WO2017111490A1 - Molten iron manufacturing device and molten iron manufacturing method using same - Google Patents

Molten iron manufacturing device and molten iron manufacturing method using same Download PDF

Info

Publication number
WO2017111490A1
WO2017111490A1 PCT/KR2016/015088 KR2016015088W WO2017111490A1 WO 2017111490 A1 WO2017111490 A1 WO 2017111490A1 KR 2016015088 W KR2016015088 W KR 2016015088W WO 2017111490 A1 WO2017111490 A1 WO 2017111490A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten iron
flow reduction
iron
gas
molten
Prior art date
Application number
PCT/KR2016/015088
Other languages
French (fr)
Korean (ko)
Inventor
최무업
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN201680074988.3A priority Critical patent/CN108541273B/en
Publication of WO2017111490A1 publication Critical patent/WO2017111490A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces

Definitions

  • the present invention relates to an apparatus for manufacturing molten iron and a method for manufacturing molten iron using the same, and more particularly, to maintain the inside of a flow reduction furnace used for reducing iron ore in a Finex process at a temperature suitable for reducing iron ore ( It relates to a molten iron manufacturing apparatus of the FINEX) process and a molten iron manufacturing method using the same.
  • Steel manufacturing which is used in most modern industries such as automobiles, shipbuilding, home appliances, construction, etc., generally proceeds in the order of steel making, steel making, casting and rolling.
  • metal is manufactured using the blast furnace method in a steelmaking process.
  • the blast furnace method is a method of manufacturing molten iron by injecting oxygen ore after the sintering process and coke prepared from bituminous coal into the blast furnace.
  • an auxiliary facility such as a coke production facility for producing bituminous coal as coke and a sintering facility for sintering of iron ore should be provided.
  • the blast furnace method requires a purification facility for purifying the environmental pollutants together with the auxiliary facilities.
  • the additional costs incurred by the installation of the auxiliary equipment and the purification equipment are directly reflected in the manufacturing cost of steel, and according to the blast furnace method, a problem arises in that the manufacturing cost of steel is high. Therefore, in the current steel industry, the blast furnace method is replaced by a melt reduction method.
  • the melt reduction method is also called a FINEX method.
  • the blast furnace method uses sintered agglomerated iron ore (natural iron ore) or natural iron ore, while the Finex process uses a powdered iron ore (iron ore).
  • the blast furnace method coke processed with bituminous coal is used, but ordinary coal is directly used in the Finex process.
  • the FINEX method does not require coke production facilities, iron ore sintering facilities, purification facilities, etc., and it uses lower cost than iron pyrite and ordinary coal, which is cheaper than bituminous coal. There are advantages to it.
  • the Finex method has a very environmentally friendly advantage compared to the blast furnace method.
  • a flow reduction furnace for reducing ferrous ore and a melt gasification furnace for producing molten iron by melting the reduced ferrite and ordinary coal are used.
  • Combustible gas and oxygen are supplied into the flow reduction furnace to reduce the ferrite ore.
  • Combustible gas flows through the dispersion plate formed at the bottom of the flow reduction path into the flow reduction path in a uniform flow and then flows the ferrite.
  • Oxygen is introduced into the flow reduction reactor through a bed burner mounted on the side of the flow reduction reactor and reacts with the combustible gas to form an internal temperature of the flow reduction reactor suitable for reduction of ferrite.
  • the combustible gas inside the flow reduction furnace is combusted with oxygen, carbon dioxide and water vapor are formed. As shown in FIG. 1, when the ratio of carbon dioxide and water vapor in the combustible gas is increased, the reducing power for the ferrite is weakened.
  • the technical problem to be achieved by the present invention is to provide a molten iron manufacturing apparatus and a molten iron manufacturing method of the Finex process for supplying heat to the fluidized bed in the flow reducing path without loss of reducing gas.
  • An apparatus for manufacturing molten iron includes a flow reduction reactor for providing reduced iron, a molten gasification furnace for charging molten iron and injecting oxygen therein to produce molten iron, and a plasma gas into the flow reduction reactor. It includes a plasma torch blowing.
  • the plasma torch may form a flame using the plasma gas to supply heat to the flow reduction path.
  • the plasma gas may be any one of hydrogen, nitrogen, helium, and argon gas.
  • the average temperature of the fluidized bed inside the flow reduction reactor may be 500 to 1000 °C.
  • the apparatus may further include an electricity supply device installed outside the flow reduction path and connected to the plasma torch.
  • the electricity supply device may supply 1 to 100 MWh of energy to the plasma torch.
  • the flow reduction path may include a dispersion plate through which a reducing gas passes, and the plasma torch may be positioned on the dispersion plate and positioned on an outer wall of the flow reduction path.
  • the plasma torch may be provided in plurality along the outer wall of the flow reduction path.
  • It may further include a reducing gas supply pipe for supplying the reducing gas discharged from the melt gasifier to the flow reduction path.
  • the fluidized bed in the flow reduction path can be heated.
  • the reduction rate of the ferrite ore can be increased to increase the efficiency of the Finex process.
  • 1 is a phase diagram of CO, CO 2, H 2, H 2 O, Fe, FeO, Fe 3 O 4, and Fe 2 O 3.
  • FIG. 2 is a view schematically showing the configuration of a molten iron manufacturing apparatus according to an embodiment of the present invention.
  • FIG 3 is a view schematically showing a flow reduction path according to an embodiment of the present invention.
  • Figure 4 is a plan view schematically showing a flow reduction path according to an embodiment of the present invention.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
  • FIG. 2 is a view schematically showing a molten iron manufacturing apparatus according to an embodiment of the present invention.
  • the molten iron manufacturing apparatus of FIG. 2 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the molten iron manufacturing apparatus can be variously modified.
  • the apparatus for manufacturing molten iron 100 includes a flow reduction reactor 20 and a melt gasifier 10.
  • the apparatus for manufacturing molten iron 100 may include other devices as necessary.
  • Flow reduction furnace 20 is converted to reduced iron by reducing and calcining iron ore and secondary raw materials.
  • the iron ore charged into the flow reduction path 20 is made of reduced iron while passing through the flow reduction path 20 after being pre-dried.
  • the iron ore and auxiliary materials charged into the flow reduction path 20 form a flow bed 1 inside the flow reduction path 20.
  • the flow reduction reactor 20 is a packed-bed reduction reactor, receives a reducing gas from the melt gasifier 10 to form a packed bed therein.
  • the melt gasifier 10 includes a coal-filled layer therein, charges reduced iron and blows oxygen into the molten iron to produce molten iron.
  • the reducing gas discharged from the molten gasifier 10 is supplied to the flow reduction reactor 20 through a reducing gas supply pipe 40 and then used to reduce and calcinate iron ore and subsidiary materials through the flow reduction reactor 20. It is discharged to the outside.
