WO2020111666A1 - Fluidized bed furnace - Google Patents

Fluidized bed furnace Download PDF

Info

Publication number
WO2020111666A1
WO2020111666A1 PCT/KR2019/016101 KR2019016101W WO2020111666A1 WO 2020111666 A1 WO2020111666 A1 WO 2020111666A1 KR 2019016101 W KR2019016101 W KR 2019016101W WO 2020111666 A1 WO2020111666 A1 WO 2020111666A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluidized bed
flow path
reactor
bed space
space
Prior art date
Application number
PCT/KR2019/016101
Other languages
French (fr)
Korean (ko)
Inventor
고창국
신명균
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP19889794.4A priority Critical patent/EP3889532B1/en
Priority to CN201980077736.XA priority patent/CN113167534B/en
Publication of WO2020111666A1 publication Critical patent/WO2020111666A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/003Cyclones or chain of cyclones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/08Arrangements of devices for charging
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0033In fluidised bed furnaces or apparatus containing a dispersion of the material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/09Arrangements of devices for discharging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • F27B15/10Arrangements of air or gas supply devices

Definitions

  • the present description relates to a flow path.
  • molten-reduction steelmaking facility in which molten iron ore is directly manufactured using molten iron ore, it includes a plurality of flow paths for flow-reducing the fine iron ore.
  • the flow furnace reduces the powdered fine iron ore to finely reduced iron by using a high-temperature reducing gas supplied from a molten gas furnace.
  • the conventional flow path should be recovered and re-injected by the cyclone inside the flow path, the ultrafine iron ore having an end velocity smaller than the operating flow rate scattered inside the flow path. As the particle size decreases, the scattering loss increases.
  • One embodiment is to provide a flow path that minimizes scattering problems while minimizing scattering loss, even when extremely fine iron ore is charged.
  • One side forms a first fluidized bed space having a first diameter, a lower reactor including an outlet through which finely reduced iron is discharged, a second fluidized bed space having a second larger diameter than the first diameter, and fine iron ore
  • An upper reactor including a charging port to be charged, and a flow path including a taper portion forming a connection space communicating between the first fluidized bed space and the second fluidized bed space, and directly connecting the lower reactor and the upper reactor.
  • the second diameter may be 3 to 4 times the first diameter.
  • the outer wall of the tapered portion may have an angle of 45 degrees to 75 degrees with the second radial direction.
  • the charging port may be higher than 1/2 of the height of the outer wall of the upper reactor.
  • the outlet is lower than 1/2 of the height of the outer wall of the lower reactor, and may be extended upward.
  • a porous plate positioned between the second fluidized bed space and the connection space and including a plurality of through holes may be further included.
  • the first fluidized bed space may extend from the second fluidized bed space to the first fluidized bed space, and may further include a stand pipe supported on the porous plate.
  • a plurality of nitrogen purge supply pipes disposed along the circumferential direction of the outer wall of the upper reactor may be further included.
  • the lower reactor may further include a dispersion plate through which a reducing gas supplied to the first fluidized bed space passes.
  • a flow path is provided that minimizes scattering losses and minimizes fusion problems.
  • FIG. 1 is a perspective view showing a flow path according to a first embodiment.
  • FIG. 2 is a view showing the nitrogen purge supply pipe shown in FIG.
  • FIG 3 is a view showing the interior of the flow path according to the first embodiment.
  • FIG. 4 is a perspective view showing a flow path according to a second embodiment.
  • FIG. 5 is a view showing the interior of the flow path according to the second embodiment.
  • FIG. 6 is a perspective view showing a flow path according to a third embodiment.
  • FIG. 7 is a view showing the interior of the flow path according to the third embodiment.
  • the flow path may be a flow path included in the molten reduction steel plant, but is not limited thereto.
  • the molten reduction steel plant may include at least one flow path for reducing the fine iron ore to finely reduced iron, a compacting device for compressing finely reduced iron into a compact, and a molten gas furnace, but is not limited thereto. It may further include a variety of configurations.
  • the fine iron ore is charged into the flow furnaces, and the finely reduced iron reduced from the flow furnaces is made of a compact in a compacting apparatus and supplied to a molten gas furnace together with coal briquettes to be made of molten iron.
  • the reducing gas generated from the molten gas furnace can be supplied to the flow furnaces.
  • FIG. 1 is a perspective view showing a flow path according to a first embodiment.
  • the flow path 1000 includes a lower reactor 100, an upper reactor 200, a tapered portion 300, and a plurality of nitrogen purge supply pipes 400.
  • the lower reactor 100 has a cylindrical shape, and forms a first fluidized bed space FS1 having a first diameter D1 in plan view.
  • a high-speed fluidized bed (Turbulent Fluidized Bed to Fast Fluidized Bed) is formed, and vigorous gas solid mixing may occur.
  • the lower reactor 100 includes an outlet 110 through which finely reduced iron is discharged.
  • the finely reduced iron reduced from the finely divided iron ore is discharged through the outlet 110.
  • the outlet 110 is positioned lower than 1/2 of the height of the outer wall 101 of the lower reactor 100 and extends upward.
  • the lower reactor 100 includes a dispersion plate 120 through which the reducing gas RG supplied to the first fluidized bed space FS1 passes.
  • the dispersion plate 120 includes a plurality of through holes through which the reducing gas RG passes.
  • the reducing gas RG is supplied from the lower portion of the dispersion plate 120, and the reducing gas RG passes through the first fluidized bed space FS1 of the lower reactor 100 and the second fluidized bed space FS2 of the upper reactor 200. ) And discharged to the upper portion of the upper reactor 200.
  • the reducing gas RG may be generated from the molten gas furnace of the molten reducing steel plant, and the reducing gas RG discharged to the upper portion of the upper reactor 200 may be supplied to the lower portion of another flow path.
  • the upper reactor 200 has a cylindrical shape having a larger volume than the lower reactor 100.
  • the upper reactor 200 planarly forms a second fluidized bed space FS2 having a second diameter D2 that is larger than the first diameter D1.
  • the second diameter D2 may be 3 to 4 times the first diameter D1.
  • a fluidized bed (Minimum fluidized bed to Bubbling fluidized bed) is formed due to a low gas flow rate compared to the gas flow rate of the first fluidized bed space FS1.
  • the upper reactor 200 includes a charging port 210 into which fine iron ore is charged.
  • fine iron ore is charged through the charging port 210.
  • the charging port 210 is positioned higher than 1/2 of the height of the outer wall 201 of the upper reactor 200 and extends upward.
  • the tapered portion 300 directly connects between the lower reactor 100 and the upper reactor 200.
  • the tapered portion 300 forms a connection space CS communicating between the first fluidized bed space FS1 and the second fluidized bed space FS2.
  • the outer wall 301 of the tapered portion 300 may have a second diameter D2 direction and an angle of 45 degrees to 75 degrees.
  • the tapered portion 300, the lower reactor 100, and the upper reactor 200 may be integrally formed, but are not limited thereto.
  • the plurality of nitrogen purge supply pipes 400 are disposed along the circumferential direction of the outer wall 201 of the upper reactor 200.
  • FIG. 2 is a view showing the nitrogen purge supply pipe shown in FIG. 2A is a view showing an example of a nitrogen purge supply pipe 400 connected to the upper reactor 200.
  • the nitrogen purge supply pipe 400 is located at a lower portion of the outer wall 201 of the upper reactor 200 and is adjacent to the outer wall 301 of the tapered portion 300.
  • the nitrogen purge supply pipe 400 may extend in the same direction as the extending direction of the outer wall 301 of the tapered portion 300 to facilitate the flow of charges from the upper reactor 200 toward the tapered portion 300. .
  • 2B is a view showing an example of the arrangement of a plurality of nitrogen purge supply pipes 400 connected to the upper reactor 200.
  • each of the plurality of nitrogen purge supply pipes 400 has an angle of 45 degrees to the center of the second fluidized bed space FS2 along the circumference of the outer wall 201 of the upper reactor 200. Can be arranged.
  • FIG. 2C is a view showing another example of the arrangement of the plurality of nitrogen purge supply pipes 400 connected to the upper reactor 200.
  • each of the plurality of nitrogen purge supply pipes 400 has an angle of 30 degrees with the center of the second fluidized bed space FS2 along the circumference of the outer wall 201 of the upper reactor 200 Can be arranged.
  • the solid flow may mean the flow of the fine iron ore and the flow of finely reduced iron
  • the solid existence region may mean the region of the fine iron ore and finely reduced iron.
  • the remaining fluidized bed FB1 formed in the second fluidized bed space FS2 of the upper reactor 200 passes through the connection space CS of the tapered portion 300 and the first fluidized bed space FS1 of the lower reactor 100 which is a high-speed region. Will move to
  • a high-speed fluidized bed FB2 is formed to generate vigorous gas solid mixing. Due to this, it is minimized that the fusion phenomenon in which the finely reduced iron (IO2) reduced in the high-speed fluidized bed (FB2) aggregates with each other is generated.
  • the finely reduced iron (IO2) reduced in the lower reactor 100 is discharged by a pressure difference to the outside of the lower reactor 100 through the outlet 110.
  • the finely charged iron ore IO1 is reduced under turbulent fluidized bed conditions as a high-speed fluidized bed FB2.
  • the reducing gas (RG) and the fine iron ore (IO1) are violently mixed by the rapid gas flow in the first fluidized bed space (FS1) of the lower reactor 100, the reduced iron (IO2) reduced from the inner wall of the lower reactor 100 ) Or fusion between the reduced particles to form large particles is suppressed (agglomeration).
  • Reduction occurs rapidly due to a high gas/ore ratio in the first fluidized bed space FS1 of the lower reactor 100.
  • the finely reduced iron (IO2) reduced in the first fluidized bed space FS1 is discharged through the outlet 110 by a pressure difference.
  • the finely reduced iron (IO2) scattered into the fluidized bed space (FS2) is directly dropped into the first fluidized bed space (FS1) of the lower reactor 100 by gravity.
  • the temperature is lower than the first fluidized-bed space FS1 of the lower reactor 100 by heat exchange with the fine iron ore IO1 at room temperature charged from the charging port 210. And a gas/ore ratio, resulting in a low reduction reaction.
  • the problem of fusion of the finely reduced iron (IO2) does not occur in the bubble fluidized bed atmosphere, which is the calm fluidized bed FB1, and the first fluidized bed space of the lower reactor 100 ( In FS1), the reduction of the finely reduced iron (IO2) is accelerated to the turbulent fluidized bed atmosphere, which is a high-speed fluidized bed (FB2), and is discharged through the outlet 110 to minimize the fusion problem of the finely reduced iron (IO2).
  • a flow path 1000 capable of using extremely fine iron ore at 100% as a raw material is provided.
  • FIG. 4 is a perspective view showing a flow path according to a second embodiment.
  • the flow path 1002 includes a lower reactor 100, an upper reactor 200, a tapered portion 300, a plurality of nitrogen purge supply pipes 400, and a perforated plate 500 ).
  • the perforated plate 500 is positioned between the second fluidized bed space FS2 of the upper reactor 200 and the connection space CS of the tapered portion 300 and includes a plurality of through holes.
  • the perforated plate 500 is positioned between the second fluidized bed space FS2 and the connection space CS, and serves as a partition wall between the second fluidized bed space FS2 and the first fluidized bed space FS1.
  • the perforated plate 500 may physically separate between the upper reactor 200 and the lower reactor 100.
  • FIG. 5 is a view showing the interior of the flow path according to the second embodiment.
  • the finely reduced iron (IO2) reduced in the lower reactor 100 is discharged by a pressure difference to the outside of the lower reactor 100 through the outlet 110.
  • a flow path 1002 is provided that can use extremely fine iron ore as 100% as a raw material.
  • FIG. 6 is a perspective view showing a flow path according to a third embodiment.
  • the flow path 1003 includes a lower reactor 100, an upper reactor 200, a tapered portion 300, a plurality of nitrogen purge supply pipes 400, and a perforated plate 500 ), and includes a stand pipe 600.
  • the perforated plate 500 is positioned between the second fluidized bed space FS2 of the upper reactor 200 and the connection space CS of the tapered portion 300 and includes a plurality of through holes.
  • the perforated plate 500 is positioned between the second fluidized bed space FS2 and the connection space CS, and serves as a partition wall between the second fluidized bed space FS2 and the first fluidized bed space FS1.
  • the perforated plate 500 may physically separate between the upper reactor 200 and the lower reactor 100.
  • the stand pipe 600 extends from the second fluidized bed space FS2 to the first fluidized bed space FS1 through the perforated plate 500.
  • the stand pipe 600 is supported by the perforated plate 500 corresponding to the first fluidized bed space FS1 of the lower reactor 100.
  • the stand pipe 600 facilitates the flow of fine iron ore from the upper reactor 200 to the lower reactor 100.
  • FIG. 7 is a view showing the interior of the flow path according to the third embodiment.
  • the lower reactor of the high pressure through the stand pipe 600 from the second fluidized bed space (FS2) of the upper reactor 200 of the lower pressure part of the fine iron ore (IO1) located in the second fluidized bed space (FS2) ( 100) is smoothly moved to the first fluidized bed space FS1.
  • the partially reduced fine iron (IO2) and fine iron ore (IO1) partially reduced in the second fluidized bed space FS2 pass through the through holes of the perforated plate 500 and move to the lower reactor 100, and the stand pipe 600
  • a high-speed fluidized bed (FB2) is formed in the first fluidized bed space (FS1) of the lower reactor 100 due to the fast flow rate, resulting in intense gas solid mixing.
  • FB2 high-speed fluidized bed
  • the finely reduced iron (IO2) reduced in the lower reactor 100 is discharged by a pressure difference to the outside of the lower reactor 100 through the outlet 110.
  • a flow path 1003 in which is minimized is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Manufacture Of Iron (AREA)

