WO2020111206A1 - Stirring rod and stirring device - Google Patents

Stirring rod and stirring device Download PDF

Info

Publication number
WO2020111206A1
WO2020111206A1 PCT/JP2019/046677 JP2019046677W WO2020111206A1 WO 2020111206 A1 WO2020111206 A1 WO 2020111206A1 JP 2019046677 W JP2019046677 W JP 2019046677W WO 2020111206 A1 WO2020111206 A1 WO 2020111206A1
Authority
WO
WIPO (PCT)
Prior art keywords
stirring
stirring rod
rod according
liquid contact
contact surface
Prior art date
Application number
PCT/JP2019/046677
Other languages
French (fr)
Japanese (ja)
Inventor
秀和 重吉
邦英 四方
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2020557841A priority Critical patent/JP7279076B2/en
Publication of WO2020111206A1 publication Critical patent/WO2020111206A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the present disclosure relates to a stirring rod for stirring a liquid and a stirring device including the stirring rod.
  • an analyzer that analyzes blood, urine, and other biochemical samples, mainly for medical purposes, is equipped with a stirring device that stirs the sample solution.
  • This stirring device is equipped with a stirring rod for stirring the sample solution.
  • the stir bar is required to have chemical resistance to sample solutions, reagents and the like.
  • the stirring rod is made of, for example, a metal material such as stainless steel or a resin material such as polyethylene or polypropylene which is surface-treated using a fluororesin.
  • a stainless steel stirring rod whose surface is coated with a fluororesin such as tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, FEP (copolymer of tetrafluoroethylene and hexafluoropropylene) has durability and cost. It is preferably used from the viewpoint of (for example, Patent Documents 1 and 2).
  • the stirring rod of the present disclosure is an integrally molded ceramic product having a stirring portion having a cross section orthogonal to the axial center and having a constant shape along the axial direction. It is arranged.
  • the stirring device of the present disclosure includes the stirring rod described above.
  • FIG. 5 is a schematic view showing a manufacturing process of the stirring rod of the present disclosure. It is a schematic diagram for explaining the warp of the stirring rod of the present disclosure. It is a schematic diagram showing a use state of a stirring rod of the present disclosure.
  • (A) And (b) is a front view which shows other embodiments of the stirring rod of this indication, respectively.
  • the stirring rod 1 has a stirring unit 2 and a stirring unit having the same axial center A as the stirring unit 2 on one end face in the axial direction of the stirring unit 2. 2 and a shaft portion 3 formed integrally.
  • the stirring unit 2 has a cross section orthogonal to the axis A having a constant shape over the entire length of the stirring unit 2 along the axial direction. That is, as shown in FIG. 1B, the cross section of the stirring section 2 has a shape in which a plurality of convex sections 4 are arranged in the circumferential direction. Since the stirring rod 1 according to the present embodiment includes the plurality of convex portions 4, it is possible to stir by generating a flow in the axial direction.
  • the stir bar 1 is made of ceramics integrally molded with excellent chemical resistance. That is, the stirring portion 2 having a cross-sectional shape in which the plurality of convex portions 4 are arranged in the circumferential direction over the entire length can be obtained by, for example, extrusion molding.
  • Extrusion is performed according to the following procedure. First, water and a binder (binder) are added to and mixed with a raw material (powder), and the mixture is continuously supplied into the cylinder to be heated and melted. Next, the molten material is extruded through a die at the front of the cylinder by rotation of a screw in the cylinder, cooled, and molded.
  • the extruded molded product 11 shown in FIG. 2 has the cross-sectional shape shown in FIG. 1(b) over the entire length. After firing the molded product 11, one end is ground and polished while the molded product 11 is rotated in the grinding/polishing process to form the shaft portion 3. At this time, the shaft portion 3 and the stirring portion 2 have the common axis A.
  • the cross-sectional shape of the shaft portion 3 is not particularly limited, and examples thereof include a circular shape, a quadrangular shape, and an elliptical shape.
  • the raw material of such ceramics is not particularly limited as long as it has excellent chemical resistance, and examples thereof include high-purity alumina, zirconia, silicon nitride, silicon carbide, and alumina-zirconia composite material.
  • the plurality of convex portions 4 arranged in the circumferential direction of the stirring unit 2 extend radially from the axis A in the radial direction, and the convex portions 4 are arranged at equal intervals. There is.
  • the convex portion 4 has a tapered shape whose width becomes narrower toward the tip. With such a tapered shape, the resistance (stress) received by the tip of the convex portion 4 is reduced, and the durability is improved.
  • the entire convex portion 4 is formed into a curved surface. Therefore, the space between the adjacent convex portions 4 and 4, that is, the valley portion is also curved.
