WO2020111820A1 - 추출기를 가지는 소형 엑스레이 튜브 - Google Patents

추출기를 가지는 소형 엑스레이 튜브 Download PDF

Info

Publication number
WO2020111820A1
WO2020111820A1 PCT/KR2019/016586 KR2019016586W WO2020111820A1 WO 2020111820 A1 WO2020111820 A1 WO 2020111820A1 KR 2019016586 W KR2019016586 W KR 2019016586W WO 2020111820 A1 WO2020111820 A1 WO 2020111820A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
extractor
voltage
ray tube
electrons
Prior art date
Application number
PCT/KR2019/016586
Other languages
English (en)
French (fr)
Inventor
이레나
신석영
김현진
Original Assignee
주식회사 레메디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레메디 filed Critical 주식회사 레메디
Priority to US16/642,370 priority Critical patent/US11177106B2/en
Priority to EP19850777.4A priority patent/EP3889991A4/en
Priority to CN201980004170.8A priority patent/CN111492456B/zh
Priority to JP2020512791A priority patent/JP6972313B2/ja
Publication of WO2020111820A1 publication Critical patent/WO2020111820A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/025X-ray tubes with structurally associated circuit elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/045Electrodes for controlling the current of the cathode ray, e.g. control grids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/34Anode current, heater current or heater voltage of X-ray tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/112Non-rotating anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/14Arrangements for concentrating, focusing, or directing the cathode ray
    • H01J35/147Spot size control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/32Tubes wherein the X-rays are produced at or near the end of the tube or a part thereof which tube or part has a small cross-section to facilitate introduction into a small hole or cavity