  • the apparatus for manufacturing molten iron 100 temporarily stores powdered iron ore and secondary raw materials having a particle size of 8 mm or less in a hopper, and then removes moisture from a dryer and mixes to prepare an iron-containing mixture. Then, the prepared iron-containing mixture is charged to the fluid reduction reactor (20).
  • the molten iron manufacturing apparatus 100 includes a homogeneous back pressure device between the dryer and the flow reduction path 20 so that the iron-containing mixture at room temperature may be charged into the flow reduction path 20 maintained at 1.5 to 3 atmospheres at atmospheric pressure. can do.
  • the powdered iron ore and auxiliary raw materials supplied to the fluid reduction reactor 20 form a bubble fluidized bed in contact with a high temperature reducing gas stream, and have a high temperature reduced iron at 80 ° C. or higher, 80% reduction and 30% or more firing. Is switched to.
  • a high temperature compaction apparatus may be further included in order to prevent scattering loss generated when the reduced iron discharged from the flow reduction reactor 20 is directly charged into the molten gasifier 10. .
  • the molten gasifier 10 is supplied with coal briquettes formed of lump coal or pulverized coal to form a coal filling layer.
  • the lump coal or coal briquettes injected into the melt gasifier 10 is gasified by a pyrolysis reaction in the upper part of the coal packed bed and a combustion reaction by oxygen in the lower part.
  • the high temperature reducing gas generated in the melt gasifier 10 by the gasification reaction is sequentially supplied to the flow reduction reactor 20 through the reducing gas supply pipe 40 and used as a reducing agent and a fluidizing gas.
  • An empty space in the form of a dome is formed on the filling layer of the melt gasifier 10. This reduces the gas flow rate, thereby preventing a large amount of fines generated due to the rapid temperature increase of the fines contained in the reduced iron to be charged and the coal charged into the molten gasifier 10 to the outside of the furnace. In addition, it absorbs the pressure fluctuations in the molten gasifier 10 due to irregular fluctuations in the amount of gas generated by using coal directly. In the packed bed, coal descends to the bottom and is devolatilized and gasified, and ultimately combusted by oxygen blown through the tuyere in the furnace bottom.
  • the combustion gas is converted into a high temperature reducing gas while raising the packed bed and discharged to the outside of the melt gasifier 10, and partly, the pressure applied to the melt gasifier 10 is constant within the range of 3.0 to 3.5 atm. It is dusted and cooled while passing through the collecting device so as to be maintained.
  • Cyclone (cyclone) to collect the flue-gas generated in the molten gasifier 10, supply the dust back to the molten gasifier 10, and supplies the gas to the flow reduction path 20 through the reducing gas supply pipe (40) Supply. Reduced iron is finally reduced and melted by the reducing gas and combustion heat generated by coal gasification and combustion while descending the packed bed with coal and discharged to the outside.
  • the apparatus for manufacturing molten iron according to the present embodiment may separately install a plasma torch 30 for increasing the temperature.
  • FIG. 3 is a view schematically showing a flow reduction path and a plasma torch according to an embodiment of the present invention.
  • the plasma gas 2 is directly blown into and combusted in a region into which the reducing gas flows into the flow reduction path 20.
  • the plasma torch 30 is located on the outer wall of the flow reduction path 20, but is disposed on the dispersion plate 21 to transfer the plasma gas 2 to the flow reduction path ( 20) Supply internally.
  • FIG. 4 is a plan view schematically illustrating a flow reduction path and a plasma torch according to an embodiment of the present invention.
  • a plurality of plasma torches 30 may be positioned along an outer circumference of the flow reduction path 20, and the number of plasma torches 30 may be variously configured.
  • the plasma torch 30 forms a flame 3 using the plasma gas 2 to supply heat to the flow reduction path 20, and accordingly, flow bed inside the flow reduction path 20.
  • the average temperature of the fluidized bed 1 may be maintained at 500 to 1000 ° C.
  • the plasma gas 2 may be hydrogen, nitrogen, helium, or argon gas. Accordingly, the molten iron manufacturing apparatus 100 according to the present embodiment does not consume the reducing gas supplied from the melt gasification furnace 10 into the flow reduction reactor 20, and thus, the fluidized bed 1 inside the flow reduction reactor 20. It can supply heat.
  • the contact area with the flow bed 1 is achieved. This may reduce the amount of melt produced in the flow reduction path 20 by the high temperature flame.
  • the plasma torch 30 may be supplied with electric power by the electricity supply device 31 installed outside the flow reduction path 20.
  • the electricity supply device 31 may provide 1 to 100 MWh of energy to the plasma torch 30.
  • Electricity supply device 31 may include a control unit for controlling the amount of energy supply so that the temperature of the flow bed (1) is maintained at 500 to 1000 ° C.
  • the molten iron manufacturing apparatus 100 includes an external independent electricity supply device 31, the heat to be supplied to the inside of the flow reduction path 20 independently irrespective of the operating conditions of the flow reduction path Can be controlled.
  • FIG. 5 is a flow chart showing a molten iron manufacturing method according to an embodiment of the present invention.
  • the molten iron manufacturing apparatus 100 according to an embodiment of the present invention is reduced and calcined by reducing and calcining the iron-containing mixture mixed and dried iron-containing ore and secondary raw materials through the flow reduction reactor (20) Convert to (S100).
  • the powdery iron ore and auxiliary raw materials are contacted with a high temperature reducing gas stream to form a bubble flow layer, and are converted to high temperature reduced iron at elevated temperatures of 80 ° C. or higher, 80% reduction and 30% or more firing.
  • molten iron S200
  • the molten gasifier 10 is supplied with coal briquettes formed of lump coal or pulverized coal to form a coal filling layer.
  • the lump coal or coal briquettes injected into the melt gasifier 10 is gasified by a pyrolysis reaction in the upper part of the coal packed bed and a combustion reaction by oxygen in the lower part. Reduced iron is ultimately reduced and melted by the reducing gas and combustion heat generated by coal gasification and combustion while descending the coal packed bed with coal, and discharged to the outside.
  • the high temperature reducing gas generated in the molten gasifier 10 by the gasification reaction is supplied to the flow reduction path 20 through the reducing gas supply pipe 40 (S300).
  • the molten iron manufacturing method according to the present embodiment converts the iron-containing mixture into reduced iron in step S100, Blown-combustion of the plasma gas 2 over the region into which the reducing gas flows.
  • the plasma gas 2 forms a flame to supply heat to the flow reduction path 20, and thus the flow bed 1 in the flow reduction path 20 absorbs heat.
  • the average temperature of the fluidized bed 1 may be maintained at 500 to 1000 ° C.
  • the molten iron manufacturing method according to the present embodiment heats the flow bed 1 inside the flow reduction reactor 20 without consuming the reducing gas supplied from the melt gasification furnace 10 into the flow reduction reactor 20.
  • the contact area with the flow bed 1 is achieved. This may reduce the amount of melt produced in the flow reduction path 20 by the high temperature flame.

