WO2020111215A1 - シート状強化繊維基材およびその製造方法 - Google Patents

シート状強化繊維基材およびその製造方法 Download PDF

Info

Publication number
WO2020111215A1
WO2020111215A1 PCT/JP2019/046706 JP2019046706W WO2020111215A1 WO 2020111215 A1 WO2020111215 A1 WO 2020111215A1 JP 2019046706 W JP2019046706 W JP 2019046706W WO 2020111215 A1 WO2020111215 A1 WO 2020111215A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing fiber
layer
fiber bundles
sheet
base material
Prior art date
Application number
PCT/JP2019/046706
Other languages
English (en)
French (fr)
Inventor
佐藤泰啓
鈴木保
中尾亮太
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201980077508.2A priority Critical patent/CN113165314A/zh
Priority to AU2019390895A priority patent/AU2019390895A1/en
Priority to ES19891643T priority patent/ES2980681T3/es
Priority to KR1020217017137A priority patent/KR20210098999A/ko
Priority to EP19891643.9A priority patent/EP3888905B1/en
Priority to US17/295,265 priority patent/US12090743B2/en
Priority to JP2019568257A priority patent/JP7528443B2/ja
Publication of WO2020111215A1 publication Critical patent/WO2020111215A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • C08J5/048Macromolecular compound to be reinforced also in fibrous form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/08Interconnection of layers by mechanical means
    • B32B7/09Interconnection of layers by mechanical means by stitching, needling or sewing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres

