WO2020113693A1 - 一种蓄电池式电永磁铁以及其正、反向励磁方法 - Google Patents

一种蓄电池式电永磁铁以及其正、反向励磁方法 Download PDF

Info

Publication number
WO2020113693A1
WO2020113693A1 PCT/CN2018/122368 CN2018122368W WO2020113693A1 WO 2020113693 A1 WO2020113693 A1 WO 2020113693A1 CN 2018122368 W CN2018122368 W CN 2018122368W WO 2020113693 A1 WO2020113693 A1 WO 2020113693A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
transistor
switch
battery
permanent magnet
Prior art date
Application number
PCT/CN2018/122368
Other languages
English (en)
French (fr)
Inventor
黄大启
周志朝
Original Assignee
株洲悍威磁电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲悍威磁电科技有限公司 filed Critical 株洲悍威磁电科技有限公司
Publication of WO2020113693A1 publication Critical patent/WO2020113693A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings

Definitions

  • the invention relates to the field of magnetic devices, in particular to a battery-type electric permanent magnet and its positive and reverse excitation methods.
  • the principle of the battery-type electro-permanent magnet is to use the battery to supply power to the controller, so that the controller outputs a forward or reverse current to excite the excitation coil inside the electro-permanent magnet to excite the reversible magnetic steel that surrounds it.
  • the magnetic field of the permanent magnet in the same or reverse direction attracts or releases the target magnetic conductor.
  • the excitation coil inside the electro-permanent magnet is a large inductive load, so the excitation current cannot be abrupt at the end of the excitation process, but a certain freewheel time is required.
  • the existing large-scale electro-permanent magnets require a large excitation current, and the battery can provide a limited voltage and current.
  • the charging and demagnetizing operations are generally divided into multiple groups, but each group needs to wait after the completion of the charging and demagnetization.
  • the next group of operations can only be performed after the freewheeling is completed, so the charging and demagnetizing time is longer.
  • the problem to be solved by the present invention is to provide a battery-type electro-permanent magnet with large excitation current, large lifting capacity, no need to wait for freewheel time, multi-channel rapid triggering and simple structure in response to the problems in the prior art.
  • the method provides simple and quick operation of the positive and negative excitation methods of the battery-type electro-permanent magnet.
  • the technical solutions proposed by the present invention are:
  • a battery-type electro-permanent magnet includes a battery, a controller, and an electro-permanent magnet body.
  • the electro-permanent magnet body includes an excitation coil.
  • the controller includes one or more excitation circuit units connected in parallel with each other and the excitation circuit unit.
  • the excitation circuit unit includes a first switch and a second switch, and an excitation coil is connected between the first switch and the second switch; both the first switch and the second switch are single-pole In a double-throw switch, both ends of the excitation coil are respectively connected to the moving ends of the first switch and the second switch, and the two fixed ends of the first switch and the second switch are respectively connected to the positive electrode of the battery and the freewheeling circuit unit Connected, the freewheeling circuit unit is connected to the negative electrode of the battery.
  • the freewheeling circuit unit includes two unidirectional first and second transistors connected in parallel with each other, and a third transistor connected between the input terminals of the first and second transistors and the negative electrode of the battery; the first transistor The output terminals of the second transistor and the second transistor are respectively connected to the two ends of the excitation coil.
  • the first transistor and the second transistor are diodes, and the third transistor is a transistor.
  • the collector of the third transistor is respectively connected to a fixed end of the first switch, a fixed end of the second switch, and an input end of the first transistor and an input end of the second transistor, the third transistor Is connected to the negative electrode of the battery.
  • the third transistor is an IGBT tube.
  • Both the first switch and the second switch are relays. In the first switch and the second switch, the excitation coil and the freewheel circuit unit are connected to the normally closed contact.
  • the battery-type electro-permanent magnet further includes a single-chip microcomputer connected to the control ends of the first switch and the second switch respectively; the single-chip microcomputer is configured to perform one or two of the following actions:
  • the first switch When the battery-type electro-permanent magnet performs forward excitation, the first switch is triggered, and the second switch is not activated;
  • the second switch When the battery-type electro-permanent magnet performs reverse excitation, the second switch is triggered, and the first switch is not operated.
  • the battery type electro-permanent magnet further includes a third transistor driving chip for driving the third transistor to be turned on, the single chip microcomputer is also connected to the third transistor driving chip, and the third transistor driving chip is connected to the gate electrode of the third transistor Connected, the single-chip microcomputer triggers the first switch or the second switch while controlling the third transistor driving chip to trigger the third transistor.
  • the controller also includes an external unit and a detection unit, and the external unit, the detection unit and the single-chip microcomputer are connected by wired or wireless means, the detection unit includes a power detection module, and the power detection module detects the power of the battery and sends The display module of the external unit displays the battery charge.
  • the external unit further includes a power warning light, and the power detection module controls the power warning light to issue a warning signal when the power detection module detects that the battery power is low.
  • the detection unit further includes an excitation current detection device.
  • the excitation current detection device detects that the excitation current reaches the maximum allowable value, it sends a signal to the single-chip microcomputer. After receiving the signal, the single-chip microcomputer controls the third transistor driver chip to stop triggering the third transistor.
  • the maximum allowable value of the exciting current is the maximum allowable current value of the third transistor or a preset value.
  • the detection unit further includes a magnetic flux detection module, and the external unit further includes a hoisting indicator light.
  • the magnetic flux detection module sends the measured magnetic flux to the single-chip microcomputer, and the single-chip microcomputer determines whether the pre-set hoistable magnetic flux is reached According to the judgment result, the single chip microcomputer controls the on and off of the hoisting indicator.
  • a positive excitation method for the above battery-type electro-permanent magnet the steps include:
