WO2020113719A1 - 保真取芯装置 - Google Patents
保真取芯装置 Download PDFInfo
- Publication number
- WO2020113719A1 WO2020113719A1 PCT/CN2018/124151 CN2018124151W WO2020113719A1 WO 2020113719 A1 WO2020113719 A1 WO 2020113719A1 CN 2018124151 W CN2018124151 W CN 2018124151W WO 2020113719 A1 WO2020113719 A1 WO 2020113719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fidelity
- core
- outer cylinder
- temperature
- cabin
- Prior art date
Links
- 239000007788 liquid Substances 0.000 claims abstract description 63
- 239000011435 rock Substances 0.000 claims abstract description 27
- 239000002826 coolant Substances 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 9
- 238000005553 drilling Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims description 32
- 238000007789 sealing Methods 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 238000004321 preservation Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 6
- 239000002689 soil Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000004907 flux Effects 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- UXGNZZKBCMGWAZ-UHFFFAOYSA-N dimethylformamide dmf Chemical compound CN(C)C=O.CN(C)C=O UXGNZZKBCMGWAZ-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B25/00—Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
Definitions
- the invention belongs to the technical field of geological exploration, and in particular relates to a fidelity coring device.
- the purpose of the present invention is to provide a fidelity coring device, which can realize the fidelity coring, especially to achieve the effect of heat preservation.
- the present invention provides the following technical solutions:
- the invention provides a fidelity coring device, which comprises an outer cylinder and a fidelity cabin.
- the fidelity cabin is arranged in a hollow cavity of the outer cylinder.
- the outer cylinder is used for drilling a rock core.
- the fidelity The cabin is used for accommodating the core, and a heater and a third liquid reservoir are provided inside the outer cylinder.
- a temperature sensor is provided in the outer cylinder, and the temperature sensor is used to detect the temperature of the core in the fidelity cabin and feedback the electrical signal of the temperature in real time.
- the fidelity coring device includes a processing unit, the processing unit receives an electrical signal of the temperature fed back by the temperature sensor, and issues an instruction to control the heater to heat or the third reservoir to input coolant to perform cool down.
- a third control valve is provided on the pipeline between the third reservoir and the fidelity cabin, the third control valve is electrically connected to the processing unit, and the processing unit controls the The opening and closing of the three control valves control the cooling of the fidelity cabin.
- the third liquid reservoir is arranged above the fidelity cabin, the outer wall of the fidelity cabin is provided with a mesh-shaped capillary channel, and the third liquid reservoir is connected to the capillary channel through a pipe .
- the heater has a mesh structure and is sleeved around the fidelity cabin for uniform heating of the fidelity cabin, and an insulating layer is coated on the surface of the heater.
- the outer cylinder is also provided with a closure member, and the closure member is provided with a shrapnel.
- the shrapnel drives the closure member to eject,
- the space where the closing member closes the hollow cavity of the outer cylinder is a closed space.
- a sealing structure is surrounded on the side of the closing member.
- the shrapnel is provided with an electric release structure
- the outer cylinder is further provided with a position sensor.
- the position sensor is used to detect whether the core has completely entered the fidelity compartment.
- the electric release structure is based on The detection structure of the position sensor performs an operation of releasing the shrapnel, so that the closing action of the closing member is automatically controlled.
- the fidelity coring device further includes an inner cylinder, the inner cylinder is arranged in the hollow cavity of the outer cylinder, the fidelity cabin is a cylinder structure and is arranged in the hollow cavity of the inner cylinder, Alternatively, the fidelity cabin is a space of the hollow cavity of the inner cylinder.
- the present invention provides a fidelity coring device, which is provided with a fidelity cabin, and a heater and a third liquid reservoir storing coolant are provided in the outer cylinder, by detecting the temperature in the fidelity cabin and the core Compared with the temperature at the original position, the heater is heated or the coolant is cooled, so that the temperature in the fidelity cabin is the same as the temperature at the core, and the insulation effect is achieved.
- FIG. 1 is a schematic diagram of a modular cross-sectional structure of the structure of a fidelity coring device according to an embodiment
- FIG. 2 is a schematic cross-sectional structure diagram of a fidelity core-coring device according to an embodiment.
- FIG. 3 is a schematic structural diagram of a closure according to an embodiment
- FIG. 4 is a schematic structural view of an inner cylinder of an embodiment
- FIG. 5 is a schematic diagram of the control part of the fidelity core-coring of an embodiment.
- an embodiment of the present invention provides a fidelity coring device, including an outer cylinder 10, an inner cylinder 20, and a fidelity compartment 30.
- the inner cylinder 20 is accommodated in a hollow cavity of the outer cylinder 10, and the fidelity compartment 30 It is provided in the inner tube 20.
- the end of the outer cylinder 10 is provided with a drill bit 11.
- the drill bit 11 is used to dig into the soil or rock and obtain a core.
- a drill bit may also be provided on the end of the inner cylinder 20 on the same side as the outer cylinder 10 for fine cutting of the core obtained by drilling the outer cylinder 10, so that the core is formed into a predetermined shape, such as a cylindrical shape, which can be protected Real cabin 30 storage.
- the outer cylinder 10 and the inner cylinder 20 can move relative to each other in the axial direction of the outer cylinder 10, so that the drills of the outer cylinder 10 and the inner cylinder 20 can be cut at different times to speed up the core removal efficiency.
- a cooling liquid flow passage may be provided in the gap between the outer cylinder 10 and the inner cylinder 20 for cooling the drill bit 11.
- the purpose of the fidelity coring device provided in the embodiment of the present invention is to obtain the same core as the actual environment of the original location of the soil or rock, etc., so as to provide a basis for the subsequent study of the properties of the soil or rock there. Based on the research of the core obtained by the fidelity coring device provided by the embodiment of the present invention, it can be applied to the fields of oil and gas resource exploration, geological structure analysis, deep microbial research and other fields.
- the "fidelity" of the fidelity core-coring device may include heat preservation, pressure-preservation, quality-preservation, moisturizing, or light-preservation, that is, the obtained core can be in contact with the soil or
- the temperature, pressure, composition, humidity or luminous flux of the rock are the same.
- the fidelity compartment 30 may be the space of the hollow cavity of the inner cylinder 20 itself, or may be an independent cylinder structure provided in the hollow cavity of the inner cylinder 20, the cylinder structure having a cavity can accommodate Core.
- the fidelity cabin 30 is integrally disposed in the outer cylinder 10, and a closure member 3 may be provided on the outer cylinder 10.