Abstract

The objective of the present invention is to provide: a molten iron manufacturing device of a Finex process for supplying heat to a fluidized bed within a fluidized reduction furnace without loss of reduction gas; and a molten iron manufacturing method using the same. To this end, the molten iron manufacturing device according to one embodiment of the present invention comprises: a fluidized reduction furnace for providing a reduced iron; a melter-gasifier for charging the reduced iron therein, and injecting oxygen thereinto so as to manufacture a molten iron; and a plasma torch for injecting plasma gas into the fluidized reduction furnace. Since the present invention has the plasma torch for supplying heat to the inside of the fluidized reduction furnace, the temperature of the fluidized bed within the fluidized reduction furnace can rise. In addition, since the plasma torch is provided at a suitable position, damage to a dispersing plate can be prevented, and the temperature of the fluidized bed can rise by using the plasma gas such that the reduction gas is not consumed, thereby enabling an increase of Finex process efficiency by increasing the reduction rate of fine iron ore.

Description

용철 제조 장치 및 이를 이용한 용철 제조 방법Apparatus for manufacturing molten iron and a method for manufacturing molten iron using the same
본 발명은 용철 제조 장치 및 이를 이용한 용철 제조 방법에 관한 것으로, 더욱 상세하게는 파이넥스 공정에서 분철광의 환원을 위해 사용되는 유동환원로의 내부를 분철광의 환원에 적합한 온도로 유지시키기 위한 파이넥스(FINEX) 공정의 용철 제조 장치 및 이를 이용한 용철 제조 방법 에 관한 것이다.The present invention relates to an apparatus for manufacturing molten iron and a method for manufacturing molten iron using the same, and more particularly, to maintain the inside of a flow reduction furnace used for reducing iron ore in a Finex process at a temperature suitable for reducing iron ore ( It relates to a molten iron manufacturing apparatus of the FINEX) process and a molten iron manufacturing method using the same.
자동차, 조선, 가전, 건설 등 대부분의 현대 산업에서 사용되고 있는 철강의제조는 일반적으로 제선공정, 제강공정, 연주공정 및 압연공정의 순으로 진행된다. 그리고, 제선공정에서는 고로법을 이용하여 용선이 제조된다. 고로법은 소결과정을 거친 철광석과, 유연탄을 원료로 하여 제조된 코크스를 고로에 투입한 후 산소를 불어넣어 용선을 제조하는 방법이다.Steel manufacturing, which is used in most modern industries such as automobiles, shipbuilding, home appliances, construction, etc., generally proceeds in the order of steel making, steel making, casting and rolling. And a molten iron | metal is manufactured using the blast furnace method in a steelmaking process. The blast furnace method is a method of manufacturing molten iron by injecting oxygen ore after the sintering process and coke prepared from bituminous coal into the blast furnace.
그러나, 상기 고로법에 의하면, 유연탄을 코크스로 제조하기 위한 코크스 제조설비, 철광석의 소결과정을 위한 소결설비 등의 부대설비가 마련되어야 한다. 또한, 상기 부대설비로부터는 환경오염물질이 배출되므로 고로법에 의하면 상기 부대설비들과 함께 환경오염물질을 정화시키기 위한 정화설비가 마련되어야 한다. 상기 부대설비와 정화설비의 설치에 따라 추가로 발생하는 비용은 철강의 제조원가에 그대로 반영되는바, 상기 고로법에 의하면 철강의 제조원가가 높은 문제가 발생한다. 따라서, 현재 철강업계에서는 고로법이 용융환원법으로 대체되고 있다. 상기 용융환원법은 파이넥스(FINEX)법이라고도 칭해진다.However, according to the blast furnace method, an auxiliary facility such as a coke production facility for producing bituminous coal as coke and a sintering facility for sintering of iron ore should be provided. In addition, since environmental pollutants are discharged from the auxiliary facilities, the blast furnace method requires a purification facility for purifying the environmental pollutants together with the auxiliary facilities. The additional costs incurred by the installation of the auxiliary equipment and the purification equipment are directly reflected in the manufacturing cost of steel, and according to the blast furnace method, a problem arises in that the manufacturing cost of steel is high. Therefore, in the current steel industry, the blast furnace method is replaced by a melt reduction method. The melt reduction method is also called a FINEX method.
고로법에서는 소결과정을 거친 덩어리 상태의 철광석(괴철광) 또는 자연상태의 괴철광이 사용되는 반면 파이넥스 공정에서는 가루형태의 철광석(분철광)이 사용된다. 또한, 고로법에서는 유연탄을 가공한 코크스가 사용되나 파이넥스 공정에서는 일반탄이 직접 사용된다. 이와 같은 파이넥스법은 코크스 제조설비, 철광석의 소결설비, 정화설비 등을 필요로 하지 않고, 괴철광에 비해 가격이 저렴한 분철광과 유연탄에 비해 가격이 저렴한 일반탄을 사용하기 때문에 철강의 제조원가를 낮출 수 있는 장점이 있다. 또한, 파이넥스법은 고로법에 비해 매우 친환경적인 장점이 있다.The blast furnace method uses sintered agglomerated iron ore (natural iron ore) or natural iron ore, while the Finex process uses a powdered iron ore (iron ore). In the blast furnace method, coke processed with bituminous coal is used, but ordinary coal is directly used in the Finex process. The FINEX method does not require coke production facilities, iron ore sintering facilities, purification facilities, etc., and it uses lower cost than iron pyrite and ordinary coal, which is cheaper than bituminous coal. There are advantages to it. In addition, the Finex method has a very environmentally friendly advantage compared to the blast furnace method.
파이넥스 공정에서는 분철광을 환원시키는 유동환원로와, 환원된 분철광과 일반탄을 용융시켜 용선을 제조하는 용융가스화로가 사용된다. 분철광의 환원을 위해 유동환원로의 내부로는 가연성 가스와 산소가 공급된다. 가연성 가스는 유동환원로의 하단에 형성된 분산판을 통과하여 균일한 흐름으로 유동환원로의 내부로 유입된 후 분철광을 유동시킨다.In the Finex process, a flow reduction furnace for reducing ferrous ore and a melt gasification furnace for producing molten iron by melting the reduced ferrite and ordinary coal are used. Combustible gas and oxygen are supplied into the flow reduction furnace to reduce the ferrite ore. Combustible gas flows through the dispersion plate formed at the bottom of the flow reduction path into the flow reduction path in a uniform flow and then flows the ferrite.
산소는 유동환원로의 측면에 장착된 베드 버너를 통해 유동환원로의 내부로 유입된 후 상기 가연성 가스와 반응하여 유동환원로의 내부온도를 분철광의 환원에 적합하게 형성시킨다. 그러나, 이와 같이 유동환원로 내부의 가연성 가스를 산소로 연소할 경우, 이산화탄소와 수증기가 형성된다. 도 1에 도시한 바와 같이 가연성 가스 내에 이산화탄소와 수증기 비율이 높아지면 분철광에 대한 환원력이 약해지는 문제점이 있다. Oxygen is introduced into the flow reduction reactor through a bed burner mounted on the side of the flow reduction reactor and reacts with the combustible gas to form an internal temperature of the flow reduction reactor suitable for reduction of ferrite. However, when the combustible gas inside the flow reduction furnace is combusted with oxygen, carbon dioxide and water vapor are formed. As shown in FIG. 1, when the ratio of carbon dioxide and water vapor in the combustible gas is increased, the reducing power for the ferrite is weakened.
이를 해결하기 위하여 환원제의 역할을 하는 일반탄의 사용량을 늘리지만, 이는 파이넥스 공정의 조업 효율을 떨어뜨리고, 생산 비용이 과다하게 소요하는 문제가 있다. In order to solve this problem, the amount of general coal, which serves as a reducing agent, is increased, but this decreases the operation efficiency of the Finex process, and there is a problem that excessive production cost is required.
본 발명이 이루고자 하는 기술적 과제는 환원가스의 손실 없이 유동환원로 내에 유동베드에 열을 공급하기 위한 파이넥스 공정의 용철 제조 장치 및 이를 이용한 용철 제조 방법을 제공하고자 한다.The technical problem to be achieved by the present invention is to provide a molten iron manufacturing apparatus and a molten iron manufacturing method of the Finex process for supplying heat to the fluidized bed in the flow reducing path without loss of reducing gas.