  • S1 The relay is connected in the positive direction: the single-chip microcomputer controls the first switch in an excitation circuit unit, and the second switch does not operate;
  • step S2 triggering of the third transistor: at the same time as step S1, the single-chip microcomputer controls the third transistor driving chip, so that the third transistor driving chip triggers the gate electrode of the third transistor in the freewheeling circuit unit connected in series with the excitation circuit unit;
  • the single excitation coil completes the forward excitation: after the excitation current is generated in the excitation coil, the single chip microcomputer controls the third transistor driver chip to stop triggering the gate electrode of the third transistor in the freewheel circuit unit connected in series with the excitation circuit unit;
  • S4 Complete forward excitation: The single-chip microcomputer starts forward excitation of the next excitation coil, and repeats steps S1 to S3 until all excitation coils have completed excitation.
  • a reverse excitation method of the above battery-type electro-permanent magnet the steps include:
  • S1 The relay is reversely connected: the single-chip microcomputer controls the first switch in an excitation circuit unit to not operate, and the second switch to operate;
  • step S2 triggering of the third transistor: at the same time as step S1, the single-chip microcomputer controls the third transistor driving chip, so that the third transistor driving chip triggers the gate electrode of the third transistor in the freewheeling circuit unit connected in series with the excitation circuit unit;
  • the single excitation coil completes the reverse excitation: after the excitation current is generated in the excitation coil, the single-chip microcomputer controls the third transistor driver chip to stop triggering the gate electrode of the third transistor in the freewheel circuit unit connected in series with the excitation circuit unit;
  • the excitation circuit unit and the freewheeling circuit unit connected to the excitation coil in the controller are as shown in FIG. 1, and the connection structure is very simple.
  • the IGBT is turned on, the first switch is connected to the positive electrode of the battery, and the second switch is connected to the collector of the IGBT.
  • the current path is shown by the solid line in Figure 2 ;
  • the IGBT can be turned off. Due to the large inductance of the excitation coil, the current cannot be abrupt, and the freewheeling current will automatically follow the dashed path in FIG.
  • the battery-type electro-permanent magnet of the present invention is in the form of multiple channels, that is, multiple excitation circuit units are connected in parallel, so that one battery can excite multiple coils; due to the freewheeling of the present invention The freewheeling path of the circuit unit does not pass through the battery, so when the excitation of one excitation coil is completed, the excitation of the next excitation coil can be performed immediately, without waiting for the intermediate freewheel time, and continuous triggering can be performed, saving a lot of time; and this
  • This multi-channel form can increase the excitation current multiple times when using batteries of the same voltage, greatly increasing the adsorption capacity of the electro-permanent magnet.
  • the forward and reverse excitation methods of the battery-type electro-permanent magnet of the present invention also have the above advantages, and the excitation method steps are simple, the operator only needs to perform a preliminary push of the instruction button, avoiding the manual operation process The occurrence of mistakes and other situations, the safety performance is higher.
  • FIG. 1 is a schematic structural diagram of an excitation circuit unit and a freewheeling circuit unit in the battery-type electro-permanent magnet of the present invention
  • FIG. 2 is a current path diagram of forward excitation of the battery-type electro-permanent magnet of the present invention
  • FIG. 3 is a current path diagram of reverse excitation of the battery-type electro-permanent magnet of the present invention.
  • FIG. 4 is a schematic diagram of the structure of multiple sets of excitation circuit units connected in parallel in the battery-type electro-permanent magnet of the present invention
  • FIG. 5 is a schematic view of the structure of the control panel in the battery-type electro-permanent magnet of the present invention.
  • the battery-type electro-permanent magnet of this embodiment includes a battery, a controller, and an electro-permanent magnet body.
  • the electro-permanent magnet body includes an excitation coil, a reversible magnet steel, a permanent magnet steel, and a magnetic pole.
  • the excitation coil is wound around the periphery of the reversible magnet steel.
  • the controller generates current in the excitation coil and causes the reversible magnetic steel to generate a magnetic field in the same direction as the permanent magnet steel to attract the workpiece; during reverse excitation, the controller generates current in the excitation coil and makes the reversible
  • the magnetic steel generates a magnetic field opposite to the permanent magnetic steel, and the magnetic fields of the two cancel each other to release the workpiece.
  • the controller includes one or more excitation circuit units connected in parallel with each other and a freewheel circuit unit connected in series with the excitation circuit unit in one-to-one correspondence.
  • the excitation circuit unit includes a first switch K1 and a second switch K2.
  • An excitation coil is connected between a switch K1 and a second switch K2; both the first switch K1 and the second switch K2 are single-pole double-throw switches, and both ends of the excitation coil are respectively connected to the moving ends of the first switch K1 and the second switch K2
  • the two fixed ends of the first switch K1 and the second switch K2 are respectively connected to the positive electrode of the battery and the freewheeling circuit unit, and the freewheeling circuit unit is connected to the negative electrode of the battery.
  • the freewheeling circuit unit includes two unidirectional first transistors D1 and second transistors D2 connected in parallel with each other, and an input terminal connected between the first transistor D1 and the second transistor D2 and the negative electrode of the battery
  • the third transistor; the output terminals of the first transistor and the second transistor are respectively connected to the two ends of the excitation coil.
  • the collector of the third transistor is connected to a fixed terminal of the first switch K1, a fixed terminal of the second switch K2, the input terminal of the first transistor and the input terminal of the second transistor, and the emitter of the third transistor is connected to Connect the negative pole of the battery.
  • the first transistor and the second transistor are diodes
  • the third transistor is an IGBT tube.
  • the IGBT when forward excitation is performed, as shown in FIG. 2, the IGBT is turned on, the first switch K1 is connected to the battery positive electrode, and the second switch K2 is connected to the collector of the IGBT.