- the closure member 3 is opened to allow the core to pass through
- the outer cylinder 10 extends into the cavity of the fidelity compartment 30, and the closing member 3 closes the outer cylinder 10 after the core completely enters the fidelity compartment 30, so that the fidelity compartment 30 is accommodated in the hollow cavity of the closed outer cylinder 10 .
- the fidelity cabin 30 is integrally arranged in the inner cylinder 20, and the closing member 3 may be arranged on the inner cylinder 20.
- the closing member 3 is opened so that the core can extend into the inner cylinder 20 In the cavity of the fidelity compartment 30, after the core completely enters the fidelity compartment 30, the closing member 3 closes the inner cylinder 20, so that the fidelity compartment 30 is accommodated in the hollow cavity of the closed inner cylinder 20.
- the fidelity compartment 30 may also be provided with a closure member 3, and when the core of the outer cylinder 10 or the inner cylinder 20 is drilled, the closure member 3 is opened until the core completely enters the fidelity compartment 30.
- the closing member 3 closes the fidelity cabin 30 so that the core is accommodated in the closed cavity of the fidelity cabin 30.
- the closing member 3 of the above embodiment may adopt a suitable structure.
- the closing member 3 may be a flap structure.
- the closing member 3 When the outer cylinder 10 is in an open state, the closing member 3 is attached to the inner wall of the outer cylinder 3 When the outer cylinder 10 is in a closed state, the closing member 3 pops out from the inner wall of the outer cylinder 3 to close the outer cylinder 10.
- the closing member 3 may be provided with a structure such as an elastic sheet 31 to drive the movement of the closing member 3.
- the elastic sheet 31 is disposed on a surface of the closing member 3 facing away from the inner cylinder 20.
- the shrapnel 31 has a compressed structure; when the outer cylinder 10 needs to be closed, the elasticity of the shrapnel 31 is released to eject the closing member 3 and close the outer cylinder 10.
- the closing member 3 rotates under the elastic action of the elastic sheet 31.
- the state shown in FIG. 3 is the state when the closing member 31 is attached to the outer cylinder 3.
- the closing member shown in FIG. 3 The lower end of 31 rotates at the center of the circle, the rotation angle is 90°, and finally the structure of the closure 3 shown in FIG. 2 is formed.
- the elastic sheet 31 abuts against the inner wall of the outer cylinder 3. Due to the relative movement between the inner cylinder 20 and the outer cylinder 10, the inner cylinder 20 can be closed
- the piece 3 has a resisting force, which restricts the shrapnel 31 of the closing piece 3 to be in a compressed state; when the inner barrel 20 moves to a specific position, the inner barrel 20 gradually moves away from the closing piece 3, so that the closing piece 3 loses the restriction of the inner barrel 20, the shrapnel 31
- the elasticity can be released, so that the closing member 3 pops out and closes the outer cylinder 10, so that the closing member 3 is automatically ejected.
- the release of the shrapnel 31 of the closure 3 is automatically controlled by other means.
- the shrapnel 31 is provided with an electric release structure.
- the electric release structure may be an electrically controlled spring. Both ends of the spring are connected to the shrapnel 31 When the power is turned on, the spring is released to release the pressure (or tension) on the elastic sheet 31; when the electric release structure is powered off, the pressure (or tension) on the elastic sheet 31 is maintained, so that the elastic sheet 31 remains in a compressed state.
- the electric release structure may include a power supply, a switch, and a position sensor. The position sensor is provided on the outer cylinder 10 to sense whether the core has all entered the fidelity compartment 30.
- the switch is closed and energized to relieve the pressure on the shrapnel 31 (Or pulling force), the elastic force of the shrapnel 31 drives the closing member 3 to move, thereby closing the outer cylinder 10, and the control of the electric release structure may be controlled by the processing unit 100 described later.
- the closing member 3 can also be other types of structures.
- a sealing structure such as a sealing ring, may be enclosed on the side of the closing member 3.
- the closing member 3 is in the state of closing the outer cylinder 10, the side surface of the closing member 3 is in close contact with the inner wall of the outer cylinder 10, and a ring sealing structure is provided, so that the closing member 3 can be in closer contact with the outer cylinder 10, and the sealing effect better.
- a first reservoir 40 and a second reservoir 50 are provided in the outer cylinder 10, and the first reservoir 40 and the second reservoir 50 are filled with liquid, and the first reservoir 40 and the second reservoir 50 and the fidelity compartment 30 are connected by a structure such as a pipe, so that liquid can enter the fidelity compartment 30, and the liquid in the first reservoir 40 and the second reservoir 50 The liquid can undergo mass transfer in the fidelity chamber 30, and then produce a phase change, and finally form a protective film on the surrounding surface of the core to ensure that the core composition, humidity, etc. are consistent with the soil or the original location of the core The rock composition and humidity are consistent to achieve a fidelity effect.
- the liquid stored in the first liquid reservoir 40 is liquid A
- the liquid stored in the second liquid reservoir 50 is liquid B.
- the liquid A may specifically be a dripping film-forming agent, such as polysulfone and DMF(N,N -Dimethylformamide (N,N-dimethylformamide) mixed solution
- liquid B can be water or ethanol solution.
- the principle of mass transfer is that the solvent in liquid A is more soluble in liquid B, and the solute in liquid A can be separated.
- the two liquids are mixed and solidified to form a film to form a sealing film that wraps the core.
- the inside of the side wall of the inner cylinder 20 is provided with The flow channel 22 surrounds the top wall and surrounding side walls of the inner cylinder 20.
- a plurality of wall holes 23 are also provided on the inner wall of the inner cylinder 20.
- the plurality of wall holes 23 are evenly distributed on the side walls around the inner cylinder 20.
- the top wall may also have wall holes 23 distributed thereon.
- the wall hole communicates with the hollow cavity of the flow channel 22 and the inner cylinder 20.
- the inner cylinder 20 is also provided with a liquid inlet 24.
- the liquid inlet 24 is provided with a first control valve 25, which can control the opening and closing of the liquid inlet 24.
- the liquid inlet 24 is preferably opened on the top wall of the inner cylinder 20, and the liquid inlet 24 communicates with the outside world and the flow channel 22. At this time, after the liquid inlet 24 enters the liquid, the liquid can flow down to fill the flow channel 22 under the action of gravity. And it flows into the hollow cavity of the inner cylinder 20 from the wall hole 23.
- Both the first liquid reservoir 40 and the second liquid reservoir 50 are connected to the liquid inlet 24 through a pipe, so that both liquid A and liquid B can flow into the hollow cavity of the inner cylinder 20 through the liquid inlet 24.