  • the angle between the adjacent convex portions 4 is larger than the angle obtained by dividing 360° by the number of convex portions 4. That is, each convex portion 4 is thinner than the root portion at a position distant from the axis A. Therefore, there is an effect that a reagent or the like is less likely to accumulate in the gap between the convex portions 4. Further, there is an effect that it is easy to polish even during manufacturing.
  • the angle ⁇ between the adjacent convex portions 4 and 4 may be larger than the angle ⁇ by 1/4 ⁇ or more when ⁇ is an angle obtained by dividing 360° by the number of the convex portions 4.
  • the angle ⁇ between the adjacent convex portions 4 and 4 may form an obtuse angle of 90° or more.
  • the angle ⁇ may be in the range of 90° ⁇ 180°.
  • the angle ⁇ means the angle formed by the tangents of the portions of the adjacent convex portions 4 and 4 that are closest to the valley portion.
  • the convex portion 4 having a shape as shown in FIG. 1B, it means the angle between the outer tangent line of one convex portion 4 and the inner tangent line of the other convex portion 4.
  • the stirring rod 1 may have a shape in which the axis A is curved in an arc shape.
  • the stirring portion 2 is shown as warped, but the shaft center A of the shaft portion 3 is also warped.
  • x the distance most distant from the vertical line in the stirring section 2 shown in FIG. 3 is preferably 0.2 mm or less.
  • X shown in FIG. 3 can be measured by, for example, a gap gauge or the like.
  • the stirring efficiency is improved by the warp of the stirring unit 2.
  • the temperature and the firing time during firing of the molded product 11 may be controlled.
  • the stirring rod 1 is inserted into the stirring tank 9 of the stirring device with the stirring unit 2 facing downward.
  • the upper portion of the shaft portion 3 projects from the liquid surface of the sample solution 8.
  • a drive unit (not shown) including a motor for rotating the stirring rod 1 is connected to the shaft portion 3 protruding from the liquid surface, and the stirring rod 1 is rotated.
  • the stirring unit 2 of the stirring rod 1 in this embodiment is located at least near the bottom of the stirring tank 9, stirring can be performed efficiently regardless of the viscosity of the sample solution 8. Particularly, when the stirring section 2 is formed to be long in the axial direction, it is suitable for stirring the high-viscosity sample solution 8.
  • the stirring unit 2 may have a half or less of the depth of the sample solution 8 (the height from the bottom surface of the stirring tank 9 to the liquid surface).
  • the stirring rod of the present disclosure is not limited to the embodiment of FIG. 1, and various modifications are possible.
  • the stirring unit 2 may be at the bottom, and as shown in FIG. 5( b ), a plurality of stirring units 2 a, 2 b, 2 c may be provided along the shaft 3. It may be arranged in the same manner.
  • the number of convex portions 4 provided on the shaft portion 3 is not limited to the four shown in the figure, and can be appropriately selected within the range of 2 to 5.
  • the shaft portion 3 is integrally formed with the stirring portion 2 by extrusion molding or the like.
  • the shaft portion 3 is manufactured separately from the stirring portion 2, and the shaft portion 3 is formed in a recess provided on the end surface of the stirring portion 2.
  • the shaft portion 3 may be attached and fixed.
  • the shaft portion 3 may have a circular or elliptical cross section, or may have a quadrangular shape for preventing idling.
  • the ceramic may have closed pores, and the value (A) obtained by subtracting the average value of the circle equivalent diameters of the closed pores from the distance between the centers of gravity of the adjacent closed pores may be 20 ⁇ m to 85 ⁇ m.
  • the value (A) is 20 ⁇ m or more, void portions are dispersed and arranged without being dense, and thus high mechanical properties are obtained.
  • the value (A) is 85 ⁇ m or less, it is good when processing such as polishing from the outer peripheral surface of the stirring section 2 in the axial direction or from the end surface of the stirring section 2 or the end surface of the shaft section 3 to the inside. Good workability can be obtained. Further, since the space between the adjacent closed pores is narrowed, it is possible to suppress the extension of microcracks caused by thermal shock.
  • the distance between the centers of gravity of closed pores can be obtained by the following method.
  • a copper plate is used for polishing from the end face of the stirring unit 2 toward the inside by using diamond abrasive grains having an average particle diameter D 50 of 3 ⁇ m.
  • a polished surface is obtained by polishing with a tin plate using diamond abrasive grains having an average particle diameter D 50 of 0.5 ⁇ m.
  • the arithmetic average roughness Ra of the polished surface can be 0.01 ⁇ m to 0.2 ⁇ m.
  • the arithmetic average roughness Ra of the polished surface can be determined according to JIS B 0601:1994, the radius of the stylus is 5 ⁇ m, the material of the stylus is diamond, the measurement length is 1.25 mm, and the cutoff value is It may be 0.25 mm.