Definitions

  • the present invention relates to a sheet-shaped reinforcing fiber base material obtained by arranging a plurality of reinforcing fiber bundles, and a method for manufacturing the sheet-shaped reinforcing fiber base material.
  • RTM Resin Transfer Molding
  • a laminated body composed of a sheet-shaped reinforcing fiber base material is placed in a shaping mold and shaped into a three-dimensional shape substantially the same as a fiber-reinforced resin molded product, and a preform is formed. To generate. Next, after placing this preform in a molding die, a matrix resin such as an epoxy resin is injected into the molding die to impregnate the preform with the matrix resin and cure it. As a result, a fiber-reinforced resin molded product can be obtained.
  • a sheet-like reinforcing fiber base material used in the RTM method generally, a woven fabric base material in which a warp yarn and a weft yarn of a reinforcing fiber bundle are woven to obtain a fabric form, or a reinforcing fiber bundle arranged in parallel is used.
  • a non-crimp base material obtained by joining by a method such as suturing using an auxiliary thread.
  • the woven fabric base material does not have each reinforcing fiber bundle joined to another reinforcing fiber bundle, but maintains the sheet form only by the friction of the three-dimensionally intersecting directly overlapping portions. Therefore, the warp yarns and the weft yarns of the woven fabric base material can freely move with each other when subjected to an external force, and are easily sheared and deformed in a plane.
  • the respective reinforcing fiber bundles are not three-dimensionally intersected with each other, and the reinforcing fiber bundles are joined to each other by the auxiliary yarns, and the reinforcing fiber bundles are bound to each other.
  • the reinforcing fiber bundle cannot move freely in the vicinity of the joint portion and is deformed in a twisted state. Hard to be sheared inside.
  • a fabric base material that is easily sheared is suitable for a complex three-dimensional preform.
  • the textile base material and the non-crimp base material are continuously manufactured with a constant width, when the preform is produced, these base materials are cut according to the product shape, and the end materials remaining after cutting are Does not contribute to the product. Therefore, in the production of the fiber-reinforced resin molded product using the woven fabric base material or the non-crimp base material, there is a problem that the yield of the reinforcing fiber is poor and the production cost is high.
  • a reinforcing fiber bundle is arranged only in a necessary place from the beginning according to the product shape.
  • the Mento method is drawing attention.
  • Patent Document 1 discloses a device using this fiber placement method.
  • the reinforcing fiber bundle wound on the bobbin is pulled out to the head arranged on the plane, then arranged in one direction on the plane, and cut into a desired length.
  • the reinforced fiber bundle is arranged so as to be adjacent to the reinforced fiber bundle arranged and the cutting is repeated at a desired length, and as a result, one having a desired outer peripheral shape composed of the reinforced fiber bundle is formed. Layers are formed.
  • the reinforcing fiber bundles are sequentially placed in the same direction as the above in a direction different from the longitudinal direction of the reinforcing fiber bundles forming the above layers, and these layers are joined to each other. In this way, finally, a sheet-shaped reinforcing fiber base material can be obtained.
  • the sheet-shaped reinforcing fiber base formed by this method is not a form in which the reinforcing fiber bundles are three-dimensionally intersected with each other and the sheet shape is maintained by friction, unlike a woven base material, the reinforcing fiber base is particularly preferable.
  • the bundle is dry, it is necessary to bond the layers composed of the reinforcing fiber bundle to each other using a resin binder or auxiliary yarn over the entire surface. Therefore, the sheet-like reinforcing fiber base material formed by this method is inferior in easiness of shear deformation in a plane when it is subjected to an external force, like a non-crimp base material, to a fabric base material.
  • Patent Document 2 in order to secure the ease of shear deformation as a sheet-like reinforcing fiber base material, layers composed of reinforcing fiber bundles are not joined over the entire surface, but partially.
  • a method is disclosed for a non-crimp fabric (substrate) that is bonded only to the.
  • the reinforcing fiber bundles are not three-dimensionally intersected with each other like the textile substrate, when the reinforcing fiber bundles are largely shaped into a three-dimensional shape in the subsequent step, the reinforcing fiber bundles are not The supporting force is too small to control the position of the reinforcing fiber bundle as intended, and it is difficult to develop stable physical properties as a reinforcing fiber resin molded product.
  • Patent Document 3 discloses a method in which a reinforcing fiber bundle is continuously wound around a mandrel and then cut into a desired shape to form a sheet-like reinforcing fiber base material.
  • this method it is possible to obtain a form (hereinafter, this form is referred to as “pseudo-woven fabric”) that is quite close to a woven fabric base material in which reinforcing fiber bundles are three-dimensionally intersected, but it is still composed of reinforcing fiber bundles.
  • the layers to be formed are joined to each other by tackifier over the entire surface, and it is not possible to expect the ease of shear deformation in a plane when an external force is applied.
  • the reinforcing fiber bundle is wound around the mandrel to form a cylindrical sheet-like reinforcing fiber base, and the end remaining after being cut into a desired shape is the same as a usual woven base or non-crimp base.
  • the wood still does not contribute to the product. Therefore, improvement in the yield of reinforcing fibers cannot be expected.
  • An object of the present invention is to improve sheet yield, which has shear deformability, can follow a three-dimensional shape, and can significantly improve the yield of reinforcing fibers by suppressing the generation of mill ends and reduce the manufacturing cost.
  • a fiber base material hereinafter, sometimes referred to as a pseudo woven fabric, the sheet-shaped reinforcing fiber base material and the pseudo woven fabric have exactly the same concept
  • a method for producing the same a fiber reinforced resin molded article is provided. To improve productivity.
  • the present invention has the following configurations [1] to [13] in order to solve the problems. That is, [1] A sheet-like reinforcing fiber base material having a laminated structure of N layers (N is an integer of 3 or more) obtained by arranging a plurality of reinforcing fiber bundles having an arbitrary length, and comprising the following (1 ) To (5), a sheet-like reinforcing fiber base material that satisfies the respective conditions.
  • the adjacent reinforcing fiber bundles are arranged in parallel with each other, and the clearance between the adjacent reinforcing fiber bundles is equal to or more than the width of the reinforcing fiber bundle
  • Layers contacting each other vertically (3) Arranged in different directions in the reinforcing fiber bundles constituting (3) the longitudinal direction of the reinforcing fiber bundles constituting the odd-numbered layer which is an arbitrary no-th layer (no is an odd number of 3 or more and N or less), and ( no-2)
  • the longitudinal directions of the reinforcing fiber bundles forming the second layer are parallel to each other, and the reinforcing fiber bundles forming the respective layers do not overlap each other (4)
  • N is 4 or more
  • Longitudinal direction of the reinforcing fiber bundles forming the even layer which is an optional ne layer (ne is an even number of 4 or more and N or less)
  • the longitudinal direction of the reinforcing fiber bundles constituting the (ne-2)th layer Are parallel to each other,
  • N layers (N is an integer of 4 or more) obtained by arranging a plurality of reinforcing fiber bundles having an arbitrary length in which intersecting reinforcing fiber bundles are joined to each other in at least a part of the intersecting region [2]
  • the adjacent reinforcing fiber bundles are arranged in parallel with each other, and the clearance between the adjacent reinforcing fiber bundles is not less than the width of the reinforcing fiber bundle.
  • adjacent reinforcing fiber bundles are parallel to each other in a direction different from the longitudinal direction of the reinforcing fiber bundle forming the first layer.
  • a clearance between the adjacent reinforcing fiber bundles is not less than the width of the reinforcing fiber bundle, and a (n ⁇ 2)th layer (n is 4 or more and N or less).
  • n is 4 or more and N or less.
  • a reinforcing fiber bundle that does not overlap with any of the odd-numbered layers does not overlap with each other, and the adjacent reinforcing fiber bundles are arranged in parallel with each other, and the clearance between the adjacent reinforcing fiber bundles is not less than the width of the reinforcing fiber bundle.
  • the reinforcing fiber bundles that are adjacent to each other do not overlap any of the reinforcing fiber bundles constituting the even-numbered layers from the second layer to the (n ⁇ 2)th layer, and the adjacent reinforcing fiber bundles are arranged in parallel with each other and are adjacent to each other.
  • the clearance between the reinforcing fiber bundles is The n-th layer having a width or more is repeatedly placed up to the N-th layer, and the reinforcing fiber bundle forming the first layer and the reinforcing fiber bundle forming the N-th layer are The sheet-shaped reinforcing fiber base material according to the above [1], wherein the intersecting reinforcing fiber bundles are joined to each other in at least a part of the intersecting region which is a directly overlapping portion.
  • the N is an odd number of 3 or more, and the reinforcing fiber bundles constituting the first layer and any even layer from the second layer to the N-1th layer (Ne 1 ).
  • the reinforcing fiber bundles that cross each other are joined to each other in at least a part of the intersecting region of the reinforcing fiber bundles that form the (layer), and the reinforcing fiber bundle that forms the Nth layer and the second to N-1th layers.
  • the intersecting reinforcing fiber bundles are joined to each other in at least a part of the intersecting region of the reinforcing fiber bundles forming any of the even-numbered layers up to the layer (Ne Nth layer), [1]
  • the sheet-shaped reinforcing fiber substrate according to.
  • the sheet-shaped reinforcing fiber base material according to any one of the above [1] to [4], wherein the reinforcing fiber bundles are bonded to each other in at least a part of a crossing region with.
  • the length of each reinforcing fiber bundle in the longitudinal direction is determined such that the outer peripheral shape is the same as the shape of the fiber-reinforced resin molded product, according to any one of the above [1] to [5].
  • Sheet-shaped reinforcing fiber base material [7] The above [1] to [1], wherein the angle between the longitudinal direction of the reinforcing fiber bundles forming the odd layer and the longitudinal direction of the reinforcing fiber bundles forming the even layer is 45° to 90°.
  • the sheet-shaped reinforcing fiber base material according to any one of [1] to [10], wherein the reinforcing fiber bundle is a carbon fiber.
  • a plurality of reinforcing fiber bundles having a clearance between the reinforcing fiber bundles in a direction different from the longitudinal direction of the reinforcing fiber bundles forming the odd layer of the first layer is equal to or larger than the width of the reinforcing fiber bundles on the odd layer.
  • the clearance between the reinforcing fiber bundles is such that the clearance between the reinforcing fiber bundles is parallel to the longitudinal direction of the reinforcing fiber bundles forming the previous even layer so as not to overlap any of the reinforcing fiber bundles forming all the even layers laminated up to that time.
  • a plurality of reinforcing fiber bundles are arranged in parallel at a width equal to or larger than, and an even layer of a ne-th layer (ne is an even number of 4 or more and N or less) is formed. (e) When N is 5 or more, no or Step (c) and step (d) are alternately repeated until ne reaches a predetermined value of n.
  • the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) of the present invention has shear deformability, can follow a three-dimensional shape, and significantly improves the yield of reinforcing fibers by suppressing the generation of end material.
  • the manufacturing cost can be reduced. Therefore, the fiber-reinforced resin molded product can be manufactured with high productivity.
  • FIG. 1 is a plan view showing a sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10 according to an embodiment of the present invention.
  • 1 is a perspective view showing a structure of each layer composed of reinforcing fiber bundles 11 to 14 in a sheet-like reinforcing fiber base material (pseudo-woven fabric) 10.
  • FIG. 3 is a plan view showing clearances 11C to 14C of reinforcing fiber bundles 11 to 14 constituting each layer in a sheet-like reinforcing fiber base material (pseudo-woven fabric) 10.