  • the current path is shown by the solid line in Figure 2; when the forward excitation current is generated in the excitation coil, the IGBT can be turned off.
  • the first switch K1 and the second switch K2 are both relays.
  • the excitation coil and the freewheel circuit unit are connected to the normally closed contact.
  • the battery-type electro-permanent magnet further includes a single-chip microcomputer connected to the control terminals of the first switch K1 and the second switch K2; the single-chip microcomputer is configured to perform the following actions: When the battery-type electro-permanent magnet performs forward excitation, When the first switch K1 is triggered, the second switch K2 is not activated; when the battery-type electro-permanent magnet performs reverse excitation, the second switch K2 is activated, and the first switch K1 is not activated.
  • the single-chip computer controls the excitation action of the battery, which can effectively avoid manual misoperation and has high safety performance.
  • the battery-type electro-permanent magnet further includes a third transistor driving chip for driving the third transistor to be turned on, the single chip microcomputer is also connected to the third transistor driving chip, and the third transistor driving chip is connected to the gate of the third transistor ,
  • the single-chip microcomputer triggers the first switch K1 or the second switch K2 while controlling the third transistor driving chip to trigger the third transistor.
  • the battery-type electro-permanent magnet of this embodiment is in the form of multiple channels. As shown in FIG. 4, multiple excitation circuit units are connected in parallel so that one battery can excite multiple coils; Since the freewheeling path of the freewheeling circuit unit of this embodiment does not pass through the battery, when the excitation of one excitation coil is completed, the excitation of the next excitation coil can be performed immediately, without waiting for the intermediate freewheeling time, the trigger can be continuously triggered and reacted. The speed is extremely fast, which saves a lot of time; and this multi-channel form can increase the excitation current many times when using the same voltage battery, which greatly increases the adsorption capacity of the electric permanent magnet.
  • the controller further includes an external unit and a detection unit.
  • the external unit, the detection unit and the single-chip microcomputer are connected by wired or wireless means.
  • the detection unit includes a power detection module.
  • the power detection module detects the power of the battery and sends it to the external unit
  • the display module displays the battery power, so that the operator can observe and charge the battery in time to avoid the battery power shortage when the electromagnet needs to be used, resulting in work delay.
  • the external unit also includes a power warning light.
  • the power detection module detects that the battery power is low, it controls the power warning light to issue a warning signal. After observing the warning signal, the operator prohibits the magnetization operation to prevent the unsafe operation caused by the small magnetic force; in this case, the demagnetization operation can still be performed.
  • the detection unit further includes an excitation current detection device.
  • the excitation current detection device sends a signal to the microcontroller when the excitation current reaches the maximum allowable value. After the microcontroller receives the signal, it controls the third transistor driver chip to stop triggering the third transistor to prevent Cause a short circuit accident.
  • the maximum allowable value of the excitation current may be preset to the maximum allowable value of the current of the third transistor or preset according to specific working conditions.
  • the detection unit further includes a magnetic flux detection module
  • the external unit further includes a lifting indicator light.
  • the magnetic flux detection module sends the measured magnetic flux to the single-chip microcomputer, and the single-chip microcomputer determines whether the pre-set portable magnetic flux is reached.
  • the single chip microcomputer controls the lighting indicator to turn on and off according to the judgment result, and the operator can perform the operation according to the prompt of the lifting indicator, which further improves the safety performance.
  • the external unit of the battery-type electro-permanent magnet of this embodiment further includes a control panel.
  • the above-mentioned lifting indicator, power warning light and display module are all provided on the control panel that is convenient for the operator to view.
  • the control panel is shown in FIG. 5, except In addition, the control panel is also equipped with devices such as landing detection, magnetization button, demagnetization button, lock button, and magnetic penetration depth adjustment knob. The operator only needs to perform a preliminary push of the instruction button, avoiding complicated manual The occurrence of mistakes during operation.
  • This embodiment also specifically provides the forward excitation method of the above battery-type electro-permanent magnet.
  • the steps include:
  • the relay is connected in the positive direction: the single-chip microcomputer controls the first switch K1 in an excitation circuit unit to operate, and the second switch K2 does not operate;
  • step S2 triggering of the third transistor: at the same time as step S1, the single-chip microcomputer controls the third transistor driving chip, so that the third transistor driving chip triggers the gate electrode of the third transistor in the freewheeling circuit unit connected in series with the excitation circuit unit;
  • the single excitation coil completes the forward excitation: after the excitation current is generated in the excitation coil, the single-chip microcomputer controls the third transistor driver chip to stop triggering the gate electrode of the third transistor in the freewheel circuit unit connected in series with the excitation circuit unit;
  • S4 Complete forward excitation: The single-chip microcomputer starts forward excitation of the next excitation coil, and repeats steps S1 to S3 until all excitation coils have completed excitation.
  • This embodiment also specifically provides the reverse excitation method of the above-mentioned battery-type electro-permanent magnet.
  • the steps include:
  • S1 The relay is reversely connected: the single-chip microcomputer controls the first switch K1 in an excitation circuit unit to not operate, and the second switch K2 to operate;
  • step S2 triggering of the third transistor: at the same time as step S1, the single-chip microcomputer controls the third transistor driving chip, so that the third transistor driving chip triggers the gate electrode of the third transistor in the freewheeling circuit unit connected in series with the excitation circuit unit;
  • the single excitation coil completes the reverse excitation: after the excitation current is generated in the excitation coil, the single-chip microcomputer controls the third transistor driver chip to stop triggering the gate electrode of the third transistor in the freewheel circuit unit connected in series with the excitation circuit unit;