Definitions

  • the present invention relates to a small X-ray tube, and more particularly, to a small X-ray tube including an extractor to control the emission form of electrons emitted from the filament and to control the emission of X-rays using a cutoff voltage. It is about.
  • the range of utilization of the X-ray technology capable of photographing the inside of the patient's human body is gradually expanding.
  • conventionally due to the size of the X-ray imaging apparatus, it was possible to shoot only large areas such as the chest, arms, and legs.
  • dental treatment X-ray imaging of small parts of the human body is required, and miniaturization of the X-ray tube is required. have.
  • X-ray tube describes the basic form of such a miniaturized X-ray tube.
  • electrons When electrons are emitted from the emitter, electrons collide with the anode electrode to emit X-rays. Is showing.
  • An object of the present invention is to provide a small X-ray tube, to facilitate X-ray imaging of small areas.
  • the present invention aims to minimize exposure to X-rays by controlling the emission of electrons until a required level of electrons are emitted by applying a voltage to the filament in the X-ray tube.
  • an object of the present invention is to minimize the focal region of electrons reaching the target in the X-ray tube to obtain a clear X-ray image.
  • the present invention aims to prevent the tube from being damaged by heat by configuring the material of the extractor connected to the body of the ceramic material with a material having a similar coefficient of thermal expansion to that of the ceramic.
  • a small X-ray tube has two filament through-holes so as to fix a filament that emits electrons when the voltage is applied, the filament, and connect power to both poles of the filament.
  • a base including a base, a cylindrical extractor that is in close contact with the base and surrounds the filament without contacting the filament, a cutoff voltage providing unit that applies a cutoff voltage between the extractor and one pole of the filament, and the extractor Surrounding, one end is connected to the body of the ceramic material in close contact with the base and the other end of the body, and comprises a target that receives electrons emitted from the filament and emits X-rays.
  • the cutoff voltage providing unit applies a cutoff voltage between the extractor and one pole of the filament, and after a predetermined preheating time has elapsed since a voltage was applied between both poles of the filament, the cutoff voltage Can be blocked.
  • the cut-off voltage providing unit may apply a voltage of 200V or more and 300V or less between the extractor and one pole of the filament.
  • the extractor may be made of ceramic constituting the body and metal having a coefficient of thermal expansion within a predetermined range.
  • the extractor may be made of kovar (kovar).
  • the voltage is applied to the filament in the X-ray tube so that the emission of electrons can be controlled before the required level of electrons are emitted, thereby minimizing exposure to X-rays.
  • the material of the extractor connected to the body of the ceramic material is composed of a material having a similar coefficient of thermal expansion to that of the ceramic, so that the tube is not damaged by heat.
  • FIG. 1 is a view showing the configuration of a small X-ray tube according to an embodiment of the present invention.
  • FIG. 2 is a view showing an extractor of a small X-ray tube according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing a voltage application module of a small X-ray tube according to an embodiment of the present invention.
  • FIG. 4 is a view showing the operation of a small X-ray tube according to an embodiment of the present invention.
  • a small X-ray tube has two filament through-holes so as to fix a filament that emits electrons when the voltage is applied, the filament, and connect power to both poles of the filament.
  • a base including a base, a cylindrical extractor that is in close contact with the base and surrounds the filament without contacting the filament, a cutoff voltage providing unit that applies a cutoff voltage between the extractor and one pole of the filament, and the extractor Surrounding, one end is connected to the body of the ceramic material in close contact with the base and the other end of the body, and comprises a target that receives electrons emitted from the filament and emits X-rays.
  • the cutoff voltage providing unit applies a cutoff voltage between the extractor and one pole of the filament, and after a predetermined preheating time has elapsed since a voltage was applied between both poles of the filament, the cutoff voltage Can be blocked.
  • the cut-off voltage providing unit may apply a voltage of 200V or more and 300V or less between the extractor and one pole of the filament.
  • the extractor may be made of ceramic constituting the body and metal having a coefficient of thermal expansion within a predetermined range.
  • the extractor may be made of kovar (kovar).
  • FIG. 1 is a view showing the configuration of a small X-ray tube according to an embodiment of the present invention.
  • a small X-ray tube includes a filament 101, a base 102, an extractor 103, a cutoff voltage providing unit 104, a body 105, and a target 106 And a heat dissipation cap 107.
  • the filament 101 emits electrons when a voltage is applied.
  • the filament 101 starts to emit electrons when electricity is applied and heated to exceed a specific temperature.
  • electrons emitted from the filament 101 are rapidly moved in the direction of the target 106 by using a high voltage applied between the filament and the target 106.
  • the basic principle is to generate X-rays by colliding against the target 106.
  • the part that functions to generate electrons such as the filament 101, is called an emitter or a cathode, and is not limited by these terms. 101).
  • the filament 101 emits electrons when heat is generated by electricity and when the heat exceeds a critical point, and a preheating time is required to preheat until the heat reaches a predetermined temperature or more. Therefore, in the conventional X-ray tube, there was a problem in that an examiner or a patient is exposed to radiation due to radiation of an insufficient amount of X-rays to take an X-ray image until power is applied and the filament is preheated.
  • the filament 101 operates when a voltage is applied, it is obvious that a power supply module for applying a voltage to the filament is connected, and X-ray imaging can be controlled by supplying and blocking power through the power supply module. .
  • the base 102 is fixed to the filament 101, and includes two filament through holes to connect power to both poles of the filament 101.
  • the electrons generated in the filament 101 move in the direction of the target 106 by high voltage.
  • the filament 101 must be fixed to the inside of the X-ray tube and the opposite direction of the target 106 must be blocked. Needs to be.
  • the filament 101 should be able to supply power to the filament 101 from the outside while being inside the X-ray tube.
  • the base 102 is configured to fit and fix the filament, and may include a through hole to allow two poles of the filament 101 to come out of the X-ray tube and connect to the power supply module.
  • the extractor 103 is in close contact with the base 102, does not contact the filament 101, and surrounds the filament. Since the extractor is made of metal and surrounds the filament 101, it can affect the movement of electrons when emitting electrons from the filament 101. Accordingly, it can be determined to which position of the target 106 the electrons emitted will be focused according to the internal slope of the extractor 103, the size of the hole, and the like.
  • a shape in which X-rays are generated may be implemented differently, and by focusing a focus area, the sharpness of the X-ray image may be increased.