  • FIG. 2 is a plan view showing constituent elements of a sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10.
  • FIG. 3 is a plan view showing a state where the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10 is subjected to external force and is sheared and deformed in a plane.
  • FIG. 3 is a plan view showing a state where the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10 is subjected to external force and is sheared and deformed in a plane.
  • the reinforcing fiber bundles 12' and 13' are joined to each other at the joining portion 1E' that directly overlaps the reinforcing fiber bundles 13 and 12, respectively. It is a top view shown.
  • FIG. 3 is a plan view showing a sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 20 whose outer peripheral shape is determined according to the shape of a fiber-reinforced resin molded product.
  • FIG. 3 is a plan view showing a sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 30 in which reinforcing fiber bundles 31 to 34 are randomly arranged and arranged.
  • the top view which shows the sheet-like reinforcing fiber base material (pseudo-woven fabric) 40 whose angle between the longitudinal direction of the reinforcing fiber bundles 41 and 43 of an odd number layer and the longitudinal direction of the reinforcing fiber bundles 42 and 44 of an even number layer is 45 degrees. Is. FIG.
  • FIG. 5 is a plan view showing a sheet-like reinforcing fiber base material (pseudo-woven fabric) 50, which is composed of reinforcing fiber bundles 51 to 56 and has a layer number N of 6;
  • FIG. 7 is a plan view showing a sheet-like reinforcing fiber base material (pseudo-woven fabric) 60 having a number N of layers of 8 and composed of reinforcing fiber bundles 61 to 68.
  • a procedure for manufacturing the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 20 will be described.
  • FIG. 1 shows a sheet-shaped reinforcing fiber substrate (pseudo-woven fabric) 10 according to one embodiment of the present invention
  • FIGS. 2a to 2c show the sheet-shaped reinforcing fiber substrate (pseudo-woven fabric) 10 of FIG.
  • the configuration is shown in more detail.
  • the value of the number N of layers composed of reinforcing fiber bundles is 4.
  • the value of N is 4 in the example shown in FIGS. 1 to 2c, it may have a laminated structure of N layers in which N is an integer of 3 or more.
  • the reinforcing fiber bundle 11 (first layer) is provided on the reinforcing fiber bundle 12 (second layer), and the reinforcing fiber bundle 13 (third layer) is provided on top of the reinforcing fiber bundle 12 (second layer). Further, a reinforcing fiber bundle 14 (fourth layer) is placed on the upper part thereof, and the reinforcing fiber bundles constituting the vertically contacting layers are arranged in different directions.
  • Reinforcing fiber bundles of odd-numbered layers (first layer and third layer) and reinforcing fiber bundles of even-numbered layers (second layer and fourth layer) are respectively In each layer so that it does not overlap with the reinforcing fiber bundle of any layer, the adjacent reinforcing fiber bundles are arranged in parallel with each other, and the clearance between the adjacent reinforcing fiber bundles is not less than the width of the reinforcing fiber bundle. Is. Then, the directly overlapping portions of the first layer composed of the reinforcing fiber bundle 11 and the fourth layer composed of the reinforcing fiber bundle 14 are bonded to each other at a bonding site 1E by a resin binder. ing.
  • the intersecting reinforcing fiber bundles are joined to each other by a sheet. While maintaining the shape as described above, when the fiber is made to follow a curved surface shape, it is possible to follow the shape without causing wrinkles by appropriately shifting the fibers.
  • the reinforcing fiber bundles 11 to 14 have the same length in the longitudinal direction. This is because in the embodiment shown in FIG. 1, since the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10 has a substantially square shape, the reinforcing fiber bundles 11 to 14 have the same length in the longitudinal direction. This is because When applied to actual molding, by arranging a plurality of reinforcing fiber bundles of an arbitrary length, a sheet-like reinforcing fiber base material according to the target shape as shown in other figures described later. (Pseudo-woven fabric) can be obtained.
  • the clearances 11C to 14C which are the clearances between the adjacent reinforcing fiber bundles of the reinforcing fiber bundles 11 to 14 constituting each layer, are adjusted to be not less than the widths of the reinforcing fiber bundles 11 to 14, respectively. ing. That is, in each layer, the clearance between the adjacent reinforcing fiber bundles is not less than the width of the reinforcing fiber bundles.
  • the angle between the longitudinal direction of the reinforcing fiber bundles of the odd layers and the longitudinal direction of the reinforcing fiber bundles of the even layers is 90°, but the reinforcing fiber bundles constituting the layers in contact with each other are different. If arranged in the direction, as will be described later, at least a part of the intersecting region where the reinforcing fiber bundles forming the odd layers and the reinforcing fiber bundles forming the even layers directly overlap each other, the reinforcing fiber bundles intersecting each other. Can be bonded to each other and can be handled as a sheet-like reinforcing fiber base material.
  • the reinforcing fiber bundle 11 and the reinforcing fiber bundle 13 forming the odd layer and the reinforcing fiber bundle 12 and the reinforcing fiber bundle 14 forming the even layer are parallel (however, a deviation of ⁇ 2° or less is included in parallel). is there. That is, the longitudinal direction of the reinforcing fiber bundle that constitutes the third layer is parallel to the longitudinal direction of the reinforcing fiber bundle that constitutes the first layer, and the reinforcing direction that constitutes the fourth layer. The longitudinal direction of the fiber bundle is parallel to the longitudinal direction of the reinforcing fiber bundle constituting the second layer.
  • the value of N is 4, but when the number of layers is more than that, the above relationship constitutes an odd-numbered layer which is any no-th layer (no is an odd number of 3 or more and N or less).
  • the longitudinal direction of the reinforcing fiber bundle is parallel to the longitudinal direction of the reinforcing fiber bundle constituting the (no-2)th layer, and at any ne-th layer (ne is an even number of 4 or more and N or less). It suffices that the longitudinal direction of the reinforcing fiber bundle constituting the even-numbered layer and the longitudinal direction of the reinforcing fiber bundle constituting the (ne-2)th layer are parallel.
  • the reinforcing fiber bundle forming the third layer and the reinforcing fiber bundle forming the first layer do not overlap each other
  • the reinforcing fiber bundle forming the fourth layer and the The reinforcing fiber bundles constituting the second layer are arranged so as not to overlap each other.
  • the value of N is 4, but when the number of layers is more than that, the above relationship constitutes an odd-numbered layer which is any no-th layer (no is an odd number of 3 or more and N or less).
  • the reinforcing fiber bundle and the reinforcing fiber bundle forming the (no-2)th layer are arranged so as not to overlap with each other, and are any ne layer (ne is an even number of 4 or more and N or less). It is sufficient that the reinforcing fiber bundles forming the even-numbered layers and the reinforcing fiber bundles forming the (ne-2)th layer do not overlap with each other.
  • FIG. 2c shows a reinforcing fiber that intersects in a crossing region where a reinforcing fiber bundle 11 forming an odd layer and a reinforcing fiber bundle 14 forming an even layer directly overlap each other in a sheet-like reinforcing fiber base material (pseudo-woven fabric) 10.
  • the minimum unit of the part where the bundles are joined to each other is shown.
  • the minimum unit refers to the smallest range in which the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10 is repeated two-dimensionally.
  • the reinforcing fiber bundle constituting the first layer that is, the lowermost layer in the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10) as described above.
  • 11 and a crossing region of the reinforcing fiber bundle 14 constituting the fourth layer that is, the uppermost layer in the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10) are joined to each other at the joining portion 1E.
  • the joint location is not necessarily limited to this.
  • the reinforcing fiber bundle 11 is one of the reinforcing fiber bundles 12 constituting the second layer (that is, the layer one layer above the lowermost layer in the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10), and
  • the reinforcing fiber bundle 14 is bonded to any one of the reinforcing fiber bundles 13 constituting the third layer (that is, the layer immediately below the uppermost layer in the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10).
  • the reinforcing fiber bundle 12 may be joined to any one of the reinforcing fiber bundles 13, respectively.
  • the form of the sheet can be maintained. Even when the value of N is 4 or more, the form of the sheet can be maintained by the same idea as long as it is selectively joined in at least a part of the intersection region.
  • the sheet-shaped reinforcing fiber base material it is desirable for the sheet-shaped reinforcing fiber base material to maintain the sheet shape by the friction of the portion where the reinforcing fiber bundles directly overlap each other. For this reason, when the crossing region of the first layer composed of the reinforcing fiber bundle 11 and the crossing region of the fourth layer composed of the reinforcing fiber bundle 14 are joined to each other, the reinforcing fiber bundle therebetween is in between. Since 12 and 13 are all bound to each other by friction, they are preferable as the form of the sheet-like reinforcing fiber base material.
  • the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10 has a N value of 4, that is, N is an even number, but when N is an odd number, the first layer Further, in at least a part of the intersecting region of the reinforcing fiber bundle that constitutes the above and the reinforcing fiber bundle that constitutes the even-numbered layer (Ne 1-th layer) from any of the second layer to the N-1th layer, In the intersecting region of the reinforcing fiber bundles forming the Nth layer and the reinforcing fiber bundles forming any of the even-numbered layers (Ne Nth layer) from the second layer to the N-1th layer.
  • FIG. 3 shows that the reinforcing fiber bundle 12 ′ is present adjacent to only one side of the reinforcing fiber bundle 14 with respect to any of the reinforcing fiber bundles 14 and the reinforcing fiber bundle 11 is included in any of the reinforcing fiber bundles 11.
  • (Pseudo woven fabric) 10' is shown.
  • the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10′ has basically the same conditions as the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10 except that it has a joint portion 1E′ in addition to the joint portion 1E.
  • the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10′ the reinforcing fiber bundles 12′ and 13′ are joined to each other at the joining portion 1E′, so that the falling-off is prevented. be able to. Therefore, the sheet-shaped reinforcing fiber substrate (pseudo-woven fabric) 10 ′ is more preferable than the sheet-shaped reinforcing fiber substrate (pseudo-woven fabric) 10 as the form of the sheet-shaped reinforcing fiber substrate (pseudo-woven fabric).
  • the reinforcing fiber bundle 12′ is 13, and the reinforcing fiber bundle 13′ is 12, and the joint portions 1E′ are all in the respective intersecting regions.
  • the joining location is not necessarily limited to this.
  • the reinforcing fiber bundle 12' may be joined to 11, and the reinforcing fiber bundle 13' may be joined to 14 at respective intersecting regions. That is, the reinforcing fiber bundles 12' and 13' do not fall out independently if the reinforcing fiber bundles are joined to each other in at least a part of the intersecting region with any of the intersecting reinforcing fiber bundles.
  • the reinforcing fiber bundles 11 to 14 constituting each layer have the same length in the longitudinal direction, and the outer peripheral shape thereof is rectangular, but not necessarily the same.
  • the length is not limited, and the length may be determined depending on the shape of the target fiber-reinforced resin molded product.
  • FIG. 4 shows a sheet-shaped reinforced fiber base material (pseudo-woven fabric) 20 when the target fiber-reinforced resin molded product has a shape such as an automobile hood.
  • the minimum unit of the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 20 is the same as that of the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10 shown in FIG. 2c, and a plurality of reinforcing fiber bundles constituting all even-numbered layers.
  • the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10' is basically used for an automobile hood that is an actual molded article. It has been applied.
  • the outer peripheral shape of the sheet-shaped reinforcing fiber base material can be determined according to the shape of the target fiber-reinforced resin molded product, but in principle, the outer peripheral shape is the fiber-reinforced resin.