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electromagnets (AREA)

Abstract

本发明公开了一种蓄电池式电永磁铁以及其正、反向励磁方法,电永磁铁包括蓄电池、控制器和电永磁铁机体,控制器包括相互并联的励磁电路单元以及与励磁电路单元一一对应串联的续流电路单元,励磁电路单元包括第一开关和第二开关,二者之间连接有电永磁机体中的励磁线圈;第一开关和第二开关均为单刀双掷开关,励磁线圈的两端与二者的动端相连接,二者的两个不动端分别与蓄电池的正极和续流电路单元相连,续流电路单元与电池负极相连。本发明的蓄电池式电永磁铁具有励磁电流大、起重能力大、无需等待续流时间、多通道快速触发和结构简单等优点,本发明提供的上述电永磁铁的正、反向励磁方法具有步骤简单和安全性能高等优点。

Description

一种蓄电池式电永磁铁以及其正、反向励磁方法 技术领域
本发明涉及磁力装置领域,尤其涉及一种蓄电池式电永磁铁以及其正、反向励磁方法。
背景技术
蓄电池式电永磁铁的原理是利用蓄电池对控制器进行供电,使控制器输出正向或反向的电流以对电永磁铁内部的励磁线圈进行励磁,使其环绕的可逆磁钢激化,产生与永磁体同向或反向的磁场,吸附或释放目标导磁物。通常电永磁铁内部的励磁线圈是一个大电感负载,因此励磁过程结束时,励磁电流不能突变,而是需要一定的续流时间。现有的大型的电永磁铁,需要的励磁电流较大,而蓄电池所能提供的电压和电流有限,因此充退磁操作一般要分多组顺次进行,但每组充退磁完成后还要等待续流完成后才能进行下一组操作,所以充退磁时间较长。
发明内容
本发明所要解决的问题是,针对现有技术存在的问题,提供一种励磁电流大、起重能力大、无需等待续流时间、多通道快速触发和结构简单的蓄电池式电永磁铁,还相应提供了步骤简单、操作快捷的对该蓄电池式电永磁铁的正、反向励磁方法。
为解决上述技术问题,本发明提出的技术方案为:
一种蓄电池式电永磁铁,包括蓄电池、控制器和电永磁铁机体,所述电永磁铁机体包括励磁线圈,所述控制器包括一个或两个以上相互并联的励磁电路单元以及与励磁电路单元一一对应串联的续流电路单元,所述励磁电路单元包括第一开关和第二开关,第一开关和第二开关之间连接有励磁线圈;所述第一开关和第二开关均为单刀双掷开关,所述励磁线圈的两端分别与第一开关和第二开关的动端相连接,第一开关和第二开关的两个不动端均分别与蓄电池的正极和续流电路单元相连接,所述续流电路单元与电池负极相连。
作为上述技术方案的进一步改进:
所述续流电路单元包括两个相互并联的单向导通的第一晶体管和第二晶体管,以及连接于第一晶体管和第二晶体管的输入端与蓄电池负极之间的第三晶体管;第一晶体管和第二晶体管的输出端分别连接于励磁线圈的两端点上。
所述第一晶体管和第二晶体管为二极管,所述第三晶体管为三极管。
所述第三晶体管的集电极分别与所述第一开关的一个不动端、第二开关的一个不动端及第一晶体管的输入端和第二晶体管的输入端相连,所述第三晶体管的发射极与蓄电池的负极连接。
所述第三晶体管为IGBT管。
所述第一开关和第二开关均为继电器,所述第一开关和第二开关中,励磁线圈与续流电路单元接于常闭触点上。
所述蓄电池式电永磁铁还包括分别与所述第一开关和第二开关的控制端相连的单片机;所述单片机被配置为执行以下动作的一种或两种:
所述蓄电池式电永磁铁进行正向励磁时,触发第一开关动作,第二开关不动作;
所述蓄电池式电永磁铁进行反向励磁时,触发第二开关动作,第一开关不动作。
所述蓄电池式电永磁铁还包括用于驱动第三晶体管导通的第三晶体管驱动芯片,所述单片机还与第三晶体管驱动芯片相连,所述第三晶体管驱动芯片与第三晶体管的门极相连,所述单片机触发第一开关或第二开关的同时控制第三晶体管驱动芯片触发第三晶体管。
所述控制器还包括外部单元和检测单元,外部单元、检测单元和所述单片机之间通过有线或无线方式连通,所述检测单元包括电量检测模块,所述电量检测模块检测蓄电池的电量并发送给外部单元的显示模块显示蓄电池的电量。
所述外部单元还包括电量警示灯,所述电量检测模块测得蓄电池的电量低时控制电量警示灯发出警示信号。
所述检测单元还包括励磁电流检测装置,所述励磁电流检测装置测得励磁电流达到最大允许值时向单片机发出信号,单片机接收信号后控制第三晶体管驱动芯片停止触发第三晶体管。
所述励磁电流的最大允许值为第三晶体管的电流最大允许值或预先设置值。
所述检测单元还包括磁通检测模块,所述外部单元还包括吊运指示灯,所述磁通检测模块将测得的磁通量发送给单片机,并由单片机判定是否达到预先设置的可吊运磁通量,单片机根据判断结果控制吊运指示灯的亮灭。
一种上述蓄电池式电永磁铁的正向励磁方法,其步骤包括:
S1:继电器正向接通:单片机控制一个励磁电路单元中的第一开关动作,第二开关不动作;
S2:第三晶体管触发:与步骤S1同时,单片机控制第三晶体管驱动芯片,使第三晶体管驱动芯片触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
S3:单个励磁线圈完成正向励磁:励磁线圈中产生励磁电流后,单片机控制第三晶体管驱动芯片停止触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