  • the extractor 103 since the extractor 103 is not in contact with the filament 101, when a voltage is applied between the filament 101 and the extractor 103, an electric field is generated in the space therebetween. , The electrons generated in the filament 101 may not be emitted to the outside, thereby preventing X-rays from being emitted from the target 106. As described above, the filament 101 emits electrons after the threshold temperature is exceeded, and requires preheating time. In the related art, electrons generated little by little during the preheating time collide with the target to generate X-rays.
  • the extractor 103 must be made of a metal material in order to apply a high voltage. As shown in the figure, the extractor 103 must be in close contact with a body made of a ceramic material to make the inner space vacuum, and high heat may be generated. Considering the characteristics of the X-ray tube, it is preferable to use a material having a similar coefficient of thermal expansion to ceramic to prevent an impact from being generated due to a difference in thermal expansion coefficient during heating.
  • Kovar is a fernico-based alloy composed of Fe 54%, Ni 29%, and Co 17%, and has a coefficient of thermal expansion similar to that of hard glass. It is a material that is widely used in sealing parts with glass or ceramic.
  • the cutoff voltage providing unit 104 applies a cutoff voltage between the extractor 103 and one pole of the filament 101. As described above, when a voltage is applied between the filament 101 and the extractor 103, an electric field is formed between the two to prevent the electrons emitted from the filament 101 from moving to the target 106.
  • the voltage for blocking the emission of electrons is called a cutoff voltage in the present invention, and the cutoff voltage providing unit 104 functions to apply the cutoff voltage between the filament 101 and the extractor 103.
  • a cut-off voltage may be applied to block electron emission when X-rays should not be unnecessarily emitted, such as a time to wait until a high voltage is applied.
  • the cutoff voltage providing unit 104 applies a cutoff voltage between the extractor 103 and one pole of the filament 101, and then applies a voltage between both poles of the filament 101, and then When the preheating time elapses and electron emission is performed to the extent that X-ray imaging is possible, the cut-off voltage may be cut off to allow emission of X-rays. When configured in this way, unnecessary X-rays generated during the preheating time can be blocked in advance, thereby obtaining an effect of minimizing X-ray exposure.
  • the cut-off voltage providing unit 104 may apply a voltage between 200V and 300V as the cut-off voltage applied in this way, which is applied to a voltage forming an electric field that can block the outflow of electrons emitted from the filament 101.
  • a voltage may vary depending on the structure and material of the extractor 103.
  • the body 105 surrounds the extractor 103, and one end is in close contact with the base and is made of a ceramic material.
  • the inside of the X-ray tube is made of vacuum so that the electrons can move unobstructed, and for this purpose, a body 105 surrounding the entire X-ray tube including the filament 101 and the target 106 is required.
  • the body 105 is preferably made of a ceramic material so that the applied high voltage can be insulated without affecting the movement of electrons, and can respond to high heat.
  • a material having a similar coefficient of thermal expansion to the ceramic material such as a kovar.
  • the target 106 is connected to the other end of the body 105, and receives electrons emitted from the filament 101 to emit X-rays.
  • the target 106 is preferably made of a metal material, such as copper.
  • the target 106 is also called an anode, and as shown in the figure, when the electrons emitted from the filament 101 collide by having an inclined shape in a direction in which X-rays should be emitted, X-rays in the corresponding direction It can be configured to be released. Depending on the structure, inclination, and material of the target 106, it may have different X-ray emission patterns for the same electron, so that it may have a different structure depending on a method of using X-rays.
  • the heat dissipation cap 107 is connected to the target 106 to dissipate heat.
  • the electrons generated in the filament 101 reach the target 106 and collide, thereby generating X-rays.
  • heat is generated due to the effect of the collision.
  • a high-energy X-ray is emitted from a small X-ray device rather than a large X-ray device, a lot of heat is generated in a narrow target area, which may cause deformation of the device or affect performance.
  • the heat dissipation cap 107 is connected to the target 106, which generates a lot of heat, and serves to rapidly dissipate the heat of the target 106.
  • the heat dissipation cap 107 is preferably made of a metallic material having high electrical conductivity, and the outer surface of the heat dissipation cap 107 is formed with wrinkles, thereby maximizing the area dissipating heat to increase heat dissipation efficiency Can be done.
  • the heat dissipation cap 107 may be preferably made of the same material as the target so as to quickly dissipate the heat of the target 106, and a metal such as copper that facilitates X-ray dissipation may be used as the material.
  • FIG. 2 is a view showing an extractor of a small X-ray tube according to an embodiment of the present invention.
  • the movement path of electrons generated in the filament 101 to the target 106 may be completely different.
  • a high voltage is applied or electrons generating X-rays must be intensively emitted in a narrow focal region, and electrons emitted from the filament 101 by controlling the structure and voltage of the extractor 103 By controlling the shape of the beam, it is possible to obtain a clearer X-ray image even at the same operating voltage.
  • the upper figure shows a case where electrons emitted from the filament 101 do not converge to the focus and spread, and in this case, it is difficult to obtain a clear X-ray image.
  • a high dose of X-rays may be emitted at a target point for shooting, thereby enabling a clearer X-ray image to be obtained.
  • FIG. 3 is a block diagram showing a voltage application module of a small X-ray tube according to an embodiment of the present invention.
  • the small X-ray tube according to the present invention is heated by the voltage of the filament power supply unit that applies a voltage to the filament 101 and the electrons generated in this process are targets 106 ) By moving in the direction.
  • the voltage formed between the filament 101 and the target 106 may be a high voltage of about 70 kV, which may vary depending on the use of X-rays and the like.
  • a cutoff voltage providing unit for adding a voltage to the extractor 103 is included in the present invention, and a cutoff voltage is applied between one pole of the filament 101 and the extractor 103, thereby generating the filament 101
  • Prevented electrons from moving toward the target 106 may act as a switch.
  • FIG. 4 is a view showing the operation of a small X-ray tube according to an embodiment of the present invention.
  • High voltage between the filament 101 and the target 106 may also take time to reach the target voltage, and there has been no method for blocking unnecessary X-rays in this process.
  • a cutoff voltage is applied to the extractor 103 like the X-ray tube according to the present invention, electron emission can be precisely controlled based on the cutoff voltage, and through this, the X-ray can be emitted only at the required moment. It is possible to configure the system.
  • the present invention relates to a small X-ray tube having an extractor, a base that includes two filament through-holes so as to fix an filament that emits electrons when a voltage is applied, the filament, and connect power to both poles of the filament.
  • a cylindrical extractor in close contact with the base and surrounding the filament without contacting the filament, a cutoff voltage providing unit for applying a cutoff voltage between the extractor and one pole of the filament, surrounding the extractor, and on one side
  • a small X-ray tube is provided that includes a body made of a ceramic material in contact with the base and a tip on the other side of the body to emit X-rays by receiving electrons emitted from the filament.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