본 발명의 한 실시예에 따른 용철 제조 장치는, 환원철을 제공하는 유동환원로, 상기 환원철을 장입하고, 내부에 산소를 취입하여 용철을 제조하는 용융가스화로, 그리고 상기 유동환원로 내부로 플라즈마 가스를 취입하는 플라즈마 토치를 포함한다. An apparatus for manufacturing molten iron according to an embodiment of the present invention includes a flow reduction reactor for providing reduced iron, a molten gasification furnace for charging molten iron and injecting oxygen therein to produce molten iron, and a plasma gas into the flow reduction reactor. It includes a plasma torch blowing.
상기 플라즈마 토치는 상기 플라즈마 가스를 이용하여 화염을 형성하여 상기 유동환원로 내부에 열을 공급할 수 있다. The plasma torch may form a flame using the plasma gas to supply heat to the flow reduction path.
상기 플라즈마 가스는 수소, 질소, 헬륨, 아르곤 가스 중 어느 하나일 수 있다. The plasma gas may be any one of hydrogen, nitrogen, helium, and argon gas.
상기 유동환원로 내부의 유동 베드의 평균 온도는 500 내지 1000℃일 수 있다. The average temperature of the fluidized bed inside the flow reduction reactor may be 500 to 1000 ℃.
상기 유동환원로의 외부에 설치되며, 상기 플라즈마 토치와 연결되는 전기 공급 장치를 더 포함할 수 있다. The apparatus may further include an electricity supply device installed outside the flow reduction path and connected to the plasma torch.
상기 전기 공급 장치는 1 내지 100MWh의 에너지를 상기 플라즈마 토치에 공급할 수 있다. The electricity supply device may supply 1 to 100 MWh of energy to the plasma torch.
상기 유동환원로는 환원가스가 통과하는 분산판을 포함하고, 상기 플라즈마 토치는 상기 분산반의 위에 위치하고, 상기 유동환원로의 외벽에 위치할 수 있다. The flow reduction path may include a dispersion plate through which a reducing gas passes, and the plasma torch may be positioned on the dispersion plate and positioned on an outer wall of the flow reduction path.
상기 플라즈마 토치는 상기 유동환원로의 외벽을 따라 복수로 구비될 수 있다. The plasma torch may be provided in plurality along the outer wall of the flow reduction path.
상기 용융가스화로에서 배출하는 환원가스를 상기 유동환원로에 공급하는 환원가스 공급관을 더 포함할 수 있다. It may further include a reducing gas supply pipe for supplying the reducing gas discharged from the melt gasifier to the flow reduction path.
본 발명의 일 실시예에서는 유동환원로 내부에 열을 공급하는 플라즈마 토치를 설치함으로써, 유동환원로 내의 유동베드를 승온시킬 수 있다.In an embodiment of the present invention, by installing a plasma torch for supplying heat inside the flow reduction path, the fluidized bed in the flow reduction path can be heated.
또한, 플라즈마 토치를 적절한 위치에 설치함으로써 분산판이 손상되는 것을 방지할 수 있다. In addition, by providing the plasma torch at an appropriate position, it is possible to prevent the dispersion plate from being damaged.
또한, 플라즈마 가스를 사용하여 유동베드를 승온시켜, 환원가스를 소모하지 않으므로, 분철광의 환원율을 높여 파이넥스 공정 조업 효율을 높일 수 있다. In addition, since the fluidized bed is heated up using plasma gas, and the reducing gas is not consumed, the reduction rate of the ferrite ore can be increased to increase the efficiency of the Finex process.
도 1은 CO, CO2, H2, H2O, Fe, FeO, Fe3O4, Fe2O3의 상평형도이다. 1 is a phase diagram of CO, CO 2, H 2, H 2 O, Fe, FeO, Fe 3 O 4, and Fe 2 O 3.
도 2는 본 발명의 한 실시예에 따른 용철 제조 장치의 구성을 개략적으로 나타내는 도면이다. 2 is a view schematically showing the configuration of a molten iron manufacturing apparatus according to an embodiment of the present invention.
도 3은 본 발명의 한 실시예에 따른 유동환원로를 개략적으로 나타내는 도면이다. 3 is a view schematically showing a flow reduction path according to an embodiment of the present invention.
도 4는 본 발명의 한 실시예에 따른 유동환원로를 개략적으로 나타내는 평면도이다. Figure 4 is a plan view schematically showing a flow reduction path according to an embodiment of the present invention.
제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.Terms such as first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 "포함하는"의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is for reference only to specific embodiments and is not intended to limit the invention. As used herein, the singular forms “a,” “an,” and “the” include plural forms as well, unless the phrases clearly indicate the opposite. As used herein, the meaning of "comprising" embodies a particular characteristic, region, integer, step, operation, element and / or component, and the presence of other characteristics, region, integer, step, operation, element and / or component It does not exclude the addition.
다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. Commonly defined terms used are additionally interpreted to have a meaning consistent with the related technical literature and the presently disclosed contents, and are not interpreted in an ideal or very formal sense unless defined.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도 2는 본 발명의 한 실시예에 따른 용철 제조 장치를 개략적으로 나타내는 도면이다. 도 2의 용철 제조 장치는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다. 따라서, 용철 제조 장치를 다양하게 변형할 수 있다.2 is a view schematically showing a molten iron manufacturing apparatus according to an embodiment of the present invention. The molten iron manufacturing apparatus of FIG. 2 is merely for illustrating the present invention, and the present invention is not limited thereto. Therefore, the molten iron manufacturing apparatus can be variously modified.
본 발명의 한 실시예에 따른 용철 제조 장치(100)는 크게 유동환원로(20), 그리고 용융가스화로(10)를 포함한다. 이외에 용철 제조 장치(100)는 필요에 따라 기타 다른 장치를 포함할 수 있다. The apparatus for manufacturing molten iron 100 according to an embodiment of the present invention includes a flow reduction reactor 20 and a melt gasifier 10. In addition, the apparatus for manufacturing molten iron 100 may include other devices as necessary.
유동환원로(20)는 철광석 및 부원료를 환원 및 소성하여 환원철로 변환한다. 유동환원로(20)에 장입되는 철광석은 사전 건조된 후에 유동환원로(20)를 통과하면서 환원철로 제조된다. 유동환원로(20) 내로 장입된 철광석 및 부원료는 유동환원로(20) 내부에 유동 베드(1)를 형성한다. 유동환원로(20)는 충전층형 환원로로서, 용융가스화로(10)로부터 환원가스를 공급받아 그 내부에 충전층을 형성한다. Flow reduction furnace 20 is converted to reduced iron by reducing and calcining iron ore and secondary raw materials. The iron ore charged into the flow reduction path 20 is made of reduced iron while passing through the flow reduction path 20 after being pre-dried. The iron ore and auxiliary materials charged into the flow reduction path 20 form a flow bed 1 inside the flow reduction path 20. The flow reduction reactor 20 is a packed-bed reduction reactor, receives a reducing gas from the melt gasifier 10 to form a packed bed therein.
용융가스화로(10)는 내부에 석탄충진층을 포함하며, 환원철를 장입하고 그 내부로 산소를 취입하여 용철을 제조한다. 용융가스화로(10)에서 배출하는 환원가스는 환원가스공급관(40)을 통하여 유동환원로(20)에 공급된 후 유동환원로(20)를 거쳐서 철광석 및 부원료를 환원 및 소성하는데 사용된 다음, 외부로 배출된다. The melt gasifier 10 includes a coal-filled layer therein, charges reduced iron and blows oxygen into the molten iron to produce molten iron. The reducing gas discharged from the molten gasifier 10 is supplied to the flow reduction reactor 20 through a reducing gas supply pipe 40 and then used to reduce and calcinate iron ore and subsidiary materials through the flow reduction reactor 20. It is discharged to the outside.
본 발명의 한 실시예에 따른 용철 제조 장치(100)를 구성하는 각각의 구성 요소에 대하여 이하에서 좀 더 상세하게 설명한다. Each component constituting the molten iron manufacturing apparatus 100 according to an embodiment of the present invention will be described in more detail below.