S4:完成正向励磁:单片机开始向下一励磁线圈正向励磁,重复步骤S1~S3,直至所有励磁线圈均完成励磁。
一种上述蓄电池式电永磁铁的反向励磁方法,其步骤包括:
S1:继电器反向接通:单片机控制一个励磁电路单元中的第一开关不动作,第二开关动作;
S2:第三晶体管触发:与步骤S1同时,单片机控制第三晶体管驱动芯片,使第三晶体管驱动芯片触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
S3:单个励磁线圈完成反向励磁:励磁线圈中产生励磁电流后,单片机控制第三晶体管驱动芯片停止触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
S4:完成反向励磁:单片机开始向下一励磁线圈反向励磁,重复步骤S1~S3,直至所有励磁线圈均完成励磁。
与现有技术相比,本发明的优点在于:
本发明的蓄电池式电永磁铁,其控制器中与励磁线圈连通的励磁电路单元和续流回路单元如图1所示,连接结构十分简单。在进行正向励磁时,如图2所示,IGBT导通,第一开关与蓄电池正极接通,第二开关与IGBT的集电极接通,此时电流路径如图2中的实线所示;当励磁线圈内产生正向励磁电流后,即可使IGBT停止导通,由于励磁线圈的电感较大,电流不能产生突变,续流电流会沿图2中的虚线路径自动进行续流,而且该续流路径不经过蓄电池和第一开关,因此即便第一开关突然断开,也不会承受大电感负载突然断开时产生的反压,也不会拉弧或是造成第一开关的损坏。在进行反向励磁时,如图3所示,IGBT导通,第二开关与蓄电池正极接通,第一开关与IGBT的集电极接通,其电流路径与续流电流路径分别如图3中的实线和虚线路径所示。
进一步的,为了增强电永磁铁的磁力,本发明的蓄电池式电永磁铁为多通道形式,即多个励磁电路单元并联连接,使一个蓄电池可以向多个线圈进行励磁;由于本发明的续流电路单元的续流路径不经过蓄电池,因此当一个励磁线圈励磁完成后,马上可以进行下一个励磁线圈的励磁,无需等待中间的续流时间,可以连续进行触发,节省了大量的时间;并且这种多通道形式在使用同样电压的蓄电池时,可将励磁电流增大多倍,大大增加了电永磁铁的吸附能力。
此外,本发明的对蓄电池式电永磁铁的正、反向励磁方法同样具有上述优点,并且该励磁方法步骤简单,操作人员仅需进行初步的按动指示按钮即可,避免了人工操作过程中失误等情况的出现,安全性能较高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图 获得其他的附图。
图1是本发明的蓄电池式电永磁铁中励磁电路单元和续流电路单元的结构示意图;
图2是本发明的蓄电池式电永磁铁正向励磁的电流路径图;
图3是本发明的蓄电池式电永磁铁反向励磁的电流路径图;
图4是本发明的蓄电池式电永磁铁中多组励磁电路单元并联的结构示意图;
图5是本发明的蓄电池式电永磁铁中控制面板的结构示意图。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本文发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。
实施例:
本实施例的蓄电池式电永磁铁,包括蓄电池、控制器和电永磁铁机体,电永磁铁机体包括励磁线圈、可逆磁钢、永磁钢以及磁极,励磁线圈绕设于可逆磁钢的外围。在正向励磁时,控制器使励磁线圈内产生电流并使可逆磁钢产生与永磁钢同向的磁场用以吸附工件;在反向励磁时,控制器使励磁线圈内产生电流并使可逆磁钢产生与永磁钢反向的磁场,二者磁场相抵消用以释放工件。
如图1所示,控制器包括一个或两个以上相互并联的励磁电路单元以及与励磁电路单元一一对应串联的续流电路单元,励磁电路单元包括第一开关K1和第二开关K2,第一开关K1和第二开关K2之间连接有励磁线圈;第一开关K1和第二开关K2均为单刀双掷开关,励磁线圈的两端分别与第一开关K1和第二开关K2的动端相连接,第一开关K1和第二开关K2的两个不动端均分别与蓄电池的正极和续流电路单元相连接,续流电路单元与电池负极相连。
本实施例中,续流电路单元包括两个相互并联的单向导通的第一晶体管D1和第二晶体管D2,以及连接于第一晶体管D1和第二晶体管D2的输入端与蓄电池负极之间的第三晶体管;第一晶体管和第二晶体管的输出端分别连接于励磁线圈的两端点上。第三晶体管的集电极分别与第一开关K1的一个不动端、第二开关K2的一个不动端及第一晶体管的输入端和第二晶体管的输入端相连,第三晶体管的发射极与蓄电池的负极连接。其中,第一晶体管和第二晶体管为二极管,第三晶体管为IGBT管。
本实施例的蓄电池式电永磁铁,在进行正向励磁时,如图2所示,IGBT导通,第一开关K1与蓄电池正极接通,第二开关K2与IGBT的集电极接通,此时电流路径如图2中的实线所示;当励磁线圈内产生正向励磁电流后,即可使IGBT停止导通,由于励磁线圈的电感较大,电流不能产生突变,续流电流会沿图2中的虚线路径自动进行续流,而且该续流路径不经过蓄电池和第一开关K1,因此即便第一开关K1突然断开,也不会承受大电感负载突然断 开时产生的反压,也不会拉弧或是造成第一开关K1的损坏。在进行反向励磁时,如图3所示,IGBT导通,第二开关K2与蓄电池正极接通,第一开关K1与IGBT的集电极接通,其电流路径与续流电流路径分别如图3中的实线和虚线路径所示。
