WO2020111789A2 - Method for manufacturing aluminum nitride-based transistor - Google Patents

Method for manufacturing aluminum nitride-based transistor Download PDF

Info

Publication number
WO2020111789A2
WO2020111789A2 PCT/KR2019/016510 KR2019016510W WO2020111789A2 WO 2020111789 A2 WO2020111789 A2 WO 2020111789A2 KR 2019016510 W KR2019016510 W KR 2019016510W WO 2020111789 A2 WO2020111789 A2 WO 2020111789A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gan channel
edge
channel layer
manufacturing
Prior art date
Application number
PCT/KR2019/016510
Other languages
French (fr)
Korean (ko)
Other versions
WO2020111789A3 (en
Inventor
남옥현
최의호
Original Assignee
한국산업기술대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190062672A external-priority patent/KR102211209B1/en
Application filed by 한국산업기술대학교산학협력단 filed Critical 한국산업기술대학교산학협력단
Priority to US17/297,659 priority Critical patent/US11978629B2/en
Priority to EP19890469.0A priority patent/EP3890029A4/en
Publication of WO2020111789A2 publication Critical patent/WO2020111789A2/en
Publication of WO2020111789A3 publication Critical patent/WO2020111789A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Definitions

  • the present invention relates to an aluminum nitride (AlN) based transistor, and more particularly, to an AlN buffer layer-based High Electron Mobility Transistor (HEMT) capable of improving mobility characteristics.
  • AlN aluminum nitride
  • HEMT High Electron Mobility Transistor
  • a nitride-based HEMT is implemented on an Al x In y Ga 1-xy N/GaN or Al x In y Ga 1-xy N/AlN/GaN structure using a silicon (Si) substrate, etc., and Al x In y Ga 1-xy N/GaN or AlN/GaN It is used for high-power and high-frequency electronic devices by using the high electron mobility concentration characteristics of 2DEG (Two Dimensional Electron Gas) generated at the interface.
  • 2DEG Wide Dimensional Electron Gas
  • HEMTs of Al 1-xy Ga x In y N /GaN/AlN structure using AlN having a high band gap, thermal conductivity, and excellent physical properties as a buffer layer as shown in FIG. Is proposed, but due to the large negative polarization charge at the GaN/AlN interface, high density of 2DHG (Two Dimensional Hole Gas) is generated, thereby affecting the effect of coulomb drag on the 2DEG layer. There is a problem in that the mobility of the 2DEG layer is reduced.
  • the present invention was devised to solve the above-mentioned problems, and the object of the present invention is to use an AlN buffer layer, but insert the AlGaN composition change layer at the GaN/AlN interface to remove the degree of 2DHG (two-dimensional hole gas) generation.
  • the object of the present invention is to use an AlN buffer layer, but insert the AlGaN composition change layer at the GaN/AlN interface to remove the degree of 2DHG (two-dimensional hole gas) generation.
  • AlN aluminum nitride
  • a method of manufacturing a high-mobility transistor (HEMT) for achieving the above object, an AlN buffer layer, a composition change layer, a GaN channel layer on a semiconductor substrate , Al x In y Ga 1-xy N barrier layer (x, y is a real number between 0 and 1) to form a stacked structure, the composition change layer, from the AlN buffer layer to the position of the GaN channel layer An Al m Ga 1-m N layer in which the Al composition is changed, wherein m is a layer formed to have a real value decreasing from the edge of the AlN buffer layer to the edge of the GaN channel layer.
  • the m may be 0.8 to 1.0 at the edge of the AlN buffer layer and 0.0 to 0.2 at the edge of the GaN channel layer.
  • the semiconductor substrate may include a single crystal substrate of SiC, sapphire, Si, GaN, or AlN.
  • the sequentially stacked structure may be obtained by proceeding with an in-situ process in Metal-Organic Chemical Vapor Deposition (MOCVD) or Molecular Beam Epitaxy (MBE) equipment.
  • MOCVD Metal-Organic Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • the reactor conditions including the temperature of the reactor, the pressure, the flow rate of the atmosphere gas, or the ratio between Al, Ga, and N sources, between the edge of the AlN buffer layer and the edge of the GaN channel layer A change in the Al composition can be obtained.
  • the m is a linear decrease from the edge of the AlN buffer layer to the GaN channel layer edge, a non-linear decrease with a greater rate of change at the edge of the AlN buffer layer, or a non-linear decrease with a greater rate of change at the edge of the GaN channel layer. Can be manufactured.
  • the linear reduction or the non-linear reduction is a continuous or discontinuous reaction of the reactor conditions in time such that the Al composition changes from the edge of the AlN buffer layer to the edge of the GaN channel layer in a continuous form, a discontinuous form, or a combination thereof. It can be changed to form the composition change layer.
  • the GaN channel layer and the Al x In y Ga 1-xy N barrier layer may include the step of further stacking the AlN insertion layer between.
  • the thickness of the AlN insertion layer may be 5 to 20 mm 2.
  • the manufacturing method of the high-electron mobility transistor (HEMT), the GaN channel layer and the Al x In y Ga 1-xy N barrier layer 2DEG (two-dimensional electron gas) formed by spontaneous and piezoelectric polarization between the source terminal and It is characterized in that it is applied to operate a transistor by using electron flow between drain terminals.
  • HEMT high-electron mobility transistor
  • GaN channel layer GaN channel layer
  • Al x In y Ga 1-xy N barrier layer 2DEG two-dimensional electron gas
  • the formation of the composition change layer removes or suppresses the degree of 2DHG (two-dimensional hole gas) formation between the AlN buffer layer and the GaN channel layer, thereby reducing the GaN channel layer and the Al x In y Ga 1-xy N barrier.
  • the mobility of 2DEG (two-dimensional electron gas) is improved, and the composition change layer is between the AlN buffer layer and the GaN channel layer. It is characterized in that to prevent the degradation of the quality of the GaN channel layer due to the compression stress generated in the high-quality GaN channel layer is formed.
  • the high-sequence stacked structure of the high-mobility transistor transistor device is proposed, and such a device of HEMT structure, It can be used for high-power high-frequency electronic devices or photodetection electronic devices by using the high electron concentration characteristics of mobility.
  • the aluminum nitride (AlN)-based HEMT device uses an AlN buffer layer, but has a structure in which an AlGaN composition change layer is inserted at the GaN/AlN interface, and removes or suppresses the generation of 2DHG (two-dimensional hole gas) to 2DEG It is possible to reduce the influence of coulomb drag on the (two-dimensional electron gas) layer and improve the mobility of 2DEG (two-dimensional electron gas).
  • the aluminum nitride (AlN)-based HEMT device prevents the degradation of GaN due to the compressive stress generated in the GaN/AlN structure by the inserted AlGaN composition change layer and forms a high-quality GaN thin film. do.
  • 1 is a structure of a conventional HEMT (High Electron Mobility Transistor).
  • HEMT High Electron Mobility Transistor
  • FIG. 2A is a view for explaining a method of manufacturing a HEMT (High Electron Mobility Transistor) according to an embodiment of the present invention.
  • HEMT High Electron Mobility Transistor
  • Figure 2b is a diagram related to the band gap and carrier concentration according to the depth for explaining the properties of the AlGaN composition change layer of the present invention.
  • Figure 3 shows an example of the Al composition profile over time to form the AlGaN composition change layer of the present invention as a continuous Al composition.
  • Figure 4 shows an example of the Al composition profile over time to form the AlGaN composition change layer of the present invention as a discontinuous Al composition.
  • FIG. 6 is a view for explaining the crystalline quality of the GaN channel layer according to the presence or absence of the AlGaN composition change layer of the present invention.
  • first and second may be used to describe various components, but the components are not limited by the terms, and the terms are used to distinguish one component from other components. Used only.
  • FIG. 2A is a view for explaining a method of manufacturing a HEMT (High Electron Mobility Transistor) according to an embodiment of the present invention.
  • HEMT High Electron Mobility Transistor
  • HEMT according to an embodiment of the present invention, MOCVD (Metal-Organic Chemical Vapor Deposition) or MBE (Molecular Beam Epitaxy) equipment in a reactor such as in-situ (In situ) process, SiC, AlN buffer layer 20, AlGaN composition change layer 30, GaN channel layer 40, Al x In y Ga 1 on a semiconductor substrate 10 such as a sapphire, Si, GaN, or AlN single crystal substrate -xy N barrier layer 50 (x, y is a real number between 0 and 1) can be obtained by sequentially stacking.
  • MOCVD Metal-Organic Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy equipment in a reactor
  • SiC SiC
  • AlN buffer layer 20 AlGaN composition change layer 30
  • GaN channel layer 40 GaN channel layer 40
  • Al x In y Ga 1 on a semiconductor substrate 10 such as a sapphire
  • Si, GaN, or AlN single crystal substrate -xy N barrier layer 50
  • the reaction furnace may be appropriately adjusted in proportion between temperature, pressure, atmosphere gas flow rate, and source.
  • the AlN buffer layer 20 may be formed to a thickness of 0.5 ⁇ m or more, for example, about 0.5 to 5.0 ⁇ m.
  • the composition change layer 30 may be formed to a thickness of 0.005 ⁇ m or more, for example, about 0.005 to 1.0 ⁇ m.
  • the GaN channel layer 40 may be formed to a thickness of 0.01 ⁇ m or more, for example, about 0.01 to 1.0 ⁇ m.
  • the Al x In y Ga 1-xy N barrier layer 50 may be formed to a thickness of 0.01 ⁇ m or more, for example, about 0.01 to 1.0 ⁇ m.
  • 2DEG two-dimensional electron gas
  • 2DEG two-dimensional electron gas
  • spontaneous and piezoelectric polarization between the GaN channel layer 40 and the Al x In y Ga 1-xy N barrier layer 50 is formed between the source terminal and the drain terminal. It can be applied to operate transistors using flow.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • a binary AlN insertion layer 41 that is, AlN 5 ⁇ 20 ⁇ It is also possible to laminate more thickness.
  • the composition change layer 30 is an Al m Ga 1-m N layer in which Al composition is changed from the AlN buffer layer 20 to the position of the GaN channel layer 40, m is an AlN buffer layer 20 ) It is a layer formed to be a real value that decreases from the edge to the edge of the GaN channel layer 40.
  • m may be 0.8 to 1.0 (eg, 1.0) at the edge of the AlN buffer layer 20, and may be 0.0 to 0.2 (eg, 0.0) at the edge of the GaN channel layer 40.
  • the formation of the composition change layer 30 removes or suppresses the degree of 2DHG (two-dimensional hole gas) generation between the AlN buffer layer 20 and the GaN channel layer 40, as shown in FIG. 2B (( 2DHG concentration is very low compared to b)), the coulomb drag of the 2DEG (two-dimensional electron gas) layer between the GaN channel layer 40 and the Al x In y Ga 1-xy N barrier layer 50
  • the influence reduction of electron attraction
  • the mobility of 2DEG (two-dimensional electron gas) is improved, and the composition change layer 30 is compressed between the AlN buffer layer 20 and the GaN channel layer 40 It is possible to prevent the deterioration of the quality of the GaN channel layer 40 due to stress, so that a high quality GaN channel layer 40 is formed.
  • the composition change layer 30 can smoothly change the lattice constant difference so that a high-quality GaN channel layer 40 is formed as shown in FIG. 6.
  • the GaN channel layer at the edge of the AlN buffer layer 20 is changed by changing the reactor conditions including the temperature of the reactor, the pressure, the flow rate of the atmosphere gas, or the ratio between Al, Ga, and N sources.
  • Al composition may change between edges.
  • Figure 3 shows an example of the Al composition profile over time to form the AlGaN composition change layer 30 of the present invention as a continuous Al composition.
  • the change in the value of m (Al composition change) from the edge of the AlN buffer layer 20 for the Al m Ga 1-m N composition change layer 30 to the edge of the GaN channel layer 40 is linear. Decrease, the non-linear decrease in the rate of change at the edge side of the AlN buffer layer 20 (left side of the graph), or the non-linear decrease in the rate of change at the edge side of the GaN channel layer 40 (right side of the graph) .
  • the linear reduction or nonlinear reduction of the value of m may be maintained in one form over time, or may have a combined form.
  • FIG. 4 shows an example of the Al composition profile over time to form the AlGaN composition change layer 30 of the present invention as a discontinuous Al composition.
  • FIG. 4 shows the discontinuous Al composition change in the case where the change in the value of m (Al composition change) in FIG. 3 is a linear decrease, but is similar for the two examples of the nonlinear decrease in FIG. 3. Discontinuous Al composition changes can be made, or these linear reductions and nonlinear reductions can be combined.
  • the AlGaN composition change layer 30 may be formed by combining the continuous Al composition change of FIG. 3 and the discontinuous Al composition change of FIG. 4.
  • the edge of the GaN channel layer 40 at the edge of the AlN buffer layer 20 Change the composition by changing the conditions of the reactor (e.g., temperature, pressure, atmosphere gas flow rate, source flow rate, etc.) to continuous or discontinuous so that the Al composition changes up to a continuous form, a discontinuous form, or a combination thereof.
  • Layer 30 may be formed.
  • the temperature is 1000 to 1200°C
  • the pressure is 10 to 200 Torr
  • the atmosphere gas is mixed (eg, N 2 , H 2 or N 2 and H 2 ) .
  • group III is a group 3 element such as Al or Ga.
  • the Al composition can be formed from 100% to 0% when the temperature is raised from 1000°C to 1200°C, and the Al composition can be formed from 100% to 0% when the pressure is increased from 10 Torr to 200 Torr.
  • the Al/(Al+Ga) source ratio is decreased from 1 to 0, the Al composition may be formed from 100% to 0%, and when the N/III group source ratio is increased from 300 to 2000, the Al composition is It can be formed from 100% to 0%.
  • the Al composition may be changed to some extent depending on the application of any atmosphere, such as N 2 , H 2 or N 2 and H 2 as the atmosphere gas flow rate or atmosphere gas.
  • the Al/(Al+Ga) source ratio is properly fixed between 0 and 1, and changes in other deposition parameters such as temperature, pressure, atmosphere gas, excluding the Al/(Al+Ga) source ratio
  • the composition change layer 30 may be formed such that the Al composition has a tendency such as convex nonlinear reduction, linear reduction, or convex nonlinear reduction.
  • the GaN channel layer 40 at the edge of the AlN buffer layer 20 may show a tendency from a non-linear decrease convex upward to a linear decrease -> non-linear decrease convex downward.
  • the composition change layer 30 may be grown by stopping supply of the source and adjusting the growth variable and resupplying the source so as to have a discontinuous (stepwise) composition change. It is natural that the trend may have a convex stepwise change up or down as in the case of the continuous change in FIG. 3.
  • FIG. 6 is a view for explaining the crystalline quality of the GaN channel layer according to the presence or absence of the AlGaN composition change layer of the present invention.
  • the AlGaN composition change layer 30 of the present invention gradually changes the lattice constant according to the position between the AlN buffer layer 20 and the GaN channel layer 40, thereby forming a high-quality GaN channel layer 40. It can be done. That is, in the absence of the AlGaN composition change layer 30, the compressive stress generated by the difference in the lattice constant between the AlN buffer layer 20 and the GaN channel layer 40 causes deterioration in crystallinity or defects, resulting in a GaN channel. Although the quality of the layer 40 can be reduced, the composition change layer 30 can smoothly change the lattice constant difference so that a high-quality GaN channel layer 40 is formed as shown in FIG. 6.
  • FIG. 8 is an example of a comparison result of Hall effect measurement for the conventional HEMT structure and the HEMT structure of the present invention.
  • the GaN layer and the composition change layer 30 of the present invention were compared.
  • the formation of the composition change layer 30 removes or suppresses the degree of 2DHG (two-dimensional hole gas) generation between the AlN buffer layer 20 and the GaN channel layer 40, as shown in FIG. 2B (FIG. 1).
  • 2DHG concentration is very low compared to (b) of ), coulomb drag on the 2DEG (two-dimensional electron gas) layer between the GaN channel layer 40 and the Al x In y Ga 1-xy N barrier layer 50 It can be seen that the mobility of 2DEG (two-dimensional electron gas) can be improved by reducing the influence of ).
  • the aluminum nitride (AlN)-based HEMT device uses an AlN buffer layer, but has a structure in which an AlGaN composition change layer 30 is inserted at a GaN/AlN interface, of 2DHG (two-dimensional hole gas).
  • AlN aluminum nitride
  • the degree of formation it is possible to reduce the influence of coulomb drag on the 2DEG (two-dimensional electron gas) layer and improve the mobility of the 2DEG (two-dimensional electron gas).
  • the aluminum nitride (AlN)-based HEMT device prevents degradation of GaN due to the compressive stress generated in the GaN/AlN structure by the inserted AlGaN composition change layer 30, and a high-quality GaN thin film Let it form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