- the liquid A and the liquid B do not flow into the liquid inlet 24 at the same time, but flow in order, that is to say, the position where the liquid transfer between the liquid A and the liquid B generates a phase change does not occur in the flow channel 22, and It is in the hollow cavity of the inner barrel 20. Since the core is contained in the hollow cavity of the inner barrel 20, liquid A and liquid B will undergo mass transfer on the surface of the core and cause a phase change, forming a core wrapped around the core.
- the protective film can isolate the external environmental conditions and maintain the composition, humidity and luminous flux of the core are the same as the soil or rock at the core.
- the first reservoir 40 is disposed on the top of the inner cylinder 20 and the two are disposed adjacent to each other.
- the first reservoir 40 and the liquid inlet on the inner cylinder 20 24 can be directly connected.
- the second reservoir 50 is provided above the first reservoir 40.
- the second reservoir 50 is connected to the liquid inlet 23 through a pipe.
- a second control valve 51 may also be provided on the pipe. In order to control whether the liquid B flows to the liquid inlet 24.
- a third liquid reservoir 60 is provided in the outer cylinder 10.
- the third liquid reservoir 60 is used to store coolant.
- the coolant may be liquid nitrogen, for example,
- the inner cylinder 20 is cooled, and then the fidelity compartment 30 is cooled, and finally the core is cooled.
- a heater 12 is provided on the outer periphery of the inner cylinder 20.
- the heater 12 may be, for example, a resistance wire.
- the heater 12 may heat the inner cylinder 20, further heat the fidelity chamber 30, and finally heat the core.
- a temperature sensor 4 is also provided in the outer cylinder 10. The temperature sensor 4 is used to detect the temperature of the core in the fidelity compartment 30 and can also be used to detect the temperature of the soil or rock at the core during drilling.
- the fidelity compartment 30 is adjusted The temperature inside is the same as the temperature of the soil or rock at the core, thereby achieving the function of maintaining the original temperature conditions.
- the third reservoir 60 is disposed above the second reservoir 50, and the third reservoir 60 is connected to the outer wall of the inner cylinder 20 through a pipe, and the outer wall of the inner cylinder 20 A net-shaped capillary channel can be arranged around, and after the coolant enters the capillary channel, the inner cylinder 20 can be uniformly cooled.
- the heater 12 provided around the outer wall of the inner cylinder 20 may also have a mesh structure, which can uniformly heat the inner cylinder 20. To avoid short circuits, the heater 12 is coated with an insulating layer. In one embodiment, the heater 12 may also be disposed on the inner wall of the outer cylinder 10.
- the temperature sensor 4 is provided on the outer cylinder 10 at a position close to the outlet of the lower end of the inner cylinder 20, and is located inside the outer cylinder 10 after the closure 3 is closed, so as to approach the fidelity compartment 30 without blocking the inner cylinder 20 relative to the outer cylinder 10 Mobile.
- an accumulator 70 is further provided in the outer cylinder 10.
- the accumulator 70 is connected to the fidelity compartment 30.
- the accumulator 70 is used to pressurize the fidelity compartment 30.
- the pressure may be reduced so that the pressure in the fidelity compartment 30 is the same as the pressure at the core.
- a pressure regulator (not shown) is provided between the accumulator 70 and the fidelity compartment 30, and the pressure regulator is driven by the accumulator 70 to adjust the pressure of the fidelity compartment 30, so that the fidelity compartment The pressure of 30 is balanced.
- the pressure regulating member may be, for example, a piston, and the accumulator 70 may provide compressed gas to push the piston, or draw air to pull the piston back.
- the accumulator 70 When the pressure in the fidelity compartment 30 drops, the accumulator 70 provides compressed gas to push the piston, which can cause the fidelity compartment 30 to be compressed and reduce its volume, thereby keeping the pressure of the fidelity compartment 30 unchanged. When the pressure in the fidelity compartment 30 rises, the accumulator evacuates and pulls back the piston, which can cause the fidelity compartment 30 to lose pressure and increase in volume, thereby keeping the fidelity compartment 30 pressure unchanged.
- a pressure sensor 5 is also provided in the outer cylinder 10, and the pressure sensor 5 is used to detect the pressure in the fidelity compartment 30, and can also be used to detect the pressure of the soil or rock at the core. When the core contains a lot of water (or liquid components), the pressure here refers to osmotic pressure.
- the pressure in the fidelity compartment 30 By comparing the pressure in the fidelity compartment 30 with the pressure of the soil or rock at the core, and adjusting it by means of the accumulator 70 adjusting the pressure regulator, the pressure in the fidelity compartment 30 and the core The pressure of the soil or rock is the same, so that the function of maintaining the original pressure condition is realized.
- the accumulator 70 is provided on the upper portion of the inner cylinder 20, preferably above the third reservoir 60.
- the pressure regulator may be provided in the space between the inner cylinder 20 and the accumulator 70.
- the pressure sensor 5 may be disposed on the outer cylinder 10 near the outlet of the lower end of the inner cylinder 20, and located inside the outer cylinder 10 after the closure member 3 is closed, to It is close to the fidelity compartment 30 and does not block the movement of the inner cylinder 20 relative to the outer cylinder 10.
- the pressure sensor 5 is disposed on the top wall of the fidelity compartment 30 (which may also be the inner cylinder 20), and may directly contact the core.
- the above embodiments have introduced fidelity means for coring soil or rock, and the principles of the solutions of the embodiments of the present invention may also be used for the detection of oil or natural gas containing a large amount of liquid or gas.
- the difference is that proper adjustments are made according to the composition of the core. For example, when detecting oil or natural gas, oil is liquid and natural gas is gas, the fidelity compartment 30 needs better sealing. While maintaining the composition, humidity and luminous flux, liquid A and liquid B can not directly contact the core, and the formed protective film can be wrapped on the outer wall of the fidelity compartment 30.
- a lubricating member is also provided on the inner wall of the fidelity compartment 30.
- the lubricating member in this embodiment may be a graphene layer structure.
- the control part of the fidelity core-coring device of the embodiment of the present invention includes a processing unit 100, a power supply 200, a connecting wire, and various valves.
- the processing unit 100 has a preset program, and the preset program can issue specific instructions as needed.
- the processing unit 100 may be a PLC board installed in the outer cylinder 10 or an electronic computer installed in a human activity area.
- the power supply 200 supplies power to the processing unit 100 and the heater 12, and a connection line is connected between the processing unit 100 and each valve to transmit instructions of the processing unit 100. After receiving the instruction from the processing unit 100, the valve performs an action of opening or closing the valve, thereby realizing the fidelity function described in the above embodiment.
- a third control valve 61 is provided on the pipeline connecting the third reservoir 60 to the fidelity compartment 30, and a fourth control valve 71 is provided on the pipeline connecting the accumulator 70 to the fidelity compartment 30.