  • the polished surface is observed at a magnification of 200 times, and an average range is selected.
  • a range in which the area is 0.105 mm 2 (horizontal length 374 ⁇ m, vertical length 280 ⁇ m) is CCD
  • the image analysis software “A image-kun (ver2.52)” registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.
  • the distance between the centers of gravity of the closed pores was measured by a method called the distance between centers of gravity measurement of the degree of dispersion. Find the distance.
  • the image analysis software “A image-kun” it means image analysis software manufactured by Asahi Kasei Engineering Co., Ltd.
  • a threshold value which is an index showing the brightness of an image, is 86, brightness is dark, small figure removal area is 1 ⁇ m 2 , and a noise removal filter is provided.
  • the threshold value may be adjusted according to the brightness of the observed image. The brightness was set to dark, the binarization method was set to manual, the small figure removal area was set to 1 ⁇ m 2 and a noise removal filter was provided. Adjust the value.
  • the silicon concentration on the liquid contact surface is higher than the silicon concentration on an internal virtual surface parallel to the liquid contact surface.
  • a color mapping image of silicon (electron beam microanalyzer (EPMA)) was used for the polished cross section including the liquid contact surface (horizontal length 120 ⁇ m, vertical length: 90 ⁇ m). You can observe.
  • EPMA electron beam microanalyzer
  • the ceramic on the liquid contact surface of the convex portion 4 has a plurality of crystal grains and a grain boundary phase, and the width (w) of the grain boundary phase located between the adjacent crystal grains is 0.7 ⁇ m to
  • the ratio (d/w) of the depth (d) of the grain boundary phase to the width (w) of the grain boundary phase may be 0.06 to 0.18.
  • the width (w) of the grain boundary phase is in the above range and the ratio (d/w) of the depth (d) of the grain boundary phase is 0.18 or less, the binding force between crystal grains due to the grain boundary phase Is maintained sufficiently, the risk of shedding is reduced even when high-pressure washing is performed using a water-soluble detergent.
  • the width (w) and the depth (d) of the grain boundary phase an atomic force microscope (7500AFM/SPM manufactured by Keysight Technology) was used, the measurement mode was ACAFM mode, and the scanning speed of the probe used for measurement was 0.15lines. /Sec, the measurement area is 20 ⁇ m ⁇ 20 ⁇ m, the length of the measurement target is 7 ⁇ m to 20 ⁇ m, and the resolution is 512 pixels ⁇ 512 pixels, the cross-sectional profile of the liquid contact surface is obtained, and the ratio (d/w) is the grain boundary phase. It may be calculated using the respective measured values of the width (w) and the depth (d).
  • the average diameter of the crystal particles of the ceramics on the liquid contact surface of the convex portion 4 may be 2 ⁇ m to 8 ⁇ m.
  • the contact angle with respect to pure water becomes smaller, so that the efficiency of removing stains can be increased when the particles are washed with a water-soluble detergent.
  • the average diameter of crystal particles of ceramics can be obtained as follows.
  • the observation surface is obtained by etching the polished surface at a temperature of, for example, 1480° C. until the crystal particles and the grain boundary layer can be distinguished from each other.
  • a backscattered electron image of the observation surface was magnified 2000 times in a range of 60 ⁇ m ⁇ 44 ⁇ m, and a straight line of the same length, for example, 30 ⁇ m, was drawn radially around an arbitrary point,
  • the average diameter can be obtained by dividing the total length of the straight line by the total number of crystals existing on the straight line.
  • the contact angle of the liquid contact surface of the convex portion 4 with respect to pure water may be 37° or less and the coefficient of variation thereof may be 0.02 or less.
  • At least one of the side surface and the end surface of the convex portion 4 may be covered with a film made of a compound containing fluorinated polysiloxane. After washing with a water-soluble detergent, the Lotus effect that water droplets adhering to the surface covered with the above film adsorb the dirt can be obtained, so that the dirt removal efficiency can be increased.
  • the contact angle of the liquid contact surface of the membrane with pure water may be 104° or more, and the coefficient of variation may be 0.01 or less.
  • the contact angle of the liquid contact surface can be determined according to JIS R 3257:1999. For example, if a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model CA-X) is used, it can be measured at 5 or more points. Good.
  • the manufacturing method of the stirring rod of the present disclosure will be described when the stirring rod is made of high-purity alumina ceramics.
  • Aluminum oxide powder (purity of 99.9 mass% or more) as the main component, and magnesium hydroxide, silicon oxide, and calcium carbonate powders were mixed with an organic binder, a plasticizer, a lubricant, and ion-exchanged water. After being stirred using a universal stirrer, a rotary mill, a V-type stirrer, or the like, further kneading is performed using a three-roll mill, a kneader, or the like to obtain a plasticized kneaded clay.