  • the three-dimensional shape of the molded product is a shape developed on a plane. However, considering the behavior of each part when shaping the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) into a three-dimensional shape, it is necessary to make the outer shape that is finely modified appropriately in order to improve product quality and material yield. Desirable from a point of view.
  • the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10 or 10 ′ is basically composed of an odd layer reinforcing fiber bundle 11 and a reinforcing fiber bundle 13, and an even layer reinforcing fiber bundle 12 and a reinforcing fiber bundle 14, respectively. It is parallel, but it does not exclude that there is a part that is out of parallel depending on the shape of the target fiber-reinforced resin molded product. That is, the reinforcing fiber bundles of the odd layer, and, and the reinforcing fiber bundles of the even layer, in the range that does not overlap with the reinforcing fiber bundle of any of the layers, the portion where the orientation angle of each reinforcing fiber bundle is arbitrarily set Can have.
  • FIG. 5 is a sheet-shaped reinforcing fiber base material in which the reinforcing fiber bundles 31 to 34 are randomly arranged and arranged as an example of a portion having an orientation angle exceeding the above-mentioned parallel range ( ⁇ 2°).
  • (Pseudo woven fabric) 30 is shown.
  • the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 30 is different in that the reinforcing fiber bundle 31 and the reinforcing fiber bundle 33 forming the odd layer are not parallel to each other, and the reinforcing fiber bundle 32 and the reinforcing fiber bundle 34 forming the even layer are not parallel to each other.
  • the sheet-shaped reinforcing fiber substrate (pseudo-woven fabric) 10 ′ has the same configuration.
  • FIG. 6 shows that the reinforcing fiber bundle 41 and the reinforcing fiber bundle 43 forming the odd layer and the reinforcing fiber bundle 42 and the reinforcing fiber bundle 44 forming the even layer are parallel to each other.
  • the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 40 has an angle between the longitudinal direction of the reinforcing fiber bundle of the odd layer and the longitudinal direction of the reinforcing fiber bundle of the even layer of 45°, and the reinforcing fiber bundle of the odd layer.
  • the number of reinforcing fiber bundles forming an even number layer is different, and the lengths of the reinforcing fiber bundles forming each layer in the longitudinal direction are not necessarily the same, basically as a sheet-like reinforcing fiber base material (pseudo-woven fabric) 10′. It has the same structure.
  • the orientation angle of each reinforcing fiber bundle can be arbitrarily set.
  • the angle between the longitudinal direction of the reinforcing fiber bundle of the odd layer and the longitudinal direction of the reinforcing fiber bundle of the even layer can be arbitrarily set in the range of 45° to 90°, for example, a sheet-shaped reinforcing fiber base is used.
  • the material (pseudo woven fabric) 40 receives an external force and undergoes shear deformation in the plane, the deformation margin may be small depending on the direction of deformation because the angle is 45°.
  • the angle is 90°, it is possible to secure a uniform deformation allowance regardless of the direction of deformation. Therefore, it is more preferable that the angle is 90° as the form of the sheet-like reinforcing fiber base material (pseudo-woven fabric).
  • the value of the number N of layers composed of reinforcing fiber bundles is 4, but not necessarily limited to 4. ..
  • the value of the number N of layers can be set to 6 or 8, for example.
  • the sheet shape cannot be maintained due to friction in the portion where the reinforcing fiber bundles directly overlap each other, so that the reinforcing fiber bundles may be bonded to each other at all the overlapping portions. Will be needed. For this reason, similar to the sheet-like reinforcing fiber substrate formed by the fiber placement method, it is not possible to obtain shear deformation in a plane like a woven substrate, and thus it is composed of a reinforcing fiber bundle.
  • the value of the number N of layers to be used must be an integer of 3 or more.
  • FIG. 7 shows a sheet-like reinforcing fiber base material (pseudo-woven fabric) 50 having a number N of layers of 6 composed of reinforcing fiber bundles 51 to 56
  • FIG. Shows a sheet-like reinforcing fiber base material (pseudo-woven fabric) 60 composed of reinforcing fiber bundles 61 to 68 and having a layer number N of 8.
  • the sheet-like reinforcing fiber base material (pseudo-woven fabric) 50 or 60 has the number of layers composed of the reinforcing fiber bundles 51 to 56 and the reinforcing fiber bundles 61 to 68, the number of each reinforcing fiber bundle, and the length in the longitudinal direction.
  • the sheet-shaped reinforcing fiber base material (pseudo-woven fabric) 10' is basically configured in the same way of thinking.
  • the value of the number N of layers can be arbitrarily set within an integer range of 3 or more.
  • a general woven fabric can be obtained by setting the value of the number N of layers composed of the reinforcing fiber bundle to 6 or 8.
  • a design property different from that of the base material for example, plain weave base material
  • the value of the number N of layers can be arbitrarily set within an integer range of 3 or more, such as 6 or 8, for example, the reinforcing fibers constituting the sheet-like reinforcing fiber base material (pseudo-woven fabric) 50 or 60. Since the bundles 52 to 55 or the reinforcing fiber bundles 62 to 67 cross three-dimensionally with other reinforcing fiber bundles while straddling two or more reinforcing fiber bundles, respectively, the sheet-like reinforcing fiber base material (pseudo-woven fabric) 50 or When 60 receives an external force and undergoes shear deformation in a plane, its deformability may become slightly uneven.
  • the value of the number N of layers is 4, that is, in the case of the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10 to 40, the respective reinforcing fiber bundles constituting the second layer and the third layer are In any case, since the reinforcing fiber bundle always crosses over one reinforcing fiber bundle and intersects three-dimensionally with other reinforcing fiber bundles, the above deformability is substantially uniform. Therefore, it is more preferable that the number N of layers is 4 as the form of the sheet-like reinforcing fiber base material (pseudo-woven fabric).
  • the sheet-like reinforcing fiber base material (pseudo-woven fabric) 10 or 10′ and 20 to 60 have joint portions 1E to 6E and 1E′ to 6E′, respectively.
  • Adhesion by can be used.
  • Adhesive force can be obtained by applying heat to the resin binders existing in the joining portions 1E to 6E and 1E' to 6E' to soften them, but the method of applying heat to the resin binder is not limited at all. Instead of electric heater heating, electric heating, ultrasonic heating, dielectric heating, etc. can be used.
  • auxiliary yarn is not limited at all, but glass fiber, polyester fiber, nylon fiber and the like are preferable.
  • the first layer and the N-th layer (that is, the uppermost layer) composed of the reinforcing fiber bundles are mutually connected at the joining portions 1E to 6E and 1E' to 6E', respectively.
  • the binding method, the type of the resin binder, the type of the auxiliary thread, and the like are not limited as long as they can be restrained. If necessary, the resin binder and the auxiliary yarn may be combined and joined together.
  • the binding force at the joining portions 1E to 6E and 1E' to 6E' is too weak, the handleability is deteriorated. On the contrary, if it is too strong, the joining portions 1E to 6E and 1E at the time of shaping are formed. When it is' ⁇ 6E', shear deformation becomes difficult. For this reason, it is desirable to select the restraint form and conditions so that the restraint force becomes appropriate.
  • the reinforcing fiber bundle used for the sheet-like reinforcing fiber base material (pseudo-woven fabric) according to the present invention is not limited as long as it can be used as the reinforcing fiber of the fiber-reinforced resin.
  • carbon fiber or glass fiber can be used.
  • carbon fiber is suitable because it is possible to obtain a fiber-reinforced resin molded product that is lightweight and has excellent mechanical properties. It is also possible to combine a plurality of types of reinforcing fiber bundles having different materials and types.
  • the reinforcing fiber bundle it is preferable to use a so-called dry reinforcing fiber bundle that is not impregnated with a resin for RTM, because it behaves exactly as a sheet-like reinforcing fiber base material (pseudo-woven fabric).
  • the present invention is not limited to this, and even when a tape-shaped prepreg obtained by impregnating a reinforcing fiber bundle with a resin is used, the effect can be sufficiently exhibited.
  • the type of prepreg that has the least tackiness (adhesiveness) on the surface is used because it is slippery when shaped into a three-dimensional shape and shears as a sheet-like reinforcing fiber base material (pseudo-woven fabric). It is preferable because it can exhibit deformability.
  • thermoplastic resin powder or non-woven fabric which is solid at room temperature, is selectively applied to the surface, and a process for producing a sheet-like reinforcing fiber base material (pseudo-woven fabric). It is particularly preferable because the handling property can be improved in general.
  • a plurality of reinforcing fiber bundles having a clearance between the reinforcing fiber bundles in a direction different from the longitudinal direction of the reinforcing fiber bundles forming the odd layer of the first layer is equal to or larger than the width of the reinforcing fiber bundles on the odd layer.
  • the clearance between the reinforcing fiber bundles is such that the clearance between the reinforcing fiber bundles is parallel to the longitudinal direction of the reinforcing fiber bundles forming the previous even layer so that it does not overlap any of the reinforcing fiber bundles forming all the even layers laminated up to that time.
  • a plurality of reinforcing fiber bundles are arranged in parallel at a width equal to or larger than, and an even layer of a ne-th layer (ne is an even number of 4 or more and N or less) is formed. (e) When N is 5 or more, no or Step (c) and step (d) are alternately repeated until ne reaches a predetermined value of N.
  • Step (f) Intersection of the reinforcing fiber bundles forming the odd layer and the reinforcing fiber bundles forming the even layer. Step of Joining Reinforcing Fiber Bundles to Each Other in at least Part of Region
  • FIG. 9 shows an example of a manufacturing procedure of the sheet-shaped reinforcing fiber base material 20 shown in FIG.
  • the reinforcing fiber bundles 21 are sequentially arranged in parallel so as to have the shape of the fiber-reinforced resin molded product, and the first layer is formed. At this time, the clearance between the adjacent reinforcing fiber bundles 21 is adjusted to be equal to or larger than the width of the reinforcing fiber bundles 21 ( step 1 in FIG. 9).
  • the reinforcing fiber bundles 22 are sequentially arranged in parallel on the upper part of the first layer composed of the reinforcing fiber bundles 21 so as to form 90° with the longitudinal direction of the reinforcing fiber bundles 21, A second layer is formed. At this time, the clearance between the reinforcing fiber bundle 22 adjacent is adjusted to be wider than the reinforcing fiber bundle 22 (step2 in Figure 9).
  • the upper part of the second layer composed of the reinforcing fiber bundle 22 is reinforced so as to be parallel to the longitudinal direction of the reinforcing fiber bundle 21 and not to overlap with the reinforcing fiber bundle 21.
  • the fiber bundles 23 are sequentially arranged in parallel to form a third layer ( Step 3 in FIG. 9).
  • the method of arranging the reinforcing fiber bundles 21 to 24 is not limited at all, but they can be arranged by using the fiber placement method, for example.
  • the mechanism for arranging the reinforcing fiber bundles 21 to 24 by moving and rotating the arrangement surface 7S in a necessary direction only needs to reciprocate in one direction, and thus the reinforcing fiber bundle 21 ⁇ 24 can be arranged at high speed.
  • the positions of the reinforcing fiber bundles 21 to 24 should be maintained in their respective arranged positions.
  • an electric heater or a laser is used at a place on the arrangement surface 7S where the reinforcing fiber bundles 21 to 24 are arranged, or a portion immediately before the arrangement of the reinforcing fiber bundles 21 to 24. For example, it may be appropriately heated in advance.
  • the reinforcing fiber bundles 21 to 24 are dry reinforcing fiber bundles having no tackiness
  • a means for holding the reinforcing fiber bundles 21 to 24 on the arrangement surface 7S is required.
  • the means is not particularly limited, and examples thereof include adsorption by electrostatic force and adsorption by vacuum.
  • a warm-sensitive adhesive sheet can also be used.
  • the present disclosure is not limited to the above embodiments, and can be realized in various configurations without departing from the spirit of the present disclosure.
  • the embodiments corresponding to the technical features in each of the modes described in the summary of the invention can be appropriately replaced or combined. .. If the technical features are not described as essential in this specification, they can be deleted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