- the control valve 61 and the fourth control valve 71 are electric control valves.
- the processing unit 100 is electrically connected to the power supply 200, the temperature sensor 4, the pressure sensor 5, the first control valve 25, the second control valve 51, the third control valve 61, and the fourth control valve 71.
- a switch 201 is provided on the connecting line between the power supply 200 and the heater 12, and the control unit 100 controls the opening and closing of the switch 201.
- the switch 201 is used to turn on and off the power supply 200 to realize heating or non-heating of the heater 12.
- the first control valve 25 and the second control valve 51 are electric control valves.
- the processing unit 100 controls the first control valve 25 to open, and the first storage
- the A liquid in the liquid container 40 enters the fidelity compartment 30, and then the processing unit 100 controls the second control valve 51 to open, the B liquid in the second reservoir 50 enters the fidelity compartment 30, and the transmission of the A liquid and the B liquid occurs.
- the qualitative action is then phase-changed, forming a protective film covering the core, which isolates the core from the outside environment.
- the temperature sensor 4 and the pressure sensor 5 can be electrically connected to the processing unit 100 in a wireless manner to realize a communication function.
- the temperature sensor 4 transmits the electrical signal of the temperature in the fidelity cabin 30 to the processing unit 100, and the processing unit 100 compares the temperature in the fidelity cabin 30 with the temperature of the soil or rock at the core to determine the need for the fidelity cabin 30 warm up or cool down. Further, if the temperature needs to be increased, the processing unit 100 controls the switch 201 to close, and the heater 12 heats the fidelity compartment 30 until the temperature of the fidelity compartment 30 is the same as the temperature of the soil or rock at the core.
- the processing unit 100 controls the third control valve 61 to open, the coolant in the third reservoir 60 flows to the fidelity compartment 30 and takes away the heat of the fidelity compartment 30, and cools down until the fidelity compartment 30
- the temperature is the same as the temperature of the soil or rock at the core.
- the temperature sensor 4 can feed back the temperature of the fidelity cabin 30 to the processing unit 100 in real time, so that the instructions of the processing unit 100 to control heating or cooling are updated in real time to reduce errors.
- the pressure sensor 5 transmits the electrical signal of the pressure in the fidelity compartment 30 to the processing unit 100, and the processing unit 100 compares the temperature in the fidelity compartment 30 with the pressure of the soil or rock at the core to determine the need for the fidelity compartment 30 boost or reduce pressure. Further, if pressurization is required, the processing unit 100 controls the fourth control valve 71 to open, the compression control in the accumulator 70 enters the fidelity compartment 30, and pressurizes the core until the fidelity compartment 30 pressure and The pressure of the soil or rock at the core is the same. If the pressure needs to be reduced, the fourth control valve 71 is closed, and a pressure relief valve 72 is also provided on the pipeline connecting the accumulator 70 and the fidelity compartment 30.
- the pressure relief valve 72 is an electric control valve, which is controlled by the processing unit 100