The present invention relates to a method for manufacturing an aluminum nitride-based transistor. An aluminum nitride (AlN)-based HEMT device of the present invention uses an AlN buffer layer, wherein an AlGaN composition variation layer is inserted in the interface of GaN/AlN to remove or inhibit the degree of formation of two-dimensional hole gas (2DHG), to thereby reduce the effect of Coulomb drag in a two-dimensional electron gas (2DEG) layer and improve the mobility of 2DEG.

Description

질화알루미늄 기반 트랜지스터의 제조 방법Manufacturing method of aluminum nitride based transistor
본 발명은 질화알루미늄(AlN) 기반 트랜지스터에 관한 것으로서, 특히, 이동도 특성을 향상시킬 수 있는 AlN 버퍼층 기반의 HEMT(High Electron Mobility Transistor, 고전자이동도 트랜지스터)에 관한 것이다. The present invention relates to an aluminum nitride (AlN) based transistor, and more particularly, to an AlN buffer layer-based High Electron Mobility Transistor (HEMT) capable of improving mobility characteristics.
일반적으로 질화물 기반 HEMT는 AlxInyGa1-x-yN/GaN or AlxInyGa1-x-yN/AlN/GaN 구조로 실리콘(Si) 기판 등을 이용하여 그 위에 구현되며, AlxInyGa1-x-yN/GaN 혹은 AlN/GaN 계면에서 발생하는 2DEG(Two Dimensional Electron Gas, 이차원전자가스)의 고이동도의 고전자농도 특성을 이용하여 고출력 및 고주파 전자소자에 활용되고 있다.In general, a nitride-based HEMT is implemented on an Al x In y Ga 1-xy N/GaN or Al x In y Ga 1-xy N/AlN/GaN structure using a silicon (Si) substrate, etc., and Al x In y Ga 1-xy N/GaN or AlN/GaN It is used for high-power and high-frequency electronic devices by using the high electron mobility concentration characteristics of 2DEG (Two Dimensional Electron Gas) generated at the interface.
한편, 차세대 고성능 질화물 기반 HEMT 구현을 위해, 도 1과 같이 높은 밴드갭, 열전도율, 우수한 물성을 가지는 AlN을 버퍼(buffer)층으로 하는 Al1-x-yGaxInyN /GaN/AlN 구조의 HEMT가 제안되었으나 GaN/AlN 계면의 큰 음의 분극전하(Negative polarization charge)로 인하여 높은 밀도의 2DHG(Two Dimensional Hole Gas, 이차원정공가스)이 발생함으로써, 2DEG 층에 쿨롱끌림(Coulomb drag)의 영향을 주어 2DEG 층의 이동도를 저하시키는 문제점이 있다.On the other hand, in order to implement the next-generation high-performance nitride-based HEMT, HEMTs of Al 1-xy Ga x In y N /GaN/AlN structure using AlN having a high band gap, thermal conductivity, and excellent physical properties as a buffer layer as shown in FIG. Is proposed, but due to the large negative polarization charge at the GaN/AlN interface, high density of 2DHG (Two Dimensional Hole Gas) is generated, thereby affecting the effect of coulomb drag on the 2DEG layer. There is a problem in that the mobility of the 2DEG layer is reduced.
따라서, 본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, AlN 버퍼층을 사용하되 GaN/AlN 계면에 AlGaN 조성변화층을 삽입하여 2DHG(이차원정공가스)의 생성 정도를 제거 또는 억제해 2DEG(이차원전자가스) 층에 쿨롱끌림(Coulomb drag)의 영향을 감소시키고 2DEG(이차원전자가스)의 이동도를 향상시킬 수 있는, 질화알루미늄(AlN) 기반의 HEMT 소자를 제공하는 데 있다. Therefore, the present invention was devised to solve the above-mentioned problems, and the object of the present invention is to use an AlN buffer layer, but insert the AlGaN composition change layer at the GaN/AlN interface to remove the degree of 2DHG (two-dimensional hole gas) generation. Alternatively, to provide an aluminum nitride (AlN)-based HEMT device capable of suppressing the effect of coulomb drag on the 2DEG (two-dimensional electron gas) layer and improving mobility of the 2DEG (two-dimensional electron gas) layer. have.
먼저, 본 발명의 특징을 요약하면, 상기의 목적을 달성하기 위한 본 발명의 일면에 따른 고전자이동도 트랜지스터(HEMT)의 제조 방법은, 반도체 기판 상에 AlN 버퍼층, 조성변화층, GaN 채널층, AlxInyGa1-x-yN 베리어층(x,y는 0과 1사이의 실수)을 순차 적층한 구조를 형성하되, 상기 조성변화층은, 상기 AlN 버퍼층으로부터 상기 GaN 채널층의 위치까지 Al 조성이 변화되는 AlmGa1-mN층으로서, m은 상기 AlN 버퍼층 에지에서 상기 GaN 채널층 에지까지 감소하는 실수값이 되도록 형성된 층인 것을 특징으로 한다.First, to summarize the features of the present invention, a method of manufacturing a high-mobility transistor (HEMT) according to an aspect of the present invention for achieving the above object, an AlN buffer layer, a composition change layer, a GaN channel layer on a semiconductor substrate , Al x In y Ga 1-xy N barrier layer (x, y is a real number between 0 and 1) to form a stacked structure, the composition change layer, from the AlN buffer layer to the position of the GaN channel layer An Al m Ga 1-m N layer in which the Al composition is changed, wherein m is a layer formed to have a real value decreasing from the edge of the AlN buffer layer to the edge of the GaN channel layer.
상기 m은 상기 AlN 버퍼층 에지에서 0.8~1.0, 상기 GaN 채널층 에지에서 0.0~0.2일 수 있다.The m may be 0.8 to 1.0 at the edge of the AlN buffer layer and 0.0 to 0.2 at the edge of the GaN channel layer.
상기 반도체 기판은, SiC, 사파이어(Sapphire), Si, GaN, 또는 AlN의 단결정 기판을 포함할 수 있다.The semiconductor substrate may include a single crystal substrate of SiC, sapphire, Si, GaN, or AlN.
상기 순차 적층한 구조는, MOCVD(Metal-Organic Chemical Vapour Deposition) 또는 MBE(Molecular Beam Epitaxy) 장비에서 인시추 공정으로 진행되어 획득될 수 있다.The sequentially stacked structure may be obtained by proceeding with an in-situ process in Metal-Organic Chemical Vapor Deposition (MOCVD) or Molecular Beam Epitaxy (MBE) equipment.
상기 조성변화층의 형성에서, 반응로의 온도, 압력, 분위기 가스의 유량, 또는 Al, Ga, N 소스 간의 비율을 포함하는 반응로 조건을 변화시켜서 상기 AlN 버퍼층 에지에서 상기 GaN 채널층 에지 사이의 상기 Al 조성의 변화를 획득할 수 있다.In the formation of the composition change layer, by changing the reactor conditions including the temperature of the reactor, the pressure, the flow rate of the atmosphere gas, or the ratio between Al, Ga, and N sources, between the edge of the AlN buffer layer and the edge of the GaN channel layer A change in the Al composition can be obtained.
상기 m은 상기 AlN 버퍼층 에지에서 상기 GaN 채널층 에지까지, 선형적 감소, 상기 AlN 버퍼층 에지 쪽에서 변화율이 더 큰 비선형적 감소, 또는 상기 GaN 채널층 에지 쪽에서 변화율이 더 큰 비선형적 감소하는 값으로 변하도록 제조될 수 있다.The m is a linear decrease from the edge of the AlN buffer layer to the GaN channel layer edge, a non-linear decrease with a greater rate of change at the edge of the AlN buffer layer, or a non-linear decrease with a greater rate of change at the edge of the GaN channel layer. Can be manufactured.
상기 선형적 감소 또는 상기 비선형적 감소는 상기 AlN 버퍼층 에지에서 상기 GaN 채널층 에지까지 상기 Al 조성의 변화가 연속적인 형태, 불연속적인 형태 또는 이들의 조합으로 이루어지도록 반응로 조건을 시간적으로 연속 또는 불연속으로 변경하여 상기 조성변화층을 형성할 수 있다.The linear reduction or the non-linear reduction is a continuous or discontinuous reaction of the reactor conditions in time such that the Al composition changes from the edge of the AlN buffer layer to the edge of the GaN channel layer in a continuous form, a discontinuous form, or a combination thereof. It can be changed to form the composition change layer.
상기 고전자이동도 트랜지스터(HEMT)의 제조 방법은, 상기 AlxInyGa1-x-yN 베리어층이 AlN가 아닌 경우에, 상기 GaN 채널층과 상기 AlxInyGa1-x-yN 베리어층 사이에 AlN 삽입층을 더 적층하는 단계를 포함할 수 있다. 상기 AlN 삽입층의 두께는 5~20Å일 수 있다.In the method of manufacturing the high-electron mobility transistor (HEMT), when the Al x In y Ga 1-xy N barrier layer is not AlN, the GaN channel layer and the Al x In y Ga 1-xy N barrier layer It may include the step of further stacking the AlN insertion layer between. The thickness of the AlN insertion layer may be 5 to 20 mm 2.
상기 고전자이동도 트랜지스터(HEMT)의 제조 방법은, 상기 GaN 채널층과 상기 AlxInyGa1-x-yN 베리어층 사이에 자발 및 압전 분극으로 인해 형성된 2DEG(이차원전자가스)를 소스 단자와 드레인 단자 간의 전자 흐름에 이용하여 트랜지스터를 동작시키도록 적용하기 위한 것을 특징으로 한다.The manufacturing method of the high-electron mobility transistor (HEMT), the GaN channel layer and the Al x In y Ga 1-xy N barrier layer 2DEG (two-dimensional electron gas) formed by spontaneous and piezoelectric polarization between the source terminal and It is characterized in that it is applied to operate a transistor by using electron flow between drain terminals.