Abstract

A fluidized bed furnace comprises: a lower reactor which forms a first fluidized bed space having a first diameter, and which includes a discharge port through which reduced iron fines are discharged; an upper reactor which forms a second fluidized bed space having a second diameter greater than the first diameter, and which includes a charging port through which iron ore fines are charged; and a tapered part which forms a connecting space that allows communication between the first fluidized bed space and the second fluidized bed space, and which directly connects the lower reactor and the upper reactor.

Description

유동로Flow path
본 기재는 유동로에 관한 것이다.The present description relates to a flow path.
일반적으로, 미분 철광석을 직접 사용하여 용철을 제조하는 용융 환원 제철 설비의 경우, 미분 철광석을 유동 환원 처리하기 위한 복수의 유동로들을 포함한다.In general, in the case of a molten-reduction steelmaking facility in which molten iron ore is directly manufactured using molten iron ore, it includes a plurality of flow paths for flow-reducing the fine iron ore.
유동로는 용융 가스 화로로부터 공급되는 고온의 환원 가스를 이용하여 가루 형태의 미분 철광석을 미분 환원철로 환원한다.The flow furnace reduces the powdered fine iron ore to finely reduced iron by using a high-temperature reducing gas supplied from a molten gas furnace.
종래의 유동로는 실질적으로 8mm 이하의 입도를 가지는 미분 철광석을 사용하였으나, 최근 더 작은 입도를 가지는 극미분 철광석의 사용이 요구되고 있다.Conventional flow furnaces use finely divided iron ore having a particle size of 8 mm or less, but recently, use of extremely fine iron ore having a smaller particle size is required.
그런데, 극미분 철광석이 종래의 유동로에 다량 장입되는 경우, 극미분 철광석간의 상호 작용에 의해 유동로 내부에 정체층이 형성되거나, 유동로의 내벽에 극미분 철광석으로부터 환원된 극미분 환원철이 융착 및 응집되어 큰 입자를 형성하는 문제점이 있다.However, when a large amount of fine iron ore is charged in a conventional flow path, a stagnant layer is formed inside the flow path by interaction between the fine fine iron ores, or the ultra fine reduced iron reduced from the fine fine iron ore is fused to the inner wall of the flow path. And aggregation to form large particles.
또한, 종래의 유동로는 유동로 내부에서 비산되는 조업 유속보다 작은 종말 속도를 가진 극미분 철광석이 유동로 내부의 사이클론에 의해 회수 및 재주입 되어야 하나, 사이클론의 효율이 비산 입자인 극미분 철광석의 입도가 작아짐에 따라 감소하므로, 비산 손실이 증가되는 문제점이 있다.In addition, the conventional flow path should be recovered and re-injected by the cyclone inside the flow path, the ultrafine iron ore having an end velocity smaller than the operating flow rate scattered inside the flow path. As the particle size decreases, the scattering loss increases.
일 실시예는, 극미분 철광석이 장입되더라도, 비산 손실이 최소화되는 동시에 융착 문제가 최소화되는 유동로를 제공하고자 한다.One embodiment is to provide a flow path that minimizes scattering problems while minimizing scattering loss, even when extremely fine iron ore is charged.
또한, 원료로서 극미분 철광석을 100%로 사용할 수 있는 유동로를 제공하고자 한다.In addition, it is intended to provide a flow path capable of using extremely fine iron ore as a raw material at 100%.
일 측면은 제1 지름을 가지는 제1 유동층 공간을 형성하며, 미분 환원철이 배출되는 배출구를 포함하는 하부 반응기, 상기 제1 지름 대비 큰 제2 지름을 가지는 제2 유동층 공간을 형성하며, 미분 철광석이 장입되는 장입구를 포함하는 상부 반응기, 및 상기 제1 유동층 공간과 상기 제2 유동층 공간 사이를 연통하는 연결 공간을 형성하며, 상기 하부 반응기와 상기 상부 반응기 사이를 직접 연결하는 테이퍼부를 포함하는 유동로를 제공한다.One side forms a first fluidized bed space having a first diameter, a lower reactor including an outlet through which finely reduced iron is discharged, a second fluidized bed space having a second larger diameter than the first diameter, and fine iron ore An upper reactor including a charging port to be charged, and a flow path including a taper portion forming a connection space communicating between the first fluidized bed space and the second fluidized bed space, and directly connecting the lower reactor and the upper reactor. Provides
상기 제2 지름은 상기 제1 지름 대비 3배 내지 4배일 수 있다.The second diameter may be 3 to 4 times the first diameter.
상기 테이퍼부의 외벽은 상기 제2 지름 방향과 45도 내지 75도의 각도를 가질 수 있다.The outer wall of the tapered portion may have an angle of 45 degrees to 75 degrees with the second radial direction.
상기 장입구는 상기 상부 반응기의 외벽 높이의 1/2 대비 높을 수 있다.The charging port may be higher than 1/2 of the height of the outer wall of the upper reactor.
상기 배출구는 상기 하부 반응기의 외벽 높이의 1/2 대비 낮으며, 상측으로 연장될 수 있다.The outlet is lower than 1/2 of the height of the outer wall of the lower reactor, and may be extended upward.
상기 제2 유동층 공간과 상기 연결 공간 사이에 위치하며, 복수의 관통홀들을 포함하는 다공판을 더 포함할 수 있다.A porous plate positioned between the second fluidized bed space and the connection space and including a plurality of through holes may be further included.
상기 제2 유동층 공간으로부터 상기 다공판을 거쳐 상기 제1 유동층 공간으로 연장되며, 상기 다공판에 지지된 스탠드 파이프를 더 포함할 수 있다.The first fluidized bed space may extend from the second fluidized bed space to the first fluidized bed space, and may further include a stand pipe supported on the porous plate.
상기 상부 반응기의 외벽의 원주 방향으로 따라 배치된 복수의 질소 퍼지 공급관들을 더 포함할 수 있다.A plurality of nitrogen purge supply pipes disposed along the circumferential direction of the outer wall of the upper reactor may be further included.
상기 하부 반응기는 상기 제1 유동층 공간으로 공급되는 환원 가스를 통과시키는 분산판을 더 포함할 수 있다.The lower reactor may further include a dispersion plate through which a reducing gas supplied to the first fluidized bed space passes.
일 실시예에 따르면, 극미분 철광석이 장입되더라도, 비산 손실이 최소화되는 동시에 융착 문제가 최소화되는 유동로가 제공된다.According to one embodiment, even when extremely fine iron ore is charged, a flow path is provided that minimizes scattering losses and minimizes fusion problems.
또한, 원료로서 극미분 철광석을 100%로 사용할 수 있는 유동로가 제공된다.In addition, there is provided a flow path capable of using extremely fine iron ore at 100% as a raw material.
도 1은 제1 실시예에 따른 유동로를 나타낸 사시도이다.1 is a perspective view showing a flow path according to a first embodiment.
도 2는 도 1에 도시된 질소 퍼지 공급관들을 나타낸 도면들이다.2 is a view showing the nitrogen purge supply pipe shown in FIG.
도 3은 제1 실시예에 따른 유동로 내부를 나타낸 도면이다.3 is a view showing the interior of the flow path according to the first embodiment.
도 4는 제2 실시예에 따른 유동로를 나타낸 사시도이다.4 is a perspective view showing a flow path according to a second embodiment.
도 5는 제2 실시예에 따른 유동로의 내부를 나타낸 도면이다.5 is a view showing the interior of the flow path according to the second embodiment.
도 6은 제3 실시예에 따른 유동로를 나타낸 사시도이다.6 is a perspective view showing a flow path according to a third embodiment.