当然,根据上述方式,将续流电路单元设置在蓄电池正极与励磁电路单元之前也是可行的,但此种实施方式仍应当视作是本实施方式的一种简单变换,其仍应当属于本发明的保护范围内。
本实施例中的第一开关K1和第二开关K2均为继电器,第一开关K1和第二开关K2中,励磁线圈与续流电路单元接于常闭触点上。本实施例中,蓄电池式电永磁铁还包括分别与第一开关K1和第二开关K2的控制端相连的单片机;单片机被配置为执行以下动作:当蓄电池式电永磁铁进行正向励磁时,触发第一开关K1动作,第二开关K2不动作;当蓄电池式电永磁铁进行反向励磁时,触发第二开关K2动作,第一开关K1不动作。由单片机控制蓄电池的励磁动作,能够有效避免人工误操作,安全性能高。
本实施例中,蓄电池式电永磁铁还包括用于驱动第三晶体管导通的第三晶体管驱动芯片,单片机还与第三晶体管驱动芯片相连,第三晶体管驱动芯片与第三晶体管的门极相连,单片机触发第一开关K1或第二开关K2的同时控制第三晶体管驱动芯片触发第三晶体管。
进一步的,为了增强电永磁铁的磁力,本实施例的蓄电池式电永磁铁为多通道形式,如图4所示,多个励磁电路单元并联连接,使一个蓄电池可以向多个线圈进行励磁;由于本实施例的续流电路单元的续流路径不经过蓄电池,因此当一个励磁线圈励磁完成后,马上可以进行下一个励磁线圈的励磁,无需等待中间的续流时间,可以连续进行触发,反应速度极快,节省了大量的时间;并且这种多通道形式在使用同样电压的蓄电池时,可将励磁电流增大多倍,大大增加了电永磁铁的吸附能力。
本实施例中,控制器还包括外部单元和检测单元,外部单元、检测单元和单片机之间通过有线或无线方式连通,检测单元包括电量检测模块,电量检测模块检测蓄电池的电量并发送给外部单元的显示模块显示蓄电池的电量,以便操作人员观察并及时向蓄电池充电,避免在需要使用电磁铁时发现蓄电池电量不足,导致工作拖延。
外部单元还包括电量警示灯,电量检测模块测得蓄电池的电量低时控制电量警示灯发出警示信号。操作人员观察到警示信号后禁止充磁操作,防止磁力小造成的不安全操作;此种情况下仍然可以进行退磁操作。
本实施例中,检测单元还包括励磁电流检测装置,励磁电流检测装置测得励磁电流达到最大允许值时向单片机发出信号,单片机接收信号后控制第三晶体管驱动芯片停止触发第三晶体管,以防造成短路事故。其中,励磁电流的最大允许值可以预先设置为第三晶体管的电 流最大允许值或根据具体工况进行预设。
本实施例中,检测单元还包括磁通检测模块,外部单元还包括吊运指示灯,磁通检测模块将测得的磁通量发送给单片机,并由单片机判定是否达到预先设置的可吊运磁通量,单片机根据判断结果控制吊运指示灯的亮灭,操作人员可以根据吊运指示灯的提示执行操作,进一步提高了安全性能。
本实施例的蓄电池式电永磁铁的外部单元还包括控制面板,上述吊运指示灯、电量警示灯以及显示模块均设置在方便操作人员观看的控制面板上,控制面板如图5所示,除此之外,控制面板上还设有落地检测、充磁按钮、退磁按钮、锁定按钮以及透磁深度调节旋钮等装置,操作人员仅需进行初步的按动指示按钮即可,避免了复杂的人工操作过程中失误等情况的出现。
本实施例还具体提供了上述蓄电池式电永磁铁的正向励磁方法,其步骤包括:
S1:继电器正向接通:单片机控制一个励磁电路单元中的第一开关K1动作,第二开关K2不动作;
S2:第三晶体管触发:与步骤S1同时,单片机控制第三晶体管驱动芯片,使第三晶体管驱动芯片触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
S3:单个励磁线圈完成正向励磁:励磁线圈中产生励磁电流后,单片机控制第三晶体管驱动芯片停止触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
S4:完成正向励磁:单片机开始向下一励磁线圈正向励磁,重复步骤S1~S3,直至所有励磁线圈均完成励磁。
本实施例还具体提供了上述蓄电池式电永磁铁的反向励磁方法,其步骤包括:
S1:继电器反向接通:单片机控制一个励磁电路单元中的第一开关K1不动作,第二开关K2动作;
S2:第三晶体管触发:与步骤S1同时,单片机控制第三晶体管驱动芯片,使第三晶体管驱动芯片触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
S3:单个励磁线圈完成反向励磁:励磁线圈中产生励磁电流后,单片机控制第三晶体管驱动芯片停止触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
S4:完成反向励磁:单片机开始向下一励磁线圈反向励磁,重复步骤S1~S3,直至所有励磁线圈均完成励磁。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。对于本领域的技术人员来说,在不脱离本发明的技术构思前提下所得到的改进和变换也应视为本发明的保护范围。