본 발명은 추출기를 구비한 소형 엑스레이 튜브에 관한 것으로, 전압이 인가되면 전자를 방출하는 필라멘트, 상기 필라멘트를 고정하고, 상기 필라멘트의 양쪽 극에 전원을 연결할 수 있도록 2개의 필라멘트 관통 구멍을 포함하는 베이스, 상기 베이스와 밀착되며, 상기 필라멘트와 접촉하지 않고 상기 필라멘트를 둘러싸는 원통형의 추출기, 상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 컷오프 전압을 인가하는 컷오프 전압 제공부, 상기 추출기를 둘러싸고, 일측의 끝단이 상기 베이스와 밀착되는 세라믹 소재의 바디 및 상기 바디의 타측의 끝단에 연결되고, 상기 필라멘트에서 방출되는 전자를 수신하여 엑스레이를 방출하는 타깃을 포함하는 소형 엑스레이 튜브가 제공된다.

Description

추출기를 가지는 소형 엑스레이 튜브
본 발명은 소형 엑스레이 튜브에 관한 것으로, 보다 상세하게는 필라멘트에서 방출되는 전자의 방출 형태를 조절할 수 있도록 하고, 컷오프 전압을 이용하여 엑스레이의 방출을 제어할 수 있도록 하는 추출기를 포함하는 소형 엑스레이 튜브에 관한 것이다.
환자의 질병을 진단하기 위한 기술 중에서, 환자의 인체 내부를 촬영할 수 있는 엑스레이 기술은 그 활용 범위가 점점 넓어져가고 있다. 특히, 종래에는 엑스레이 촬영 장치의 크기로 인하여, 흉부, 팔, 다리 등 큰 부위에 대해서만 촬영이 가능하였는데, 치과치료 등에서 인체의 작은 부위에 대한 엑스레이 촬영이 필요하게 되어, 엑스레이 튜브의 소형화가 필요해지고 있다.
선행기술인 한국 등록특허 제10-1915523호 "엑스선 튜브"는 이와 같이 소형화된 엑스레이 튜브의 기본적인 형태를 기술하고 있는데, 에미터에서 전자를 방출하면 아노드 전극에 전자가 충돌하여 엑스레이를 방출하는 구조를 나타내고 있다.
그러나, 이와 같은 종래기술들에 따른 엑스레이 튜브에서는 전자를 방출하기 위한 에미터에 전압이 인가될 때에, 예열 시간이 소요되며, 그 시간 동안 필요한 엑스레이 영상을 얻기 이전까지 피촬영자가 엑스레이에 노출되는 문제점이 있다.
따라서, 소형 엑스레이 튜브에서 엑스레이 영상을 얻기 위한 순간에만 전자를 방출할 수 있도록 제어할 수 있도록 하는 구조가 필요하다.
본 발명은 소형의 엑스레이 튜브를 제공하여, 작은 부위에 대한 엑스레이 촬영이 용이하도록 하는 것을 목적으로 한다.
또한, 본 발명은 엑스레이 튜브에서 필라멘트에 전압이 인가되어 필요한 수준의 전자가 방출되기 이전까지 전자의 방출을 제어할 수 있도록 하여, 엑스레이에 대한 노출을 최소화할 수 있도록 하는 것을 목적으로 한다.
또한, 본 발명은 엑스레이 튜브에서 타깃에 도달하는 전자들의 초점영역을 최소화하여 선명한 엑스레이 영상을 얻을 수 있도록 하는 것을 목적으로 한다.
또한 본 발명은 세라믹 소재의 바디와 연결되는 추출기의 소재를 세라믹과 열팽창계수가 유사한 소재로 구성함으로써, 열에 의해 튜브가 손상되지 않도록 하는 것을 목적으로 한다.
이러한 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 소형 엑스레이 튜브는 전압이 인가되면 전자를 방출하는 필라멘트, 상기 필라멘트를 고정하고, 상기 필라멘트의 양쪽 극에 전원을 연결할 수 있도록 2개의 필라멘트 관통 구멍을 포함하는 베이스, 상기 베이스와 밀착되며, 상기 필라멘트와 접촉하지 않고 상기 필라멘트를 둘러싸는 원통형의 추출기, 상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 컷오프 전압을 인가하는 컷오프 전압 제공부, 상기 추출기를 둘러싸고, 일측의 끝단이 상기 베이스와 밀착되는 세라믹 소재의 바디 및 상기 바디의 타측의 끝단에 연결되고, 상기 필라멘트에서 방출되는 전자를 수신하여 엑스레이를 방출하는 타깃을 포함하여 구성된다.
이 때, 상기 컷오프 전압 제공부는 상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 컷오프 전압을 인가하고, 상기 필라멘트의 양쪽 극 사이에 전압이 인가된 시점부터 소정의 예열 시간이 경과된 이후에 상기 컷오프 전압을 차단할 수 있다.
또한, 상기 컷오프 전압 제공부는 상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 200V 이상 300V 이하의 전압을 인가할 수 있다.
그리고, 상기 추출기는 상기 바디를 구성하는 세라믹과 열팽창계수가 소정의 범위 이내인 금속으로 이루어질 수 있다.
이 때, 상기 추출기는 코바르(kovar)로 이루어질 수 있다.
본 발명에 따르면, 소형의 엑스레이 튜브를 제공하여, 작은 부위에 대한 엑스레이 촬영이 용이하도록 하는 효과가 있다.
또한, 본 발명에 따르면, 엑스레이 튜브에서 필라멘트에 전압이 인가되어 필요한 수준의 전자가 방출되기 이전까지 전자의 방출을 제어할 수 있도록 하여, 엑스레이에 대한 노출을 최소화할 수 있도록 하는 효과가 있다.
또한, 본 발명에 따르면, 엑스레이 튜브에서 타깃에 도달하는 전자들의 초점영역을 최소화하여 선명한 엑스레이 영상을 얻을 수 있도록 하는 효과가 있다.
또한 본 발명에 따르면, 세라믹 소재의 바디와 연결되는 추출기의 소재를 세라믹과 열팽창계수가 유사한 소재로 구성함으로써, 열에 의해 튜브가 손상되지 않도록 할 수 있다.
도 1은 본 발명의 일실시예에 따른 소형 엑스레이 튜브의 구성을 도시한 도면이다.
도 2는 본 발명의 일실시예에 따른 소형 엑스레이 튜브의 추출기를 도시한 도면이다.
도 3은 본 발명의 일실시예에 따른 소형 엑스레이 튜브의 전압 인가 모듈을 도시한 구성도이다.
도 4는 본 발명의 일실시예에 따른 소형 엑스레이 튜브의 동작을 나타내는 도면이다.
이러한 목적을 달성하기 위하여 본 발명의 일 실시예에 따른 소형 엑스레이 튜브는 전압이 인가되면 전자를 방출하는 필라멘트, 상기 필라멘트를 고정하고, 상기 필라멘트의 양쪽 극에 전원을 연결할 수 있도록 2개의 필라멘트 관통 구멍을 포함하는 베이스, 상기 베이스와 밀착되며, 상기 필라멘트와 접촉하지 않고 상기 필라멘트를 둘러싸는 원통형의 추출기, 상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 컷오프 전압을 인가하는 컷오프 전압 제공부, 상기 추출기를 둘러싸고, 일측의 끝단이 상기 베이스와 밀착되는 세라믹 소재의 바디 및 상기 바디의 타측의 끝단에 연결되고, 상기 필라멘트에서 방출되는 전자를 수신하여 엑스레이를 방출하는 타깃을 포함하여 구성된다.
이 때, 상기 컷오프 전압 제공부는 상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 컷오프 전압을 인가하고, 상기 필라멘트의 양쪽 극 사이에 전압이 인가된 시점부터 소정의 예열 시간이 경과된 이후에 상기 컷오프 전압을 차단할 수 있다.
또한, 상기 컷오프 전압 제공부는 상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 200V 이상 300V 이하의 전압을 인가할 수 있다.
그리고, 상기 추출기는 상기 바디를 구성하는 세라믹과 열팽창계수가 소정의 범위 이내인 금속으로 이루어질 수 있다.