  • the content of the magnesium hydroxide powder is 0.43 to 0.53 mass%
  • the content of the silicon oxide powder is 0.02 to 0.04 mass%
  • the content of the calcium carbonate powder is 100% by mass.
  • the content is 0.020 to 0.071% by mass
  • the balance is aluminum oxide powder and unavoidable impurities.
  • the organic binder is a water-soluble binder such as methyl cellulose or hydroxypropyl methyl cellulose.
  • the kneaded material is molded by an extrusion molding machine, the precursor of the stirring portion having a plurality of convex portions, and the precursor of the shaft portion having the same axial center as this precursor on one end face in the axial direction of the precursor A molded body having and is obtained.
  • the stirring bar of the present disclosure can be obtained by firing the molded body at a firing temperature of 1500° C. to 1700° C. and a holding time of 4 hours to 6 hours.
  • At least one of the side face and the end face of the convex portion may be polished, and then heat-treated at a temperature of 1600° C. to 1700° C. for 1 hour to 4 hours. It is possible to obtain a stirring bar in which the contact angle of the liquid contact surface of the part to pure water is 37° or less and the coefficient of variation is 0.02 or less.
  • a surface pressure applied to the side surface or the end surface to be polished is 0.03 MPa to 0.05 MPa, and a lapping machine made of diamond abrasive grains having an average grain size of 1 ⁇ m to 2 ⁇ m and copper may be used.
  • At least one of the side surface and the end surface of the convex portion is at least a target of coating.
  • the surface of the convex portion may be coated by a method such as flow coating, dipping or spraying, and then dried at, for example, 130°C to 150°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Accessories For Mixers (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

This stirring rod 1 comprises an integrally formed product made from ceramic and is provided with a stirring section having, in a cross-section thereof perpendicular to an axis, a constant shape in the axial direction. In the cross-section, the stirring section 2 has a plurality of protrusions 4 arranged in a circumferential direction. The plurality of protrusions 4 have, in the cross-section, a tapered shape formed such that the width of the plurality of protrusions 4 decreases toward the front ends thereof.

Description

撹拌棒および撹拌装置Stir bar and stirrer
 本開示は、液体を撹拌するための撹拌棒およびこの撹拌棒を備えた撹拌装置に関する。 The present disclosure relates to a stirring rod for stirring a liquid and a stirring device including the stirring rod.
 従来、主として医療目的で、血液、尿、その他の生化学的試料を分析する分析装置には、試料溶液を撹拌する撹拌装置が搭載されている。この撹拌装置には試料溶液を撹拌するための撹拌棒が備えられている。撹拌棒には試料溶液や試薬等に対して耐薬品性が求められる。そのために、撹拌棒は、例えばフッ素系樹脂を用いて表面加工したステンレス等の金属材料や、ポリエチレン、ポリプロピレンなどの樹脂材料から形成されている。中でも、テトラフルオロエチレン、トリフルオロエチレン,クロロトリフルオロエチレン、FEP(テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)等のフッ素系樹脂で表面を被覆したステンレス製の撹拌棒が、耐久性とコストの面から好適に使用されている(例えば、特許文献1、2)。 Conventionally, an analyzer that analyzes blood, urine, and other biochemical samples, mainly for medical purposes, is equipped with a stirring device that stirs the sample solution. This stirring device is equipped with a stirring rod for stirring the sample solution. The stir bar is required to have chemical resistance to sample solutions, reagents and the like. For this purpose, the stirring rod is made of, for example, a metal material such as stainless steel or a resin material such as polyethylene or polypropylene which is surface-treated using a fluororesin. Among them, a stainless steel stirring rod whose surface is coated with a fluororesin such as tetrafluoroethylene, trifluoroethylene, chlorotrifluoroethylene, FEP (copolymer of tetrafluoroethylene and hexafluoropropylene) has durability and cost. It is preferably used from the viewpoint of (for example, Patent Documents 1 and 2).
特開2009-145269号公報、図3JP-A-2009-145269, FIG. 特開平8-136550号公報JP-A-8-136550
 本開示の撹拌棒は、軸心に直交する断面が軸方向に沿って一定の形状を有する撹拌部を備えた、セラミックスの一体成形品からなり、上記断面において、複数の凸部が周方向に配置されている。 The stirring rod of the present disclosure is an integrally molded ceramic product having a stirring portion having a cross section orthogonal to the axial center and having a constant shape along the axial direction. It is arranged.
 本開示の撹拌装置は、上記の撹拌棒を備える。 The stirring device of the present disclosure includes the stirring rod described above.