- the pressure relief valve 72 is opened, and the gas in the fidelity compartment 30 is discharged through the pressure relief valve 72 through the pipeline until the pressure of the fidelity compartment 30 is the same as the pressure of the soil or rock at the core.
- the pressure sensor 5 can feed back the pressure of the fidelity cabin 30 to the processing unit 100 in real time, so that the processing unit 100 commands for controlling the pressurization or depressurization are updated in real time to reduce errors.
- the first control valve 25, the second control valve 51, the third control valve 61, and the fourth control valve 71 may be shut-off valves, wherein the fourth control valve 71 may be a three-way shut-off valve, and a joint of the fourth control valve 71 Connected to the pressure relief valve 72.
- a fifth control valve 15 can also be connected to the fidelity compartment 30.
- the fifth control valve 15 can also be a three-way shut-off valve, and an interface is connected to the pressure gauge 151.
- the gauge is set at a position that can be observed by the person, and the pressure gauge 151 can display the pressure in the fidelity compartment 30 in real time, which is convenient for people to observe the pressure change of the fidelity compartment 30 and prevent the pressure sensor 5, the fourth control valve 71 or the accumulator
- the pressure in the fidelity compartment 30 caused by a failure such as 70 is inconsistent with the actual situation.
- each of the above valves can be adjusted as required, so that the temperature, pressure or mass transfer phase change rate is different.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
一种保真取芯装置,包括外筒(10)和保真舱(30),保真舱(30)设置于外筒(10)的中空腔体内,外筒(10)用于钻取岩芯,保真舱(30)用于容置岩芯,外筒(10)内部设有加热器(12)和第三储液器(60),通过对检测的保真舱(30)内的岩芯的温度与取芯处的温度的对比,加热器(12)对保真舱(30)进行加热,或第三储液器(60)内储存的冷却剂对保真舱(30)进行冷却,使得保真舱(30)内的温度保持与取芯处的温度相同。通过检测保真舱内的温度与取芯处的原位置的温度的对比,加热器进行加热或者冷却剂进行冷却,实现了保真舱内的温度与取芯处的温度相同,达到保温效果。
Description
本申请要求于2018年12月07日提交中国专利局、申请号为201811495105.3、名称为“保真取芯装置”的中国发明专利申请,以及同日提交中国专利局,申请号为201822056523.4、名称为“保真取芯装置”的中国实用新型专利申请的优先权,上述在先申请的内容以引入的方式并入本文本中。
本发明属于地质探测技术领域,尤其涉及一种保真取芯装置。
目前在国内外深钻获取的“普通岩芯”释放了压力、温度、孔隙水等成份,已严重失真,已与所处深部原位环境无关。采用普通岩芯进行科学研究会导致以下四个方面的问题:1)无效岩芯(由于应力释放,到地面已破碎);2)油气资源的储量评估失真,测不准算不准;3)深部岩层可能存在的生命体(微生物、病毒等)消亡;4)测不到不同深度真实状态的岩层物理力学参数。
其中,保温是亟待解决的一大难题。
发明内容
本发明的目的是提供一种保真取芯装置,能实现保真取芯,特别是实现保温效果。
为实现本发明的目的,本发明提供了如下的技术方案:
本发明提供一种保真取芯装置,包括外筒和保真舱,所述保真舱设置于所述外筒的中空腔体内,所述外筒用于钻取岩芯,所述保真舱用于容置所述岩芯,所述外筒内部设有加热器和第三储液器,通过对检测的所述保真舱内的岩芯的温度与取芯处的温度的对比,所述加热器对所述保真舱进行加热,或所述第三储液器内储存的冷却剂对所述保真舱进行冷却,使得所述保真舱内的温度保持与取芯处的温度相同。
其中,所述外筒内设有温度传感器,所述温度传感器用于检测所述保真舱 内的岩芯的温度,并实时反馈温度的电信号。
其中,所述保真取芯装置包括处理单元,所述处理单元接收所述温度传感器反馈的温度的电信号,并发出指令控制所述加热器加热或所述第三储液器输入冷却剂进行冷却。
其中,所述第三储液器与所述保真舱之间的管道上设有第三控制阀,所述第三控制阀与所述处理单元电连接,所述处理单元通过控制所述第三控制阀的开闭控制对所述保真舱的冷却。
其中,所述第三储液器设置在所述保真舱的上方,所述保真舱的外壁四周设有网状的毛细管道,所述第三储液器通过管道与所述毛细管道连接。
其中,所述加热器呈网状结构,并套设在保真舱的四周,以用于对所述保真舱进行均匀的加热,且所述加热器表面涂覆有绝缘层。
其中,所述外筒上还设有封闭件,所述封闭件上设有弹片,当所述保真舱完全进入所述外筒的中空腔体内后,所述弹片驱动所述封闭件弹出,使得所述封闭件封闭所述外筒的中空腔体的空间呈封闭空间。
其中,所述封闭件的侧面上围设有一圈密封结构,当所述封闭件处于封闭所述外筒的状态时,所述封闭件的侧面上的所述密封结构与所述外筒的内壁紧贴。
其中,所述弹片上设有电动释放结构,所述外筒上还设有位置传感器,所述位置传感器用于检测所述岩芯是否完全进入所述保真舱中,所述电动释放结构根据所述位置传感器的检测结构执行是否释放弹片的操作,使得所述封闭件的封闭动作实现自动控制。
其中,所述保真取芯装置还包括内筒,所述内筒设置于所述外筒的中空腔体内,所述保真舱为筒体结构并设置于所述内筒的中空腔体内,或者,所述保真舱为所述内筒的中空腔体的空间。
本发明提供的一种保真取芯装置,通过设置保真舱,并在外筒内设置加热器和储存有冷却剂的第三储液器,通过检测保真舱内的温度与取芯处的原位置的温度的对比,加热器进行加热或者冷却剂进行冷却,实现了保真舱内的温度与取芯处的温度相同,达到保温效果。
为了更清楚地说明本申请实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种实施例的保真取芯装置的结构的剖面结构的模块化的示意图;
图2是一种实施例的的保真取芯装置的剖面结构示意图。
图3是一种实施例的封闭件的结构示意图;
图4是一种实施例的内筒的结构示意图;