용철 제조 장치(100)는 입도가 8mm 이하인 상온의 분상의 철함유 광석 및 부원료를 호퍼에 임시 저장한 다음, 건조기에서 수분을 제거하고, 혼합하여 철함유 혼합체를 제조한다. 그 다음 제조한 철함유 혼합체를 유동환원로(20)에 장입한다. 용철 제조 장치(100)는 건조기와 유동환원로(20) 사이에 균배압 장치를 포함함으로써 상온의 철함유 혼합체가 상압 상태에서 1.5~3기압으로 유지되는 유동환원로(20)에 장입될 수 있도록 할 수 있다. The apparatus for manufacturing molten iron 100 temporarily stores powdered iron ore and secondary raw materials having a particle size of 8 mm or less in a hopper, and then removes moisture from a dryer and mixes to prepare an iron-containing mixture. Then, the prepared iron-containing mixture is charged to the fluid reduction reactor (20). The molten iron manufacturing apparatus 100 includes a homogeneous back pressure device between the dryer and the flow reduction path 20 so that the iron-containing mixture at room temperature may be charged into the flow reduction path 20 maintained at 1.5 to 3 atmospheres at atmospheric pressure. can do.
유동환원로(20)에 공급되는 분상의 철함유 광석 및 부원료는 고온의 환원가스기류와 접촉하여 기포유동층을 형성하고, 80℃이상 승온, 80%의 환원 및 30% 이상의 소성이 이루어진 고온의 환원철로 전환된다. The powdered iron ore and auxiliary raw materials supplied to the fluid reduction reactor 20 form a bubble fluidized bed in contact with a high temperature reducing gas stream, and have a high temperature reduced iron at 80 ° C. or higher, 80% reduction and 30% or more firing. Is switched to.
한편, 도 2에 도시되어 있지 않지만, 유동환원로(20)에서 배출되는 환원철을 용융가스화로(10)에 바로 장입할 경우 발생하는 비산 손실을 방지하기 위하여 고온 괴성화 장치를 더 포함할 수 있다. Meanwhile, although not shown in FIG. 2, a high temperature compaction apparatus may be further included in order to prevent scattering loss generated when the reduced iron discharged from the flow reduction reactor 20 is directly charged into the molten gasifier 10. .
용융가스화로(10)에는 괴탄 또는 미분탄을 성형한 성형탄을 공급하여 석탄충진층을 형성한다. 용융가스화로(10)에 투입한 괴탄 또는 성형탄은 석탄충진층 상부에서의 열분해 반응과 하부에서의 산소에 의한 연소 반응에 의하여 가스화된다. 가스화 반응에 의하여 용융가스화로(10)에서 발생하는 고온 환원가스는 환원가스공급관(40)을 통하여 유동환원로(20)로 차례로 공급되어 환원제 및 유동화 가스로 이용된다. The molten gasifier 10 is supplied with coal briquettes formed of lump coal or pulverized coal to form a coal filling layer. The lump coal or coal briquettes injected into the melt gasifier 10 is gasified by a pyrolysis reaction in the upper part of the coal packed bed and a combustion reaction by oxygen in the lower part. The high temperature reducing gas generated in the melt gasifier 10 by the gasification reaction is sequentially supplied to the flow reduction reactor 20 through the reducing gas supply pipe 40 and used as a reducing agent and a fluidizing gas.
용융가스화로(10)의 충진층 상부에는 돔(dome) 형태의 빈 공간이 형성되어 있다. 이것으로 가스 유속을 감소시킴으로써, 장입되는 환원철 내에 포함되어 있는 미분과 용융가스화로(10)내에 장입되어 있는 석탄의 급속한 승온에 따라 발생하는 미분들이 노외로 다량 방출되는 것을 방지한다. 또한 석탄을 직접 사용함에따라 야기하는 가스 발생량의 불규칙한 변동에 따른 용융가스화로(10)내의 압력 변동을 흡수한다. 충진층 내에서 석탄은 하부로 강하하면서 탈휘 및 가스화되며, 궁극적으로는 노하부에 있는 풍구를 통하여 취입되는 산소에 의하여 연소된다. 이때의 연소가스는 충진층을 상승하면서 고온 환원가스로 전환되어 용융가스화로(10) 외부로 배출되고, 일부는 용융가스화로(10)에 부과되는 압력이 3.0~3.5 기압의 범위내에서 일정하게 유지되도록 수집진장치를 거치면서 제진 및 냉각된다. An empty space in the form of a dome is formed on the filling layer of the melt gasifier 10. This reduces the gas flow rate, thereby preventing a large amount of fines generated due to the rapid temperature increase of the fines contained in the reduced iron to be charged and the coal charged into the molten gasifier 10 to the outside of the furnace. In addition, it absorbs the pressure fluctuations in the molten gasifier 10 due to irregular fluctuations in the amount of gas generated by using coal directly. In the packed bed, coal descends to the bottom and is devolatilized and gasified, and ultimately combusted by oxygen blown through the tuyere in the furnace bottom. At this time, the combustion gas is converted into a high temperature reducing gas while raising the packed bed and discharged to the outside of the melt gasifier 10, and partly, the pressure applied to the melt gasifier 10 is constant within the range of 3.0 to 3.5 atm. It is dusted and cooled while passing through the collecting device so as to be maintained.
싸이클론(cyclone)은 용융가스화로(10)에서 발생하는 배가스를 포집하고, 더스트를 용융가스화로(10)에 다시 공급하고, 가스를 환원가스공급관(40)을 통하여 유동환원로(20)에 공급한다. 환원철은 석탄과 함께 충진층내를 강하하면서 석탄 가스화 및 연소에 의하여 발생하는 환원가스 및 연소열에 의하여 최종 환원 및 용융되어 외부로 배출된다. Cyclone (cyclone) to collect the flue-gas generated in the molten gasifier 10, supply the dust back to the molten gasifier 10, and supplies the gas to the flow reduction path 20 through the reducing gas supply pipe (40) Supply. Reduced iron is finally reduced and melted by the reducing gas and combustion heat generated by coal gasification and combustion while descending the packed bed with coal and discharged to the outside.
용융가스화로(10)로부터 배출된 환원가스는 유동환원로(20)를 거치면서 온도가 점점 떨어지기 때문에 본 실시예에 따른 용철 제조 장치는 승온을 위한 플라즈마 토치(30)를 별도로 설치할 수 있다. Since the reducing gas discharged from the melt gasifier 10 is gradually reduced in temperature while passing through the flow reduction reactor 20, the apparatus for manufacturing molten iron according to the present embodiment may separately install a plasma torch 30 for increasing the temperature.
도 3은 본 발명의 일 실시예에 따른 유동환원로와 플라즈마 토치를 개략적으로 도시한 도면이다. 도 3을 참고하면, 본 발명의 한 실시예에서는 승온된 환원가스가 유동환원로(20)의 하부에 설치된 분산판(21)을 손상하거나, 분산판(21)을 막아버리는 현상을 방지하기 위하여 유동환원로(20)의 환원가스가 유입되는 영역에 플라즈마 가스(2)를 직접 취입하여 연소한다. 3 is a view schematically showing a flow reduction path and a plasma torch according to an embodiment of the present invention. Referring to FIG. 3, in one embodiment of the present invention, in order to prevent a phenomenon in which the heated reducing gas damages the dispersion plate 21 installed at the lower portion of the flow reduction path 20 or blocks the dispersion plate 21. The plasma gas 2 is directly blown into and combusted in a region into which the reducing gas flows into the flow reduction path 20.
이를 위하여 본 발명에서는 도 3에 도시한 바와 같이, 플라즈마 토치(30)는 유동환원로(20)의 외벽에 위치하되, 분산판(21) 상부에 배치되어 플라즈마 가스(2)를 유동환원로(20) 내부로 공급한다. To this end, in the present invention, as shown in FIG. 3, the plasma torch 30 is located on the outer wall of the flow reduction path 20, but is disposed on the dispersion plate 21 to transfer the plasma gas 2 to the flow reduction path ( 20) Supply internally.
도 4는 본 발명의 한 실시예에 따른 유동환원로와 플라즈마 토치를 개략적으로 나타내는 평면도이다. 도 4를 참고하면, 유동환원로(20)의 외부 둘레를 따라 복수 개의 플라즈마 토치(30)가 위치할 수 있으며, 플라즈마 토치(30)의 개수는 다양하게 구성될 수 있다. 4 is a plan view schematically illustrating a flow reduction path and a plasma torch according to an embodiment of the present invention. Referring to FIG. 4, a plurality of plasma torches 30 may be positioned along an outer circumference of the flow reduction path 20, and the number of plasma torches 30 may be variously configured.
본 실시예에서 플라즈마 토치(30)는 플라즈마 가스(2)를 사용하여 화염(3)을 형성하여 유동환원로(20) 내부에 열을 공급하며, 이에 따라 유동환원로(20) 내부의 유동 베드(1)는 열을 흡수하게 된다. 유동 베드(1)의 평균 온도는 500 내지 1000℃로 유지될 수 있다. In the present embodiment, the plasma torch 30 forms a flame 3 using the plasma gas 2 to supply heat to the flow reduction path 20, and accordingly, flow bed inside the flow reduction path 20. (1) absorbs heat. The average temperature of the fluidized bed 1 may be maintained at 500 to 1000 ° C.
본 실시예에서 플라즈마 가스(2)는 수소, 질소, 헬륨, 또는 아르곤 가스일 수 있다. 이에 따라 본 실시예에 따른 용철 제조 장치(100)는 용융가스화로(10)로부터 유동환원로(20) 내부에 공급되는 환원가스를 소모하지 않고 유동환원로(20)내부의 유동 베드(1) 에 열을 공급할 수 있다.In the present embodiment, the plasma gas 2 may be hydrogen, nitrogen, helium, or argon gas. Accordingly, the molten iron manufacturing apparatus 100 according to the present embodiment does not consume the reducing gas supplied from the melt gasification furnace 10 into the flow reduction reactor 20, and thus, the fluidized bed 1 inside the flow reduction reactor 20. It can supply heat.