이 때, 상기 추출기는 코바르(kovar)로 이루어질 수 있다.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략하기로 한다. 또한 본 발명의 실시예들을 설명함에 있어 구체적인 수치는 실시예에 불과하며 이에 의하여 발명의 범위가 제한되지 아니한다.
도 1은 본 발명의 일실시예에 따른 소형 엑스레이 튜브의 구성을 도시한 도면이다.
도면에 도시한 바와 같이 본 발명의 일실시예에 따른 소형 엑스레이 튜브는 필라멘트(101), 베이스(102), 추출기(103), 컷오프 전압 제공부(104), 바디(105), 타깃(106) 및 열 방출 캡(107)으로 구성될 수 있다.
필라멘트(101)는 전압이 인가되면 전자를 방출한다. 필라멘트(101)는 전기가 가해져서 가열되게 되어 특정 온도를 넘어서게 되면 전자를 방출하기 시작한다. 본 발명의 일실시예에 따른 소형 엑스레이 튜브는 이와 같이 필라멘트(101)에서 방출되는 전자를 필라멘트와 타깃(106) 사이에 걸리는 고전압을 이용하여 타깃(106) 방향으로 빠르게 이동시키고, 이동한 전자가 타깃(106)에 충돌하여 엑스레이를 발생시키는 것을 기본 원리로 하고 있다.
필라멘트(101)와 같이 전자를 발생시키는 기능을 하는 부분을 에미터(emitter) 또는 캐소드(cathode)라고 부르며, 이와 같은 용어에 의해 제한되지 않고, 전자를 방출시키는 역할을 하면 본 발명에서의 필라멘트(101)와 동일한 기술적 범위를 가지는 것으로 이해할 수 있다.
필라멘트(101)는 앞서 설명한 바와 같이 전기에 의하여 열이 발생되고 그 열이 임계점을 넘어서게 되면 전자를 방출하도록 하고 있어, 열이 일정 온도 이상이 될 때까지 예열하기 위한 예열 시간이 필요하다. 따라서 종래의 엑스레이 튜브에서는 전원을 인가하고 필라멘트의 예열이 완료되기 전까지 엑스레이 영상을 촬영하기에 부족한 선량의 엑스레이가 방사되어 검사자 또는 환자가 이에 피폭되는 문제가 있었다.
필라멘트(101)는 전압이 인가되었을 때 동작하므로, 필라멘트에 전압을 인가하기 위한 전원 공급 모듈이 연결되는 것이 자명하며, 이 전원 공급 모듈을 통하여 전원을 공급하고 차단하는 것으로 엑스레이 촬영을 제어할 수 있다.
베이스(102)는 상기 필라멘트(101)를 고정하고, 상기 필라멘트(101)의 양쪽 극에 전원을 연결할 수 있도록 2개의 필라멘트 관통 구멍을 포함한다. 필라멘트(101)에서 발생되는 전자는 고전압에 의하여 타깃(106)의 방향으로 이동하는데, 이를 위하여 필라멘트(101)가 엑스레이 튜브의 내부에 일정하게 고정되어 있어야 하며 타깃(106)의 반대 방향은 막혀 있어야 할 필요가 있다. 또한, 필라멘트(101)가 엑스레이 튜브의 내부에 있으면서도 외부에서 필라멘트(101)에 전원을 공급할 수 있어야 한다.
따라서, 베이스(102)는 필라멘트를 끼워 고정시킬 수 있도록 구성되며, 필라멘트(101) 두 개의 극이 각각 엑스레이 튜브의 외부로 나와 전원 공급 모듈에 연결될 수 있도록 하는 관통 구멍을 포함할 수 있다.
추출기(103)는 베이스(102)와 밀착되며, 상기 필라멘트(101)와 접촉하지 않고, 상기 필라멘트를 둘러싼다. 추출기는 금속으로 구성하고 필라멘트(101)를 둘러싸고 있어서, 필라멘트(101)에서의 전자 방출시 전자의 이동에 영향을 줄 수가 있다. 따라서, 추출기(103)의 내부 경사, 홀의 크기 등에 따라서 방출된 전자가 타깃(106)의 어느 위치로 초점이 맞춰질지가 결정될 수 있다.
따라서, 추출기(103)의 형태를 조절함으로써, 엑스레이가 발생되는 형태를 다르게 구현할 수 있고, 초점 영역을 집중시킴으로써, 엑스레이 영상의 선명도를 증가시킬 수 있다.
특히, 추출기(103)는 필라멘트(101)와 접촉하고 있지 않아, 필라멘트(101)와 추출기(103) 사이에 전압이 인가되게 되면, 그 사이의 공간에 전기장이 발생되게 되는데, 이 전기장을 이용하면, 필라멘트(101)에서 발생되는 전자를 외부로 방출되지 할 수 있어, 타깃(106)에서 엑스레이가 방출되는 것을 막을 수 있다. 앞서 설명한 바와 같이, 필라멘트(101)는 임계치의 온도를 넘어간 이후에 본격적으로 전자가 방출되어 예열 시간이 필요한데, 종래의 기술에서는 이와 같은 예열 시간 동안에 조금씩 발생되는 전자가 타깃에 충돌하여 엑스레이가 발생되고, 불필요한 엑스레이에 검사자 또는 환자 등이 피폭될 수 있는 문제가 있었으나, 본 발명에서 이와 같이 추출기(103)와 필라멘트(101) 사이에 컷오프 전압을 인가하여 전기장을 발생시키면 전자의 방출을 차단하여 정말 필요한 순간에만 엑스레이가 발생되도록 제어할 수 있다.
추출기(103)는 고전압을 인가하기 위해 금속 소재로 이루어져야 하는데, 도면에 나타난 바와 같이, 추출기(103)가 세라믹 소재로 이루어진 바디와 밀착하여 내부 공간을 진공으로 만들어야 하며, 높은 열이 발생될 수 있는 엑스레이 튜브의 특성을 고려하면, 가열시 열팽창계수 차이로 인해 충격이 발생되는 것을 방지하기 위해 세라믹과 열팽창계수가 유사한 소재를 이용하는 것이 바람직하다. 이와 같은 소재로는 코바르(kovar)가 있는데, 코바르는 Fernico계의 합금으로 Fe 54%, Ni 29%, Co 17%의 조성으로 된 합금이며, 열팽창계수가 경질 유리와 비슷한 수준으로 세라믹과 차이가 없어, 유리 또는 세라믹과의 봉합 부분에서 널리 사용되는 소재이다.
컷오프 전압 제공부(104)는 상기 추출기(103) 및 상기 필라멘트(101)의 한 쪽 극 사이에 컷오프 전압을 인가한다. 앞서 설명한 것과 같이 필라멘트(101)와 추출기(103) 사이에 전압이 인가되면, 둘 사이에 전기장이 형성되어 필라멘트(101)에서 방출되는 전자를 타깃(106)까지 이동하지 못하도록 할 수 있다. 이와 같이 전자의 방출을 차단하기 위한 전압을 본 발명에서는 컷오프 전압이라고 부르며, 컷오프 전압 제공부(104)는 이와 같은 컷오프 전압을 필라멘트(101) 및 추출기(103) 사이에 인가하는 기능을 한다.
앞서 설명했던 바와 같이, 컷오프 전압이 인가되면 필라멘트(101)에서 타깃(106) 방향으로 전자가 방출되는 것을 제어할 수 있어서, 필라멘트(101)가 예열되는 시간이나, 필라멘트(101)와 타깃(106) 사이의 고전압이 인가될때까지 대기하는 시간 등 불필요하게 엑스레이가 방출되지 않아야 하는 때에 전자 방출을 차단하기 위해 컷오프 전압을 인가할 수 있다.
이를 위하여, 컷오프 전압 제공부(104)는 추출기(103) 및 필라멘트(101)의 한 쪽 극 사이에 컷오프 전압을 인가하고 있다가, 필라멘트(101)의 양 쪽 극 사이에 전압이 인가되고 나서 소정의 예열 시간이 경과되어 엑스레이 촬영이 가능한 정도의 전자 방출이 이루어지는 때에, 컷오프 전압을 차단하여, 엑스레이의 방출이 이루어지도록 할 수 있다. 이와 같이 구성할 경우, 예열시간동안 발생되는 불필요한 엑스레이를 사전에 차단할 수 있어 엑스레이 피폭을 최소화할 수 있는 효과를 얻을 수 있다.
컷오프 전압 제공부(104)에서는 이와 같이 인가하는 컷오프 전압으로 200V에서 300V 사이의 전압을 인가할 수 있는데, 이는 필라멘트(101)에서 방출되는 전자의 유출을 차단할 수 있을 정도의 전기장을 형성하는 전압에 해당하며, 상기 추출기(103)의 구조 및 소재 등에 따라서 달라질 수 있다.