도 7은 제3 실시예에 따른 유동로의 내부를 나타낸 도면이다.7 is a view showing the interior of the flow path according to the third embodiment.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains can easily practice. The present invention can be implemented in many different forms and is not limited to the embodiments described herein.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.In order to clearly describe the present invention, parts irrelevant to the description are omitted, and the same reference numerals are assigned to the same or similar elements throughout the specification.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Also, in the specification, when a part “includes” a certain component, this means that other components may be further included instead of excluding other components, unless otherwise stated.
이하, 도 1 내지 도 3을 참조하여 제1 실시예에 따른 유동로를 설명한다. 유동로는 용융환원 제철 설비에 포함된 유동로일 수 있으나, 이에 한정되지는 않는다.Hereinafter, a flow path according to the first embodiment will be described with reference to FIGS. 1 to 3. The flow path may be a flow path included in the molten reduction steel plant, but is not limited thereto.
일례로, 용융환원 제철 설비는 미분 철광석을 미분 환원철로 환원하는 적어도 하나의 유동로들, 미분 환원철을 압착하여 괴성체로 제조하는 괴성화 장치, 용융 가스 화로를 포함할 수 있으나, 이에 한정되지 않고 공지된 다양한 구성들을 더 포함할 수 있다. 미분 철광석은 유동로들로 장입되며, 유동로들로부터 환원된 미분 환원철은 괴성화 장치에서 괴성체로 제조되어 성형탄과 함께 용융 가스 화로로 공급되어 용철로 제조될 수 있다. 또한, 용융 가스 화로로부터 발생된 환원 가스는 유동로들로 공급될 수 있다.For example, the molten reduction steel plant may include at least one flow path for reducing the fine iron ore to finely reduced iron, a compacting device for compressing finely reduced iron into a compact, and a molten gas furnace, but is not limited thereto. It may further include a variety of configurations. The fine iron ore is charged into the flow furnaces, and the finely reduced iron reduced from the flow furnaces is made of a compact in a compacting apparatus and supplied to a molten gas furnace together with coal briquettes to be made of molten iron. In addition, the reducing gas generated from the molten gas furnace can be supplied to the flow furnaces.
도 1은 제1 실시예에 따른 유동로를 나타낸 사시도이다.1 is a perspective view showing a flow path according to a first embodiment.
도 1을 참조하면, 제1 실시예에 따른 유동로(1000)는 하부 반응기(100), 상부 반응기(200), 테이퍼부(300), 복수의 질소 퍼지 공급관(400)들을 포함한다.Referring to FIG. 1, the flow path 1000 according to the first embodiment includes a lower reactor 100, an upper reactor 200, a tapered portion 300, and a plurality of nitrogen purge supply pipes 400.
하부 반응기(100)는 원기둥 형태를 가지고 있으며, 평면적으로 제1 지름(D1)을 가지는 제1 유동층 공간(FS1)을 형성한다.The lower reactor 100 has a cylindrical shape, and forms a first fluidized bed space FS1 having a first diameter D1 in plan view.
하부 반응기(100)의 제1 유동층 공간(FS1)에서는 고속 유동층(Turbulent Fluidized bed 내지 Fast Fluidized Bed)이 형성되어 격렬한 기체 고체 혼합이 발생될 수 있다.In the first fluidized bed space FS1 of the lower reactor 100, a high-speed fluidized bed (Turbulent Fluidized Bed to Fast Fluidized Bed) is formed, and vigorous gas solid mixing may occur.
하부 반응기(100)는 미분 환원철이 배출되는 배출구(110)를 포함한다.The lower reactor 100 includes an outlet 110 through which finely reduced iron is discharged.
하부 반응기(100)의 제1 유동층 공간(FS1)에서 미분 철광석으로부터 환원된 미분 환원철은 배출구(110)를 통해 배출된다.In the first fluidized bed space FS1 of the lower reactor 100, the finely reduced iron reduced from the finely divided iron ore is discharged through the outlet 110.
배출구(110)는 하부 반응기(100)의 외벽(101) 높이의 1/2 대비 낮게 위치하며, 상측으로 연장된다.The outlet 110 is positioned lower than 1/2 of the height of the outer wall 101 of the lower reactor 100 and extends upward.
하부 반응기(100)는 제1 유동층 공간(FS1)으로 공급되는 환원 가스(RG)를 통과시키는 분산판(120)을 포함한다.The lower reactor 100 includes a dispersion plate 120 through which the reducing gas RG supplied to the first fluidized bed space FS1 passes.
분산판(120)은 환원 가스(RG)가 통하는 복수의 관통홀들을 포함한다. 분산판(120)의 하부로부터 환원 가스(RG)가 공급되며, 환원 가스(RG)는 하부 반응기(100)의 제1 유동층 공간(FS1)을 거쳐 상부 반응기(200)의 제2 유동층 공간(FS2)을 지나 상부 반응기(200)의 상부로 배출된다. 환원 가스(RG)는 용융 환원 제철 설비의 용융 가스 화로로부터 발생될 수 있으며, 상부 반응기(200)의 상부로 배출된 환원 가스(RG)는 다른 유동로의 하부로 공급될 수 있다.The dispersion plate 120 includes a plurality of through holes through which the reducing gas RG passes. The reducing gas RG is supplied from the lower portion of the dispersion plate 120, and the reducing gas RG passes through the first fluidized bed space FS1 of the lower reactor 100 and the second fluidized bed space FS2 of the upper reactor 200. ) And discharged to the upper portion of the upper reactor 200. The reducing gas RG may be generated from the molten gas furnace of the molten reducing steel plant, and the reducing gas RG discharged to the upper portion of the upper reactor 200 may be supplied to the lower portion of another flow path.
상부 반응기(200)는 하부 반응기(100) 대비 부피가 큰 원기둥 형태를 가지고 있다. 상부 반응기(200)는 평면적으로 제1 지름(D1) 대비 큰 제2 지름(D2)을 가지는 제2 유동층 공간(FS2)을 형성한다.The upper reactor 200 has a cylindrical shape having a larger volume than the lower reactor 100. The upper reactor 200 planarly forms a second fluidized bed space FS2 having a second diameter D2 that is larger than the first diameter D1.
제2 지름(D2)은 제1 지름(D1) 대비 3배 내지 4배일 수 있다.The second diameter D2 may be 3 to 4 times the first diameter D1.
상부 반응기(200)의 제2 유동층 공간(FS2)에서는 제1 유동층 공간(FS1)의 가스 유속 대비 낮은 가스 유속으로 인해 잔잔한 유동층(Minimum fluidized bed 내지 Bubbling fluidized bed)이 형성된다.In the second fluidized bed space FS2 of the upper reactor 200, a fluidized bed (Minimum fluidized bed to Bubbling fluidized bed) is formed due to a low gas flow rate compared to the gas flow rate of the first fluidized bed space FS1.
상부 반응기(200)는 미분 철광석이 장입되는 장입구(210)를 포함한다.The upper reactor 200 includes a charging port 210 into which fine iron ore is charged.
상부 반응기(200)의 제2 유동층 공간(FS2)에는 장입구(210)를 통해 미분 철광석이 장입된다.In the second fluidized bed space FS2 of the upper reactor 200, fine iron ore is charged through the charging port 210.
장입구(210)는 상부 반응기(200)의 외벽(201) 높이의 1/2 대비 높게 위치하며, 상측으로 연장된다.The charging port 210 is positioned higher than 1/2 of the height of the outer wall 201 of the upper reactor 200 and extends upward.
테이퍼부(300)는 하부 반응기(100)와 상부 반응기(200) 사이를 직접 연결한다. 테이퍼부(300)는 제1 유동층 공간(FS1)과 제2 유동층 공간(FS2) 사이를 연통하는 연결 공간(CS)을 형성한다.The tapered portion 300 directly connects between the lower reactor 100 and the upper reactor 200. The tapered portion 300 forms a connection space CS communicating between the first fluidized bed space FS1 and the second fluidized bed space FS2.
