zh) 岩样保真取芯系统
WO2009085813A3 (en) Ball dropping assembly and technique for use in a well
JP2009507221A5 (zh)
WO2020113721A1 (zh) 保真取芯装置
CN109113614B (zh) 恒温、恒压的岩芯保真舱
WO2008039411A3 (en) Coiled tubing injector with a weight on bit circuit
CN210118109U (zh) 保真取芯装置
WO2023160147A1 (zh) 一种用于注水井的注水调控系统及方法
WO2020113720A1 (zh) 保真取芯装置
CN111550211A (zh) 基于油浴式的内外温控保真取芯器实验平台
WO2020113719A1 (zh) 保真取芯装置
CN210118108U (zh) 保真取芯装置
CN210118110U (zh) 保真取芯装置
CN108181954B (zh) 一种用于深海采样的保低温装置
CN203925452U (zh) 井下磁控电动配水器
GB2029069A (en) Apparatus for teaching pressure control in oil and gas drilling operations
CN111504699A (zh) 一种油浴式温度控制保真取芯器实验平台
CN212249916U (zh) 一种基于油浴式的内外温控保真取芯器实验平台
CN212458949U (zh) 油浴式温度控制保真取芯器实验平台
CN209959917U (zh) 一种防冻效果好的阀门

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18942337

Country of ref document: EP

Kind code of ref document: A1