せん断変形性を有し、三次元形状に追従することができ、かつ、端材の発生の抑制により強化繊維の歩留まりを大幅に改善し、製造コストが低減できるシート状強化繊維基材(擬似織物)、ならびに、その製造方法を提供することを課題とする。 任意の長さの強化繊維束を複数配設して得られる、N層(Nは3以上の整数)の積層構造を有する、シート状強化繊維基材であって、(1)~(5)の各条件を満たすシート状強化繊維基材が開示される。

Description

シート状強化繊維基材およびその製造方法
 本発明は、強化繊維束を複数配設して得られるシート状強化繊維基材、および、そのシート状強化繊維基材の製造方法に関するものである。
 従来から、繊維強化樹脂の成形方法として、RTM(Resin Transfer Molding)法が知られている。RTM法は、一般的に、シート状強化繊維基材から構成される積層体を賦形型に配置し、繊維強化樹脂成形品と略同一の三次元形状となるように賦形させ、プリフォームを生成する。次に、このプリフォームを成形型に配置した後、成形型内にエポキシ樹脂などのマトリクス樹脂を注入し、プリフォームにこのマトリクス樹脂を含浸させ、硬化させる。その結果、繊維強化樹脂成形品を得ることができる。
 RTM法に用いられるシート状強化繊維基材として、一般的に、強化繊維束の縦糸と緯糸とが織り合わさることで布帛形態が得られる織物基材、あるいは、平行に配列された強化繊維束を、補助糸を用いた縫合などの方法にて接合して得られるノンクリンプ基材がある。
 これらのシート状強化繊維基材の特徴の違いとして、外力を受けたときのせん断変形のしやすさがあげられる。
 織物基材は、それぞれの強化繊維束が別の強化繊維束と互いに接合されておらず、立体的に交差する互いの直接重なる部分の摩擦のみによってシートの形態を維持している。このため、織物基材は、外力を受けたとき、縦糸と緯糸が互いに自由に動くことができ、平面内においてせん断変形しやすい。
 これに対し、ノンクリンプ基材は、それぞれの強化繊維束が立体的に交差しておらず、補助糸によって別の強化繊維束と互いに接合されており、強化繊維束同士が互いに拘束されている。このため、ノンクリンプ基材は、外力を受けたとき、接合部位の近傍で強化繊維束が自由に動くことができず、撚れが生じた状態で変形するため、織物基材に比べて、平面内においてせん断変形しにくい。
 上記のことから、複雑な三次元形状のプリフォームには、せん断変形しやすい織物基材が好適である。
 しかし、織物基材やノンクリンプ基材は、一定の幅で連続的に製造されるため、前記プリフォームを生成するとき、これらの基材は製品形状に合わせて裁断され、裁断後に残る端材は製品に寄与しない。このため、織物基材やノンクリンプ基材を用いた繊維強化樹脂成形品の製造では、強化繊維の歩留まりが悪く、製造コストが高いという課題があった。
 そこで、一定の幅のシート状強化繊維基材から製品形状のシート状強化繊維基材を切り出すのではなく、製品形状に合わせて、初めから必要箇所にのみ強化繊維束を配設する、ファイバープレイスメント法が注目されている。
 特許文献1では、このファイバープレイスメント法を用いた装置について開示されている。
 この装置によれば、ボビンに巻き取られた強化繊維束は、平面上に配設するヘッドまで引き出され、次に、平面上に一方向に配設され、所望の長さで切断される。以降、配設された強化繊維束に隣接するように、強化繊維束の配設と所望の長さでの切断を繰り返し、その結果、強化繊維束から構成される、所望の外周形状を有するひとつの層が形成される。
 次に、上記の層を構成する強化繊維束の長手方向とは別の方向に、上記と同様に強化繊維束が順次載置され、これらの層同士が互いに接合される。こうして最終的に、シート状強化繊維基材を得ることができる。
 このように、ファイバープレイスメント法は、製品形状に合わせて必要箇所にのみ強化繊維束を配設することでシート状強化繊維基材が得られるため、製品に寄与しない端材の発生を抑制することができ、強化繊維の歩留まりを大幅に改善できるという特徴がある。
 しかし、この方法にて形成されたシート状強化繊維基材は、織物基材のような、強化繊維束同士が立体的に交差し、摩擦によってシート状を維持する形態ではないため、特に強化繊維束がドライの場合、全面にわたって樹脂バインダもしくは補助糸などを用いて、強化繊維束から構成される層同士を互いに接合する必要がある。このため、この方法にて形成されたシート状強化繊維基材は、外力を受けたとき、ノンクリンプ基材と同様、平面内でのせん断変形のしやすさが織物基材に比べて劣る。
 一方で、特許文献2では、シート状強化繊維基材としてのせん断変形のしやすさを確保するために、強化繊維束から構成される層同士を全面に渡って接合するのではなく、部分的にのみ接合するノンクリンプ織物(基材)に関する方法が開示されている。
 しかし、この方法でも、織物基材のような、強化繊維束同士が立体的に交差する形態にはなっていないので、後工程で、大きく三次元形状に賦形させるとき、強化繊維束同士が支え合う力が少な過ぎ、強化繊維束の位置を狙い通りにコントロールしきれず、強化繊維樹脂成形品としての安定した物性を発現させることが難しい。
 他方で、特許文献3では、マンドレルに強化繊維束を連続的に巻き付け、その後、所望の形状に切り取って、シート状強化繊維基材を形成する方法が開示されている。
 この方法によれば、強化繊維束同士が立体的に交差する織物基材にかなり近い形態(以下、この形態を「擬似織物」と呼ぶ)を得ることができるが、依然として、強化繊維束から構成される層同士は、全面にわたってタッキファイヤで互いに接合されており、外力を受けたとき、平面内でのせん断変形のしやすさを期待することができない。
 さらに、マンドレルに強化繊維束を巻き付けて形成されるのは、円筒形状のシート状強化繊維基材であり、通常の織物基材やノンクリンプ基材と同様に、所望の形状に切り取った後に残る端材は、依然として製品に寄与しない。このため、強化繊維の歩留まりの改善も期待することができない。
米国公開2013/0233471号 特表2013-525140号 米国特許第5204033号
 本発明の課題は、せん断変形性を有し、三次元形状に追従することができ、かつ、端材の発生の抑制により強化繊維の歩留まりを大幅に改善し、製造コストが低減できるシート状強化繊維基材(以下、擬似織物と記される場合もあるが、シート状強化繊維基材と擬似織物は全く同じ概念である)、ならびに、その製造方法を提供することで、繊維強化樹脂成形品の生産性を向上させることにある。
 本発明は、係る課題を解決するために、次の[1]~[13]の構成を有するものである。すなわち、
[1]任意の長さの強化繊維束を複数配設して得られる、N層(Nは3以上の整数)の積層構造を有する、シート状強化繊維基材であって、以下の(1)~(5)の各条件を満たす、シート状強化繊維基材。
(1)各層の層内において、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である
(2)上下に接する層を構成する強化繊維束はそれぞれ異なる方向に配列される
(3)任意の第no層目(noは3以上N以下の奇数)である奇数層を構成する強化繊維束の長手方向と、第(no-2)層目の層を構成する強化繊維束の長手方向とが平行であり、かつ、それぞれの層を構成する強化繊維束は相互に重ならない
(4)前記Nが4以上の場合、任意の第ne層目(neは4以上N以下の偶数)である偶数層を構成する強化繊維束の長手方向と、第(ne-2)層目の層を構成する強化繊維束の長手方向とが平行であり、かつ、それぞれの層を構成する強化繊維束は相互に重ならない
(5)前記奇数層を構成する強化繊維束と前記偶数層を構成する強化繊維束が直接重なる部分である交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合されている
[2]任意の長さの強化繊維束を複数配設して得られる、N層(Nは4以上の整数)の積層構造を有する、シート状強化繊維基材であって、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である第1層目の層と、前記第1層目の層の上部に、前記第1層目の層を構成する強化繊維束の長手方向とは異なる方向に、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である第2層目の層と、第(n-2)層目の層(nは4以上N以下の偶数)の上部に、第(n-3)層目の層を構成する強化繊維束の長手方向と平行に、前記第1層目の層ないし第(n-3)層目の層までの奇数層を構成する強化繊維束のいずれとも重ならず、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である第(n-1)層目の層と、前記第(n-1)層目の層の上部に、第(n-2)層目の層を構成する強化繊維束の長手方向と平行に、前記第2層目の層ないし第(n-2)層目の層までの偶数層を構成する強化繊維束のいずれとも重ならず、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である第n層目の層が、第N層目まで繰り返し載置され、前記第1層目の層を構成する強化繊維束と前記第N層目の層を構成する強化繊維束が直接重なる部分である交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合されている、前記[1]に記載のシート状強化繊維基材。
[3]前記Nは3以上の奇数であり、第1層目の層を構成する強化繊維束と第2層目からN-1層目までのいずれかの偶数層目の層(第Ne層)を構成する強化繊維束の交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合され、第N層目の層を構成する強化繊維束と第2層目から第N-1層目までのいずれかの偶数層目の層(第Ne層)を構成する強化繊維束の交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合されている、前記[1]に記載のシート状強化繊維基材。
[4]前記の強化繊維束の交差領域のすべての箇所において、交差する強化繊維束同士が互いに接合されている、前記[2]または[3]に記載のシート状強化繊維基材。
[5]すべての偶数層の層を構成する複数の強化繊維束のうち、偶数層を構成するいずれの強化繊維束に対しても片側のみ隣接して存在する強化繊維束、および、すべての奇数層の層を構成する複数の強化繊維束のうち、奇数層を構成するいずれの強化繊維束に対しても片側のみ隣接して存在する強化繊維束が、それぞれ、交差するいずれかの強化繊維束との交差領域の少なくとも一部において、強化繊維束同士が互いに接合されている、前記[1]~[4]のいずれかに記載のシート状強化繊維基材。
[6]外周形状が、繊維強化樹脂成形品の形状と同一となるように、各強化繊維束の長手方向の長さが決定された、前記[1]~[5]のいずれかに記載のシート状強化繊維基材。
[7]前記奇数層を構成する強化繊維束の長手方向と前記偶数層を構成する強化繊維束の長手方向の間の角度が45°~90°のいずれかである、前記[1]~[6]のいずれかに記載のシート状強化繊維基材。
[8]前記Nの値が4である、前記[1]~[7]のいずれかに記載のシート状強化繊維基材。
[9]前記強化繊維束同士が、樹脂バインダによって互いに接合されている、前記[1]~[8]のいずれかに記載のシート状強化繊維基材。
[10]前記強化繊維束同士が、補助糸での縫合によって互いに接合されている、前記[1]~[8]のいずれかに記載のシート状強化繊維基材。
[11]前記強化繊維束が炭素繊維である、前記[1]~[10]のいずれかに記載のシート状強化繊維基材。
[12]任意の長さの強化繊維束を複数配設して得られる、N層(Nは3以上整数)の積層構造を有する、シート状強化繊維基材の製造方法であって、次の(a)~(f)の工程を含むことを特徴とする、シート状強化繊維基材の製造方法。
(a)強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第1層目の奇数層を形成する工程
(b)前記第1層目の奇数層の上部に、前記第1層目の奇数層を構成する強化繊維束の長手方向とは異なる方向に、強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第1層目の偶数層である第2層目の層を形成する工程
(c)1層前の偶数層の上部に、2層前の奇数層を構成する強化繊維束の長手方向と平行に、それまでに積層したすべての奇数層を構成する強化繊維束のいずれとも重ならないよう、強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第no層目(noは3以上N以下の奇数)の奇数層を形成する工程
(d)前記Nが4以上の場合、1層前の奇数層の上部に、2層前の偶数層を構成する強化繊維束の長手方向と平行に、それまでに積層したすべての偶数層を構成する強化繊維束のいずれとも重ならないよう、強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第ne層目(neは4以上N以下の偶数)の偶数層を形成する工程
(e)前記Nが5以上の場合、noまたはneが所定のnの値に達するまで、(c)工程および(d)工程を交互に繰り返し行う工程
(f)前記奇数層を構成する強化繊維束と前記偶数層を構成する強化繊維束の交差領域の少なくとも一部において、交差する強化繊維束同士を互いに接合する工程
[13]上記(a)~(e)の工程において、強化繊維束の配列を、ファイバープレイスメント法により行うことを特徴とする、前記[12]に記載のシート状強化繊維基材の製造方法。
 本発明のシート状強化繊維基材(擬似織物)は、せん断変形性を有し、三次元形状に追従することができ、かつ、端材の発生の抑制により強化繊維の歩留まりを大幅に改善し、製造コストが低減できる。このため、繊維強化樹脂成形品を生産性良く製造することができる。