바디(105)는 상기 추출기(103)를 둘러싸고, 일측의 끝단이 상기 베이스와 밀착되며 세라믹 소재로 구성된다. 엑스레이 튜브의 내부는 전자가 방해받지 않고 이동할 수 있도록 진공으로 되어 있는데, 이를 위해서 필라멘트(101)와 타깃(106)을 포함하여 엑스레이 튜브 전체를 감싸는 바디(105)가 필요하다.
바디(105)의 내부에서 전자가 이동하고 엑스레이가 방출되기 때문에, 전자의 이동에 영향을 주지 않고 인가되는 고전압이 절연될 수 있도록 바디(105)는 세라믹 소재로 이루어지는 것이 바람직하며, 높은 열에 대응할 수 있도록 세라믹 소재의 바디(105)와 맞닿는 금속 부분은 코바르(kovar)와 같이 세라믹 소재와 열팽창계수가 유사한 소재를 사용하는 것이 바람직하다.
타깃(106)은 상기 바디(105)의 타측 끝단에 연결되고, 상기 필라멘트(101)에서 방출되는 전자를 수신하여 엑스레이를 방출한다. 타깃(106)은 구리와 같은 금속 소재로 이루어지는 것이 바람직한데, 고전압에 의해 빠른 속도로 이동하는 전자가 금속 표면에 충돌하게 되면 엑스레이가 발생되는 현상을 이용하여 엑스레이가 필요한 곳으로 엑스레이를 발생시킬 수 있다.
타깃(106)은 애노드(anode)라고도 부르는데, 도면에 도시한 바와 같이, 엑스레이가 방출되어야 하는 방향으로 기울어진 형태를 가짐으로써, 필라멘트(101)에서 방출된 전자가 충돌하였을 때, 해당 방향으로 엑스레이가 방출될 수 있도록 구성할 수 있다. 타깃(106)의 구조와 기울기, 소재 등에 따라서, 동일한 전자에 대해서 다른 엑스레이 방출 형태를 가질 수 있어, 엑스레이의 활용 방법 등에 따라 다른 구조를 가지도록 할 수 있다.
열 방출 캡(107)은 상기 타깃(106)에 연결되어 열을 방출시킨다. 앞서 설명한 바와 같이, 필라멘트(101)에서 발생된 전자가 타깃(106)에 도달하여 충돌함으로써, 엑스레이가 발생되게 되는데, 이 과정에서 충돌에 의한 효과로 열이 발생되게 된다. 특히 대형 엑스레이 장치가 아닌 소형 엑스레이 장치에서 높은 에너지의 엑스레이를 방출하도록 하면, 좁은 타깃 영역에서 많은 열이 발생하게 되어, 기기의 변형을 초래하거나 성능에 영향을 줄 우려가 있다.
따라서, 열 방출 캡(107)은 많은 열이 발생되는 타깃(106)과 연결되어 타깃(106)의 열을 빠르게 방출시키는 역할을 한다. 이를 위하여 열 방출 캡(107)은 전기전도도가 높은 금속 물질로 구성되는 것이 바람직하며, 열 방출 캡(107)의 외부 표면은 주름이 형성되도록 하여 열을 방출하는 면적을 극대화하여 열 방출 효율을 높이도록 할 수 있다.
열 방출 캡(107)은 타깃(106)의 열을 빠르게 방출하도록 타깃과 동일한 소재로 이루어지는 것이 바람직할 수 있는데, 엑스레이 방출을 용이하게 하는 구리와 같은 금속이 그 소재로 사용될 수 있다.
도 2는 본 발명의 일실시예에 따른 소형 엑스레이 튜브의 추출기를 도시한 도면이다.
도면에 도시한 바와 같이, 엑스레이 튜브에서 추출기(103)의 형태와 전압 등에 따라서, 필라멘트(101)에서 발생되는 전자가 타깃(106)까지 이동하는 이동 경로가 완전히 달라질 수 있다. 일반적으로 선명한 엑스레이 영상을 얻기 위해서는 높은 전압이 인가되거나, 엑스레이를 발생시키는 전자가 좁은 초점영역에 집중적으로 방출되어야 하는데, 추출기(103)의 구조 및 전압 등을 제어하여 필라멘트(101)에서 방출되는 전자 빔의 형태를 제어함으로써, 동일한 작동전압에서도 더 선명한 엑스레이 영상을 얻을 수 있도록 할 수 있다.
도면에서는 위쪽 그림에서는 필라멘트(101)에서 방출되는 전자가 초점으로 수렴되지 못하고 퍼지는 경우를 나타내고 있으며, 이와 같은 경우에는 선명한 엑스레이 영상을 얻기가 어렵다. 아래 그림에서와 같이 타깃(106)의 한 점으로 초점이 맞춰지게 되면, 촬영하기 위한 목표 지점에 높은 선량의 엑스레이가 방출될 수 있고, 이를 통하여 보다 선명한 엑스레이 영상을 획득할 수 있게 된다.
도 3은 본 발명의 일실시예에 따른 소형 엑스레이 튜브의 전압 인가 모듈을 도시한 구성도이다.
도면에 도시한 바와 같이, 기본적으로 본 발명에 따른 소형 엑스레이 튜브는 필라멘트(101)에 전압을 인가하는 필라멘트 전원 공급부의 전압에 의해 필라멘트(101)가 가열되고 이 과정에서 발생되는 전자들이 타깃(106) 방향으로 이동함으로써, 이루어진다.
이 때, 필라멘트 고전압 제공부와 타깃 고전압 제공부로 인하여, 필라멘트(101)와 타깃(106) 사이에 높은 전압차가 형성되게 되고, 타깃(106) 쪽이 양극이 되어, 필라멘트(101)에서 발생된 전자가 빠르게 타깃(106) 방향으로 이동하도록 한다. 필라멘트(101)와 타깃(106) 사이에 형성되는 전압은 70kV가량의 고전압이 될 수 있으며, 이는 엑스레이의 용도 등에 따라 달라질 수 있다.
본 발명에서는 여기에 추출기(103)에 전압을 부가하는 컷오프 전압 제공부가 포함되어, 필라멘트(101)의 한 쪽 극과 추출기(103) 사이에 컷오프 전압을 인가하고, 이를 통해 필라멘트(101)에서 발생된 전자들이 타깃(106) 방향으로 이동하는 것을 막아 스위치 역할을 할 수가 있다.
도 4는 본 발명의 일실시예에 따른 소형 엑스레이 튜브의 동작을 나타내는 도면이다.
도면에 도시한 바와 같이, 필라멘트(101)는 전압이 인가되면, 가열이 시작되어 전자가 방출되는 온도에 도달할 때까지 예열의 시간이 필요하게 된다. 도면의 예시와 같이 2초가량의 예열 시간이 소요되는데 이 때에도 소량의 전자가 방출되면서 불필요하게 엑스레이가 방출되는 문제가 있을 수 있다.
필라멘트(101)와 타깃(106) 사이의 고전압도 목적 전압까지 도달하는 데에 시간이 소요될 수 있으며, 이 과정에서 불필요하게 발생되는 엑스레이를 차단하기 위한 방법이 종래에는 없었다. 하지만, 본 발명에 따른 엑스레이 튜브와 같이 추출기(103)에 컷오프 전압을 인가하도록 하면, 컷오프 전압을 기초로 전자의 방출을 정밀하게 제어할 수 있고, 이를 통하여, 필요한 순간에만 엑스레이를 방출할 수 있도록 시스템을 구성하는 것이 가능하다.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있다.
본 발명은 추출기를 구비한 소형 엑스레이 튜브에 관한 것으로, 전압이 인가되면 전자를 방출하는 필라멘트, 상기 필라멘트를 고정하고, 상기 필라멘트의 양쪽 극에 전원을 연결할 수 있도록 2개의 필라멘트 관통 구멍을 포함하는 베이스, 상기 베이스와 밀착되며, 상기 필라멘트와 접촉하지 않고 상기 필라멘트를 둘러싸는 원통형의 추출기, 상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 컷오프 전압을 인가하는 컷오프 전압 제공부, 상기 추출기를 둘러싸고, 일측의 끝단이 상기 베이스와 밀착되는 세라믹 소재의 바디 및 상기 바디의 타측의 끝단에 연결되고, 상기 필라멘트에서 방출되는 전자를 수신하여 엑스레이를 방출하는 타깃을 포함하는 소형 엑스레이 튜브가 제공된다.