테이퍼부(300)의 외벽(301)은 제2 지름(D2) 방향과 45도 내지 75도의 각도를 가질 수 있다.The outer wall 301 of the tapered portion 300 may have a second diameter D2 direction and an angle of 45 degrees to 75 degrees.
테이퍼부(300), 하부 반응기(100), 상부 반응기(200)는 일체로 형성될 수 있으나, 이에 한정되지는 않는다.The tapered portion 300, the lower reactor 100, and the upper reactor 200 may be integrally formed, but are not limited thereto.
복수의 질소 퍼지 공급관(400)들은 상부 반응기(200)의 외벽(201)의 원주 방향으로 따라 배치된다.The plurality of nitrogen purge supply pipes 400 are disposed along the circumferential direction of the outer wall 201 of the upper reactor 200.
도 2는 도 1에 도시된 질소 퍼지 공급관들을 나타낸 도면들이다. 도 2의 (A)는 상부 반응기(200)에 연결된 질소 퍼지 공급관(400)의 일례를 나타낸 도면이다.2 is a view showing the nitrogen purge supply pipe shown in FIG. 2A is a view showing an example of a nitrogen purge supply pipe 400 connected to the upper reactor 200.
도 2의 (A)를 참조하면, 질소 퍼지 공급관(400)은 상부 반응기(200)의 외벽(201)의 하측 부분에 위치하며, 테이퍼부(300)의 외벽(301)과 이웃한다.Referring to (A) of FIG. 2, the nitrogen purge supply pipe 400 is located at a lower portion of the outer wall 201 of the upper reactor 200 and is adjacent to the outer wall 301 of the tapered portion 300.
질소 퍼지 공급관(400)은 상부 반응기(200)로부터 테이퍼부(300) 방향으로 장입물의 흐름을 원활하게 하기 위해, 테이퍼부(300)의 외벽(301)의 연장 방향과 동일한 방향으로 연장될 수 있다.The nitrogen purge supply pipe 400 may extend in the same direction as the extending direction of the outer wall 301 of the tapered portion 300 to facilitate the flow of charges from the upper reactor 200 toward the tapered portion 300. .
도 2의 (B)는 상부 반응기(200)에 연결된 복수의 질소 퍼지 공급관(400)들의 배치의 일례를 나타낸 도면이다.2B is a view showing an example of the arrangement of a plurality of nitrogen purge supply pipes 400 connected to the upper reactor 200.
도 2의 (B)를 참조하면, 복수의 질소 퍼지 공급관(400)들 각각은 상부 반응기(200)의 외벽(201)의 원주를 따라 제2 유동층 공간(FS2)의 중심과 45도의 각도를 가지도록 배치될 수 있다.Referring to FIG. 2B, each of the plurality of nitrogen purge supply pipes 400 has an angle of 45 degrees to the center of the second fluidized bed space FS2 along the circumference of the outer wall 201 of the upper reactor 200. Can be arranged.
도 2의 (C)는 상부 반응기(200)에 연결된 복수의 질소 퍼지 공급관(400)들의 배치의 다른 예를 나타낸 도면이다.FIG. 2C is a view showing another example of the arrangement of the plurality of nitrogen purge supply pipes 400 connected to the upper reactor 200.
도 2의 (C)를 참조하면, 복수의 질소 퍼지 공급관(400)들 각각은 상부 반응기(200)의 외벽(201)의 원주를 따라 제2 유동층 공간(FS2)의 중심과 30도의 각도를 가지도록 배치될 수 있다.2(C), each of the plurality of nitrogen purge supply pipes 400 has an angle of 30 degrees with the center of the second fluidized bed space FS2 along the circumference of the outer wall 201 of the upper reactor 200 Can be arranged.
도 3은 제1 실시예에 따른 유동로 내부를 나타낸 도면이다. 도 3에서 고체 흐름은 미분 철광석 흐름 및 미분 환원철의 흐름의 의미할 수 있으며, Solid 존재 영역은 미분 철광석 및 미분 환원철의 존재 영역을 의미할 수 있다.3 is a view showing the interior of the flow path according to the first embodiment. In FIG. 3, the solid flow may mean the flow of the fine iron ore and the flow of finely reduced iron, and the solid existence region may mean the region of the fine iron ore and finely reduced iron.
도 3을 참조하면, 분산판(120)을 통해 환원 가스(RG)가 주입되는 유동로(1000)의 상부 반응기(200)의 장입구(210)에 미분 철광석(IO1)이 장입되면, 제2 유동층 공간(FS2)에는 낮은 가스 유속으로 인해 잔잔한 유동층(FB1)이 형성된다. Referring to FIG. 3, when the fine iron ore (IO1) is charged into the charging port 210 of the upper reactor 200 of the flow path 1000 through which the reducing gas RG is injected through the dispersion plate 120, the second In the fluidized bed space FS2, a smooth fluidized bed FB1 is formed due to a low gas flow rate.
상부 반응기(200)의 제2 유동층 공간(FS2)에 형성된 잔잔한 유동층(FB1)은 테이퍼부(300)의 연결 공간(CS)을 거쳐 고속 영역인 하부 반응기(100)의 제1 유동층 공간(FS1)으로 이동하게 된다.The remaining fluidized bed FB1 formed in the second fluidized bed space FS2 of the upper reactor 200 passes through the connection space CS of the tapered portion 300 and the first fluidized bed space FS1 of the lower reactor 100 which is a high-speed region. Will move to
하부 반응기(100)의 제1 유동층 공간(FS1)에서 고속 유동층(FB2)이 형성되어 격렬한 기체 고체 혼합이 발생된다. 이로 인해, 고속 유동층(FB2)에서 환원된 미분 환원철(IO2)들이 서로 응집하는 융착 현상이 발생되는 것이 최소화된다.In the first fluidized bed space FS1 of the lower reactor 100, a high-speed fluidized bed FB2 is formed to generate vigorous gas solid mixing. Due to this, it is minimized that the fusion phenomenon in which the finely reduced iron (IO2) reduced in the high-speed fluidized bed (FB2) aggregates with each other is generated.
하부 반응기(100)에서 환원된 미분 환원철(IO2)은 배출구(110)를 통해 하부 반응기(100) 외부로 압력차에 의해 배출된다.The finely reduced iron (IO2) reduced in the lower reactor 100 is discharged by a pressure difference to the outside of the lower reactor 100 through the outlet 110.
하부 반응기(100)의 좁은 제1 유동층 공간(FS1)에서 장입물인 미분 철광석(IO1)은 고속 유동층(FB2)인 난류 유동층 조건에서 환원된다.In the narrow first fluidized bed space FS1 of the lower reactor 100, the finely charged iron ore IO1 is reduced under turbulent fluidized bed conditions as a high-speed fluidized bed FB2.
하부 반응기(100)의 제1 유동층 공간(FS1)에서 빠른 가스 흐름에 의해 환원 가스(RG)와 미분 철광석(IO1)들이 격렬히 혼합되기 때문에, 하부 반응기(100)의 내벽에서 환원된 미분 환원철(IO2)들의 융착되거나, 환원된 입자들끼리의 융착되어 큰 입자를 형성하는 현상(agglomeration)이 억제된다.Since the reducing gas (RG) and the fine iron ore (IO1) are violently mixed by the rapid gas flow in the first fluidized bed space (FS1) of the lower reactor 100, the reduced iron (IO2) reduced from the inner wall of the lower reactor 100 ) Or fusion between the reduced particles to form large particles is suppressed (agglomeration).
하부 반응기(100)의 제1 유동층 공간(FS1)에서 높은 가스/광석의 비율로 인해 환원이 빠르게 발생된다. 제1 유동층 공간(FS1)에서 환원된 미분 환원철(IO2)은 압력차에 의해 배출구(110)를 통해 배출된다.Reduction occurs rapidly due to a high gas/ore ratio in the first fluidized bed space FS1 of the lower reactor 100. The finely reduced iron (IO2) reduced in the first fluidized bed space FS1 is discharged through the outlet 110 by a pressure difference.