상기 조성변화층의 형성에 의해, 상기 AlN 버퍼층과 상기 GaN 채널층 사이의 2DHG(이차원정공가스)의 생성 정도를 제거 또는 억제해, 상기 GaN 채널층과 상기 AlxInyGa1-x-yN 베리어층 사이의 2DEG(이차원전자가스) 층에 쿨롱끌림(Coulomb drag)의 영향을 감소시켜서, 2DEG(이차원전자가스)의 이동도를 향상시키며, 상기 조성변화층이 상기 AlN 버퍼층과 상기 GaN 채널층 사이에서 발생하는 압축응력으로 인한 상기 GaN 채널층의 품질 저하를 방지해 고품질의 상기 GaN 채널층이 형성되도록 하기 위한 것을 특징으로 한다.The formation of the composition change layer removes or suppresses the degree of 2DHG (two-dimensional hole gas) formation between the AlN buffer layer and the GaN channel layer, thereby reducing the GaN channel layer and the Al x In y Ga 1-xy N barrier. By reducing the effect of coulomb drag on the 2DEG (two-dimensional electron gas) layer between layers, the mobility of 2DEG (two-dimensional electron gas) is improved, and the composition change layer is between the AlN buffer layer and the GaN channel layer. It is characterized in that to prevent the degradation of the quality of the GaN channel layer due to the compression stress generated in the high-quality GaN channel layer is formed.
그리고, 본 발명의 다른 일면에 따라, 상기 고전자이동도 트랜지스터(HEMT)의 제조 방법을 이용해, 상기 순차 적층한 구조의 고전자이동도 트랜지스터 소자를 제안하며, 이와 같은 HEMT 구조의 소자는, 고이동도의 고전자농도 특성을 이용하여 고출력의 고주파 전자소자나 광검출용 전자소자 등에 활용될 수 있다.And, according to another aspect of the present invention, using the method of manufacturing the high-mobility transistor (HEMT), the high-sequence stacked structure of the high-mobility transistor transistor device is proposed, and such a device of HEMT structure, It can be used for high-power high-frequency electronic devices or photodetection electronic devices by using the high electron concentration characteristics of mobility.
본 발명에 따른 질화알루미늄(AlN)기반의 HEMT 소자는, AlN 버퍼층을 사용하되 GaN/AlN 계면에 AlGaN 조성변화층이 삽입된 구조로서, 2DHG(이차원정공가스)의 생성 정도를 제거 또는 억제해 2DEG(이차원전자가스) 층에 쿨롱끌림(Coulomb drag)의 영향을 감소시키고 2DEG(이차원전자가스)의 이동도를 향상시킬 수 있다. The aluminum nitride (AlN)-based HEMT device according to the present invention uses an AlN buffer layer, but has a structure in which an AlGaN composition change layer is inserted at the GaN/AlN interface, and removes or suppresses the generation of 2DHG (two-dimensional hole gas) to 2DEG It is possible to reduce the influence of coulomb drag on the (two-dimensional electron gas) layer and improve the mobility of 2DEG (two-dimensional electron gas).
또한, 본 발명에 따른 질화알루미늄(AlN)기반의 HEMT 소자는, 삽입된 AlGaN 조성변화층에 의해 GaN/AlN 구조에서 발생하는 압축응력으로 인한 GaN의 품질 저하를 방지하고 고품질의 GaN 박막이 형성되도록 한다.In addition, the aluminum nitride (AlN)-based HEMT device according to the present invention prevents the degradation of GaN due to the compressive stress generated in the GaN/AlN structure by the inserted AlGaN composition change layer and forms a high-quality GaN thin film. do.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는 첨부도면은, 본 발명에 대한 실시예를 제공하고 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.The accompanying drawings included as part of the detailed description to aid understanding of the present invention provide embodiments of the present invention and describe the technical spirit of the present invention together with the detailed description.
도 1은 종래의 HEMT(고전자이동도 트랜지스터)의 구조이다.1 is a structure of a conventional HEMT (High Electron Mobility Transistor).
도 2a는 본 발명의 일 실시예에 따른 HEMT(고전자이동도 트랜지스터) 제조 방법을 설명하기 위한 도면이다. 2A is a view for explaining a method of manufacturing a HEMT (High Electron Mobility Transistor) according to an embodiment of the present invention.
도 2b는 본 발명의 AlGaN 조성변화층의 특성을 설명하기 위한 깊이에 따른 밴드갭 및 캐리어 농도 관련 도면이다. Figure 2b is a diagram related to the band gap and carrier concentration according to the depth for explaining the properties of the AlGaN composition change layer of the present invention.
도 3은 본 발명의 AlGaN 조성변화층을 연속적 Al 조성으로 형성하는 시간에 따른 Al 조성 프로파일의 예시를 보여준다.Figure 3 shows an example of the Al composition profile over time to form the AlGaN composition change layer of the present invention as a continuous Al composition.
도 4는 본 발명의 AlGaN 조성변화층을 불연속적 Al 조성으로 형성하는 시간에 따른 Al 조성 프로파일의 예시를 보여준다.Figure 4 shows an example of the Al composition profile over time to form the AlGaN composition change layer of the present invention as a discontinuous Al composition.
도 5는 본 발명의 AlGaN 조성변화층의 유무를 보여주는 HEMT 구조에 대한 X선 회절 분석 결과의 예이다. 5 is an example of X-ray diffraction analysis results for the HEMT structure showing the presence or absence of the AlGaN composition change layer of the present invention.
도 6은 본 발명의 AlGaN 조성변화층의 유무에 따른 GaN 채널층의 결정성 품질을 설명하기 위한 도면이다.6 is a view for explaining the crystalline quality of the GaN channel layer according to the presence or absence of the AlGaN composition change layer of the present invention.
도 7은 본 발명의 AlGaN 조성변화층의 X선 회절 역격자 지도의 예이다. 7 is an example of an X-ray diffraction reverse lattice map of the AlGaN composition change layer of the present invention.
도 8은 종래의 HEMT 구조와 본 발명의 HEMT 구조에 대한 홀효과 측정의 비교 결과의 예이다.8 is an example of a comparison result of Hall effect measurement for the conventional HEMT structure and the HEMT structure of the present invention.
이하에서는 첨부된 도면들을 참조하여 본 발명에 대해서 자세히 설명한다. 이때, 각각의 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타낸다. 또한, 이미 공지된 기능 및/또는 구성에 대한 상세한 설명은 생략한다. 이하에 개시된 내용은, 다양한 실시 예에 따른 동작을 이해하는데 필요한 부분을 중점적으로 설명하며, 그 설명의 요지를 흐릴 수 있는 요소들에 대한 설명은 생략한다. 또한 도면의 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니며, 따라서 각각의 도면에 그려진 구성요소들의 상대적인 크기나 간격에 의해 여기에 기재되는 내용들이 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. At this time, the same components in each drawing are denoted by the same reference numerals as possible. In addition, detailed descriptions of already known functions and/or configurations are omitted. The contents disclosed below focus on parts necessary for understanding the operation according to various embodiments, and descriptions of elements that may obscure the subject matter of the description will be omitted. Also, some components of the drawings may be exaggerated, omitted, or schematically illustrated. The size of each component does not entirely reflect the actual size, and thus the contents described herein are not limited by the relative size or spacing of the components drawn in each drawing.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시 예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다. In describing the embodiments of the present invention, when it is determined that a detailed description of known technology related to the present invention may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. In addition, terms to be described later are terms defined in consideration of functions in the present invention, which may vary according to a user's or operator's intention or practice. Therefore, the definition should be made based on the contents throughout this specification. The terminology used in the detailed description is only for describing embodiments of the present invention and should not be limiting. Unless expressly used otherwise, a singular form includes a plural form. In this description, expressions such as “including” or “equipment” are intended to indicate certain characteristics, numbers, steps, actions, elements, parts or combinations thereof, and one or more other than described. It should not be interpreted to exclude the presence or possibility of other characteristics, numbers, steps, actions, elements, or parts or combinations thereof.