Claims (15)

  1. 一种蓄电池式电永磁铁,包括蓄电池、控制器和电永磁铁机体,所述电永磁铁机体包括励磁线圈,其特征在于:所述控制器包括一个或两个以上相互并联的励磁电路单元以及与励磁电路单元一一对应串联的续流电路单元,所述励磁电路单元包括第一开关(K1)和第二开关(K2),第一开关(K1)和第二开关(K2)之间连接有励磁线圈;所述第一开关(K1)和第二开关(K2)均为单刀双掷开关,所述励磁线圈的两端分别与第一开关(K1)和第二开关(K2)的动端相连接,第一开关(K1)和第二开关(K2)的两个不动端均分别与蓄电池的正极和续流电路单元相连接,所述续流电路单元与电池负极相连。
  2. 根据权利要求1所述的蓄电池式电永磁铁,其特征在于:所述续流电路单元包括两个相互并联的单向导通的第一晶体管和第二晶体管,以及连接于第一晶体管和第二晶体管的输入端与蓄电池负极之间的第三晶体管;第一晶体管和第二晶体管的输出端分别连接于励磁线圈的两端点上。
  3. 根据权利要求2所述的蓄电池式电永磁铁,其特征在于:所述第一晶体管和第二晶体管为二极管,所述第三晶体管为三极管。
  4. 根据权利要求3所述的蓄电池式电永磁铁,其特征在于:所述第三晶体管的集电极分别与所述第一开关(K1)的一个不动端、第二开关(K2)的一个不动端及第一晶体管的输入端和第二晶体管的输入端相连,所述第三晶体管的发射极与蓄电池的负极连接。
  5. 根据权利要求4所述的蓄电池式电永磁铁,其特征在于:所述第三晶体管为IGBT管。
  6. 根据权利要求1至5中任一项所述的蓄电池式电永磁铁,其特征在于:所述第一开关(K1)和第二开关(K2)均为继电器,所述第一开关(K1)和第二开关(K2)中,励磁线圈与续流电路单元接于常闭触点上。
  7. 根据权利要求6所述的蓄电池式电永磁铁,其特征在于:所述蓄电池式电永磁铁还包括分别与所述第一开关(K1)和第二开关(K2)的控制端相连的单片机;所述单片机被配置为执行以下动作的一种或两种:
    所述蓄电池式电永磁铁进行正向励磁时,触发第一开关(K1)动作,第二开关(K2)不动作;
    所述蓄电池式电永磁铁进行反向励磁时,触发第二开关(K2)动作,第一开关(K1)不动作。
  8. 根据权利要求7所述的蓄电池式电永磁铁,其特征在于:所述蓄电池式电永磁铁还包括用于驱动第三晶体管导通的第三晶体管驱动芯片,所述单片机还与第三晶体管驱动芯片相连,所述第三晶体管驱动芯片与第三晶体管的门极相连,所述单片机触发第一开关(K1)或第二开关(K2)的同时控制第三晶体管驱动芯片触发第三晶体管。
  9. 根据权利要求8所述的蓄电池式电永磁铁,其特征在于:所述控制器还包括外部单元和检测单元,外部单元、检测单元和所述单片机之间通过有线或无线方式连通,所述检测单元包括电量检测模块,所述电量检测模块检测蓄电池的电量并发送给外部单元的显示模块显示蓄电池的电量。
  10. 根据权利要求9所述的蓄电池式电永磁铁,其特征在于:所述外部单元还包括电量警示灯,所述电量检测模块测得蓄电池的电量低时控制电量警示灯发出警示信号。
  11. 根据权利要求9所述的蓄电池式电永磁铁,其特征在于:所述检测单元还包括励磁电流检测装置,所述励磁电流检测装置测得励磁电流达到最大允许值时向单片机发出信号,单片机接收信号后控制第三晶体管驱动芯片停止触发第三晶体管。
  12. 根据权利要求11所述的蓄电池式电永磁铁,其特征在于:所述励磁电流的最大允许值为第三晶体管的电流最大允许值或预先设置值。
  13. 根据权利要求9所述的蓄电池式电永磁铁,其特征在于:所述检测单元还包括磁通检测模块,所述外部单元还包括吊运指示灯,所述磁通检测模块将测得的磁通量发送给单片机,并由单片机判定是否达到预先设置的可吊运磁通量,单片机根据判断结果控制吊运指示灯的亮灭。
  14. 一种根据权利要求1~13中任一项所述的蓄电池式电永磁铁的正向励磁方法,其步骤包括:
    S1:继电器正向接通:单片机控制一个励磁电路单元中的第一开关(K1)动作,第二开关(K2)不动作;
    S2:第三晶体管触发:与步骤S1同时,单片机控制第三晶体管驱动芯片,使第三晶体管驱动芯片触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
    S3:单个励磁线圈完成正向励磁:励磁线圈中产生励磁电流后,单片机控制第三晶体管驱动芯片停止触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
    S4:完成正向励磁:单片机开始向下一励磁线圈正向励磁,重复步骤S1~S3,直至所有励磁线圈均完成励磁。
  15. 一种根据权利要求1~13中任一项所述的蓄电池式电永磁铁的反向励磁方法,其步骤包括:
    S1:继电器反向接通:单片机控制一个励磁电路单元中的第一开关(K1)不动作,第二开关(K2)动作;
    S2:第三晶体管触发:与步骤S1同时,单片机控制第三晶体管驱动芯片,使第三晶体管驱动芯片触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
    S3:单个励磁线圈完成反向励磁:励磁线圈中产生励磁电流后,单片机控制第三晶体管驱动芯片停止触发与该励磁电路单元串接的续流电路单元中的第三晶体管的门极;
    S4:完成反向励磁:单片机开始向下一励磁线圈反向励磁,重复步骤S1~S3,直至所有励磁线圈均完成励磁。
PCT/CN2018/122368 2018-12-04 2018-12-20 一种蓄电池式电永磁铁以及其正、反向励磁方法 WO2020113693A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811474835.5A CN109524194A (zh) 2018-12-04 2018-12-04 一种蓄电池式电永磁铁以及其正、反向励磁方法
CN201811474835.5 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020113693A1 true WO2020113693A1 (zh) 2020-06-11