(a)および(b)は、それぞれ本開示の撹拌棒の一実施形態を示す正面図およびそのX-X線断面図である。(A) And (b) is a front view and an XX line sectional view showing one embodiment of a stirring rod of this indication, respectively. 本開示の撹拌棒の製造工程を示す概略図である。FIG. 5 is a schematic view showing a manufacturing process of the stirring rod of the present disclosure. 本開示の撹拌棒の反りを説明するための概略図である。It is a schematic diagram for explaining the warp of the stirring rod of the present disclosure. 本開示の撹拌棒の使用状態を示す概略図である。It is a schematic diagram showing a use state of a stirring rod of the present disclosure. (a)および(b)は、それぞれ本開示の撹拌棒の他の実施形態を示す正面図である。(A) And (b) is a front view which shows other embodiments of the stirring rod of this indication, respectively.
 以下、本開示の一実施形態に係る撹拌棒を図面に基づいて説明する。図1(a)に示すように、本実施形態に係る撹拌棒1は、撹拌部2と、この撹拌部2の軸方向の一端面に撹拌部2と同一軸心Aを有するように撹拌部2と一体に形成された軸部3とを備えている。 Hereinafter, a stirring rod according to an embodiment of the present disclosure will be described with reference to the drawings. As shown in FIG. 1( a ), the stirring rod 1 according to the present embodiment has a stirring unit 2 and a stirring unit having the same axial center A as the stirring unit 2 on one end face in the axial direction of the stirring unit 2. 2 and a shaft portion 3 formed integrally.
 撹拌部2は、軸心Aに直交する断面が軸方向に沿った撹拌部2の全長にわたって一定の形状を有する。すなわち、図1(b)に示すように、撹拌部2の断面は、複数の凸部4が周方向に配置された形状を有する。本実施形態に係る撹拌棒1は、複数の凸部4を備えていることにより軸方向に流れを発生させて撹拌することができる。 The stirring unit 2 has a cross section orthogonal to the axis A having a constant shape over the entire length of the stirring unit 2 along the axial direction. That is, as shown in FIG. 1B, the cross section of the stirring section 2 has a shape in which a plurality of convex sections 4 are arranged in the circumferential direction. Since the stirring rod 1 according to the present embodiment includes the plurality of convex portions 4, it is possible to stir by generating a flow in the axial direction.
 撹拌棒1は、耐薬品性に優れたセラミックスの一体成形品からなる。すなわち、複数の凸部4が周方向に配置された断面形状を全長にわたって有する撹拌部2は、例えば、押出成形により得ることができる。 The stir bar 1 is made of ceramics integrally molded with excellent chemical resistance. That is, the stirring portion 2 having a cross-sectional shape in which the plurality of convex portions 4 are arranged in the circumferential direction over the entire length can be obtained by, for example, extrusion molding.
 押出成形は以下の手順で行う。まず、原料(粉末状)に水およびバインダー(粘結剤)を添加・混合してシリンダ内に連続供給して加熱溶融させる。次に、この溶融した材料を、シリンダ内のスクリューの回転によってシリンダ前部のダイスを通して押し出し、冷却して成形する。図2に示す押し出された成形品11は、全長にわたって図1(b)に示す断面形状を有する。この成形品11を焼成後、研削・研磨工程にて成形品11を回転させながら一端部を研削・研磨して軸部3を形成する。このとき、軸部3と撹拌部2とは軸心Aを共通にする。 Extrusion is performed according to the following procedure. First, water and a binder (binder) are added to and mixed with a raw material (powder), and the mixture is continuously supplied into the cylinder to be heated and melted. Next, the molten material is extruded through a die at the front of the cylinder by rotation of a screw in the cylinder, cooled, and molded. The extruded molded product 11 shown in FIG. 2 has the cross-sectional shape shown in FIG. 1(b) over the entire length. After firing the molded product 11, one end is ground and polished while the molded product 11 is rotated in the grinding/polishing process to form the shaft portion 3. At this time, the shaft portion 3 and the stirring portion 2 have the common axis A.
 なお、軸部3の断面形状は特に限定されず、例えば円形、四角形、楕円形状等が挙げられる。 The cross-sectional shape of the shaft portion 3 is not particularly limited, and examples thereof include a circular shape, a quadrangular shape, and an elliptical shape.
 また、研削・研磨工程では、焼成された撹拌棒1のバリや傷を除去し、平滑にする。このとき、撹拌部2の周面、とくに凸部4は全面を曲面状にするのが好ましい。これにより、撹拌棒1に部分的な応力集中が発生せず、ヒビや破損が減少し、耐久性が向上する。 Also, in the grinding/polishing process, burrs and scratches on the baked stirring rod 1 are removed and smoothed. At this time, it is preferable that the entire peripheral surface of the stirring section 2, especially the convex section 4 is curved. As a result, partial stress concentration does not occur in the stirring rod 1, cracks and damages are reduced, and durability is improved.