Claims (5)

  1. 전압이 인가되면 전자를 방출하는 필라멘트;
    상기 필라멘트를 고정하고, 상기 필라멘트의 양쪽 극에 전원을 연결할 수 있도록 2개의 필라멘트 관통 구멍을 포함하는 베이스;
    상기 베이스와 밀착되며, 상기 필라멘트와 접촉하지 않고 상기 필라멘트를 둘러싸는 원통형의 추출기;
    상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 컷오프 전압을 인가하는 컷오프 전압 제공부;
    상기 추출기를 둘러싸고, 일측의 끝단이 상기 베이스와 밀착되는 세라믹 소재의 바디; 및
    상기 바디의 타측의 끝단에 연결되고, 상기 필라멘트에서 방출되는 전자를 수신하여 엑스레이를 방출하는 타깃
    을 포함하는 소형 엑스레이 튜브.
  2. 제1항에 있어서,
    상기 컷오프 전압 제공부는
    상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 컷오프 전압을 인가하고,
    상기 필라멘트의 양쪽 극 사이에 전압이 인가된 시점부터 소정의 예열 시간이 경과된 이후에 상기 컷오프 전압을 차단하는 것
    을 특징으로 하는 소형 엑스레이 튜브.
  3. 제2항에 있어서,
    상기 컷오프 전압 제공부는
    상기 추출기 및 상기 필라멘트의 한 쪽 극 사이에 200V 이상 300V 이하의 전압을 인가하는 것
    을 특징으로 하는 소형 엑스레이 튜브.
  4. 제1항에 있어서,
    상기 추출기는
    상기 바디를 구성하는 세라믹과 열팽창계수가 소정의 범위 이내인 금속으로 이루어지는 것
    을 특징으로 하는 소형 엑스레이 튜브.
  5. 제1항에 있어서,
    상기 추출기는
    코바르(kovar)로 이루어지는 것
    을 특징으로 하는 소형 엑스레이 튜브.
PCT/KR2019/016586 2018-11-28 2019-11-28 추출기를 가지는 소형 엑스레이 튜브 WO2020111820A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/642,370 US11177106B2 (en) 2018-11-28 2019-11-28 Miniaturized X-ray tube including extractor
EP19850777.4A EP3889991A4 (en) 2018-11-28 2019-11-28 SMALL X-RAY TUBE WITH EXTRACTOR
CN201980004170.8A CN111492456B (zh) 2018-11-28 2019-11-28 具有提取器的小型x射线管
JP2020512791A JP6972313B2 (ja) 2018-11-28 2019-11-28 抽出器を持つ小型x線チューブ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0149911 2018-11-28
KR1020180149911A KR102448410B1 (ko) 2018-11-28 2018-11-28 추출기를 가지는 소형 엑스레이 튜브

Publications (1)

Publication Number Publication Date
WO2020111820A1 true WO2020111820A1 (ko) 2020-06-04

Family

ID=70852069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016586 WO2020111820A1 (ko) 2018-11-28 2019-11-28 추출기를 가지는 소형 엑스레이 튜브

Country Status (6)