本発明の一実施態様に係る、シート状強化繊維基材(擬似織物)10を示す平面図である。 シート状強化繊維基材(擬似織物)10において、強化繊維束11~14から構成される各層の構造を示す斜視図である。 シート状強化繊維基材(擬似織物)10において、各層を構成する強化繊維束11~14のクリアランス11C~14Cを示す平面図である。 シート状強化繊維基材(擬似織物)10の構成要素を示す平面図である。 シート状強化繊維基材(擬似織物)10が外力を受けて、平面内でせん断変形している状態を示す平面図である。 シート状強化繊維基材(擬似織物)10が外力を受けて、平面内でせん断変形している状態を示す平面図である。 接合部位1Eに加え、強化繊維束12’および13’が、それぞれ強化繊維束13および12と直接重なる接合部位1E’で互いに接合されている、シート状強化繊維基材(擬似織物)10’を示す平面図である。 繊維強化樹脂成形品の形状に応じて外周形状が決定された、シート状強化繊維基材(擬似織物)20を示す平面図である。 強化繊維束31~34の配向角度をランダムに設けて配列した、シート状強化繊維基材(擬似織物)30を示す平面図である。 奇数層の強化繊維束41、43の長手方向と偶数層の強化繊維束42、44の長手方向の間の角度が45°である、シート状強化繊維基材(擬似織物)40を示す平面図である。 強化繊維束51~56から構成される、層の数Nの値が6である、シート状強化繊維基材(擬似織物)50を示す平面図である。 強化繊維束61~68から構成される、層の数Nの値が8である、シート状強化繊維基材(擬似織物)60を示す平面図である。 シート状強化繊維基材(擬似織物)20の製造手順を示す。
 以下に、本発明の実施形態を図面とともに、詳細に説明する。
 A.シート状強化繊維基材(擬似織物)の構成:
 図1は、本発明の一実施態様に係る、シート状強化繊維基材(擬似織物)10を示しており、図2a~図2cは図1のシート状強化繊維基材(擬似織物)10の構成をさらに詳細に示している。シート状強化繊維基材(擬似織物)10は、強化繊維束から構成される層の数Nの値が4である。なお、図1~図2cに示す例では、Nの値が4であるが、Nが3以上の整数であるN層の積層構造を有すればよい。図2aに示すとおり、強化繊維束11(第1層目の層)の上部に強化繊維束12(第2層目の層)、その上部に強化繊維束13(第3層目の層)、さらにその上部に強化繊維束14(第4層目の層)が載置されており、上下に接する層を構成する強化繊維束はそれぞれ異なる方向に配されている。奇数層(第1層目の層および第3層目の層)の強化繊維束同士、ならびに、偶数層(第2層目の層および第4層目の層)の強化繊維束同士が、それぞれいずれの層の強化繊維束とも重ならないように各層の層内において、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である。そして、強化繊維束11から構成される第1層目の層と、強化繊維束14から構成される第4層目の層の直接重なる部分が、それぞれ接合部位1Eで、樹脂バインダによって互いに接合されている。このように、奇数層を構成する強化繊維束と数層を構成する強化繊維束が直接重なる部分である交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合されていることでシートとしての形態を保持しつつ、曲面形状へ沿わせる場合など、適度に繊維がずれることにより、しわを生じることなく形状に沿わせることができる。
 本図の例においては、シート状強化繊維基材(擬似織物)10は、強化繊維束11~14の長手方向の長さがすべて同一である。これは、図1に示される実施態様では、シート状強化繊維基材(擬似織物)10が、略正方形であることから、強化繊維束11~14の長手方向の長さがすべて同一となっているためである。実際の成形に適用する際には、任意の長さの強化繊維束を複数配設することにより、後述する他の図で例を示すように目的とする形状に応じたシート状強化繊維基材(擬似織物)を得ることができる。
 図2bに示すとおり、各層を構成する強化繊維束11~14の隣接する前記強化繊維束間のクリアランスである11C~14Cは、それぞれ各強化繊維束11~14の幅以上となるように調節されている。すなわち、各層の層内において、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である。
 本図の例においては、奇数層の強化繊維束の長手方向と偶数層の強化繊維束の長手方向の間の角度は90°であるが、上下に接する層を構成する強化繊維束はそれぞれ異なる方向に配されていれば、後述するように、奇数層を構成する強化繊維束と偶数層を構成する強化繊維束が直接重なる部分である交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合することができ、シート状強化繊維基材として取り扱えるようにすることができる。
 また、奇数層をなす強化繊維束11と強化繊維束13、および、偶数層をなす強化繊維束12と強化繊維束14は、それぞれ平行(ただし、±2°以下のずれは平行に含める)である。すなわち、第3層目の層を構成する強化繊維束の長手方向と、第1層目の層を構成する強化繊維束の長手方向とは平行であり、第4層目の層を構成する強化繊維束の長手方向と、第2層目の層を構成する強化繊維束の長手方向とは平行である。本例においては、Nの値は4であるが、それ以上の層数の場合は、上記関係は、任意の第no層目(noは3以上N以下の奇数)である奇数層を構成する強化繊維束の長手方向と、第(no-2)層目の層を構成する強化繊維束の長手方向とが平行であり、任意の第ne層目(neは4以上N以下の偶数)である偶数層を構成する強化繊維束の長手方向と、第(ne-2)層目の層を構成する強化繊維束の長手方向とが平行であればよい。
 また、第3層目の層を構成する強化繊維束と、第1層目の層を構成する強化繊維束は相互に重ならず、第4層目の層を構成する強化繊維束と、第2層目の層を構成する強化繊維束は相互に重ならない様に配列されている。本例においては、Nの値は4であるが、それ以上の層数の場合は、上記関係は、任意の第no層目(noは3以上N以下の奇数)である奇数層を構成する強化繊維束と、第(no-2)層目の層を構成する強化繊維束とが相互に重ならない様に配列され、任意の第ne層目(neは4以上N以下の偶数)である偶数層を構成する強化繊維束と、第(ne-2)層目の層を構成する強化繊維束とが相互に重ならない様に配列されていればよい。
 図2cは、シート状強化繊維基材(擬似織物)10において、奇数層を構成する強化繊維束11と偶数層を構成する強化繊維束14が直接重なる部分である交差領域において、交差する強化繊維束同士が互いに接合されている部分の最小単位を示している。ここで最小単位とは、2次元的に繰り返したときにシート状強化繊維基材(擬似織物)10となる、最も小さい範囲を示す。かかるシート状強化繊維基材(擬似織物)10の最小単位に含まれる強化繊維束11~14がそれぞれ交差する点4箇所のうち、3箇所は互いの直接重なる部分における摩擦のみによってシートの形態が維持されており、接合部位1Eは強化繊維束11と強化繊維束14とが直接重なる部分の1箇所である。すなわち、シート状強化繊維基材(擬似織物)10が外力を受けたとき、シート状強化繊維基材(擬似織物)全面にわたって、4分の3は強化繊維束が自由に動くことができ、図2dや図2eに示すように、織物基材に近い、平面内でのせん断変形のしやすさを得ることができる。なお、図1、図2b、図2d、図2eにおいて、強化繊維束11と強化繊維束14とが直接重なる部分のすべての箇所において、交差する強化繊維束同士が互いに接合されている好ましい態様が示されているが、シート形態を保持できれば、強化繊維束11と強化繊維束14とが直接重なる部分の少なくとも一部の箇所において交差する強化繊維束同士が互いに接合されていればよい。
 このように、シート状強化繊維基材(擬似織物)10では、上述の通り第1層目の層(すなわち、シート状強化繊維基材(擬似織物)10における最下層)を構成する強化繊維束11と、第4層目の層(すなわち、シート状強化繊維基材(擬似織物)10における最上層)を構成する強化繊維束14との交差領域が、それぞれ接合部位1Eで互いに接合されているが、接合箇所は、必ずしもこれに限定されるものではない。例えば、強化繊維束11は第2層目の層(すなわち、シート状強化繊維基材(擬似織物)10における最下層の1層上の層)を構成する強化繊維束12のいずれかと、また、強化繊維束14は第3層目の層(すなわち、シート状強化繊維基材(擬似織物)10における最上層の1層下の層)を構成する強化繊維束13のいずれかと、それぞれ互いに接合されており、さらに、強化繊維束12は強化繊維束13のいずれかと、それぞれ互いに接合されていてもよい。つまり、奇数層を構成する強化繊維束と、偶数層を構成する強化繊維束の交差領域の少なくとも一部において、選択的にそれぞれ接合されていれば、シートの形態を維持することができる。なお、Nの値が4以上の場合においても、同様の考え方で、交差領域の少なくとも一部において、選択的にそれぞれ接合されていれば、シートの形態を維持することができる。
 ただし、せん断変形のしやすさの観点から、シート状強化繊維基材は、強化繊維束同士の直接重なる部分の摩擦によってシートの形態が維持されているのが望ましい。このため、強化繊維束11から構成される第1層目の層と、強化繊維束14から構成される第4層目の層の交差領域が互いに接合されている方が、その間の強化繊維束12、13がすべて摩擦によって互いに拘束されるため、シート状強化繊維基材の形態として好ましい。
 本例においては、シート状強化繊維基材(擬似織物)10はNの値が4であり、すなわちNが偶数の場合を示しているが、Nが奇数の場合は、第1層目の層を構成する強化繊維束と第2層目からN-1層目までのいずれかの偶数層目の層(第Ne層)を構成する強化繊維束の交差領域の少なくとも一部において、さらに、第N層目の層を構成する強化繊維束と第2層目から第N-1層目までのいずれかの偶数層目の層(第Ne層)を構成する強化繊維束の交差領域の少なくとも一部において、それぞれ、交差する強化繊維束同士が互いに接合されていれば、シートの形態を維持することができる。ただし、Ne<Neの場合は、第1層目の層から第Ne層目の層と第Ne層目の層から第N層目の層との間がまったく接合されないため、分裂してしまい、シートの形態を維持することができない。このため、Ne≧Neの関係が成立していなければならない。 図3は、強化繊維束12のうち、強化繊維束14のいずれに対しても片側のみ隣接して存在する強化繊維束12’、および、強化繊維束13のうち、強化繊維束11のいずれに対しても片側のみ隣接して存在する強化繊維束13’とが、それぞれ、強化繊維束13および12と直接重なる接合部位1E’で、樹脂バインダによって互いに接合されている、シート状強化繊維基材(擬似織物)10’を示している。シート状強化繊維基材(擬似織物)10’は、接合部位1Eに加え、接合部位1E’を有する以外、基本的にシート状強化繊維基材(擬似織物)10と同じ条件である。
 シート状強化繊維基材(擬似織物)10では、シート状強化繊維基材(擬似織物)10の搬送時や、シート状強化繊維基材(擬似織物)10が外力を受けてせん断変形するとき、図3に示す強化繊維束12’や13’の位置に相当する位置にある図1の強化繊維束12や13が、別の交差する強化繊維束との摩擦が不十分なため、単独で抜け落ちてしまう可能性がある。
 これに対し、シート状強化繊維基材(擬似織物)10’では、強化繊維束12’や13’が、別の強化繊維束と接合部分1E’で互いに接合されているため、この抜け落ちを防ぐことができる。このため、シート状強化繊維基材(擬似織物)10’は、シート状強化繊維基材(擬似織物)の形態としてシート状強化繊維基材(擬似織物)10よりも好ましい。
 ただし、図3のシート状強化繊維基材(擬似織物)10’では、強化繊維束12’は13と、さらに、強化繊維束13’は12と、それぞれの交差領域のすべてにおいて接合部位1E’で互いに接合されているが、接合箇所は、必ずしもこれに限定されるものではない。例えば、強化繊維束12’は11と、また、強化繊維束13’は14と、それぞれの交差領域で互いに接合されていてもよい。すなわち、強化繊維束12’や13’は、交差するいずれかの強化繊維束との交差領域の少なくとも一部において、強化繊維束同士が互いに接合されていれば、単独で抜け落ちることはない。
 シート状強化繊維基材(擬似織物)10や10’は、各層を構成する強化繊維束11~14の長手方向の長さがすべて同一であり、その外周形状は矩形であるが、必ずしも同一に限定されるものではなく、対象とする繊維強化樹脂成形品の形状に応じて、それぞれ長さを決定してもよい。
 図4は、対象とする繊維強化樹脂成形品が、例えば自動車のフードのような形状である場合の、シート状強化繊維基材(擬似織物)20を示している。シート状強化繊維基材(擬似織物)20は、最小単位は、シート状強化繊維基材(擬似織物)10における図2cと同じであり、すべての偶数層の層を構成する複数の強化繊維束のうち、偶数層を構成するいずれの強化繊維束に対しても片側のみ隣接して存在する強化繊維束、および、すべての奇数層の層を構成する複数の強化繊維束のうち、奇数層を構成するいずれの強化繊維束に対しても片側のみ隣接して存在する強化繊維束が、それぞれ、交差するいずれかの強化繊維束との交差領域の少なくとも一部において、強化繊維束同士が互いに接合されている構成となっている。すなわち、各層を構成する強化繊維束21~24のそれぞれの本数と長手方向の長さ以外、基本的にシート状強化繊維基材(擬似織物)10’が実際の成形物品である自動車のフードに適用されたものである。
 このように、対象とする繊維強化樹脂成形品の形状に応じて、シート状強化繊維基材(擬似織物)の外周形状を決定することができるが、原則として、その外周形状は、繊維強化樹脂成形品の三次元形状を、平面上に展開した形状とする。ただし、シート状強化繊維基材(擬似織物)を三次元形状に賦形させるときの各部の挙動を考慮して、適切に微修正した外周形状とすることが、製品の品位や材料の歩留まりの観点から望ましい。
 シート状強化繊維基材(擬似織物)10や10’は、奇数層をなす強化繊維束11と強化繊維束13、偶数層をなす強化繊維束12と強化繊維束14、が基本的にはそれぞれ平行であるが、対象とする繊維強化樹脂成形品の形状に応じて部分的に平行から外れる箇所を有することを排除するものではない。すなわち、奇数層の強化繊維束同士、および、偶数層の強化繊維束同士が、それぞれいずれの層の強化繊維束とも重ならない範囲において、各強化繊維束の配向角度を任意に設定された部分を有することができる。換言すれば、隣接する強化繊維束間のクリアランスの範囲内であれば、上述した平行の範囲(±2°)を超えた配向角度を有する部分があることを妨げない。図5は、上述した平行の範囲(±2°)を超えた配向角度を有する部分の一例として、強化繊維束31~34の配向角度をランダムに設けて配列された、シート状強化繊維基材(擬似織物)30を示している。シート状強化繊維基材(擬似織物)30は、奇数層を構成する強化繊維束31と強化繊維束33、偶数層を構成する強化繊維束32と強化繊維束34がそれぞれ平行ではないこと以外、基本的にシート状強化繊維基材(擬似織物)10’と同じ構成で示している。