하부 반응기(100)의 제1 유동층 공간(FS1)에서 격렬한 혼합에 의해 환원된 미분 환원철(IO2)은 상부 반응기(200)로 이동하는 환원 가스(RG)와 함께 상부 반응기(200)의 제2 유동층 공간(FS2)으로 비산될 수 있으나, 하부 반응기(100)의 제1 유동층 공간(FS1) 대비 급격히 넓어진 상부 반응기(200)의 제2 유동층 공간(FS2)에 의해 가스 유속이 줄어들기 때문에, 제2 유동층 공간(FS2)으로 비산된 미분 환원철(IO2)은 바로 중력에 의해 하부 반응기(100)의 제1 유동층 공간(FS1)으로 떨어진다.The finely reduced iron (IO2) reduced by vigorous mixing in the first fluidized bed space (FS1) of the lower reactor (100) together with the reducing gas (RG) moving to the upper reactor (200), the second fluidized bed of the upper reactor (200) Although it may be scattered into the space FS2, the gas flow rate is reduced by the second fluidized bed space FS2 of the upper reactor 200 that is rapidly widened compared to the first fluidized bed space FS1 of the lower reactor 100. The finely reduced iron (IO2) scattered into the fluidized bed space (FS2) is directly dropped into the first fluidized bed space (FS1) of the lower reactor 100 by gravity.
상부 반응기(200)의 제2 유동층 공간(FS2)에서는 장입구(210)로부터 장입되는 상온의 미분 철광석(IO1)과의 열교환에 의해 하부 반응기(100)의 제1 유동층 공간(FS1) 대비 낮은 온도 및 가스/광석 비율이 되고, 이로 인해 낮은 환원 반응이 일어난다.In the second fluidized-bed space FS2 of the upper reactor 200, the temperature is lower than the first fluidized-bed space FS1 of the lower reactor 100 by heat exchange with the fine iron ore IO1 at room temperature charged from the charging port 210. And a gas/ore ratio, resulting in a low reduction reaction.
따라서, 상부 반응기(200)의 제2 유동층 공간(FS2)에서는 잔잔한 유동층(FB1)인 기포 유동층 분위기로 미분 환원철(IO2)의 융착 문제는 발생하지 않으며, 하부 반응기(100)의 제1 유동층 공간(FS1)에서는 고속 유동층(FB2)인 난류 유동층 분위기로 미분 환원철(IO2)의 환원이 가속화되어 배출구(110)를 통해 배출되어 미분 환원철(IO2)의 융착 문제가 최소화된다.Therefore, in the second fluidized bed space FS2 of the upper reactor 200, the problem of fusion of the finely reduced iron (IO2) does not occur in the bubble fluidized bed atmosphere, which is the calm fluidized bed FB1, and the first fluidized bed space of the lower reactor 100 ( In FS1), the reduction of the finely reduced iron (IO2) is accelerated to the turbulent fluidized bed atmosphere, which is a high-speed fluidized bed (FB2), and is discharged through the outlet 110 to minimize the fusion problem of the finely reduced iron (IO2).
즉, 상부 반응기(200), 하부 반응기(100), 테이퍼부(300)를 포함함으로써, 극미분 철광석이 장입되더라도, 비산 손실이 최소화되는 동시에 융착 문제가 최소화되는 유동로(1000)가 제공된다.That is, by including the upper reactor 200, the lower reactor 100, and the tapered portion 300, even if the ultrafine iron ore is charged, a flow path 1000 is provided that minimizes scattering losses and minimizes fusion problems.
또한, 상부 반응기(200), 하부 반응기(100), 테이퍼부(300)를 포함함으로써, 원료로서 극미분 철광석을 100%로 사용할 수 있는 유동로(1000)가 제공된다.In addition, by including the upper reactor 200, the lower reactor 100, and the tapered portion 300, a flow path 1000 capable of using extremely fine iron ore at 100% as a raw material is provided.
이하, 도 4 및 도 5를 참조하여 제2 실시예에 따른 유동로를 설명한다. 이하에서는 상술한 제1 실시예에 따른 유동로와 다른 부분에 대해서 설명한다.Hereinafter, the flow path according to the second embodiment will be described with reference to FIGS. 4 and 5. Hereinafter, different parts from the flow path according to the first embodiment will be described.
도 4는 제2 실시예에 따른 유동로를 나타낸 사시도이다.4 is a perspective view showing a flow path according to a second embodiment.
도 4를 참조하면, 제2 실시예에 따른 유동로(1002)는 하부 반응기(100), 상부 반응기(200), 테이퍼부(300), 복수의 질소 퍼지 공급관(400)들, 다공판(500)을 포함한다.Referring to FIG. 4, the flow path 1002 according to the second embodiment includes a lower reactor 100, an upper reactor 200, a tapered portion 300, a plurality of nitrogen purge supply pipes 400, and a perforated plate 500 ).
다공판(500)은 상부 반응기(200)의 제2 유동층 공간(FS2)과 테이퍼부(300)의 연결 공간(CS) 사이에 위치하며, 복수의 관통홀들을 포함한다.The perforated plate 500 is positioned between the second fluidized bed space FS2 of the upper reactor 200 and the connection space CS of the tapered portion 300 and includes a plurality of through holes.
다공판(500)은 제2 유동층 공간(FS2)과 연결 공간(CS) 사이에 위치하여, 제2 유동층 공간(FS2)과 제1 유동층 공간(FS1) 사이의 격벽 역할을 한다.The perforated plate 500 is positioned between the second fluidized bed space FS2 and the connection space CS, and serves as a partition wall between the second fluidized bed space FS2 and the first fluidized bed space FS1.
다공판(500)은 상부 반응기(200)와 하부 반응기(100) 사이를 물리적으로 분리할 수 있다.The perforated plate 500 may physically separate between the upper reactor 200 and the lower reactor 100.
도 5는 제2 실시예에 따른 유동로의 내부를 나타낸 도면이다.5 is a view showing the interior of the flow path according to the second embodiment.
도 5를 참조하면, 분산판(120)을 통해 환원 가스(RG)가 주입되는 유동로(1002)의 상부 반응기(200)의 장입구(210)에 미분 철광석(IO1)이 장입되면, 제2 유동층 공간(FS2)에는 낮은 가스 유속으로 인해 잔잔한 유동층(FB1)이 형성된다. 다공판(500)에 의해 미분 철광석(IO1)이 잔잔한 유동층(FB1)에서 일부 환원된다. Referring to FIG. 5, when the fine iron ore (IO1) is charged into the charging port 210 of the upper reactor 200 of the flow path 1002 through which the reducing gas RG is injected through the dispersion plate 120, the second In the fluidized bed space FS2, a smooth fluidized bed FB1 is formed due to a low gas flow rate. The fine iron ore (IO1) is partially reduced in the calm fluidized bed (FB1) by the porous plate 500.
이후, 제2 유동층 공간(FS2)에서 일부 환원된 미분 환원철(IO2) 및 미분 철광석(IO1)이 다공판(500)의 관통홀들을 통과하여 하부 반응기(100)로 이동하면, 빠른 유속으로 인해 하부 반응기(100)의 제1 유동층 공간(FS1)에서 고속 유동층(FB2)이 형성되어 격렬한 기체 고체 혼합이 발생된다. 이로 인해, 고속 유동층(FB2)에서 환원된 미분 환원철(IO2)들이 서로 응집하는 융착 현상이 발생되는 것이 최소화된다.Thereafter, when the partially reduced fine iron (IO2) and fine iron ore (IO1) partially reduced in the second fluidized bed space FS2 pass through the through holes of the perforated plate 500 and move to the lower reactor 100, the lower part is due to the rapid flow rate. In the first fluidized bed space FS1 of the reactor 100, a high-speed fluidized bed FB2 is formed to generate vigorous gas solid mixing. Due to this, it is minimized that the fusion phenomenon in which the finely reduced iron (IO2) reduced in the high-speed fluidized bed (FB2) aggregates with each other is generated.
하부 반응기(100)에서 환원된 미분 환원철(IO2)은 배출구(110)를 통해 하부 반응기(100) 외부로 압력차에 의해 배출된다.The finely reduced iron (IO2) reduced in the lower reactor 100 is discharged by a pressure difference to the outside of the lower reactor 100 through the outlet 110.
즉, 상부 반응기(200), 하부 반응기(100), 테이퍼부(300), 다공판(500)을 포함함으로써, 극미분 철광석이 장입되더라도, 비산 손실이 최소화되는 동시에 융착 문제가 최소화되는 유동로(1002)가 제공된다.In other words, by including the upper reactor 200, the lower reactor 100, the tapered portion 300, the perforated plate 500, even if a very fine iron ore is charged, the flow path that minimizes scattering losses and minimizes fusion problems ( 1002) is provided.