 このようなセラミックスの原材料としては、耐薬品性に優れたものであれば特に限定されず、例えば高純度アルミナ、ジルコニア、窒化ケイ素、炭化ケイ素、アルミナジルコニア複合材料などが挙げられる。 The raw material of such ceramics is not particularly limited as long as it has excellent chemical resistance, and examples thereof include high-purity alumina, zirconia, silicon nitride, silicon carbide, and alumina-zirconia composite material.
 図1(b)に戻って、撹拌部2の周方向に配置された複数の凸部4は、軸心Aから半径方向に放射状に延びており、各凸部4は等間隔で配置されている。 Returning to FIG. 1B, the plurality of convex portions 4 arranged in the circumferential direction of the stirring unit 2 extend radially from the axis A in the radial direction, and the convex portions 4 are arranged at equal intervals. There is.
 また、凸部4は先端に向かって幅が細くなる先細形状を有している。このような先細形状であれば、凸部4の先端部が受ける抵抗(応力)が軽減され、耐久性が向上する。 Also, the convex portion 4 has a tapered shape whose width becomes narrower toward the tip. With such a tapered shape, the resistance (stress) received by the tip of the convex portion 4 is reduced, and the durability is improved.
 前記したように、凸部4は全面が曲面状に形成されている。そのため、隣接する凸部4,4の間、すなわち谷部も曲面状である。 As mentioned above, the entire convex portion 4 is formed into a curved surface. Therefore, the space between the adjacent convex portions 4 and 4, that is, the valley portion is also curved.
 本実施形態では、隣接する凸部4間の角度が360°を凸部4の個数で除した角度よりも大きい。すなわち、各凸部4は、付け根部よりも、軸心Aから離れた位置において細くなっている。そのため、試薬などが凸部4同士の間隙にたまりにくくなるという効果がある。また、製造時にも研磨しやすいという効果がある。 In the present embodiment, the angle between the adjacent convex portions 4 is larger than the angle obtained by dividing 360° by the number of convex portions 4. That is, each convex portion 4 is thinner than the root portion at a position distant from the axis A. Therefore, there is an effect that a reagent or the like is less likely to accumulate in the gap between the convex portions 4. Further, there is an effect that it is easy to polish even during manufacturing.
 隣接する凸部4,4間の角度θは、360°を凸部4の個数で除した角度をαとしたときに、角度αよりも1/4α以上大きくてもよい。これにより、凸部4の付け根部に加わる応力を緩和できる。また、コーナー部にRを付けることにより、凸部4の付け根部に加わる応力をさらに緩和することができる。 The angle θ between the adjacent convex portions 4 and 4 may be larger than the angle α by 1/4α or more when α is an angle obtained by dividing 360° by the number of the convex portions 4. As a result, the stress applied to the base of the convex portion 4 can be relaxed. Further, by adding R to the corner portion, the stress applied to the root portion of the convex portion 4 can be further alleviated.
 また、本実施形態では、隣接する凸部4,4の角度θは90°以上の鈍角を形成してもよい。具体的には、角度θは90°≦θ≦180°の範囲であってもよい。角度θが鈍角に形成されると、試薬などが凸部4同士の間隙によりたまりにくくなるという効果がある。また、製造時にもより研磨しやすいという効果がある。 Further, in the present embodiment, the angle θ between the adjacent convex portions 4 and 4 may form an obtuse angle of 90° or more. Specifically, the angle θ may be in the range of 90°≦θ≦180°. When the angle θ is formed to be an obtuse angle, there is an effect that a reagent or the like is less likely to accumulate due to the gap between the convex portions 4. Further, there is an effect that it is easier to polish even during manufacturing.
 ここで、角度θとは、隣接する凸部4,4において、最も谷部に近い部位の接線同士のなす角度をいう。図1(b)に示すような形状の凸部4の場合は、一方の凸部4の外面側接線と他方の凸部4の内面側接線との角度をいう。 Here, the angle θ means the angle formed by the tangents of the portions of the adjacent convex portions 4 and 4 that are closest to the valley portion. In the case of the convex portion 4 having a shape as shown in FIG. 1B, it means the angle between the outer tangent line of one convex portion 4 and the inner tangent line of the other convex portion 4.
 図3に示すように、撹拌棒1は、軸心Aが弓形に反った形状を有していてもよい。図3では、便宜上、撹拌部2が反った状態を示しているが、軸部3の軸心Aも同様に反っている。反りの程度は、撹拌部2の長さを40mmとしたとき、図3に示すx(撹拌部2において鉛直線から最も離隔した距離)が0.2mm以下であるのが好ましい。図3に示すxは、例えば隙間ゲージ等によって測定可能である。撹拌部2の長さが40mm以外の場合は、これに比例する関係の距離xを選択すればよい。 As shown in FIG. 3, the stirring rod 1 may have a shape in which the axis A is curved in an arc shape. In FIG. 3, for convenience, the stirring portion 2 is shown as warped, but the shaft center A of the shaft portion 3 is also warped. Regarding the degree of warpage, when the length of the stirring section 2 is 40 mm, x (the distance most distant from the vertical line in the stirring section 2) shown in FIG. 3 is preferably 0.2 mm or less. X shown in FIG. 3 can be measured by, for example, a gap gauge or the like. When the length of the stirring unit 2 is other than 40 mm, the distance x proportional to this may be selected.