 図6は、奇数層を構成する強化繊維束41と強化繊維束43、および、偶数層を構成する強化繊維束42と強化繊維束44、がそれぞれ平行であるが、奇数層の強化繊維束の長手方向と偶数層の強化繊維束の長手方向の間の角度が45°である、シート状強化繊維基材(擬似織物)40を示している。シート状強化繊維基材(擬似織物)40は、奇数層の強化繊維束の長手方向と偶数層の強化繊維束の長手方向の間の角度が45°であること、奇数層をなす強化繊維束と偶数層をなす強化繊維束の本数が異なること、各層をなす強化繊維束の長手方向の長さが必ずしも同一ではないこと以外、基本的にシート状強化繊維基材(擬似織物)10’と同じ構成である。
 このように、強化繊維束間のクリアランスを、奇数層の強化繊維束同士、および、偶数層の強化繊維束同士が、それぞれいずれの層の強化繊維束とも重ならないよう適切に調節することで、シート状強化繊維基材(擬似織物)30や40のように、各強化繊維束の配向角度を任意に設定することができる。
 ただし、奇数層の強化繊維束の長手方向と偶数層の強化繊維束の長手方向の間の角度は45°~90°の範囲で任意に設定することができるものの、例えば、シート状強化繊維基材(擬似織物)40が外力を受けて平面内でせん断変形するとき、上記角度が45°であるが故に、変形の方向によっては変形代が少ない場合がある。これに対し、上記角度が90°の場合は、変形の方向によらず平等な変形代を確保することができる。このため、上記角度は90°である方が、シート状強化繊維基材(擬似織物)の形態としてより好ましい。
 シート状強化繊維基材(擬似織物)10や10’、20~40は、強化繊維束から構成される層の数Nの値がいずれも4であるが、必ずしも4に限定されるものではない。強化繊維束間のクリアランスを適切に調節することで、層の数Nの値を、例えば6や8などにすることができる。
 ただし、層の数Nの値が2の場合は、強化繊維束の直接重なる部分における摩擦によってシートの形態を維持することができないため、強化繊維束同士が重なるすべての箇所において互いに接合することが必要となる。このため、ファイバープレイスメント法で形成されるシート状強化繊維基材と同様、織物基材のような、平面内でのせん断変形のしやすさが得られないことから、強化繊維束から構成される層の数Nの値は、3以上の整数でなければならない。
 図7は、上記の例として、強化繊維束51~56から構成される、層の数Nの値が6である、シート状強化繊維基材(擬似織物)50を示し、また、図8は、強化繊維束61~68から構成される、層の数Nの値が8である、シート状強化繊維基材(擬似織物)60を示している。シート状強化繊維基材(擬似織物)50や60は、強化繊維束51~56や強化繊維束61~68から構成される層の数と、それぞれの強化繊維束の本数、長手方向の長さ以外、基本的にシート状強化繊維基材(擬似織物)10’と同じ考え方で構成されている。
 このように、強化繊維束間のクリアランスを、奇数層の強化繊維束同士、および、偶数層の強化繊維束同士が、それぞれいずれの層の強化繊維束とも重ならないよう適切に調節することで、シート状強化繊維基材(擬似織物)50や60のように、層の数Nの値を、3以上の整数の範囲で任意に設定することができる。
 なお、対象とする繊維強化樹脂成形品が、例えば自動車の外板部材に用いられる場合、強化繊維束から構成される層の数Nの値を6や8などとすることで、一般的な織物基材(例えば、平織基材)とは異なった意匠性を得ることができる。
 ただし、層の数Nの値は6や8など、3以上の整数の範囲で任意に設定することができるものの、例えば、シート状強化繊維基材(擬似織物)50や60を構成する強化繊維束52~55、もしくは強化繊維束62~67は、それぞれ2本以上の強化繊維束を跨いで他の強化繊維束と立体的に交差するため、シート状強化繊維基材(擬似織物)50や60が外力を受けて平面内でせん断変形するとき、その変形性はやや不均一となる場合がある。これに対し、層の数Nの値が4の場合、すなわち、シート状強化繊維基材(擬似織物)10~40の場合、第2の層と第3の層を構成する各強化繊維束は、いずれも常に1本の強化繊維束を跨いで他の強化繊維束と立体的に交差するため、上記の変形性は概ね均一となる。このため、層の数Nの値は4である方が、シート状強化繊維基材(擬似織物)の形態としてより好ましい。
 前記シート状強化繊維基材(擬似織物)10や10’、および、20~60は、いずれも接合部位1E~6E、および、1E’~6E’をそれぞれ有するが、その接合方法として、樹脂バインダによる接着を用いることができる。接合部位1E~6E、および、1E’~6E’にそれぞれ存在する樹脂バインダに熱を与えて軟化させることで、接着力を得ることができるが、樹脂バインダに熱を与える方法は、何ら限定されるものではなく、電気ヒータ加熱のほか、通電加熱や超音波加熱、誘電加熱なども用いることができる。
 また、樹脂バインダによる接合以外にも、補助糸での縫合によって互いに接合してもよい。補助糸の材質は何ら限定されるものではないが、ガラス繊維、ポリエステル繊維、ナイロン繊維などが好適である。
 このように、強化繊維束から構成される第1層目の層と第N層目の層(すまわち、最上層)を、接合部位1E~6E、および、1E’~6E’でそれぞれ互いに拘束できるものであれば、接合方法、樹脂バインダや補助糸の種類などは何ら限定されるものではない。必要に応じて、樹脂バインダと補助糸を組み合わせて互いに接合することもできる。
 このように、接合部位1E~6E、および、1E’~6E’で強化繊維束を互いに拘束することで、搬送時に形態が変化することを防止できる。また、三次元形状に賦形するときに、各強化繊維束がバラバラに動いて分解することも防止できる。すなわち、取扱い性と賦形性を兼ね備えた、シート状強化繊維基材(擬似織物)を得ることができる。
 なお、接合部位1E~6E、および、1E’~6E’での拘束力が弱過ぎると、取扱い性が悪化し、逆に強過ぎると、賦形するときに接合部位1E~6E、および、1E’~6E’でせん断変形しにくくなる。このため、拘束力が適度となるよう、拘束形態と条件を選択することが望ましい。
 本発明に係る、シート状強化繊維基材(擬似織物)に用いられる強化繊維束は、繊維強化樹脂の強化繊維として用いることができるものであれば、何ら限定されるものではない。例えば、炭素繊維やガラス繊維などを用いることができる。
 特に、炭素繊維は、軽量かつ機械的特性に優れた繊維強化樹脂成形品を得ることができるため好適である。また、材質や品種が異なる複数種類の強化繊維束を組み合わせることもできる。
 また、強化繊維束としては、RTM向けの樹脂が含浸していない、いわゆるドライな強化繊維束を用いるのが、まさにシート状強化繊維基材(擬似織物)として振舞うため好ましい。ただし、それに限定されるものではなく、強化繊維束にすでに樹脂を含浸した、テープ状のプリプレグを用いた場合でも十分にその効果を発揮できる。
 この場合は、プリプレグの表面のタック性(粘着性)が極力少ないタイプのものを適用するのが、三次元形状に賦形するとき滑りやすく、シート状強化繊維基材(擬似織物)としてのせん断変形能力を発揮でき、好ましい。
 そのタイプのプリプレグとしては、常温で固体形状をなす熱可塑性樹脂のパウダーや不織布等を表面に選択的に多めに付与したものが考えられ、シート状強化繊維基材(擬似織物)を製造する工程全般で、取り扱い性を改善できるため、特に好ましい。
 B.シート状強化繊維基材(擬似織物)の製造方法:
 本発明の任意の長さの強化繊維束を複数配設して得られる、N層(Nは3以上の整数)の積層構造を有するシート状強化繊維基材(擬似織物)の製造方法は、次の(a)~(f)の工程を含む。
(a)強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第1層目の奇数層を形成する工程
(b)前記第1層目の奇数層の上部に、前記第1層目の奇数層を構成する強化繊維束の長手方向とは異なる方向に、強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列した、第1層目の偶数層である第2層目の層を形成する工程
(c)1層前の偶数層の上部に、2層前の奇数層を構成する強化繊維束の長手方向と平行に、それまでに積層したすべての奇数層を構成する強化繊維束のいずれとも重ならないよう、強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第no層目(noは3以上N以下の奇数)の奇数層を形成する工程
(d)前記Nが4以上の場合、1層前の奇数層の上部に、2層前の偶数層を構成する強化繊維束の長手方向と平行に、それまでに積層したすべての偶数層を構成する強化繊維束のいずれとも重ならないよう、強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第ne層目(neは4以上N以下の偶数)の偶数層を形成する工程
(e)前記Nが5以上の場合、noまたはneが所定のNの値に達するまで、(c)工程および(d)工程を交互に繰り返し行う工程
(f)前記奇数層を構成する強化繊維束と前記偶数層を構成する強化繊維束の交差領域の少なくとも一部において、交差する強化繊維束同士を互いに接合する工程
 本発明のシート状強化繊維基材(擬似織物)の製造方法を、図9を用いて具体的に説明する。図9は、図4に示すシート状強化繊維基材20の製造手順の一例を示している。
 (a)初めに、平面状の配置面7S上に、繊維強化樹脂成形品の形状となるように、強化繊維束21を順次平行に配列し、第1層目の層を形成する。このとき、隣接する強化繊維束21間のクリアランスは、強化繊維束21の幅以上となるように調節する(図9のstep1)。
 (b)次に、強化繊維束21から構成される第1層目の層の上部に、強化繊維束21の長手方向と90°をなすように、強化繊維束22を順次平行に配列し、第2層目の層を形成する。このとき、隣接する強化繊維束22間のクリアランスは、強化繊維束22の幅以上となるように調節する(図9のstep2)。
 (c)さらに、強化繊維束22から構成される第2層目の層の上部に、強化繊維束21の長手方向と平行となるように、かつ、強化繊維束21と重ならないように、強化繊維束23を順次平行に配列し、第3層目の層を形成する(図9のStep3)。
 (d)最後に、強化繊維束23から構成される第3層目の層の上部に、強化繊維束22の長手方向と平行となるように、かつ、強化繊維束22と重ならないように、強化繊維束24を順次平行に配列し、第4層目の層(最上層)を形成する(図9のstep4)。
 (e)本例では、層の数が4であるため行わないが、層の数の値であるNが5以上の場合には、上記の(c)図9のstep3と(d)(図9のstep4)を、層の数が所定のNの値に達するまで、交互に繰り返し行う。
 (f)強化繊維束21~24をすべて配列した後、強化繊維束21から構成される第1層目の層と強化繊維束24から構成される第4層目の層の直接重なる部分を互いに接合する。加えて、強化繊維束22のうち、強化繊維束24のいずれに対しても片側のみ隣接して存在する強化繊維束22’、および、強化繊維束23のうち、強化繊維束21のいずれに対しても片側のみ隣接して存在する強化繊維束23’とが、それぞれ強化繊維束23および22と直接重なる部分を互いに接合する(図9のstep5)。
 その結果、シート状強化繊維基材(擬似織物)20を得ることができる。
 強化繊維束21~24の配列方法は何ら限定されるものではないが、例えば、ファイバープレイスメント法を用いて配列することができる。ファイバープレイスメント法によれば、配置面7Sを必要な方向に移動、回転させることで、強化繊維束21~24を配列する機構は、一方向のみに往復動作すればよいため、強化繊維束21~24は高速に配置し得る。
 ただし、強化繊維束21~24は、それぞれ配列された位置が保持されなければならない。強化繊維束21~24がタック性を有する場合は、配置面7Sの強化繊維束21~24が配列される場所、もしくは、強化繊維束21~24の配列直前部位を、電気ヒータ、もしくは、レーザーなどで、予め適度に加熱すればよい。
 一方、強化繊維束21~24がタック性を有さないドライの強化繊維束の場合は、配置面7Sに、強化繊維束21~24を保持する手段が求められる。その手段は何ら限定されるものではないが、例えば、静電気力による吸着や、真空による吸着などがあげられる。また、温感性の粘着シートを用いることもできる。
 本開示は、上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲において、種々の構成で実現することができる。例えば、発明の概要に記載した各形態の中の技術的特長に対応する実施形態は、上記の効果の一部、または、すべてを達成するために、適宜、差し替えや、組み合わせを行うことができる。また、その技術的特長が、本明細書中に必須なものとして説明されていなければ、適宜、削除することができる。
10,10’:シート状強化繊維基材(擬似織物)
11,12,13,14,12’,13’:強化繊維束
1E,1E’:接合部位
11C,12C,13C,14C:強化繊維束間のクリアランス
20:シート状強化繊維基材(擬似織物)
21,22,23,24,22’,23’:強化繊維束
2E,2E’:接合部位
2S:繊維強化樹脂成形品の外周形状
30:シート状強化繊維基材(擬似織物)
31,32,33,34:強化繊維束
3E,3E’:接合部位
40:シート状強化繊維基材(擬似織物)
41,42,43,44:強化繊維束
4E,4E’:接合部位
50:シート状強化繊維基材(擬似織物)
51,52,53,54,55,56:強化繊維束
5E,5E’:接合部位
60:シート状強化繊維基材(擬似織物)
61,62,63,64,65,66,67,68:強化繊維束
6E,6E’:接合部位
7S:配置面