또한, 산소를 이용하여 연소하지 않으므로, 유동환원로(20) 내부에 이산화탄소와 수증기가 발생하지 않아 분철광의 환원율을 높일 수 있다. 결국, 높은 환원율로 제조되는 분철광이 용융가스화로(10)에서 사용됨에 따라 파이넥스 공정의 조업 효율을 높이고, 용선 생산 비용을 감소시킬 수 있다. In addition, since it does not burn using oxygen, carbon dioxide and water vapor are not generated in the flow reduction reactor 20, thereby increasing the reduction rate of ferrite. As a result, as the ferrous ore manufactured at a high reduction rate is used in the molten gasifier 10, it is possible to increase the operational efficiency of the Finex process and reduce the molten iron production cost.
한편, 플라즈마 가스(2)를 이용한 화염(3)의 길이는 일반적으로 유동환원로(20)에 사용하는 베드 버너에 의해 형성되는 확산 화염의 길이에 비해 짧기 때문에, 유동 베드(1)와의 접촉 면적이 감소되어 고온 화염에 의해 유동환원로(20) 내에 생성되는 용융물의 양을 줄일 수 있다. On the other hand, since the length of the flame 3 using the plasma gas 2 is generally shorter than the length of the diffusion flame formed by the bed burner used in the flow reduction path 20, the contact area with the flow bed 1 is achieved. This may reduce the amount of melt produced in the flow reduction path 20 by the high temperature flame.
본 실시예에서 플라즈마 토치(30)는 유동환원로(20) 외부에 설치된 전기공급장치(31)에 의하여 전력을 공급받을 수 있다. 전기공급장치(31)는 1 내지 100MWh의 에너지를 플라즈마 토치(30)에 제공할 수 있다. In the present embodiment, the plasma torch 30 may be supplied with electric power by the electricity supply device 31 installed outside the flow reduction path 20. The electricity supply device 31 may provide 1 to 100 MWh of energy to the plasma torch 30.
전기공급장치(31)는 유동 베드(1)의 온도가 500 내지 1000℃로 유지 되도록 에너지 공급량을 제어하는 제어부를 포함할 수 있다. 이와 같이 본 실시예에 따른 용철 제조 장치(100)는 외부의 독립적인 전기공급장치(31)를 포함함으로써, 유동환원로의 조업 조건과 상관없이 독립적으로 유동환원로(20) 내부에 공급하는 열을 제어할 수 있다. Electricity supply device 31 may include a control unit for controlling the amount of energy supply so that the temperature of the flow bed (1) is maintained at 500 to 1000 ° C. Thus, the molten iron manufacturing apparatus 100 according to the present embodiment includes an external independent electricity supply device 31, the heat to be supplied to the inside of the flow reduction path 20 independently irrespective of the operating conditions of the flow reduction path Can be controlled.
이하, 본 장치를 통한 용철 제조 방법을 설명하면 다음과 같다.Hereinafter, the molten iron manufacturing method through the present device will be described.
도 5는 본 발명의 한 실시예에 따른 용철 제조 방법을 나타낸 순서도이다. 도 5를 참고하면, 본 발명의 한 실시예에 따른 용철 제조 장치(100)는 분상의 철함유 광석 및 부원료를 혼합 및 건조한 철함유 혼합체를 유동환원로(20)를 통과시키면서 환원 및 소성시켜 환원철로 변환한다(S100). 분상의 철함유 광석 및 부원료는 고온의 환원가스 기류와 접촉하여 기포유동층을 형성하고, 80℃이상 승온, 80%의 환원 및 30% 이상의 소성이 이루어진 고온의 환원철로 전환된다. Figure 5 is a flow chart showing a molten iron manufacturing method according to an embodiment of the present invention. Referring to Figure 5, the molten iron manufacturing apparatus 100 according to an embodiment of the present invention is reduced and calcined by reducing and calcining the iron-containing mixture mixed and dried iron-containing ore and secondary raw materials through the flow reduction reactor (20) Convert to (S100). The powdery iron ore and auxiliary raw materials are contacted with a high temperature reducing gas stream to form a bubble flow layer, and are converted to high temperature reduced iron at elevated temperatures of 80 ° C. or higher, 80% reduction and 30% or more firing.
이후, 용융가스화로(10)에 환원철을 장입하고, 산소를 취입하여 용철을 제조한다(S200). 용융가스화로(10)에는 괴탄 또는 미분탄을 성형한 성형탄을 공급하여 석탄충진층을 형성한다. 용융가스화로(10)에 투입한 괴탄 또는 성형탄은 석탄충진층 상부에서의 열분해 반응과 하부에서의 산소에 의한 연소 반응에 의하여 가스화된다. 환원철은 석탄과 함께 석탄충진층 내를 강하하면서 석탄 가스화 및 연소에 의하여 발생하는 환원가스 및 연소열에 의하여 최종 환원 및 용융되어 외부로 배출된다. Subsequently, charged iron is charged into the molten gasifier 10, and oxygen is blown to prepare molten iron (S200). The molten gasifier 10 is supplied with coal briquettes formed of lump coal or pulverized coal to form a coal filling layer. The lump coal or coal briquettes injected into the melt gasifier 10 is gasified by a pyrolysis reaction in the upper part of the coal packed bed and a combustion reaction by oxygen in the lower part. Reduced iron is ultimately reduced and melted by the reducing gas and combustion heat generated by coal gasification and combustion while descending the coal packed bed with coal, and discharged to the outside.
가스화 반응에 의하여 용융가스화로(10)에서 발생하는 고온 환원가스를 환원가스 공급관(40)을 통해 유동환원로(20)에 공급한다(S300). The high temperature reducing gas generated in the molten gasifier 10 by the gasification reaction is supplied to the flow reduction path 20 through the reducing gas supply pipe 40 (S300).
용융가스화로(10)에서 발생하는 환원가스는 유동환원로(20)를 거치면서 온도가 점점 떨어지기 때문에 본 실시예에 따른 용철 제조 방법은 철함유 혼합체를 환원철로 변환하는 단계(S100)에서, 환원가스가 유입되는 영역 위에 플라즈마 가스(2)를 취입 연소한다. Since the reducing gas generated in the melt gasifier 10 is gradually reduced in temperature as it flows through the flow reduction reactor 20, the molten iron manufacturing method according to the present embodiment converts the iron-containing mixture into reduced iron in step S100, Blown-combustion of the plasma gas 2 over the region into which the reducing gas flows.
플라즈마 가스(2)는 화염을 형성하여 유동환원로(20) 내부에 열을 공급하고, 이에 따라 유동환원로(20) 내부의 유동 베드(1)는 열을 흡수하게 된다. 유동 베드(1)의 평균 온도는 500 내지 1000℃로 유지될 수 있다. The plasma gas 2 forms a flame to supply heat to the flow reduction path 20, and thus the flow bed 1 in the flow reduction path 20 absorbs heat. The average temperature of the fluidized bed 1 may be maintained at 500 to 1000 ° C.
이에 따라 본 실시예에 따른 용철 제조 방법은 용융가스화로(10)로부터 유동환원로(20) 내부에 공급되는 환원가스를 소모하지 않고 유동환원로(20)내부의 유동 베드(1)에 열을 공급할 수 있다.Accordingly, the molten iron manufacturing method according to the present embodiment heats the flow bed 1 inside the flow reduction reactor 20 without consuming the reducing gas supplied from the melt gasification furnace 10 into the flow reduction reactor 20. Can supply
또한, 산소를 이용하여 연소하지 않으므로, 유동환원로(20) 내부에 이산화탄소와 수증기가 발생하지 않아 분철광의 환원율을 높일 수 있다. 결국, 높은 환원율로 제조되는 분철광이 용융가스화로(10)에서 사용됨에 따라 파이넥스 공정의 조업 효율을 높이고, 용선 생산 비용을 감소시킬 수 있다. In addition, since it does not burn using oxygen, carbon dioxide and water vapor are not generated in the flow reduction reactor 20, thereby increasing the reduction rate of ferrite. As a result, as the ferrous ore manufactured at a high reduction rate is used in the molten gasifier 10, it is possible to increase the operational efficiency of the Finex process and reduce the molten iron production cost.
한편, 플라즈마 가스(2)를 이용한 화염(3)의 길이는 일반적으로 유동환원로(20)에 사용하는 베드 버너에 의해 형성되는 확산 화염의 길이에 비해 짧기 때문에, 유동 베드(1)와의 접촉 면적이 감소되어 고온 화염에 의해 유동환원로(20) 내에 생성되는 용융물의 양을 줄일 수 있다. On the other hand, since the length of the flame 3 using the plasma gas 2 is generally shorter than the length of the diffusion flame formed by the bed burner used in the flow reduction path 20, the contact area with the flow bed 1 is achieved. This may reduce the amount of melt produced in the flow reduction path 20 by the high temperature flame.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (12)