또한, 상부 반응기(200), 하부 반응기(100), 테이퍼부(300), 다공판(500)을 포함함으로써, 원료로서 극미분 철광석을 100%로 사용할 수 있는 유동로(1002)가 제공된다.In addition, by including the upper reactor 200, the lower reactor 100, the tapered portion 300, the perforated plate 500, a flow path 1002 is provided that can use extremely fine iron ore as 100% as a raw material.
이하, 도 6 및 도 7을 참조하여 제3 실시예에 따른 유동로를 설명한다. 이하에서는 상술한 제1 실시예에 따른 유동로와 다른 부분에 대해서 설명한다.Hereinafter, the flow path according to the third embodiment will be described with reference to FIGS. 6 and 7. Hereinafter, different parts from the flow path according to the first embodiment will be described.
도 6은 제3 실시예에 따른 유동로를 나타낸 사시도이다.6 is a perspective view showing a flow path according to a third embodiment.
도 6을 참조하면, 제3 실시예에 따른 유동로(1003)는 하부 반응기(100), 상부 반응기(200), 테이퍼부(300), 복수의 질소 퍼지 공급관(400)들, 다공판(500), 스탠드 파이프(600)를 포함한다.Referring to FIG. 6, the flow path 1003 according to the third embodiment includes a lower reactor 100, an upper reactor 200, a tapered portion 300, a plurality of nitrogen purge supply pipes 400, and a perforated plate 500 ), and includes a stand pipe 600.
다공판(500)은 상부 반응기(200)의 제2 유동층 공간(FS2)과 테이퍼부(300)의 연결 공간(CS) 사이에 위치하며, 복수의 관통홀들을 포함한다.The perforated plate 500 is positioned between the second fluidized bed space FS2 of the upper reactor 200 and the connection space CS of the tapered portion 300 and includes a plurality of through holes.
다공판(500)은 제2 유동층 공간(FS2)과 연결 공간(CS) 사이에 위치하여, 제2 유동층 공간(FS2)과 제1 유동층 공간(FS1) 사이의 격벽 역할을 한다.The perforated plate 500 is positioned between the second fluidized bed space FS2 and the connection space CS, and serves as a partition wall between the second fluidized bed space FS2 and the first fluidized bed space FS1.
다공판(500)은 상부 반응기(200)와 하부 반응기(100) 사이를 물리적으로 분리할 수 있다.The perforated plate 500 may physically separate between the upper reactor 200 and the lower reactor 100.
스탠드 파이프(600)는 제2 유동층 공간(FS2)으로부터 다공판(500)을 거쳐 제1 유동층 공간(FS1)으로 연장된다. 스탠드 파이프(600)는 하부 반응기(100)의 제1 유동층 공간(FS1)에 대응하여 다공판(500)에 지지된다.The stand pipe 600 extends from the second fluidized bed space FS2 to the first fluidized bed space FS1 through the perforated plate 500. The stand pipe 600 is supported by the perforated plate 500 corresponding to the first fluidized bed space FS1 of the lower reactor 100.
스탠드 파이프(600)는 상부 반응기(200)로부터 하부 반응기(100)로의 미분 철광석의 흐름을 원활하게 한다.The stand pipe 600 facilitates the flow of fine iron ore from the upper reactor 200 to the lower reactor 100.
도 7은 제3 실시예에 따른 유동로의 내부를 나타낸 도면이다.7 is a view showing the interior of the flow path according to the third embodiment.
도 7을 참조하면, 분산판(120)을 통해 환원 가스(RG)가 주입되는 유동로(1003)의 상부 반응기(200)의 장입구(210)에 미분 철광석(IO1)이 장입되면, 제2 유동층 공간(FS2)에는 낮은 가스 유속으로 인해 잔잔한 유동층(FB1)이 형성된다. 다공판(500)에 의해 미분 철광석(IO1)이 잔잔한 유동층(FB1)에서 일부 환원된다. Referring to FIG. 7, when the fine iron ore (IO1) is charged into the charging port 210 of the upper reactor 200 of the flow path 1003 through which the reducing gas RG is injected through the dispersion plate 120, the second In the fluidized bed space FS2, a smooth fluidized bed FB1 is formed due to a low gas flow rate. The fine iron ore IO1 is partially reduced by the porous plate 500 in the calm fluidized bed FB1.
이때, 제2 유동층 공간(FS2)에 위치하는 미분 철광석(IO1)의 일부가 낮은 압력인 상부 반응기(200)의 제2 유동층 공간(FS2)으로부터 스탠드 파이프(600)를 통해 높은 압력인 하부 반응기(100)의 제1 유동층 공간(FS1)으로 원활하게 이동된다.At this time, the lower reactor of the high pressure through the stand pipe 600 from the second fluidized bed space (FS2) of the upper reactor 200 of the lower pressure part of the fine iron ore (IO1) located in the second fluidized bed space (FS2) ( 100) is smoothly moved to the first fluidized bed space FS1.
이후, 제2 유동층 공간(FS2)에서 일부 환원된 미분 환원철(IO2) 및 미분 철광석(IO1)이 다공판(500)의 관통홀들을 통과하여 하부 반응기(100)로 이동하고, 스탠드 파이프(600)를 통해 미분 철광석(IO1)이 하부 반응기(100)로 이동하면, 빠른 유속으로 인해 하부 반응기(100)의 제1 유동층 공간(FS1)에서 고속 유동층(FB2)이 형성되어 격렬한 기체 고체 혼합이 발생된다. 이로 인해, 고속 유동층(FB2)에서 환원된 미분 환원철(IO2)들이 서로 응집하는 융착 현상이 발생되는 것이 최소화된다.Thereafter, the partially reduced fine iron (IO2) and fine iron ore (IO1) partially reduced in the second fluidized bed space FS2 pass through the through holes of the perforated plate 500 and move to the lower reactor 100, and the stand pipe 600 When the pulverized iron ore (IO1) moves to the lower reactor 100 through, a high-speed fluidized bed (FB2) is formed in the first fluidized bed space (FS1) of the lower reactor 100 due to the fast flow rate, resulting in intense gas solid mixing. . Due to this, it is minimized that the fusion phenomenon in which the finely reduced iron (IO2) reduced in the high-speed fluidized bed (FB2) aggregates with each other is generated.
하부 반응기(100)에서 환원된 미분 환원철(IO2)은 배출구(110)를 통해 하부 반응기(100) 외부로 압력차에 의해 배출된다.The finely reduced iron (IO2) reduced in the lower reactor 100 is discharged by a pressure difference to the outside of the lower reactor 100 through the outlet 110.
즉, 상부 반응기(200), 하부 반응기(100), 테이퍼부(300), 다공판(500), 스탠드 파이프(600)를 포함함으로써, 극미분 철광석이 장입되더라도, 비산 손실이 최소화되는 동시에 융착 문제가 최소화되는 유동로(1003)가 제공된다.That is, by including the upper reactor 200, the lower reactor 100, the tapered portion 300, the perforated plate 500, and the stand pipe 600, even when extremely fine iron ore is charged, scattering losses are minimized and welding problems are minimized. A flow path 1003 in which is minimized is provided.
또한, 상부 반응기(200), 하부 반응기(100), 테이퍼부(300), 다공판(500), 스탠드 파이프(600)를 포함함으로써, 원료로서 극미분 철광석을 100%로 사용할 수 있는 유동로(1003)가 제공된다.In addition, by including the upper reactor 200, the lower reactor 100, the tapered portion 300, the perforated plate 500, the stand pipe 600, a flow path capable of using extremely fine iron ore at 100% as a raw material ( 1003) is provided.
이상에서 본 발명의 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of rights of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concept of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
-부호의 설명--Description of code-
제1 유동층 공간(FS1), 하부 반응기(100), 제2 유동층 공간(FS2), 상부 반응기(200), 연결 공간(CS), 테이퍼부(300)First fluidized bed space (FS1), lower reactor 100, second fluidized bed space (FS2), upper reactor 200, connection space (CS), tapered portion 300