Country Link
US (1) US11177106B2 (ko)
EP (1) EP3889991A4 (ko)
JP (1) JP6972313B2 (ko)
KR (1) KR102448410B1 (ko)
CN (1) CN111492456B (ko)
WO (1) WO2020111820A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116344297A (zh) * 2023-05-26 2023-06-27 苏州一目万相科技有限公司 球管和球管的控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234907A (ja) * 2007-03-19 2008-10-02 Nec Microwave Inc 電源装置、高周波回路システム及びヒータ電圧制御方法
KR101506265B1 (ko) * 2013-11-11 2015-03-26 (주) 브이에스아이 교체형 엑스선관 및 광이오나이저
KR20150057970A (ko) * 2013-11-19 2015-05-28 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
KR101754780B1 (ko) * 2016-04-19 2017-07-10 박찬원 전자총 전원공급장치 및 이를 이용한 전원공급방법
KR20180046959A (ko) * 2016-10-28 2018-05-10 테크밸리 주식회사 히팅수단을 포함하는 전자발생장치
KR101915523B1 (ko) 2012-01-16 2018-11-06 한국전자통신연구원 엑스선 튜브

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3452232A (en) * 1966-06-30 1969-06-24 Tokyo Shibaura Electric Co Multiple-cathode x-ray triode tube
US6134300A (en) * 1998-11-05 2000-10-17 The Regents Of The University Of California Miniature x-ray source
JP4889871B2 (ja) * 2001-03-29 2012-03-07 浜松ホトニクス株式会社 X線発生装置
JP2006092879A (ja) * 2004-09-22 2006-04-06 Toshiba Corp X線管
KR100898903B1 (ko) * 2007-07-25 2009-05-26 한국전기연구원 탄소나노튜브 기반 근접 치료 장치
JP5661432B2 (ja) * 2010-11-17 2015-01-28 キヤノン株式会社 X線発生装置
JP5787556B2 (ja) * 2011-03-08 2015-09-30 キヤノン株式会社 X線発生装置及びx線撮影装置
KR101823876B1 (ko) * 2011-07-22 2018-01-31 한국전자통신연구원 스페이서를 이용한 적층형 엑스선관 장치
CN104470176B (zh) * 2013-09-18 2017-11-14 同方威视技术股份有限公司 X射线装置以及具有该x射线装置的ct设备
JP6456172B2 (ja) * 2015-02-04 2019-01-23 キヤノン株式会社 陽極及びこれを用いたx線発生管、x線発生装置、x線撮影システム
CN204834559U (zh) * 2015-06-29 2015-12-02 上海西门子医疗器械有限公司 X射线管
CN108352282B (zh) * 2015-11-13 2020-05-22 皇家飞利浦有限公司 用于组装用于x射线管的阴极的方法
KR101837599B1 (ko) * 2015-12-30 2018-03-14 한국과학기술원 탄소나노튜브 기반의 x-선 튜브를 이용한 켈로이드 및 피부암 치료용 x-선 근접 치료 장치에 사용되는 초소형 x-선 튜브 시스템
JP6659167B2 (ja) * 2016-03-30 2020-03-04 キヤノン株式会社 電子銃を備えたx線発生管及びx線撮影装置
US10373792B2 (en) * 2016-06-28 2019-08-06 General Electric Company Cathode assembly for use in X-ray generation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008234907A (ja) * 2007-03-19 2008-10-02 Nec Microwave Inc 電源装置、高周波回路システム及びヒータ電圧制御方法
KR101915523B1 (ko) 2012-01-16 2018-11-06 한국전자통신연구원 엑스선 튜브
KR101506265B1 (ko) * 2013-11-11 2015-03-26 (주) 브이에스아이 교체형 엑스선관 및 광이오나이저
KR20150057970A (ko) * 2013-11-19 2015-05-28 삼성전자주식회사 엑스선 영상 장치 및 그 제어 방법
KR101754780B1 (ko) * 2016-04-19 2017-07-10 박찬원 전자총 전원공급장치 및 이를 이용한 전원공급방법
KR20180046959A (ko) * 2016-10-28 2018-05-10 테크밸리 주식회사 히팅수단을 포함하는 전자발생장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3889991A4

Also Published As

Publication number Publication date
EP3889991A4 (en) 2022-08-17
KR20200063775A (ko) 2020-06-05
US11177106B2 (en) 2021-11-16
US20210151274A1 (en) 2021-05-20
KR102448410B1 (ko) 2022-09-28
EP3889991A1 (en) 2021-10-06
CN111492456B (zh) 2023-05-02
JP6972313B2 (ja) 2021-11-24
JP2021509755A (ja) 2021-04-01
CN111492456A (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
US9576766B2 (en) Graphite backscattered electron shield for use in an X-ray tube
US8331535B2 (en) Graphite backscattered electron shield for use in an X-ray tube
US4823371A (en) X-ray tube system
US5504799A (en) X-ray generation tube for ionizing ambient atmosphere
WO2020111820A1 (ko) 추출기를 가지는 소형 엑스레이 튜브
WO2013042810A1 (ko) 다중타겟 및 다중전자빔을 구비한 엑스선 발생장치
WO2016017847A1 (ko) 제전 범위 및 방열 기능이 향상된 연엑스선 발생 장치
JP4526113B2 (ja) マイクロフォーカスx線管及びそれを用いたx線装置
KR102435214B1 (ko) 휴대용 엑스레이 촬영 시스템
RU2161843C2 (ru) Точечный высокоинтенсивный источник рентгеновского излучения
US10043632B2 (en) Thermionic emission device, focus head, x-ray tube and x-ray radiator
WO2020111819A1 (ko) 열 방출 캡을 포함하는 소형 엑스레이 튜브
WO2016159618A1 (ko) X선 발생장치 및 그 제어방법
KR20180046959A (ko) 히팅수단을 포함하는 전자발생장치
JP3030069B2 (ja) X線管
US10546713B2 (en) Thermionic emission device, focus head, X-ray tube and X-ray emitter
WO2019027072A1 (ko) 휴대형 엑스선관
KR20220008437A (ko) 복수의 엑스레이 튜브를 포함하는 엑스레이 촬영장치
JP2005190757A (ja) X線発生装置
US20100202590A1 (en) X-ray tube with a catching device for backscattered electrons, and operating method therefor
JP2001023556A (ja) X線管
WO2015152640A1 (ko) 카트리지형 엑스선 소스 장치 및 이를 이용한 엑스선 방출장치
GB1602253A (en) X-ray tube for examining body cavities
EP2850634B1 (en) Radiotherapy apparatus
JPS63207038A (ja) X線管装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020512791

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19850777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019850777

Country of ref document: EP

Effective date: 20210628