  1. 환원철을 제공하는 유동환원로, A flow reduction reactor providing reduced iron,
    상기 환원철을 장입하고, 내부에 산소를 취입하여 용철을 제조하는 용융가스화로, 그리고A molten gasification furnace for charging molten iron and injecting oxygen therein to produce molten iron; and
    상기 유동환원로 내부로 플라즈마 가스를 취입하는 플라즈마 토치를 포함하는 용철 제조 장치. An apparatus for manufacturing molten iron, including a plasma torch that blows plasma gas into the flow reduction path.
  2. 제1항에서,In claim 1,
    상기 플라즈마 토치는,The plasma torch,
    상기 플라즈마 가스를 이용하여 화염을 형성하여 상기 유동환원로 내부에 열을 공급하는 용철 제조 장치.The molten iron manufacturing apparatus for supplying heat into the flow reduction path by forming a flame using the plasma gas.
  3. 제2항에서,In claim 2,
    상기 플라즈마 가스는 수소, 질소, 헬륨, 아르곤 가스 중 어느 하나인 용철 제조 장치. The plasma gas is molten iron manufacturing apparatus of any one of hydrogen, nitrogen, helium, argon gas.
  4. 제1항에서,In claim 1,
    상기 유동환원로 내부의 유동 베드의 평균 온도는 500 내지 1000℃인 용철 제조 장치. The apparatus for producing molten iron, wherein an average temperature of the fluidized bed in the fluid reduction furnace is 500 to 1000 ° C.
  5. 제1항에서, In claim 1,
    상기 유동환원로의 외부에 설치되며, 상기 플라즈마 토치와 연결되는 전기 공급 장치를 더 포함하는 용철 제조 장치. Installed on the outside of the flow reduction path, molten iron manufacturing apparatus further comprises an electricity supply device connected to the plasma torch.
  6. 제5항에서, In claim 5,
    상기 전기 공급 장치는 1 내지 100MWh의 에너지를 상기 플라즈마 토치에 공급하는 용철 제조 장치. The apparatus for producing molten iron for supplying energy of 1 to 100MWh to the plasma torch.
  7. 제1항에서, In claim 1,
    상기 유동환원로는 환원가스가 통과하는 분산판을 포함하고, The flow reduction path includes a dispersion plate through which the reducing gas passes,
    상기 플라즈마 토치는 상기 분산반의 위에 위치하고, 상기 유동환원로의 외벽에 위치하는 용철 제조 장치. The plasma torch is molten iron manufacturing apparatus is located on the distribution plate, located on the outer wall of the flow reduction path.
  8. 제7항에서, In claim 7,
    상기 플라즈마 토치는 상기 유동환원로의 외벽을 따라 복수로 구비되는 용철 제조 장치. The plasma torch is molten iron manufacturing apparatus provided with a plurality along the outer wall of the flow reduction path.
  9. 제1항에서, In claim 1,
    상기 용융가스화로에서 배출하는 환원가스를 상기 유동환원로에 공급하는 환원가스 공급관을 더 포함하는 용철 제조 장치. The molten iron manufacturing apparatus further comprises a reducing gas supply pipe for supplying the reducing gas discharged from the molten gasifier to the flow reduction path.
  10. 분상의 철함유 광석 및 부원료를 혼합 및 건조한 철함유 혼합체를 유동환원로로 통과시키면서 환원 및 소성시켜 환원철로 변환하는 단계,Converting iron powder ore and secondary raw materials into reduced iron by reducing and calcining the mixed and dried iron-containing mixture through a fluid reduction reactor,
    상기 환원철을 용융가스화로에 장입하고, 상기 용융가스화로에 산소를 취입하여 용철을 제조하는 단계, 그리고Charging the reduced iron into a melting gasifier, and injecting oxygen into the melting gasifier to produce molten iron; and
    상기 용융가스화로에서 배출되는 환원가스를 상기 유동환원로에 공급하는 단계를 포함하며,Supplying the reducing gas discharged from the melt gasifier to the flow reduction reactor,
    상기 철함유 혼합체를 환원철로 변환하는 단계에서, 상기 환원가스가 유입되는 영역 위에 플라즈마 가스를 취입 연소하는 용철 제조 방법. In the step of converting the iron-containing mixture to reduced iron, molten iron manufacturing method by blowing the plasma gas on the region in which the reducing gas flows.
  11. 제10항에서,In claim 10,
    상기 플라즈마 가스는 수소, 질소, 헬륨, 아르곤 가스 중 어느 하나인 용철 제조 방법.The plasma gas is a molten iron manufacturing method of any one of hydrogen, nitrogen, helium, argon gas.
  12. 제10항에서,In claim 10,
    상기 유동환원로 내부의 유동 베드의 평균 온도는 500 내지 1000℃인 용철 제조 방법. The average temperature of the fluidized bed in the flow reducing furnace is 500 to 1000 ℃ the molten iron manufacturing method.
PCT/KR2016/015088 2015-12-23 2016-12-22 Molten iron manufacturing device and molten iron manufacturing method using same WO2017111490A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680074988.3A CN108541273B (en) 2015-12-23 2016-12-22 Molten iron manufacturing apparatus and molten iron manufacturing method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150185026A KR101699236B1 (en) 2015-12-23 2015-12-23 An apparatus for manufacturing molten irons and manufacturing method using the same
KR10-2015-0185026 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017111490A1 true WO2017111490A1 (en) 2017-06-29