Claims (9)

  1. 제1 지름을 가지는 제1 유동층 공간을 형성하며, 미분 환원철이 배출되는 배출구를 포함하는 하부 반응기;A lower reactor forming a first fluidized bed space having a first diameter and including an outlet through which the finely reduced iron is discharged;
    상기 제1 지름 대비 큰 제2 지름을 가지는 제2 유동층 공간을 형성하며, 미분 철광석이 장입되는 장입구를 포함하는 상부 반응기; 및An upper reactor forming a second fluidized bed space having a second diameter larger than the first diameter, and including a charging port into which fine iron ore is charged; And
    상기 제1 유동층 공간과 상기 제2 유동층 공간 사이를 연통하는 연결 공간을 형성하며, 상기 하부 반응기와 상기 상부 반응기 사이를 직접 연결하는 테이퍼부A tapered portion forming a connection space communicating between the first fluidized bed space and the second fluidized bed space, and directly connecting between the lower reactor and the upper reactor
    를 포함하며,It includes,
    상기 제1 유동층 공간에는 고속 유동층이 형성되며, 상기 제2 유동층 공간에는 상기 고속 유동층 대비 낮은 유속을 가지는 잔잔한 유동층이 형성되는 유동로.A flow path in which a high speed fluidized bed is formed in the first fluidized bed space, and a calm fluidized bed having a lower flow rate than the high speed fluidized bed is formed in the second fluidized bed space.
  2. 제1항에서,In claim 1,
    상기 제2 지름은 상기 제1 지름 대비 3배 내지 4배인 유동로.The second diameter is 3 to 4 times the flow path of the first diameter.
  3. 제1항에서,In claim 1,
    상기 테이퍼부의 외벽은 상기 제2 지름 방향과 45도 내지 75도의 각도를 가지는 유동로.The outer wall of the tapered portion has a flow path having an angle of 45 to 75 degrees with the second radial direction.
  4. 제1항에서,In claim 1,
    상기 장입구는 상기 상부 반응기의 외벽 높이의 1/2 대비 높은 유동로.The inlet is a flow path higher than 1/2 of the height of the outer wall of the upper reactor.
  5. 제1항에서,In claim 1,
    상기 배출구는 상기 하부 반응기의 외벽 높이의 1/2 대비 낮으며, 상측으로 연장된 유동로.The outlet is lower than 1/2 of the height of the outer wall of the lower reactor, the flow path extending upward.
  6. 제1항에서,In claim 1,
    상기 제2 유동층 공간과 상기 연결 공간 사이에 위치하며, 복수의 관통홀들을 포함하는 다공판을 더 포함하는 유동로.A flow path positioned between the second fluidized bed space and the connection space, and further comprising a porous plate including a plurality of through holes.
  7. 제6항에서,In claim 6,
    상기 제2 유동층 공간으로부터 상기 다공판을 거쳐 상기 제1 유동층 공간으로 연장되며, 상기 다공판에 지지된 스탠드 파이프를 더 포함하는 유동로.A flow path extending from the second fluidized bed space to the first fluidized bed space through the perforated plate and further comprising a stand pipe supported on the perforated plate.
  8. 제1항에서,In claim 1,
    상기 상부 반응기의 외벽의 원주 방향으로 따라 배치된 복수의 질소 퍼지 공급관들을 더 포함하는 유동로.A flow path further comprising a plurality of nitrogen purge supply pipes arranged along the circumferential direction of the outer wall of the upper reactor.
  9. 제1항에서,In claim 1,
    상기 하부 반응기는 상기 제1 유동층 공간으로 공급되는 환원 가스를 통과시키는 분산판을 더 포함하는 유동로.The lower reactor further includes a dispersion plate through which a reducing gas supplied to the first fluidized bed space passes.
PCT/KR2019/016101 2018-11-26 2019-11-22 Fluidized bed furnace WO2020111666A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19889794.4A EP3889532B1 (en) 2018-11-26 2019-11-22 Fluidized bed furnace
CN201980077736.XA CN113167534B (en) 2018-11-26 2019-11-22 Fluidized bed furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180147506A KR102090550B1 (en) 2018-11-26 2018-11-26 Fluidized furnace
KR10-2018-0147506 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020111666A1 true WO2020111666A1 (en) 2020-06-04