图5是一种实施例的保真取芯的控制部分的示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1,本发明实施例提供一种保真取芯装置,包括外筒10、内筒20和保真舱30,内筒20容置于外筒10的中空腔体内,保真舱30设于内筒20内。
请结合图1和图2,外筒10的端部设有钻头11,钻头11用于掘进土壤或岩石内部,并获得岩芯。内筒20上与外筒10同侧的端部也可以设置钻头,用于对外筒10钻探获得的岩芯进行精细切削加工,使得岩芯形成预设的形状,如圆柱形,从而可以被保真舱30收纳。外筒10和内筒20可以相对的移动,移动方向为沿外筒10的轴向,使得外筒10和内筒20的钻头可以在不同的时间进行切削,加快取芯效率。为了使得钻头11的钻削温度保持在正常范围,在外筒10和内筒20之间的间隙内还可设有冷却液流道,用于对钻头11进行冷却。
本发明实施例所提供的保真取芯装置的目的是为了获得和土壤或者岩石等原位置的实际环境相同的岩芯,从而可以为后续研究该处土壤或者岩石的性 质提供依据。基于对本发明实施例提供的保真取芯装置所获得的岩芯的研究,可以应用于油气资源探测、地质结构分析、深部微生物研究等领域。
进一步而言,本发明实施例提供的保真取芯装置的“保真”可以包括保温、保压、保质、保湿或保光等,即获得的岩芯可以与取芯的原位置的土壤或岩石的温度、压力、成分、湿度或光通量一致。
请参考图1,保真舱30可以为内筒20自身的中空腔体的空间,也可以为一个独立的筒体结构设置在内筒20的中空腔体内,该筒体结构具有腔体可容纳岩芯。
一种实施例中,请参考图1和图2,保真舱30整体设置在外筒10内,在外筒10上可设封闭件3,取芯过程中,封闭件3打开以使得岩芯可以通过外筒10而伸入保真舱30的腔体内,封闭件3在岩芯完全进入保真舱30后将外筒10封闭,使得保真舱30容置在封闭的外筒10的中空腔体内。
一种实施例中,保真舱30整体设置在内筒20内,封闭件3可设置在内筒20上,取芯过程中,封闭件3打开以使得岩芯可以通过内筒20而伸入保真舱30的腔体内,岩芯完全进入保真舱30后,封闭件3将内筒20封闭,使得保真舱30容置在封闭的内筒20的中空腔体内。
一种实施例中,还可在保真舱30上设置封闭件3,在外筒10或内筒20的钻头钻取岩芯时,封闭件3打开,直至岩芯完全进入保真舱30后,封闭件3将保真舱30封闭,使得岩芯被容置在保真舱30的封闭的腔体内。
以上实施例的封闭件3可以采用合适的结构。以外筒10上设置封闭件3的实施例为例,请参考图3,封闭件3可以为一种翻板结构,当外筒10呈打开状态时,封闭件3贴合在外筒3的内壁上;当外筒10呈封闭状态时,封闭件3从外筒3的内壁上弹出而将外筒10封闭。封闭件3上可以设有弹片31等驱动封闭件3运动的结构,弹片31设置在封闭件3的背向内筒20的一侧表面,在封闭件3贴合在外筒3的内壁上时,弹片31呈被压缩的结构;当需要封闭外筒10时,弹片31的弹性释放而将封闭件3弹出而将外筒10封闭。封闭件3在弹片31的弹性作用下做旋转运动,如图3所示时的状态为封闭件31贴合在外筒3上时的状态,封闭件31旋转时,以图3所示的封闭件31的下端为圆心旋转,旋转角度为90°,最终形成如图2所示的封闭件3的结构。一 种实施例中,封闭件3贴合在外筒3的内壁上时,弹片31抵持在外筒3的内壁上,由于内筒20和外筒10之间有相对移动,内筒20可以对封闭件3有抵持力,限制封闭件3的弹片31处于压缩状态;当内筒20移动到特定位置时,内筒20逐渐远离封闭件3,使得封闭件3失去内筒20的限制,弹片31可以释放弹性,从而使得封闭件3弹出而封闭外筒10,实现封闭件3的自动弹出。一种实施例中,封闭件3的弹片31的释放通过其他手段进行自动控制,例如,弹片31上设有电动释放结构,电动释放结构可以为电动控制的弹簧,弹簧的两端连接在弹片31上,通电时弹簧释放,解除对弹片31的压力(或拉力);电动释放结构断电时保持对弹片31的压力(或拉力),使得弹片31保持压缩状态。电动释放结构可以包括电源、开关和位置传感器,位置传感器设置在外筒10上,用于感测岩芯是否已经全部进入保真舱30中,如是,则开关闭合而通电,解除对弹片31的压力(或拉力),弹片31的弹力驱动封闭件3运动,从而封闭外筒10,电动释放结构的控制可以采用后文中的处理单元100进行控制。其他实施例中,封闭件3还可以为其他类型的结构。
一种实施例中,为了使得封闭件3可以有效的进行封闭,以封闭件3设置在外筒10的内壁上为例,封闭件3的侧面上还可围设一圈密封结构,如密封圈。当封闭件3处于封闭外筒10的状态时,封闭件3的侧面与外筒10的内壁贴合,设置一圈密封结构,可以使得封闭件3可以与外筒10接触的更紧密,密封效果更好。
请参考图1和图2,在外筒10内设有第一储液器40和第二储液器50,第一储液器40和第二储液器50内装有液体,第一储液器40和第二储液器50与保真舱30之间通过管道等结构连通,使得液体可以进入到保真舱30内,而第一储液器40内的液体与第二储液器50内的液体可以在保真舱30内发生传质作用,进而产生相变,最终在岩芯的四周表面形成一层保护膜,以保证岩芯的成分、湿度等与取芯的原位置的土壤或岩石成分和湿度一致,实现保真效果。
具体而言,第一储液器40内储存的液体为A液,第二储液器50储存的液体为B液,A液具体可以为滴水成膜剂,如聚砜与DMF(N,N-Dimethylformamide N,N-二甲基甲酰胺)相混合后形成的溶液;B液具体可以为水或乙醇溶液。传质的原理为A液中溶剂更溶于B液,可把A液 中的溶质分离出来,两种液体混合并固化成膜,形成一层包裹岩芯的密封膜。
请参考图1、图2和图4,以内筒20的内腔容置岩芯为例(即保真舱30为内筒20的中空腔体)说明,内筒20的侧壁的内部设有流道22,流道22环绕在内筒20的顶壁和四周侧壁。在内筒20的内壁上还设有多个壁孔23,多个壁孔23均匀分布在内筒20的四周侧壁上,当然,顶壁上也可以分布有壁孔23。壁孔联通流道22和内筒20的中空腔体。在内筒20上还设有进液口24,进液口24上设有第一控制阀25,第一控制阀25可以控制进液口24的开闭。进液口24优选开设在内筒20的顶壁上,且进液口24联通外界与流道22,此时进液口24进液后液体可在重力作用下往下流而充满流道22,并从壁孔23处流入内筒20的中空腔体内。第一储液器40和第二储液器50均通过管道与进液口24连接,使得A液和B液均可以通过进液口24流入内筒20的中空腔体内。优选的,A液和B液不同时流入进液口24,而是依次流入,也就是说,A液和B液发生传质作用进而产生相变的位置不会产生在流道22内,而是在内筒20的中空腔体内,由于岩芯容置在内筒20的中空腔体内,因此,A液和B液会在岩芯表面发生传质作用进而产生相变,形成包裹岩芯的保护膜,保护膜可以隔绝外界的环境条件,实现保持岩芯的成分、湿度和光通量等与取芯处的土壤或岩石等相同。
一种实施例中,请参考图2和图4,第一储液器40设置在内筒20的顶部,且两者相邻设置,第一储液器40与内筒20上的进液口24可以直接连接。第二储液器50设置在第一储液器40上方,第二储液器50通过管道与进液口23连接,在管道上还可设置有第二控制阀51,第二控制阀51用于控制B液是否向进液口24流动。
请参考图1和图2,一种实施例中,在外筒10内设有第三储液器60,第三储液器60用于储存冷却剂,冷却剂例如可以是液氮,用于对内筒20冷却,进而对保真舱30冷却,最终对岩芯进行冷却。在内筒20外周设有加热器12,加热器12例如可以是电阻丝,加热器12可以对内筒20加热,进而对保真舱30加热,最终对岩芯进行加热。在外筒10内还设有温度传感器4,温度传感器4用于检测保真舱30内的岩芯的温度,还可以用于在钻探时检测取芯处的土壤或岩石的温度。通过对保真舱30内的温度和取芯处的土壤或岩石的温度 进行对比,并通过第三储液器60释放冷却剂进行冷却或加热器12加热的手段进行调节,使得保真舱30内的温度和取芯处的土壤或岩石的温度相同,从而实现保持原始温度条件的功能。
具体而言,请参考图1和图2,第三储液器60设置在第二储液器50的上方,第三储液器60通过管道与内筒20的外壁连接,内筒20的外壁四周可设置网状的毛细管道,冷却剂进入毛细管道内后,可对内筒20进行均匀的冷却。同样的,在内筒20的外壁四周设置的加热器12也可以为网状的结构,可对内筒20进行均匀的加热。为了避免短路,加热器12表面涂覆绝缘层。一种实施例中,加热器12还可以设置在外筒10的内壁上。温度传感器4设置在外筒10上的靠近内筒20的下端部出口的位置,且位于封闭件3封闭后的外筒10的内部,以接近保真舱30且不阻挡内筒20相对外筒10的移动。