 このように、撹拌部2が反りを有することにより撹拌効率が向上する。撹拌部2に反りを付与するには、例えば成形品11の焼成時の温度および焼成時間を制御すればよい。 In this way, the stirring efficiency is improved by the warp of the stirring unit 2. In order to impart the warp to the stirring section 2, for example, the temperature and the firing time during firing of the molded product 11 may be controlled.
 図4に示すように、撹拌棒1は、撹拌装置の撹拌槽9内に撹拌部2を下にして挿入される。軸部3は、上部が試料溶液8の液面から突出している。液面から突出した軸部3には、撹拌棒1を回転させるモーターなどを備える駆動部(図示せず)が接続され、撹拌棒1を回転させる。 As shown in FIG. 4, the stirring rod 1 is inserted into the stirring tank 9 of the stirring device with the stirring unit 2 facing downward. The upper portion of the shaft portion 3 projects from the liquid surface of the sample solution 8. A drive unit (not shown) including a motor for rotating the stirring rod 1 is connected to the shaft portion 3 protruding from the liquid surface, and the stirring rod 1 is rotated.
 本実施形態における撹拌棒1は、撹拌部2が撹拌槽9の少なくとも底部近くに位置しているので、試料溶液8の粘度に拘らず効率よく撹拌することができる。特に撹拌部2が軸方向に長く形成されていると、高粘度の試料溶液8を撹拌するのに好適である。撹拌部2は試料溶液8の深さ(撹拌槽9の底面から液面までの高さ)に対して半分以下であればよい。 Since the stirring unit 2 of the stirring rod 1 in this embodiment is located at least near the bottom of the stirring tank 9, stirring can be performed efficiently regardless of the viscosity of the sample solution 8. Particularly, when the stirring section 2 is formed to be long in the axial direction, it is suitable for stirring the high-viscosity sample solution 8. The stirring unit 2 may have a half or less of the depth of the sample solution 8 (the height from the bottom surface of the stirring tank 9 to the liquid surface).
 本開示の撹拌棒は図1の実施形態に限定されるものではなく、種々の変形が可能である。例えば、図5(a)に示すように撹拌部2が下部にあるものであってもよく、図5(b)に示すように、複数の撹拌部2a、2b、2cを軸部3に沿って配列したものであってもよい。 The stirring rod of the present disclosure is not limited to the embodiment of FIG. 1, and various modifications are possible. For example, as shown in FIG. 5( a ), the stirring unit 2 may be at the bottom, and as shown in FIG. 5( b ), a plurality of stirring units 2 a, 2 b, 2 c may be provided along the shaft 3. It may be arranged in the same manner.
 軸部3に設けられる凸部4の数は、図示した4つに限定されず、2~5の範囲で適宜選択可能である。 The number of convex portions 4 provided on the shaft portion 3 is not limited to the four shown in the figure, and can be appropriately selected within the range of 2 to 5.
 さらに、以上の実施形態では、軸部3は撹拌部2と押出成形等によって一体に成形されているが、軸部3を撹拌部2と別に作製し、撹拌部2の端面に設けた凹部に軸部3を装着して固定したものであってもよい。このとき、軸部3は断面が円形や楕円形であってもよく、空回り防止のために四角形状であってもよい。 Further, in the above embodiment, the shaft portion 3 is integrally formed with the stirring portion 2 by extrusion molding or the like. However, the shaft portion 3 is manufactured separately from the stirring portion 2, and the shaft portion 3 is formed in a recess provided on the end surface of the stirring portion 2. The shaft portion 3 may be attached and fixed. At this time, the shaft portion 3 may have a circular or elliptical cross section, or may have a quadrangular shape for preventing idling.