Family

ID=69999403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016101 WO2020111666A1 (en) 2018-11-26 2019-11-22 Fluidized bed furnace

Country Status (4)

Country Link
EP (1) EP3889532B1 (en)
KR (1) KR102090550B1 (en)
CN (1) CN113167534B (en)
WO (1) WO2020111666A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100936A1 (en) * 2021-11-30 2023-06-08 日本製鉄株式会社 Facility for producing reduced iron and method for producing reduced iron

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649520A (en) * 1992-08-04 1994-02-22 Kawasaki Heavy Ind Ltd Fluidized bed furnace
KR19980702767A (en) * 1995-03-17 1998-08-05 토이플 아르민; 스타이너 페터 Reduction method of fine ore and apparatus for performing the method
JPH11504989A (en) * 1996-12-28 1999-05-11 ポハング アイロン アンド スティール シーオー.,エルティーディー. Fluidized bed reduction system for reducing fine iron ore
JPH11181510A (en) * 1997-12-17 1999-07-06 Kawasaki Heavy Ind Ltd Fluidized bed reduction furnace and method for reducing powdery and granular ore
KR20070068222A (en) * 2005-12-26 2007-06-29 주식회사 포스코 Apparatus for manufacturing molten irons

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0689389B2 (en) * 1986-03-31 1994-11-09 新日本製鐵株式会社 Fluidized bed reduction method for ores
AU596758B2 (en) * 1987-11-13 1990-05-10 Jp Steel Plantech Co. Metal-making apparatus involving the smelting reduction of metallic oxides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649520A (en) * 1992-08-04 1994-02-22 Kawasaki Heavy Ind Ltd Fluidized bed furnace
KR19980702767A (en) * 1995-03-17 1998-08-05 토이플 아르민; 스타이너 페터 Reduction method of fine ore and apparatus for performing the method
JPH11504989A (en) * 1996-12-28 1999-05-11 ポハング アイロン アンド スティール シーオー.,エルティーディー. Fluidized bed reduction system for reducing fine iron ore
JPH11181510A (en) * 1997-12-17 1999-07-06 Kawasaki Heavy Ind Ltd Fluidized bed reduction furnace and method for reducing powdery and granular ore
KR20070068222A (en) * 2005-12-26 2007-06-29 주식회사 포스코 Apparatus for manufacturing molten irons

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023100936A1 (en) * 2021-11-30 2023-06-08 日本製鉄株式会社 Facility for producing reduced iron and method for producing reduced iron
JP7498418B2 (en) 2021-11-30 2024-06-12 日本製鉄株式会社 Reduced iron production equipment and reduced iron production method

Also Published As

Publication number Publication date
EP3889532A4 (en) 2021-12-22
KR102090550B1 (en) 2020-03-18
EP3889532B1 (en) 2023-05-10
CN113167534A (en) 2021-07-23
EP3889532A1 (en) 2021-10-06
CN113167534B (en) 2023-09-01

Similar Documents

Publication Publication Date Title
WO2020111666A1 (en) Fluidized bed furnace
WO2012102445A1 (en) Tuyere for an ironworks industrial furnace
WO2017111490A1 (en) Molten iron manufacturing device and molten iron manufacturing method using same
RU2095121C1 (en) Method for treatment of hot gases and device for its embodiment
WO2012060547A1 (en) Apparatus for atomizing molten slag and recovering valuable metal
WO2022092773A1 (en) Gas dispersion device for improving performance of rectangular scrubber
WO2018004070A1 (en) Apparatus for manufacturing molten iron and method for manufacturing molten iron by using same
JPS62112984A (en) Calciner for fluidizing and baking powder material
WO2012091407A2 (en) Apparatus for manufacturing molten steel, and method for manufacturing molten steel using same
WO2022075582A1 (en) Continuous centrifugal dehydrating apparatus
US4334919A (en) Method of introducing particulate material and a gas into a reactor
JPH0860215A (en) Fluidized bed furnace and smelting reduction apparatus using it
WO2018101530A1 (en) Facility for manufacturing sintered ores
CA1062004A (en) Method and apparatus for handling off-gases from metal refining vessel
CN105879796B (en) A kind of recirculating fluidized bed
WO2020022577A1 (en) Apparatus for molten iron runner desilication
EP1058051B1 (en) Fluidized bed gasification furnace
WO2012064027A2 (en) Method and device for removing dust particles from reducing gas
WO2024117474A1 (en) Dispersion plate for fluidized furnace, and fluidized furnace comprising same
KR100241010B1 (en) Facilities on direct charging of reduced iron ore fine into melter-gasifier
WO2010030148A4 (en) A reduction and fusing method and reduction and fusing device for a metal oxide using a hermetically sealed crucible
WO2023080374A1 (en) Classification system using fluidized bed
US3796420A (en) Steel conversion apparatus
WO2016027973A1 (en) Tuyere for iron-making industrial furnace
WO2019124758A1 (en) Molten iron manufacturing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019889794

Country of ref document: EP

Effective date: 20210628