또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되는 것은 아니며, 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Further, terms such as first and second may be used to describe various components, but the components are not limited by the terms, and the terms are used to distinguish one component from other components. Used only.
도 2a는 본 발명의 일 실시예에 따른 HEMT(고전자이동도 트랜지스터) 제조 방법을 설명하기 위한 도면이다. 2A is a view for explaining a method of manufacturing a HEMT (High Electron Mobility Transistor) according to an embodiment of the present invention.
도 2a를 참조하면, 본 발명의 일 실시예에 따른 HEMT는, MOCVD(Metal-Organic Chemical Vapour Deposition) 또는 MBE(Molecular Beam Epitaxy) 장비 등의 반응로에서 인시추(In Situ) 공정으로, SiC, 사파이어(Sapphire), Si, GaN, 또는 AlN의 단결정 기판 등의 반도체 기판(10) 상에 AlN 버퍼층(20), AlGaN 조성변화층(30), GaN 채널층(40), AlxInyGa1-x-yN 베리어층(50)(x,y는 0과 1사이의 실수)을 순차 적층하여 획득될 수 있다. Referring to Figure 2a, HEMT according to an embodiment of the present invention, MOCVD (Metal-Organic Chemical Vapor Deposition) or MBE (Molecular Beam Epitaxy) equipment in a reactor such as in-situ (In Situ) process, SiC, AlN buffer layer 20, AlGaN composition change layer 30, GaN channel layer 40, Al x In y Ga 1 on a semiconductor substrate 10 such as a sapphire, Si, GaN, or AlN single crystal substrate -xy N barrier layer 50 (x, y is a real number between 0 and 1) can be obtained by sequentially stacking.
이와 같은 순차 적층 공정에서 각각의 공정 마다, 반응로에 온도, 압력, 분위기 가스 유량, 소스 간의 비율을 적절히 맞추어 실시될 수 있다. AlN 버퍼층(20)은 0.5 μm 이상의 두께로 형성될 수 있으며, 예를 들어, 0.5~5.0μm 정도로 형성될 수 있다. 조성변화층(30)은 0.005 μm 이상의 두께로 형성될 수 있으며, 예를 들어, 0.005~1.0μm 정도로 형성될 수 있다. GaN 채널층(40)은 0.01 μm 이상의 두께로 형성될 수 있으며, 예를 들어, 0.01~1.0μm 정도로 형성될 수 있다. AlxInyGa1-x-yN 베리어층(50)은 0.01 μm 이상의 두께로 형성될 수 있으며, 예를 들어, 0.01~1.0μm 정도로 형성될 수 있다.In each of the steps in the sequential lamination process, the reaction furnace may be appropriately adjusted in proportion between temperature, pressure, atmosphere gas flow rate, and source. The AlN buffer layer 20 may be formed to a thickness of 0.5 μm or more, for example, about 0.5 to 5.0 μm. The composition change layer 30 may be formed to a thickness of 0.005 μm or more, for example, about 0.005 to 1.0 μm. The GaN channel layer 40 may be formed to a thickness of 0.01 μm or more, for example, about 0.01 to 1.0 μm. The Al x In y Ga 1-xy N barrier layer 50 may be formed to a thickness of 0.01 μm or more, for example, about 0.01 to 1.0 μm.
이와 같은 HEMT 구조는, GaN 채널층(40)과 AlxInyGa1-x-yN 베리어층(50) 사이에 자발 및 압전 분극으로 인해 형성된 2DEG(이차원전자가스)를 소스 단자와 드레인 단자 간의 전자 흐름에 이용하여 트랜지스터를 동작시키도록 적용될 수 있다. In such a HEMT structure, 2DEG (two-dimensional electron gas) formed by spontaneous and piezoelectric polarization between the GaN channel layer 40 and the Al x In y Ga 1-xy N barrier layer 50 is formed between the source terminal and the drain terminal. It can be applied to operate transistors using flow.
도면에 도시하지 않았지만, 이와 같은 HEMT 구조는, AlxInyGa1-x-yN 베리어층(50) 상에 게이트 단자, 소스 단자와 드레인 단자를 적절히 형성함으로써, MOSFET(Metal Oxide Semiconductor Field Effect Transistor) 구조로 제작되어 트랜지스터 동작이 이루어지도록 소자 형태로 제조될 수 있다. 예를 들어, 이와 같은 HEMT 구조는, 고이동도의 고전자농도 특성을 이용하여 고출력의 고주파 전자소자나 광검출용 전자소자 등에 활용될 수 있다.Although not shown in the figure, such a HEMT structure, by forming a gate terminal, a source terminal and a drain terminal on the Al x In y Ga 1-xy N barrier layer 50, MOSFET (Metal Oxide Semiconductor Field Effect Transistor) It can be manufactured in the form of a device so that the transistor operation is made of a structure. For example, such a HEMT structure can be utilized in a high-power high-frequency electronic device or a photodetection electronic device by using a high mobility high electron concentration characteristic.
이외에도, 상기 2DEG(이차원전자가스)의 고전자이동도 특성을 향상시키기 위하여, 경우에 따라서는, AlxInyGa1-x-yN 베리어층(50)이 AlN가 아닌 경우에(예, (x=1, y=0) 아닌 경우), GaN 채널층(40)과 AlxInyGa1-x-yN 베리어층(50) 사이에 이원계 AlN 삽입층(41), 즉, AlN를 5~20 Å 두께 더 적층할 수도 있다. In addition, in order to improve the high electron mobility characteristics of the 2DEG (two-dimensional electron gas), in some cases, when the Al x In y Ga 1-xy N barrier layer 50 is not AlN (eg, (x =1, y=0)), between the GaN channel layer 40 and the Al x In y Ga 1-xy N barrier layer 50, a binary AlN insertion layer 41, that is, AlN 5 ~ 20 Å It is also possible to laminate more thickness.
특히, 본 발명에서, 조성변화층(30)은, AlN 버퍼층(20)으로부터 GaN 채널층(40)의 위치까지 Al 조성이 변화되는 AlmGa1-mN층으로서, m은 AlN 버퍼층(20) 에지에서 GaN 채널층(40) 에지까지 감소하는 실수값이 되도록 형성된 층이다. 예를 들어, m은 AlN 버퍼층(20) 에지에서 0.8~1.0(예, 1.0)일 수 있고, GaN 채널층(40) 에지에서 0.0~0.2(예, 0.0)일 수 있다. Particularly, in the present invention, the composition change layer 30 is an Al m Ga 1-m N layer in which Al composition is changed from the AlN buffer layer 20 to the position of the GaN channel layer 40, m is an AlN buffer layer 20 ) It is a layer formed to be a real value that decreases from the edge to the edge of the GaN channel layer 40. For example, m may be 0.8 to 1.0 (eg, 1.0) at the edge of the AlN buffer layer 20, and may be 0.0 to 0.2 (eg, 0.0) at the edge of the GaN channel layer 40.
이와 같은 조성변화층(30)의 형성은, 도 2b와 같이, AlN 버퍼층(20)과 GaN 채널층(40) 사이의 2DHG(이차원정공가스)의 생성 정도를 제거 또는 억제해(도 1의 (b)에 비교하여 2DHG 농도가 매우 낮아짐), GaN 채널층(40)과 AlxInyGa1-x-yN 베리어층(50) 사이의 2DEG(이차원전자가스) 층에 쿨롱끌림(Coulomb drag)의 영향을 감소시켜서(전자의 끌림이 감소함), 2DEG(이차원전자가스)의 이동도를 향상시키며, 조성변화층(30)이 AlN 버퍼층(20)과 GaN 채널층(40) 사이에서 발생하는 압축응력으로 인한 GaN 채널층(40)의 품질 저하를 방지해 고품질의 GaN 채널층(40)이 형성되도록 할 수 있다. 즉, AlN 버퍼층(20)과 GaN 채널층(40) 사이에서 격자 상수 차이(도 7참조)에 의해 발생하는 압축응력으로 결정성이 떨어지거나 결함 등이 발생하여 GaN 채널층(40)의 품질을 저하시킬 수 있지만, 조성변화층(30)은 격자 상수 차이를 스무드하게 변화시켜서 도 6과 같이 고품질의 GaN 채널층(40)이 형성되도록 할 수 있다.The formation of the composition change layer 30 removes or suppresses the degree of 2DHG (two-dimensional hole gas) generation between the AlN buffer layer 20 and the GaN channel layer 40, as shown in FIG. 2B (( 2DHG concentration is very low compared to b)), the coulomb drag of the 2DEG (two-dimensional electron gas) layer between the GaN channel layer 40 and the Al x In y Ga 1-xy N barrier layer 50 By reducing the influence (reduction of electron attraction), the mobility of 2DEG (two-dimensional electron gas) is improved, and the composition change layer 30 is compressed between the AlN buffer layer 20 and the GaN channel layer 40 It is possible to prevent the deterioration of the quality of the GaN channel layer 40 due to stress, so that a high quality GaN channel layer 40 is formed. That is, crystallinity or defects occur due to compressive stress generated by a difference in lattice constant (see FIG. 7) between the AlN buffer layer 20 and the GaN channel layer 40, thereby improving the quality of the GaN channel layer 40. Although it can be lowered, the composition change layer 30 can smoothly change the lattice constant difference so that a high-quality GaN channel layer 40 is formed as shown in FIG. 6.