请参考图1和图2,一种实施例中,外筒10内还设有蓄能器70,蓄能器70与保真舱30连接,蓄能器70用于对保真舱30增压或者减压,以使保真舱30内的压力与取芯处的压力相同。具体而言,蓄能器70与保真舱30之间设有压力调节件(图中未示出),通过蓄能器70驱动压力调节件调节保真舱30的压力,以使保真舱30的压力保持平衡。压力调节件例如可以为活塞,蓄能器70可以提供压缩气体以推动活塞,或者抽气而拉回活塞。当保真舱30内的压力下降时,蓄能器70提供压缩气体推动活塞,可以使得保真舱30受压而体积缩小,从而保持保真舱30的压力不变。当保真舱30内的压力上升时,蓄能器抽气而拉回活塞,可以使得保真舱30失压而体积增大,从而保持保真舱30的压力不变。外筒10内还设有压力传感器5,压力传感器5用于检测保真舱30内的压力,也可以用于检测取芯处的土壤或岩石的压力。当岩芯内含有大量水分(或者液体成分)时,此处的压力是指渗透压。通过对保真舱30内的压力和取芯处的土壤或岩石的压力进行对比,并通过蓄能器70调节压力调节件的手段进行调节,使得保真舱30内的压力和取芯处的土壤或岩石的压力相同,从而实现保持原始压力条件的功能。
具体而言,请参考图2,蓄能器70设置在内筒20上部,优选为在第三储液器60上方。压力调节件可以设置在内筒20与蓄能器70之间的空间内。一种实施例中,请参考图1和图2,压力传感器5可设置在外筒10上的靠近内 筒20的下端部出口的位置,且位于封闭件3封闭后的外筒10的内部,以接近保真舱30且不阻挡内筒20相对外筒10的移动。另一种实施例中,压力传感器5设置在保真舱30(也可以为内筒20)的顶壁上,可直接与岩芯接触。
上述各实施例介绍了对于土壤或者岩石取芯的保真手段,对于含有大量液体或气体,如探测石油、天然气时,本发明实施例的方案的原理也可以使用。区别在于,根据岩芯的成分不同进行适当调整,例如,探测石油或天然气时,石油为液体,天然气为气体,则保真舱30需要更好的密封。在保持成分、湿度和光通量时,A液和B液可与岩芯不直接接触,形成的保护膜可以包裹在保真舱30外壁上。
请参考图2,为了减小岩芯与保真舱30内壁之间的摩擦,在保真舱30的内壁上还设有润滑件,本实施例的润滑件可以为石墨烯的层结构。
请参考图5,并结合图1和图2,本发明实施例的保真取芯装置的控制部分包括处理单元100、电源200、连接线和各种阀门。处理单元100具有预设程序,预设程序可根据需要发出特定的指令。具体的,处理单元100可以为设置在外筒10内的PLC板或者设置在人活动区域的电子计算机等。电源200为处理单元100和加热器12供电,连接线连接在处理单元100和各个阀门之间,用于传递处理单元100的指令。阀门接收到处理单元100的指令后,执行打开或者关闭阀门的动作,从而实现上述实施例中所述的保真的功能。
具体而言,第三储液器60与保真舱30连接的管道上设有第三控制阀61,蓄能器70与保真舱30连接的管道上设有第四控制阀71,第三控制阀61和第四控制阀71为电控阀。处理单元100与电源200、温度传感器4、压力传感器5、第一控制阀25、第二控制阀51、第三控制阀61和第四控制阀71电连接。
电源200与加热器12之间连接的连接线上设有开关201,控制单元100控制开关201的开闭,开关201用于接通和断开电源200,实现加热器12的加热或者不加热。
第一控制阀25和第二控制阀51为电控阀,当岩芯完全进入保真舱30后,封闭件3将外筒10封闭,处理单元100控制第一控制阀25打开,第一储液器40内的A液进入保真舱30内,接着处理单元100控制第二控制阀51打开,第二储液器50内的B液进入保真舱30内,A液与B液发生传质作用进而相 变,形成保护膜覆盖在岩芯上,实现岩芯与外界环境的隔绝。
温度传感器4和压力传感器5与处理单元100之间可以通过无线方式进行电连接,实现通信功能。
温度传感器4将保真舱30内的温度的电信号传递至处理单元100,处理单元100根据保真舱30内的温度与取芯处的土壤或岩石的温度进行对比,确定需要对保真舱30升温或降温。进一步的,如需升温,则处理单元100控制开关201闭合,加热器12对保真舱30加热,直至保真舱30的温度与取芯处的土壤或岩石的温度相同。如需降温,则处理单元100控制第三控制阀61打开,第三储液器60内的冷却剂流动到保真舱30并带走保真舱30的热量,进行降温,直至保真舱30的温度与取芯处的土壤或岩石的温度相同。上述进行升温和降温过程中,温度传感器4可实时反馈保真舱30的温度给处理单元100,以使得处理单元100的控制升温或降温的指令实时更新,以减小误差。
压力传感器5将保真舱30内的压力的电信号传递至处理单元100,处理单元100根据保真舱30内的温度与取芯处的土壤或岩石的压力进行对比,确定需要对保真舱30增压或降压。进一步的,如需增压,则处理单元100控制第四控制阀71打开,蓄能器70内的压缩控制进入保真舱30内,对岩芯增压,直至保真舱30的压力与取芯处的土壤或岩石的压力相同。如需降压,则关闭第四控制阀71,在蓄能器70与保真舱30之间连接的管道上还设有泄压阀72,泄压阀72为电控阀,处理单元100控制泄压阀72打开,保真舱30内的气体经管道通过泄压阀72卸掉,直至保真舱30的压力与取芯处的土壤或岩石的压力相同。上述增压或者降压过程中,压力传感器5可实时反馈保真舱30的压力给处理单元100,以使得处理单元100的控制增压或降压的指令实时更新,以减小误差。
上述第一控制阀25、第二控制阀51、第三控制阀61和第四控制阀71可以为截止阀,其中第四控制阀71可以为三通截止阀,第四控制阀71的一个接头连接至泄压阀72。
为了能实时观察保真舱30内的压力,还可设第五控制阀15连接至保真舱30内,第五控制阀15也可以为三通截止阀,其一个接口连接压力表151,压力表设置在人可以观察到的位置,压力表151可以实时显示保真舱30内的压 力,便于人进行观察保真舱30的压力变化,防止压力传感器5、第四控制阀71或蓄能器70等故障而造成保真舱30内的压力与实际不符。
上述各个阀门可根据需要调节开度,使得调节温度、压力或者传质相变的速率不同。
以上所揭露的仅为本申请一种较佳实施方式而已,当然不能以此来限定本申请之权利范围,本领域普通技术人员可以理解实现上述实施方式的全部或部分流程,并依本申请权利要求所作的等同变化,仍属于申请所涵盖的范围。
Claims (10)
- 一种保真取芯装置,其特征在于,包括外筒和保真舱,所述保真舱设置于所述外筒的中空腔体内,所述外筒用于钻取岩芯,所述保真舱用于容置所述岩芯,所述外筒内部设有加热器和第三储液器,通过对检测的所述保真舱内的岩芯的温度与取芯处的温度的对比,所述加热器对所述保真舱进行加热,或所述第三储液器内储存的冷却剂对所述保真舱进行冷却,使得所述保真舱内的温度保持与取芯处的温度相同。
- 如权利要求1所述的保真取芯装置,其特征在于,所述外筒内设有温度传感器,所述温度传感器用于检测所述保真舱内的岩芯的温度,并实时反馈温度的电信号。
- 如权利要求2所述的保真取芯装置,其特征在于,所述保真取芯装置包括处理单元,所述处理单元接收所述温度传感器反馈的温度的电信号,并发出指令控制所述加热器加热或所述第三储液器输入冷却剂进行冷却。
- 如权利要求3所述的保真取芯装置,其特征在于,所述第三储液器与所述保真舱之间的管道上设有第三控制阀,所述第三控制阀与所述处理单元电连接,所述处理单元通过控制所述第三控制阀的开闭控制对所述保真舱的冷却。
- 如权利要求4所述的保真取芯装置,其特征在于,所述第三储液器设置在所述保真舱的上方,所述保真舱的外壁四周设有网状的毛细管道,所述第三储液器通过管道与所述毛细管道连接。
- 如权利要求1所述的保真取芯装置,其特征在于,所述加热器呈网状结构,并套设在保真舱的四周,以用于对所述保真舱进行均匀的加热,且所述加热器表面涂覆有绝缘层。
- 如权利要求1所述的保真取芯装置,其特征在于,所述外筒上还设有封闭件,所述封闭件上设有弹片,当所述保真舱完全进入所述外筒的中空腔体内后,所述弹片驱动所述封闭件弹出,使得所述封闭件封闭所述外筒的中空腔体的空间呈封闭空间。
- 如权利要求7所述的保真取芯装置,其特征在于,所述封闭件的侧面上围设有一圈密封结构,当所述封闭件处于封闭所述外筒的状态时,所述封闭 件的侧面上的所述密封结构与所述外筒的内壁紧贴。