Family

ID=65794378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122368 WO2020113693A1 (zh) 2018-12-04 2018-12-20 一种蓄电池式电永磁铁以及其正、反向励磁方法

Country Status (2)

Country Link
CN (1) CN109524194A (zh)
WO (1) WO2020113693A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202245666U (zh) * 2011-09-22 2012-05-30 株洲悍威磁电科技有限公司 蓄电池式电控永磁铁
CN202754683U (zh) * 2012-04-18 2013-02-27 株洲悍威磁电科技有限公司 一种新型的电永磁控制器
CN204011283U (zh) * 2014-08-07 2014-12-10 武汉钢铁(集团)公司 直流电磁铁励磁换向装置
CN104568033A (zh) * 2014-12-31 2015-04-29 重庆川仪自动化股份有限公司 高频励磁装置
CN208157324U (zh) * 2018-02-09 2018-11-27 胡语嫣 一种新型桥式直流控制电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766733B2 (ja) * 1985-12-14 1995-07-19 株式会社豊田自動織機製作所 継電器の励磁回路
JPH10294215A (ja) * 1997-04-17 1998-11-04 Sanmei Denki Kk 電磁石装置
KR101524719B1 (ko) * 2007-08-10 2015-06-02 에스지엠 갠트리 에스.피.에이. 고온압연철강의 코일들을 이동시키기 위한 전자석 리프터 및 이에 대응하는 작동방법
CN202022648U (zh) * 2011-01-24 2011-11-02 湖南泰鑫巍电气有限公司 微处理智能起重电磁铁控制设备
CN202148132U (zh) * 2011-07-14 2012-02-22 大连宝信起重技术有限公司 一种单片机控制的起重电磁铁无极调磁电控设备
CN202384445U (zh) * 2011-12-12 2012-08-15 四川长虹电器股份有限公司 一种蓄电池装置
CN204556037U (zh) * 2015-04-01 2015-08-12 天津商业大学 一种电磁流量计高精度可调励磁电路
CN206074773U (zh) * 2016-09-13 2017-04-05 西安科技大学 一种蓄电池电量监测装置
CN209328646U (zh) * 2018-12-04 2019-08-30 株洲悍威磁电科技有限公司 一种蓄电池式电永磁铁

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202245666U (zh) * 2011-09-22 2012-05-30 株洲悍威磁电科技有限公司 蓄电池式电控永磁铁
CN202754683U (zh) * 2012-04-18 2013-02-27 株洲悍威磁电科技有限公司 一种新型的电永磁控制器
CN204011283U (zh) * 2014-08-07 2014-12-10 武汉钢铁(集团)公司 直流电磁铁励磁换向装置
CN104568033A (zh) * 2014-12-31 2015-04-29 重庆川仪自动化股份有限公司 高频励磁装置
CN208157324U (zh) * 2018-02-09 2018-11-27 胡语嫣 一种新型桥式直流控制电路

Also Published As

Publication number Publication date
CN109524194A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
AU2016101612A4 (en) Power tool and control circuit thereof
WO2020113693A1 (zh) 一种蓄电池式电永磁铁以及其正、反向励磁方法
CN102134867A (zh) 混合型作业机械
CN209328646U (zh) 一种蓄电池式电永磁铁
JP5107167B2 (ja) ハイブリッド型作業機械
CN111082477A (zh) 电压控制电路及电控永磁控制器
JP2602759B2 (ja) リフティングマグネットの無接点制御回路
CN103984281A (zh) 基于igbt及可编程逻辑技术的永磁开关控制器及方法
CN115001121B (zh) 一种用于高效储能系统的限流电路、控制方法及系统
CN107984391B (zh) 一种磨床的电源供电装置
CN107165758B (zh) 一种强流脉冲电子束源光遥控点火驱动器
TW201301719A (zh) 充磁裝置
CN202245666U (zh) 蓄电池式电控永磁铁
CN211209610U (zh) 一种工业车辆控制器
CN110880399B (zh) 一种管道消磁机
US3374412A (en) Control system for regulating current pulses to battery powered electric motors
CN202116255U (zh) 自动限制高空作业车操作顺序的控制装置
CN214205081U (zh) 一种交流双电源切换装置
JPH10294215A (ja) 電磁石装置
JP2000143138A (ja) リフティングマグネット用電源回路
CN210099176U (zh) 一种高精度旋钮控制型电弧焊机
CN108357386A (zh) 采集执行设备和供电系统
CN211727866U (zh) 非接触式引弧逆变式等离子切割机转移弧控制电路
CN109066632B (zh) 一种快速灭磁方法
WO2020166435A1 (ja) 駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18942020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18942020

Country of ref document: EP

Kind code of ref document: A1