조성변화층(30)의 형성에서, 반응로의 온도, 압력, 분위기 가스의 유량, 또는 Al, Ga, N 소스 간의 비율을 포함하는 반응로 조건을 변화시켜서 AlN 버퍼층(20) 에지에서 GaN 채널층(40) 에지 사이의 Al 조성의 변화를 일으킬 수 있다. In the formation of the composition change layer 30, the GaN channel layer at the edge of the AlN buffer layer 20 is changed by changing the reactor conditions including the temperature of the reactor, the pressure, the flow rate of the atmosphere gas, or the ratio between Al, Ga, and N sources. (40) Al composition may change between edges.
도 3은 본 발명의 AlGaN 조성변화층(30)을 연속적 Al 조성으로 형성하는 시간에 따른 Al 조성 프로파일의 예시를 보여준다. Figure 3 shows an example of the Al composition profile over time to form the AlGaN composition change layer 30 of the present invention as a continuous Al composition.
도 3과 같이, AlmGa1-mN 조성변화층(30)을 위한 AlN 버퍼층(20) 에지에서 GaN 채널층(40) 에지까지의 m의 값의 변화(Al 조성 변화)는, 선형적 감소, AlN 버퍼층(20) 에지 쪽(그래프의 좌측)에서 변화율이 더 큰 비선형적 감소, 또는 GaN 채널층(40) 에지 쪽(그래프의 우측)에서 변화율이 더 크게 비선형적으로 감소하도록 이루어질 수 있다. 이와 같은 m의 값의 선형적 감소 또는 비선형적 감소는 시간에 따라 어느 한 형태를 유지할 수도 있고, 그 조합한 형태를 갖도록 이루어질 수도 있다. As shown in FIG. 3, the change in the value of m (Al composition change) from the edge of the AlN buffer layer 20 for the Al m Ga 1-m N composition change layer 30 to the edge of the GaN channel layer 40 is linear. Decrease, the non-linear decrease in the rate of change at the edge side of the AlN buffer layer 20 (left side of the graph), or the non-linear decrease in the rate of change at the edge side of the GaN channel layer 40 (right side of the graph) . The linear reduction or nonlinear reduction of the value of m may be maintained in one form over time, or may have a combined form.
도 4는 본 발명의 AlGaN 조성변화층(30)을 불연속적 Al 조성으로 형성하는 시간에 따른 Al 조성 프로파일의 예시를 보여준다. 도 4는, 도 3에서 m의 값의 변화(Al 조성 변화)가 선형적 감소인 경우에 대한 불연속적 Al 조성 변화에 대하여 도시하였으나, 도 3의 비선형적 감소에 대한 2가지 예에 대하여도 유사하게 불연속적 Al 조성 변화가 이루어지도록 할 수도 있고, 이들 선형적 감소와 비선형적 감소가 조합되도록 할 수도 있다. 또한, 도 3의 연속적 Al 조성 변화와 도 4의 불연속적 Al 조성 변화를 조합하여 AlGaN 조성변화층(30)을 형성할 수도 있다. Figure 4 shows an example of the Al composition profile over time to form the AlGaN composition change layer 30 of the present invention as a discontinuous Al composition. FIG. 4 shows the discontinuous Al composition change in the case where the change in the value of m (Al composition change) in FIG. 3 is a linear decrease, but is similar for the two examples of the nonlinear decrease in FIG. 3. Discontinuous Al composition changes can be made, or these linear reductions and nonlinear reductions can be combined. In addition, the AlGaN composition change layer 30 may be formed by combining the continuous Al composition change of FIG. 3 and the discontinuous Al composition change of FIG. 4.
즉, 이와 같은 AlmGa1-mN 조성변화층(30)의 적층 공정 중의 m의 값의 선형적 감소 또는 비선형적 감소 변화를 위하여, AlN 버퍼층(20) 에지에서 GaN 채널층(40) 에지까지 Al 조성의 변화가 연속적인 형태, 불연속적인 형태 또는 이들의 조합으로 이루어지도록 반응로 조건(예, 온도, 압력, 분위기 가스의 유량, 소스 유량 등)을 시간적으로 연속 또는 불연속으로 변경하여 조성변화층(30)을 형성할 수 있다.That is, in order to change the linear or nonlinear reduction of the value of m during the lamination process of the Al m Ga 1-m N composition change layer 30, the edge of the GaN channel layer 40 at the edge of the AlN buffer layer 20 Change the composition by changing the conditions of the reactor (e.g., temperature, pressure, atmosphere gas flow rate, source flow rate, etc.) to continuous or discontinuous so that the Al composition changes up to a continuous form, a discontinuous form, or a combination thereof. Layer 30 may be formed.
이와 같은 조성변화층(30)에 대한 MOCVD에서의 공정을 예로 들어 설명하면, 온도 1000~1200℃, 압력 10~200 Torr, 분위기 가스(예, N2, H2 또는 N2와 H2의 혼합)의 유량, 소스 간의 비율(예, Al/(Al+Ga) 소스 비율=0~1, N/III족 소스 비율=300~2000) 등에 대한 반응로 조건을 변화시켜서 AlN 버퍼층(20) 에지에서 GaN 채널층(40) 에지 사이의 Al 조성의 변화를 일으킬 수 있다. 여기서, III족은 Al 또는 Ga 등 3족 원소이다. 이와 같은 예에서 온도를 1000℃부터 1200℃까지 올릴 때 Al 조성이 100%에서 0%로 형성될 수 있으며, 압력을 10 Torr 부터 200 Torr까지 올릴 때 Al 조성이 100%에서 0%로 형성될 수 있으며, 또한, Al/(Al+Ga) 소스 비율을 1부터 0까지 내릴 때 Al 조성이 100%에서 0%로 형성될 수 있으며, N/III족 소스 비율을 300부터 2000까지 올릴 때 Al 조성이 100%에서 0%로 형성될 수 있다. 또한, 분위기 가스의 유량이나 분위기 가스로서 N2, H2 또는 N2와 H2의 혼합 등 어떤 분위기 인가에 따라서도 Al 조성이 어느정도 변화될 수 있다. 좀 더 구체적으로 예를 들면, Al/(Al+Ga) 소스비율을 0~1 사이에서 적절히 고정하고, Al/(Al+Ga) 소스비율을 제외한 온도, 압력, 분위기 가스 등 다른 증착 변수의 변화들을 통해서 Al 조성의 변화가 도 3과 같이 위로 볼록한 비선형감소, 선형감소, 또는 아래로 볼록한 비선형감소 등의 경향을 갖도록 조성변화층(30)을 형성할 수 있다. If the process in the MOCVD for the composition change layer 30 is described as an example, the temperature is 1000 to 1200°C, the pressure is 10 to 200 Torr, and the atmosphere gas is mixed (eg, N 2 , H 2 or N 2 and H 2 ) . ) At the edge of the AlN buffer layer 20 by changing the conditions in response to the flow rate, the ratio between sources (e.g., Al/(Al+Ga) source ratio = 0 to 1, N/III group source ratio = 300 to 2000), etc. Al composition between the edges of the GaN channel layer 40 may be changed. Here, group III is a group 3 element such as Al or Ga. In this example, the Al composition can be formed from 100% to 0% when the temperature is raised from 1000℃ to 1200℃, and the Al composition can be formed from 100% to 0% when the pressure is increased from 10 Torr to 200 Torr. Also, when the Al/(Al+Ga) source ratio is decreased from 1 to 0, the Al composition may be formed from 100% to 0%, and when the N/III group source ratio is increased from 300 to 2000, the Al composition is It can be formed from 100% to 0%. In addition, the Al composition may be changed to some extent depending on the application of any atmosphere, such as N 2 , H 2 or N 2 and H 2 as the atmosphere gas flow rate or atmosphere gas. More specifically, for example, the Al/(Al+Ga) source ratio is properly fixed between 0 and 1, and changes in other deposition parameters such as temperature, pressure, atmosphere gas, excluding the Al/(Al+Ga) source ratio As shown in FIG. 3, the composition change layer 30 may be formed such that the Al composition has a tendency such as convex nonlinear reduction, linear reduction, or convex nonlinear reduction.
위의 예에서, 예를 들어, 조성변화층(30)의 적층 동안 시간에 따라 다른 조건을 고정하고 온도를 감소시키는 경우에, 도 3과 같이 AlN 버퍼층(20) 에지에서 GaN 채널층(40) 에지까지 Al 조성의 변화가 위로 볼록한 비선형 감소에서 -> 선형 감소 -> 아래로 볼록한 비선형 감소의 경향을 보일 수 있다. 또한, 도 4와 같이, 조성변화층(30)이 불연속적인(단계적인) 조성의 변화를 갖도록 소스의 공급을 중단시키고 성장변수를 조절한 뒤 소스를 재공급하여 성장할 수 있으며, 이러한 단계적 변화의 경향은 도 3의 연속적인 변화의 경우와 마찬가지로 위 혹은 아래로 볼록한 단계적 변화를 가지도록 할 수도 있음은 당연하다.In the above example, for example, when fixing different conditions over time and reducing the temperature during the lamination of the composition change layer 30, the GaN channel layer 40 at the edge of the AlN buffer layer 20, as shown in FIG. Changes in the Al composition up to the edge may show a tendency from a non-linear decrease convex upward to a linear decrease -> non-linear decrease convex downward. In addition, as shown in FIG. 4, the composition change layer 30 may be grown by stopping supply of the source and adjusting the growth variable and resupplying the source so as to have a discontinuous (stepwise) composition change. It is natural that the trend may have a convex stepwise change up or down as in the case of the continuous change in FIG. 3.
도 5는 본 발명의 AlGaN 조성변화층(30)의 유무를 보여주는 HEMT 구조에 대한 X선 회절 분석 결과의 예이다. 5 is an example of X-ray diffraction analysis results for the HEMT structure showing the presence or absence of the AlGaN composition change layer 30 of the present invention.