- 如权利要求7所述的保真取芯装置,其特征在于,所述弹片上设有电动释放结构,所述外筒上还设有位置传感器,所述位置传感器用于检测所述岩芯是否完全进入所述保真舱中,所述电动释放结构根据所述位置传感器的检测结构执行是否释放弹片的操作,使得所述封闭件的封闭动作实现自动控制。
- 如权利要求1至9任一项所述的保真取芯装置,其特征在于,所述保真取芯装置还包括内筒,所述内筒设置于所述外筒的中空腔体内,所述保真舱为筒体结构并设置于所述内筒的中空腔体内,或者,所述保真舱为所述内筒的中空腔体的空间。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201822056523.4U CN210118109U (zh) | 2018-12-07 | 2018-12-07 | 保真取芯装置 |
CN201811495105.3 | 2018-12-07 | ||
CN201811495105.3A CN109555494B (zh) | 2018-12-07 | 2018-12-07 | 保真取芯装置 |
CN201822056523.4 | 2018-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020113719A1 true WO2020113719A1 (zh) | 2020-06-11 |
Family
ID=70973716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/124151 WO2020113719A1 (zh) | 2018-12-07 | 2018-12-27 | 保真取芯装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020113719A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006336435A (ja) * | 2005-06-06 | 2006-12-14 | National Institute Of Advanced Industrial & Technology | 温度勾配付加型コアホルダー装置及びこれを用いた成分産出挙動時間変化測定方法 |
CN201588577U (zh) * | 2010-01-25 | 2010-09-22 | 中国石油化工集团公司 | 一种取心时采用的主动保温装置 |
CN104653176A (zh) * | 2015-02-08 | 2015-05-27 | 吉林大学 | 蒸发直冷式冰封保压机构 |
CN106124242A (zh) * | 2016-06-01 | 2016-11-16 | 四川大学 | 原位保真取芯系统及取芯方法 |
WO2017059163A1 (en) * | 2015-09-30 | 2017-04-06 | Aramco Services Company | Methods and apparatus for collecting and preserving core samples from a reservoir |
CN106930711A (zh) * | 2017-03-24 | 2017-07-07 | 吉林大学 | 一种辅助加热钻进式冷冻取心钻具 |
-
2018
- 2018-12-27 WO PCT/CN2018/124151 patent/WO2020113719A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006336435A (ja) * | 2005-06-06 | 2006-12-14 | National Institute Of Advanced Industrial & Technology | 温度勾配付加型コアホルダー装置及びこれを用いた成分産出挙動時間変化測定方法 |
CN201588577U (zh) * | 2010-01-25 | 2010-09-22 | 中国石油化工集团公司 | 一种取心时采用的主动保温装置 |
CN104653176A (zh) * | 2015-02-08 | 2015-05-27 | 吉林大学 | 蒸发直冷式冰封保压机构 |
WO2017059163A1 (en) * | 2015-09-30 | 2017-04-06 | Aramco Services Company | Methods and apparatus for collecting and preserving core samples from a reservoir |
CN106124242A (zh) * | 2016-06-01 | 2016-11-16 | 四川大学 | 原位保真取芯系统及取芯方法 |
CN106930711A (zh) * | 2017-03-24 | 2017-07-07 | 吉林大学 | 一种辅助加热钻进式冷冻取心钻具 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109488241B (zh) | 保真取芯装置 | |
CN109555494B (zh) | 保真取芯装置 | |
CN109681140B (zh) | 岩样保真取芯装置 | |
CN109973034B (zh) | 岩样原位保真取芯系统 | |
CN109555493B (zh) | 保真取芯装置 | |
CN109973035B (zh) | 岩样保真取芯系统 | |
MY188929A (en) | Method and apparatus for controlling fluid flow using movable flow diverter assembly | |
WO2008039411A3 (en) | Coiled tubing injector with a weight on bit circuit | |
RU2004127944A (ru) | Устройство и способ динамического регулирования давления в кольцевом пространстве | |
CN210118109U (zh) | 保真取芯装置 | |
WO2020113720A1 (zh) | 保真取芯装置 | |
WO2020113721A1 (zh) | 保真取芯装置 | |
NO317364B3 (no) | Apparat og fremgangsmate for trykkregulering | |
WO2023160147A1 (zh) | 一种用于注水井的注水调控系统及方法 | |
CN111550211A (zh) | 基于油浴式的内外温控保真取芯器实验平台 | |
BRPI1004062B1 (pt) | válvula de coluna de perfuração e método para preparar uma válvula de coluna de perfuração | |
WO2020113719A1 (zh) | 保真取芯装置 | |
CN210118108U (zh) | 保真取芯装置 | |
CN203925452U (zh) | 井下磁控电动配水器 | |
CN109113611B (zh) | 具有恒温功能的岩芯保真舱 | |
CN210118110U (zh) | 保真取芯装置 | |
CN108181954A (zh) | 一种用于深海采样的保低温装置 | |
CN212458949U (zh) | 油浴式温度控制保真取芯器实验平台 | |
CN111504699A (zh) | 一种油浴式温度控制保真取芯器实验平台 | |
CN211652433U (zh) | 堵漏浆流动性测试装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18942534 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/09/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18942534 Country of ref document: EP Kind code of ref document: A1 |