Family

ID=57992986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/015088 WO2017111490A1 (en) 2015-12-23 2016-12-22 Molten iron manufacturing device and molten iron manufacturing method using same

Country Status (3)

Country Link
KR (1) KR101699236B1 (en)
CN (1) CN108541273B (en)
WO (1) WO2017111490A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628676B (en) * 2019-01-07 2020-10-30 山西赛思普科技有限公司 Short-process technology for directly producing pure molten iron
KR20240018206A (en) 2022-08-02 2024-02-13 주식회사 포스코 Facility for manufacturing molten iron and method for manufacturing molten iron
KR20240018205A (en) 2022-08-02 2024-02-13 주식회사 포스코 Facility for manufacturing molten iron and method for manufacturing molten iron
KR20240018212A (en) 2022-08-02 2024-02-13 주식회사 포스코 Facility for manufacturing molten iron and method for manufacturing molten iron

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074581A (en) * 1996-08-30 1998-03-17 Fuji Electric Co Ltd Plasma type fluidized bed reactor
JPH11131118A (en) * 1997-10-31 1999-05-18 Nkk Corp Preliminarily reducing furnace
KR20050089836A (en) * 2002-12-23 2005-09-08 주식회사 포스코 An apparatus for manufacturing molten irons to improve operation of fludizied bed type reduction apparatus and manufacturing method using the same
KR20080061550A (en) * 2006-12-28 2008-07-03 주식회사 포스코 Apparatus for manufacturing molten irons and method for manufacturing molten irons using the same
KR101191954B1 (en) * 2005-12-26 2012-10-17 주식회사 포스코 Apparatus for manufacturing molten irons provided with an improved a fluidized-bed reduction reactor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA88843C2 (en) * 2008-06-23 2009-11-25 Анатолий Тимофеевич Неклеса METHOD FOR DIRECT IRON REDUCTION AND DEVICE FOR REALIZATION thereof
UA90788C2 (en) * 2008-09-15 2010-05-25 Анатолий Тимофеевич Неклеса Method for producing iron-containing material with direct reduction
CN101597662B (en) * 2009-07-02 2011-04-06 贾会平 Method for producing direct reduced iron
CN102653805B (en) * 2012-05-25 2014-07-16 辽宁博联特冶金科技有限公司 Submerged arc plasma smelting ironmaking method
CN103045788A (en) * 2012-12-04 2013-04-17 中冶赛迪工程技术股份有限公司 Reduction steel-making method and reduction steel-marking device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074581A (en) * 1996-08-30 1998-03-17 Fuji Electric Co Ltd Plasma type fluidized bed reactor
JPH11131118A (en) * 1997-10-31 1999-05-18 Nkk Corp Preliminarily reducing furnace
KR20050089836A (en) * 2002-12-23 2005-09-08 주식회사 포스코 An apparatus for manufacturing molten irons to improve operation of fludizied bed type reduction apparatus and manufacturing method using the same
KR101191954B1 (en) * 2005-12-26 2012-10-17 주식회사 포스코 Apparatus for manufacturing molten irons provided with an improved a fluidized-bed reduction reactor
KR20080061550A (en) * 2006-12-28 2008-07-03 주식회사 포스코 Apparatus for manufacturing molten irons and method for manufacturing molten irons using the same

Also Published As

Publication number Publication date
CN108541273A (en) 2018-09-14
CN108541273B (en) 2020-06-05
KR101699236B1 (en) 2017-01-24

Similar Documents

Publication Publication Date Title
WO2017111490A1 (en) Molten iron manufacturing device and molten iron manufacturing method using same
AU776002B2 (en) Method and facilities for metal smelting
AU2021202096B2 (en) Metallurgical furnace for producing metal alloys
JP4191681B2 (en) Hot metal production apparatus with improved operation of fluidized reduction furnace and hot metal production method
CN105084361B (en) A kind of gas heating multistage calcium carbide reactor and its technique
KR101054472B1 (en) Apparatus for manufacturing molten iron for drying and transporting iron ore and auxiliary materials
WO2012086961A4 (en) Method for manufacturing partially carbonized coal briquettes, apparatus for manufacturing partially carbonized coal briquettes, and apparatus for manufacturing molten iron
CA2024184A1 (en) Method of in-bath smelting reduction of metals and in-bath smelting reduction furnace
EP2652159B1 (en) Method and system for producing direct reduced iron and/or hot metal using brown coal
US5558696A (en) Method of direct steel making from liquid iron
WO2013094862A1 (en) Tuyere assembly and molten iron manufacturing apparatus using same
KR101429636B1 (en) Apparatus for manufacturing molten irons and method for manufacturing the same
CN207828339U (en) A kind of furnace burner combined device of direct gasification reduced iron
JP4736541B2 (en) Method for producing reduced metal
KR100241010B1 (en) Facilities on direct charging of reduced iron ore fine into melter-gasifier
KR20020051992A (en) Method For Manufacturing Molten Iron Using Non-Coking Coal And Fine Iron Ore And Device For Manufacturing Molten Iron
KR100286686B1 (en) Furnace wall inserting type reduced iron charging system and reduced iron charging method using the same
KR920007177Y1 (en) Pre-reduction furnace of fludized bed style for iron ore
Lu POWER AND INCINERATION
CN117858968A (en) Method for producing molten iron
KR100380752B1 (en) apparatus for calcining additive material and drying ore using off-gas in fludizied bed reactor
KR20040056092A (en) An apparatus and method for calcinating the flux in fludizied bed reduction process
JPS58126908A (en) Operating method of blast furnace for casting pig by mixed blowing of pulverized coal and silica or siliceous material
JPS59107011A (en) Operating method of vertical type melt reduction furnace
PH26062A (en) Method for melting and refining a powdery ore containing metal oxides and apparatus for melting said ore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879357

Country of ref document: EP

Kind code of ref document: A1