위와 같은 본 발명의 일 실시예에 따른 HEMT 구조를 제작하여 X선 회절 분석한 결과, 도 5와 같이, AlGaN 조성변화층(30)이 있는 경우(w AlGaN graded layer)에는, 해당 층이 없는 경우(w/o AlGaN graded layer)에 비교하여, AlN 버퍼층(20)과 GaN 채널층(40) 사이에서 해당 X선 회절 피크(AlGaN graded layer (002))가 나타남을 확연히 구별할 수 있었다. As a result of the X-ray diffraction analysis by manufacturing the HEMT structure according to an embodiment of the present invention, as shown in FIG. 5, when the AlGaN composition change layer 30 (w AlGaN graded layer), if the corresponding layer is not Compared to (w/o AlGaN graded layer), it can be clearly distinguished that a corresponding X-ray diffraction peak (AlGaN graded layer (002)) appears between the AlN buffer layer 20 and the GaN channel layer 40.
도 6은 본 발명의 AlGaN 조성변화층의 유무에 따른 GaN 채널층의 결정성 품질을 설명하기 위한 도면이다.6 is a view for explaining the crystalline quality of the GaN channel layer according to the presence or absence of the AlGaN composition change layer of the present invention.
위와 같은 본 발명의 일 실시예에 따른 HEMT 구조를 제작하여 XRD(X-ray diffraction) 강도를 측정한 결과, 도 6과 같이, AlGaN 조성변화층(30)이 있는 경우(w AlGaN graded layer)에는, 해당 층이 없는 경우(w/o AlGaN graded layer)에 비교하여, GaN 채널층(40)의 (002)/(102) 각 평면에서, FWHM(full width at half maximum, 반치폭)이 감소하여 결정성 품질이 확연히 향상되었음을 확인하였다. As a result of measuring the XRD (X-ray diffraction) intensity by manufacturing the HEMT structure according to an embodiment of the present invention as described above, as shown in FIG. 6, when the AlGaN composition change layer 30 (w AlGaN graded layer) is , FWHM (full width at half maximum) decreases in each plane of (002)/(102) of the GaN channel layer 40 as compared to the absence of the corresponding layer (w/o AlGaN graded layer) It was confirmed that the sex quality was significantly improved.
도 7은 본 발명의 AlGaN 조성변화층(30)의 X선 회절 역격자 지도의 예이다. 7 is an example of an X-ray diffraction reverse lattice map of the AlGaN composition change layer 30 of the present invention.
AlGaN 조성변화층(30)이 없는 경우의 AlN 버퍼층(20)과 GaN 채널층(40) 사이의, 격자 상수 차이에 의한 압축응력으로 GaN 채널층(40)의 품질 저하가 일어날 수 있지만, 도 7과 같이, 본 발명의 AlGaN 조성변화층(30)이 AlN 버퍼층(20)과 GaN 채널층(40) 사이에서 위치에 따른 격자 상수의 변화를 서서히 변화시킴으로써, 고품질의 GaN 채널층(40)이 형성되도록 할 수 있다. 즉, AlGaN 조성변화층(30)이 없는 경우에, AlN 버퍼층(20)과 GaN 채널층(40) 사이에서 격자 상수 차이에 의해 발생하는 압축응력으로 결정성이 떨어지거나 결함 등이 발생하여 GaN 채널층(40)의 품질을 저하시킬 수 있지만, 조성변화층(30)은 격자 상수 차이를 스무드하게 변화시켜서 도 6과 같이 고품질의 GaN 채널층(40)이 형성되도록 할 수 있다.Although the quality of the GaN channel layer 40 may deteriorate due to the compressive stress caused by the difference in the lattice constant between the AlN buffer layer 20 and the GaN channel layer 40 in the absence of the AlGaN composition change layer 30, FIG. As described above, the AlGaN composition change layer 30 of the present invention gradually changes the lattice constant according to the position between the AlN buffer layer 20 and the GaN channel layer 40, thereby forming a high-quality GaN channel layer 40. It can be done. That is, in the absence of the AlGaN composition change layer 30, the compressive stress generated by the difference in the lattice constant between the AlN buffer layer 20 and the GaN channel layer 40 causes deterioration in crystallinity or defects, resulting in a GaN channel. Although the quality of the layer 40 can be reduced, the composition change layer 30 can smoothly change the lattice constant difference so that a high-quality GaN channel layer 40 is formed as shown in FIG. 6.
도 8은 종래의 HEMT 구조와 본 발명의 HEMT 구조에 대한 홀효과 측정의 비교 결과의 예이다. 종래의 HEMT 구조에서 GaN층과 본 발명의 조성변화층(30)에 대하여 비교하였다. 8 is an example of a comparison result of Hall effect measurement for the conventional HEMT structure and the HEMT structure of the present invention. In the conventional HEMT structure, the GaN layer and the composition change layer 30 of the present invention were compared.
위와 같은 본 발명의 일 실시예에 따른 HEMT 구조를 제작하여 측정한 결과, 도 8과 같이, 쉬트 저항의 감소(예, 471.8->377.8), 이동도의 증가(1.57e+03->1.81e+03), 전자 농도(쉬트 농도)의 증가(8.419e+12->9.134e+12) 등 특성이 확연히 향상됨을 확인하였다. 따라서, 이와 같은 조성변화층(30)의 형성은, 도 2b와 같이, AlN 버퍼층(20)과 GaN 채널층(40) 사이의 2DHG(이차원정공가스)의 생성 정도를 제거 또는 억제해(도 1의 (b)에 비교하여 2DHG 농도가 매우 낮아짐), GaN 채널층(40)과 AlxInyGa1-x-yN 베리어층(50) 사이의 2DEG(이차원전자가스) 층에 쿨롱끌림(Coulomb drag)의 영향을 감소시켜서(전자의 끌림이 감소함), 2DEG(이차원전자가스)의 이동도를 향상시킬 수 있음을 알 수 있다. As a result of manufacturing and measuring the HEMT structure according to an embodiment of the present invention, as shown in FIG. 8, a decrease in sheet resistance (eg, 471.8->377.8), an increase in mobility (1.57e+03->1.81e It was confirmed that properties such as +03) and an increase in electron concentration (sheet concentration) (8.419e+12->9.134e+12) were significantly improved. Accordingly, the formation of the composition change layer 30 removes or suppresses the degree of 2DHG (two-dimensional hole gas) generation between the AlN buffer layer 20 and the GaN channel layer 40, as shown in FIG. 2B (FIG. 1). 2DHG concentration is very low compared to (b) of ), coulomb drag on the 2DEG (two-dimensional electron gas) layer between the GaN channel layer 40 and the Al x In y Ga 1-xy N barrier layer 50 It can be seen that the mobility of 2DEG (two-dimensional electron gas) can be improved by reducing the influence of ).
상술한 바와 같이, 본 발명에 따른 질화알루미늄(AlN)기반의 HEMT 소자는, AlN 버퍼층을 사용하되 GaN/AlN 계면에 AlGaN 조성변화층(30)이 삽입된 구조로서, 2DHG(이차원정공가스)의 생성 정도를 제거 또는 억제해 2DEG(이차원전자가스) 층에 쿨롱끌림(Coulomb drag)의 영향을 감소시키고 2DEG(이차원전자가스)의 이동도를 향상시킬 수 있다. 또한, 본 발명에 따른 질화알루미늄(AlN)기반의 HEMT 소자는, 삽입된 AlGaN 조성변화층(30)에 의해 GaN/AlN 구조에서 발생하는 압축응력으로 인한 GaN의 품질 저하를 방지하고 고품질의 GaN 박막이 형성되도록 한다. As described above, the aluminum nitride (AlN)-based HEMT device according to the present invention uses an AlN buffer layer, but has a structure in which an AlGaN composition change layer 30 is inserted at a GaN/AlN interface, of 2DHG (two-dimensional hole gas). By removing or suppressing the degree of formation, it is possible to reduce the influence of coulomb drag on the 2DEG (two-dimensional electron gas) layer and improve the mobility of the 2DEG (two-dimensional electron gas). In addition, the aluminum nitride (AlN)-based HEMT device according to the present invention prevents degradation of GaN due to the compressive stress generated in the GaN/AlN structure by the inserted AlGaN composition change layer 30, and a high-quality GaN thin film Let it form.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.As described above, in the present invention, specific matters such as specific components and the like have been described by limited embodiments and drawings, but these are provided only to help a more comprehensive understanding of the present invention, and the present invention is not limited to the above embodiments , Those of ordinary skill in the art to which the present invention pertains will be able to make various modifications and variations without departing from the essential characteristics of the present invention. Therefore, the spirit of the present invention is not limited to the described embodiments, and should not be determined, and all technical spirits equivalent to or equivalent to the claims as well as the claims described below are included in the scope of the present invention. It should be interpreted as.