Claims (13)

  1.  任意の長さの強化繊維束を複数配設して得られる、N層(Nは3以上の整数)の積層構造を有する、シート状強化繊維基材であって、以下の(1)~(5)の各条件を満たす、シート状強化繊維基材。
    (1)各層の層内において、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である
    (2)上下に接する層を構成する強化繊維束はそれぞれ異なる方向に配列される
    (3)任意の第no層目(noは3以上N以下の奇数)である奇数層を構成する強化繊維束の長手方向と、第(no-2)層目の層を構成する強化繊維束の長手方向とが平行であり、かつ、それぞれの層を構成する強化繊維束は相互に重ならない
    (4)前記Nが4以上の場合、任意の第ne層目(neは4以上N以下の偶数)である偶数層を構成する強化繊維束の長手方向と、第(ne-2)層目の層を構成する強化繊維束の長手方向とが平行であり、かつ、それぞれの層を構成する強化繊維束は相互に重ならない
    (5)前記奇数層を構成する強化繊維束と前記偶数層を構成する強化繊維束が直接重なる部分である交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合されている
  2.  任意の長さの強化繊維束を複数配設して得られる、N層(Nは4以上の偶数)の積層構造を有する、シート状強化繊維基材であって、
     隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である第1層目の層と、
     前記第1層目の層の上部に、前記第1層目の層を構成する強化繊維束の長手方向とは異なる方向に、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である第2層目の層と、
     第(n-2)層目の層(nは4以上N以下の偶数)の上部に、第(n-3)層目の層を構成する強化繊維束の長手方向と平行に、前記第1層目の層ないし第(n-3)層目の層までの奇数層を構成する強化繊維束のいずれとも重ならず、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である第(n-1)層目の層と、
     前記第(n-1)層目の層の上部に、第(n-2)層目の層を構成する強化繊維束の長手方向と平行に、前記第2層目の層ないし第(n-2)層目の層までの偶数層を構成する強化繊維束のいずれとも重ならず、隣接する前記強化繊維束同士が平行に配列されるとともに、隣接する前記強化繊維束間のクリアランスが前記強化繊維束の幅以上である第n層目の層が、
     第N層目まで繰り返し載置され、前記第1層目の層を構成する強化繊維束と前記第N層目の層を構成する強化繊維束が直接重なる部分である交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合されている、請求項1に記載のシート状強化繊維基材。
  3.  前記Nは3以上の奇数であって、第1層目の層を構成する強化繊維束と第2層目から第N-1層目までのいずれかの偶数層目の層(第Ne層)を構成する強化繊維束の交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合され、第N層目の層を構成する強化繊維束と第2層目から第N-1層目までのいずれかの偶数層目の層(第Ne層)を構成する強化繊維束の交差領域の少なくとも一部において、交差する強化繊維束同士が互いに接合されている、請求項1に記載のシート状強化繊維基材。
  4.  前記の強化繊維束の交差領域のすべての箇所において、交差する強化繊維束同士が互いに接合されている、請求項2または3に記載のシート状強化繊維基材。
  5.  すべての偶数層の層を構成する複数の強化繊維束のうち、偶数層を構成するいずれの強化繊維束に対しても片側のみ隣接して存在する強化繊維束、および、すべての奇数層の層を構成する複数の強化繊維束のうち、奇数層を構成するいずれの強化繊維束に対しても片側のみ隣接して存在する強化繊維束が、それぞれ、交差するいずれかの強化繊維束との交差領域の少なくとも一部において、強化繊維束同士が互いに接合されている、請求項1~4のいずれかに記載のシート状強化繊維基材。
  6.  外周形状が、繊維強化樹脂成形品の形状と同一となるように、各強化繊維束の長手方向の長さが決定された、請求項1~5のいずれかに記載のシート状強化繊維基材。
  7.  前記奇数層を構成する強化繊維束の長手方向と前記偶数層を構成する強化繊維束の長手方向の間の角度が45°~90°のいずれかである、請求項1~6のいずれかに記載のシート状強化繊維基材。
  8.  前記Nの値が4である、請求項1~7のいずれかに記載のシート状強化繊維基材。
  9.  前記強化繊維束同士が、樹脂バインダによって互いに接合されている、請求項1~8のいずれかに記載のシート状強化繊維基材。
  10.  前記強化繊維束同士が、補助糸での縫合によって互いに接合されている、請求項1~8のいずれかに記載のシート状強化繊維基材。
  11.  前記強化繊維束が炭素繊維である、請求項1~10のいずれかに記載のシート状強化繊維基材。
  12.  任意の長さの強化繊維束を複数配設して得られる、N層(Nは3以上の整数)の積層構造を有する、シート状強化繊維基材の製造方法であって、次の(a)~(f)の工程を含むことを特徴とする、シート状強化繊維基材の製造方法。
    (a)強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第1層目の奇数層を形成する工程
    (b)前記第1層目の奇数層の上部に、前記第1層目の奇数層を構成する強化繊維束の長手方向とは異なる方向に、強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列した、第1層目の偶数層である第2層目の層を形成する工程
    (c)1層前の偶数層の上部に、2層前の奇数層を構成する強化繊維束の長手方向と平行に、それまでに積層したすべての奇数層を構成する強化繊維束のいずれとも重ならないよう、強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第no層目(noは3以上N以下の奇数)の奇数層を形成する工程
    (d)前記Nが4以上の場合、1層前の奇数層の上部に、2層前の偶数層を構成する強化繊維束の長手方向と平行に、それまでに積層したすべての偶数層を構成する強化繊維束のいずれとも重ならないよう、強化繊維束間のクリアランスが前記強化繊維束の幅以上で、複数の強化繊維束を平行に配列し、第ne層目(neは4以上N以下の偶数)の偶数層を形成する工程
    (e)前記Nが5以上の場合、noまたはneが所定のNの値に達するまで、(c)工程および(d)工程を交互に繰り返し行う工程
    (f)前記奇数層を構成する強化繊維束と前記偶数層を構成する強化繊維束の交差領域の少なくとも一部において、交差する強化繊維束同士を互いに接合する工程
  13.  上記(a)~(e)の工程において、強化繊維束の配列を、ファイバープレイスメント法により行うことを特徴とする、請求項12に記載のシート状強化繊維基材の製造方法。
PCT/JP2019/046706 2018-11-30 2019-11-29 シート状強化繊維基材およびその製造方法 WO2020111215A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980077508.2A CN113165314A (zh) 2018-11-30 2019-11-29 片状增强纤维基材及其制造方法
AU2019390895A AU2019390895A1 (en) 2018-11-30 2019-11-29 Sheet-shaped reinforced-fiber base material and manufacturing method therefor
ES19891643T ES2980681T3 (es) 2018-11-30 2019-11-29 Material a base de fibra reforzada con conformación laminar y método de fabricación para el mismo
KR1020217017137A KR20210098999A (ko) 2018-11-30 2019-11-29 시트형상 강화 섬유 기재 및 그 제조 방법
EP19891643.9A EP3888905B1 (en) 2018-11-30 2019-11-29 Sheet-shaped reinforced-fiber base material and manufacturing method therefor
US17/295,265 US12090743B2 (en) 2018-11-30 2019-11-29 Sheet-shaped reinforcing fiber substrate and manufacturing method therefor
JP2019568257A JP7528443B2 (ja) 2018-11-30 2019-11-29 シート状強化繊維基材およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018224812 2018-11-30
JP2018-224812 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020111215A1 true WO2020111215A1 (ja) 2020-06-04

Family

ID=70853501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046706 WO2020111215A1 (ja) 2018-11-30 2019-11-29 シート状強化繊維基材およびその製造方法

Country Status (8)

Country Link
US (1) US12090743B2 (ja)
EP (1) EP3888905B1 (ja)
JP (1) JP7528443B2 (ja)
KR (1) KR20210098999A (ja)
CN (1) CN113165314A (ja)
AU (1) AU2019390895A1 (ja)
ES (1) ES2980681T3 (ja)
WO (1) WO2020111215A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204033A (en) 1991-10-21 1993-04-20 Brunswick Corporation Method of fabricating a preform in a resin transfer molding process
JP2001524169A (ja) * 1996-10-18 2001-11-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 布帛の高速形成方法並びに装置
JP2003013352A (ja) * 2001-06-26 2003-01-15 Nippon Electric Glass Co Ltd メッシュ状織物及びその製造方法
US20130233471A1 (en) 2012-03-08 2013-09-12 Randall A. Kappesser Small flat composite placement system
JP2018165421A (ja) * 2017-03-29 2018-10-25 東レ株式会社 複合強化繊維シート

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107220A (en) * 1996-10-18 2000-08-22 E. I. Du Pont De Nemours And Company Rapid fabric forming
US20030186038A1 (en) 1999-11-18 2003-10-02 Ashton Larry J. Multi orientation composite material impregnated with non-liquid resin
JP4168734B2 (ja) 2002-11-15 2008-10-22 東レ株式会社 プリフォーム基材、プリフォームおよび繊維強化プラスチックの成形方法
DE102010015199B9 (de) 2010-04-16 2013-08-01 Compositence Gmbh Faserführungsvorrichtung und Vorrichtung zum Aufbau eines dreidimensionalen Vorformlings
JP2013233471A (ja) 2010-09-01 2013-11-21 Konica Minolta Ij Technologies Inc インクジェットヘッド
GB2485215B (en) * 2010-11-05 2013-12-25 Gkn Aerospace Services Ltd Laminate Structure
CA2824216C (en) * 2011-01-12 2018-01-23 The Board Of Trustees Of The Leland Stanford Junior University Composite laminated structures and methods for manufacturing and using the same
JP6132186B2 (ja) * 2013-02-19 2017-05-24 東レ株式会社 プリフォーム作製用基材の製造方法と装置、および、プリフォームと繊維強化プラスチックの製造方法
US20170100900A1 (en) * 2014-06-30 2017-04-13 Hexcel Holding Gmbh Non-woven fabrics
CN107428033B (zh) * 2015-03-19 2019-12-24 东丽株式会社 片状增强纤维基材、预成型体及纤维增强树脂成型品
CN105082552B (zh) * 2015-09-24 2017-05-31 南京航空航天大学 一种优化复合材料层合板性能的网格铺层结构及制作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204033A (en) 1991-10-21 1993-04-20 Brunswick Corporation Method of fabricating a preform in a resin transfer molding process
JP2001524169A (ja) * 1996-10-18 2001-11-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 布帛の高速形成方法並びに装置
JP2003013352A (ja) * 2001-06-26 2003-01-15 Nippon Electric Glass Co Ltd メッシュ状織物及びその製造方法
US20130233471A1 (en) 2012-03-08 2013-09-12 Randall A. Kappesser Small flat composite placement system
JP2018165421A (ja) * 2017-03-29 2018-10-25 東レ株式会社 複合強化繊維シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3888905A4

Also Published As

Publication number Publication date
EP3888905A4 (en) 2022-08-03
CN113165314A (zh) 2021-07-23
JP7528443B2 (ja) 2024-08-06
KR20210098999A (ko) 2021-08-11
US20220009197A1 (en) 2022-01-13
ES2980681T3 (es) 2024-10-02
AU2019390895A1 (en) 2021-06-17
EP3888905A1 (en) 2021-10-06
EP3888905B1 (en) 2024-05-01
JPWO2020111215A1 (ja) 2021-10-14
US12090743B2 (en) 2024-09-17

Similar Documents

Publication Publication Date Title
CN108068337B (zh) 用于增材制造复合零件的系统与方法
TWI604945B (zh) 具一體偏軸加強件之編織預成形體
US5809805A (en) Warp/knit reinforced structural fabric
RU2634244C2 (ru) Заготовка п-образной формы с наклонными волокнами
JP6138045B2 (ja) Rtm工法用高目付炭素繊維シートの製造方法及びrtm工法
RU2719817C2 (ru) Листовой основной материал из армирующего волокна, заготовка и формованный продукт из армированной волокном смолы
TWI601861B (zh) 隅角配件預製物及其製造方法
JPWO2012026031A1 (ja) 繊維強化樹脂材の製造方法
JP5552655B2 (ja) 繊維強化複合材料のプリフォーム及びその製造方法
US20210370620A1 (en) Semi-Finished Product And Method For Producing A Structural Component
WO2020111215A1 (ja) シート状強化繊維基材およびその製造方法
CN112243449B (zh) 超薄预浸料片材及其复合材料
JP3581334B2 (ja) 連続強化繊維シート及びその製造方法
JP4133250B2 (ja) 多軸強化繊維シート及びその製造方法
JPH1120059A (ja) 複合材用強化繊維基材及びその製造方法
JP2006056022A (ja) 湾曲したfrp桁材用の強化繊維プリフォームの製作方法
JP2014181431A (ja) 繊維強化複合材料の積層用繊維基材を切り出すための繊維シート及び繊維強化複合材料用繊維基材の製造方法
JP6862994B2 (ja) 複合強化繊維シート
TW202200339A (zh) 車輛結構用的連接構件
JP6888364B2 (ja) 強化繊維シート
JP2004034592A (ja) 繊維強化複合材の製造方法及び繊維構造体
WO2012014613A1 (ja) 繊維基材及び繊維強化複合材料
KR102253107B1 (ko) 섬유 강화 플라스틱 시트, 이의 제조방법 및 이의 제조장치
JP2021070180A (ja) メッシュシート及びその製造方法
JP2017124570A (ja) 湾曲形状繊維積層体の製造方法および装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019568257

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019390895

Country of ref document: AU

Date of ref document: 20191129

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019891643

Country of ref document: EP

Effective date: 20210630