Claims (12)

  1. 반도체 기판 상에 AlN 버퍼층, 조성변화층, GaN 채널층, AlxInyGa1-x-yN 베리어층(x,y는 0과 1사이의 실수)을 순차 적층한 구조를 형성하되,A structure in which an AlN buffer layer, a composition change layer, a GaN channel layer, and an Al x In y Ga 1-xy N barrier layer (x,y is a real number between 0 and 1) are sequentially stacked on a semiconductor substrate,
    상기 조성변화층은, 상기 AlN 버퍼층으로부터 상기 GaN 채널층의 위치까지 Al 조성이 변화되는 AlmGa1-mN층으로서, m은 상기 AlN 버퍼층 에지에서 상기 GaN 채널층 에지까지 감소하는 실수값이 되도록 형성된 층인 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.The composition change layer is an Al m Ga 1-m N layer whose Al composition is changed from the AlN buffer layer to the position of the GaN channel layer, where m is a real value that decreases from the edge of the AlN buffer layer to the GaN channel layer edge. Method of manufacturing a high-mobility transistor, characterized in that the layer formed as possible.
  2. 제1항에 있어서,According to claim 1,
    상기 m은 상기 AlN 버퍼층 에지에서 0.8~1.0, 상기 GaN 채널층 에지에서 0.0~0.2인 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.The m is 0.8 ~ 1.0 at the edge of the AlN buffer layer, the GaN channel layer manufacturing method of the high-mobility transistor, characterized in that 0.0 to 0.2 at the edge.
  3. 제1항에 있어서,According to claim 1,
    상기 반도체 기판은, SiC, 사파이어(Sapphire), Si, GaN, 또는 AlN의 단결정 기판을 포함하는 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.The semiconductor substrate, SiC, sapphire (Sapphire), Si, GaN, or a method of manufacturing a high-mobility transistor comprising a single crystal substrate of AlN.
  4. 제1항에 있어서,According to claim 1,
    상기 순차 적층한 구조는, MOCVD(Metal-Organic Chemical Vapour Deposition) 또는 MBE(Molecular Beam Epitaxy) 장비에서 인시추 공정으로 진행되어 획득되는 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.The sequentially stacked structure is a method of manufacturing a high-mobility transistor, characterized in that obtained by proceeding with an in-situ process in a MOCVD (Metal-Organic Chemical Vapor Deposition) or MBE (Molecular Beam Epitaxy) equipment.
  5. 제1항에 있어서,According to claim 1,
    상기 조성변화층의 형성에서, 반응로의 온도, 압력, 분위기 가스의 유량, 또는 Al, Ga, N 소스 간의 비율을 포함하는 반응로 조건을 변화시켜서 상기 AlN 버퍼층 에지에서 상기 GaN 채널층 에지 사이의 상기 Al 조성의 변화를 획득하는 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.In the formation of the composition change layer, by changing the reactor conditions including the temperature of the reactor, the pressure, the flow rate of the atmosphere gas, or the ratio between Al, Ga, and N sources, between the edge of the AlN buffer layer and the edge of the GaN channel layer Method of manufacturing a high-mobility transistor, characterized in that to obtain a change in the Al composition.
  6. 제1항에 있어서,According to claim 1,
    상기 m은 상기 AlN 버퍼층 에지에서 상기 GaN 채널층 에지까지, 선형적 감소, 상기 AlN 버퍼층 에지 쪽에서 변화율이 더 큰 비선형적 감소, 또는 상기 GaN 채널층 에지 쪽에서 변화율이 더 큰 비선형적 감소하는 값으로 변하는 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.The m is a linear decrease from the AlN buffer layer edge to the GaN channel layer edge, a non-linear decrease with a larger rate of change at the edge of the AlN buffer layer, or a non-linear decrease with a larger rate of change at the edge of the GaN channel layer. Method of manufacturing a high-mobility transistor, characterized in that.
  7. 제6항에 있어서,The method of claim 6,
    상기 선형적 감소 또는 상기 비선형적 감소는 상기 AlN 버퍼층 에지에서 상기 GaN 채널층 에지까지 상기 Al 조성의 변화가 연속적인 형태, 불연속적인 형태 또는 이들의 조합으로 이루어지도록 반응로 조건을 시간적으로 연속 또는 불연속으로 변경하여 상기 조성변화층을 형성하는 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.The linear reduction or the non-linear reduction is a continuous or discontinuous reaction of the reactor conditions in time such that the Al composition changes from the edge of the AlN buffer layer to the edge of the GaN channel layer in a continuous form, a discontinuous form, or a combination thereof. A method of manufacturing a high-mobility transistor, characterized in that to form the composition-changing layer by changing to.
  8. 제1항에 있어서,According to claim 1,
    상기 AlxInyGa1-x-yN 베리어층이 AlN가 아닌 경우에, 상기 GaN 채널층과 상기 AlxInyGa1-x-yN 베리어층 사이에 AlN 삽입층을 더 적층하는 단계를 포함하는 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.When the Al x In y Ga 1-xy N barrier layer is not AlN, further comprising the step of laminating an AlN insertion layer between the GaN channel layer and the Al x In y Ga 1-xy N barrier layer A method of manufacturing a high-mobility transistor, characterized in that.
  9. 제8항에 있어서,The method of claim 8,
    상기 AlN 삽입층의 두께는 5~20Å 인 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.The AlN insertion layer is a method of manufacturing a high-mobility transistor, characterized in that the thickness of 5 ~ 20Å.
  10. 제1항에 있어서,According to claim 1,
    상기 GaN 채널층과 상기 AlxInyGa1-x-yN 베리어층 사이에 자발 및 압전 분극으로 인해 형성된 2DEG(이차원전자가스)를 소스 단자와 드레인 단자 간의 전자 흐름에 이용하여 트랜지스터를 동작시키도록 적용하기 위한 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.Applied to operate a transistor using 2DEG (two-dimensional electron gas) formed by spontaneous and piezoelectric polarization between the GaN channel layer and the Al x In y Ga 1-xy N barrier layer for electron flow between a source terminal and a drain terminal. Method for manufacturing a high-mobility transistor, characterized in that for the.
  11. 제1항에 있어서,According to claim 1,
    상기 조성변화층의 형성에 의해, 상기 AlN 버퍼층과 상기 GaN 채널층 사이의 2DHG(이차원정공가스)의 생성 정도를 제거 또는 억제해, 상기 GaN 채널층과 상기 AlxInyGa1-x-yN 베리어층 사이의 2DEG(이차원전자가스) 층에 쿨롱끌림(Coulomb drag)의 영향을 감소시켜서, 2DEG(이차원전자가스)의 이동도를 향상시키며,The formation of the composition change layer removes or suppresses the degree of 2DHG (two-dimensional hole gas) formation between the AlN buffer layer and the GaN channel layer, thereby reducing the GaN channel layer and the Al x In y Ga 1-xy N barrier. By reducing the effect of coulomb drag on the 2DEG (two-dimensional electron gas) layer between layers, it improves the mobility of the 2DEG (two-dimensional electron gas),
    상기 조성변화층이 상기 AlN 버퍼층과 상기 GaN 채널층 사이에서 발생하는 압축응력으로 인한 상기 GaN 채널층의 품질 저하를 방지해 고품질의 상기 GaN 채널층이 형성되도록 하기 위한 것을 특징으로 하는 고전자이동도 트랜지스터의 제조 방법.Classical mobility, characterized in that the composition change layer is to prevent the degradation of the quality of the GaN channel layer due to the compressive stress generated between the AlN buffer layer and the GaN channel layer to form the high-quality GaN channel layer Method of manufacturing a transistor.
  12. 제1항의 고전자이동도 트랜지스터의 제조 방법으로 제조된 상기 순차 적층한 구조의 고전자이동도 트랜지스터 소자.A high-electron-mobility transistor device having the sequentially stacked structure manufactured by the method of manufacturing the high-electron-mobility transistor of claim 1.
PCT/KR2019/016510 2018-11-30 2019-11-27 Method for manufacturing aluminum nitride-based transistor WO2020111789A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/297,659 US11978629B2 (en) 2018-11-30 2019-11-27 Method for manufacturing aluminum nitride-based transistor
EP19890469.0A EP3890029A4 (en) 2018-11-30 2019-11-27 Method for manufacturing aluminum nitride-based transistor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0152578 2018-11-30
KR20180152578 2018-11-30
KR10-2019-0062672 2019-05-28
KR1020190062672A KR102211209B1 (en) 2018-11-30 2019-05-28 Method for Manufacturing AlN Based Transistor

Publications (2)

Publication Number Publication Date
WO2020111789A2 true WO2020111789A2 (en) 2020-06-04
WO2020111789A3 WO2020111789A3 (en) 2020-07-16

Family

ID=70853552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016510 WO2020111789A2 (en) 2018-11-30 2019-11-27 Method for manufacturing aluminum nitride-based transistor

Country Status (1)

Country Link
WO (1) WO2020111789A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864762A (en) * 2022-07-11 2022-08-05 江西兆驰半导体有限公司 Low-defect-density silicon-based gallium nitride semiconductor epitaxial wafer and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7030428B2 (en) * 2001-12-03 2006-04-18 Cree, Inc. Strain balanced nitride heterojunction transistors
JP4592742B2 (en) * 2007-12-27 2010-12-08 Dowaエレクトロニクス株式会社 Semiconductor material, method for manufacturing semiconductor material, and semiconductor element
JP2014003056A (en) * 2012-06-15 2014-01-09 Nagoya Institute Of Technology Semiconductor laminate structure and semiconductor element using the same
JP6265328B2 (en) * 2013-07-29 2018-01-24 国立大学法人 名古屋工業大学 Semiconductor laminated structure and semiconductor element using the same
JP6512669B2 (en) * 2017-10-19 2019-05-15 国立大学法人 名古屋工業大学 Semiconductor laminated structure and semiconductor device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864762A (en) * 2022-07-11 2022-08-05 江西兆驰半导体有限公司 Low-defect-density silicon-based gallium nitride semiconductor epitaxial wafer and manufacturing method thereof

Also Published As

Publication number Publication date
WO2020111789A3 (en) 2020-07-16

Similar Documents

Publication Publication Date Title
KR102211209B1 (en) Method for Manufacturing AlN Based Transistor
CN107799583B (en) P-type doping of group III nitride buffer layer structures on heterogeneous substrates
US8878188B2 (en) REO gate dielectric for III-N device on Si substrate
US8247796B2 (en) Semiconductor device
JP3960957B2 (en) Semiconductor electronic device
WO2017077806A1 (en) Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements
US8823055B2 (en) REO/ALO/A1N template for III-N material growth on silicon
US8633569B1 (en) AlN inter-layers in III-N material grown on REO/silicon substrate
US20120126239A1 (en) Layer structures for controlling stress of heteroepitaxially grown iii-nitride layers
US9431526B2 (en) Heterostructure with carrier concentration enhanced by single crystal REO induced strains
JP2014222716A (en) Nitride semiconductor substrate
CN108352324B (en) Non-etching gas cooled epitaxial stack for group IIIA-N devices
US20150287791A1 (en) Nitride semiconductor device and nitride semiconductor substrate
US8872308B2 (en) AlN cap grown on GaN/REO/silicon substrate structure
US8748900B1 (en) Re-silicide gate electrode for III-N device on Si substrate
JP2015192004A (en) Mis type normally-off hemt element of recess structure having drain current density/transconductance improved greatly
Ozaki et al. Improved DC performance and current stability of ultrathin-Al2O3/InAlN/GaN MOS-HEMTs with post-metallization-annealing process
WO2020111789A2 (en) Method for manufacturing aluminum nitride-based transistor
US20140231817A1 (en) Iii-n material grown on alo/aln buffer on si substrate
Li et al. Low-leakage-current AlGaN/GaN HEMTs on Si substrates with partially Mg-doped GaN buffer layer by metal organic chemical vapor deposition
KR20150107557A (en) Semiconductor device
JP2015070091A (en) Group iii nitride semiconductor substrate
JP7034739B2 (en) Nitride semiconductor substrate and its manufacturing method
JP2006351870A (en) Semiconductor epitaxial wafer
US11973137B2 (en) Stacked buffer in transistors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890469

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890469

Country of ref document: EP

Effective date: 20210630