 また、上記セラミックスは、閉気孔を有し、隣り合う閉気孔の重心間距離から閉気孔の円相当径の平均値を差し引いた値(A)が20μm~85μmであってもよい。値(A)が20μm以上であると、空隙部分が密集することなく分散して配置されているので、高い機械的特性を有する。値(A)が85μm以下であると、撹拌部2の外周面から軸心方向に、または、撹拌部2の端面もしくは軸部3の端面から内部に向かって研磨等の加工をする場合、良好な加工性が得られる。さらに、隣り合う閉気孔間の間隔が狭くなるので、熱衝撃によって生じるマイクロクラックの伸展を抑制することができる。 The ceramic may have closed pores, and the value (A) obtained by subtracting the average value of the circle equivalent diameters of the closed pores from the distance between the centers of gravity of the adjacent closed pores may be 20 μm to 85 μm. When the value (A) is 20 μm or more, void portions are dispersed and arranged without being dense, and thus high mechanical properties are obtained. When the value (A) is 85 μm or less, it is good when processing such as polishing from the outer peripheral surface of the stirring section 2 in the axial direction or from the end surface of the stirring section 2 or the end surface of the shaft section 3 to the inside. Good workability can be obtained. Further, since the space between the adjacent closed pores is narrowed, it is possible to suppress the extension of microcracks caused by thermal shock.
 閉気孔の重心間距離は、以下の方法で求めることができる。 The distance between the centers of gravity of closed pores can be obtained by the following method.
 まず、例えば、撹拌部2の端面から内部に向かって、平均粒径D50が3μmのダイヤモンド砥粒を用いて銅盤にて研磨する。その後、平均粒径D50が0.5μmのダイヤモンド砥粒を用いて錫盤にて研磨することにより研磨面を得る。これらの研磨により、研磨面の算術平均粗さRaは、0.01μm~0.2μmとすることができる。研磨面の算術平均粗さRaは、JIS B 0601:1994に準拠して求めることができ、触針の半径を5μm、触針の材質をダイヤモンド、測定長さを1.25mm、カットオフ値を0.25mmとすればよい。 First, for example, a copper plate is used for polishing from the end face of the stirring unit 2 toward the inside by using diamond abrasive grains having an average particle diameter D 50 of 3 μm. After that, a polished surface is obtained by polishing with a tin plate using diamond abrasive grains having an average particle diameter D 50 of 0.5 μm. By these polishing, the arithmetic average roughness Ra of the polished surface can be 0.01 μm to 0.2 μm. The arithmetic average roughness Ra of the polished surface can be determined according to JIS B 0601:1994, the radius of the stylus is 5 μm, the material of the stylus is diamond, the measurement length is 1.25 mm, and the cutoff value is It may be 0.25 mm.
 研磨面を200倍の倍率で観察し、平均的な範囲を選択して、例えば、面積が0.105mm(横方向の長さが374μm、縦方向の長さが280μm)となる範囲をCCDカメラで撮影して、観察像を得る。この観察像を対象として、画像解析ソフト「A像くん(ver2.52)」(登録商標、旭化成エンジニアリング(株)製)を用いて分散度計測の重心間距離法という手法で閉気孔の重心間距離を求めればよい。以下、画像解析ソフト「A像くん」と記載した場合、旭化成エンジニアリング(株)製の画像解析ソフトを示す。 The polished surface is observed at a magnification of 200 times, and an average range is selected. For example, a range in which the area is 0.105 mm 2 (horizontal length 374 μm, vertical length 280 μm) is CCD Take an image with a camera to obtain an observation image. Using the image analysis software "A image-kun (ver2.52)" (registered trademark, manufactured by Asahi Kasei Engineering Co., Ltd.) for this observation image, the distance between the centers of gravity of the closed pores was measured by a method called the distance between centers of gravity measurement of the degree of dispersion. Find the distance. Hereinafter, when the image analysis software “A image-kun” is described, it means image analysis software manufactured by Asahi Kasei Engineering Co., Ltd.
 この手法の設定条件としては、例えば、画像の明暗を示す指標であるしきい値を86、明度を暗、小図形除去面積を1μm、雑音除去フィルタを有とすればよい。観察像の明るさに応じて、しきい値を調整してもよい。明度を暗とし、2値化の方法を手動とし、小図形除去面積を1μmおよび雑音除去フィルタを有とした上で、観察像に現れるマーカーが閉気孔の形状と一致するように、しきい値を調整すればよい。 As a setting condition of this method, for example, a threshold value, which is an index showing the brightness of an image, is 86, brightness is dark, small figure removal area is 1 μm 2 , and a noise removal filter is provided. The threshold value may be adjusted according to the brightness of the observed image. The brightness was set to dark, the binarization method was set to manual, the small figure removal area was set to 1 μm 2 and a noise removal filter was provided. Adjust the value.
 凸部4の接液面を含む断面において、接液面上における珪素の濃度は、接液面と平行な内部の仮想面上における珪素の濃度よりも高いのがよい。 In a cross section including the liquid contact surface of the convex portion 4, it is preferable that the silicon concentration on the liquid contact surface is higher than the silicon concentration on an internal virtual surface parallel to the liquid contact surface.
 純水に対する珪素の接触角は小さいため、このような構成であると、水溶性の洗剤を用いて洗浄した場合、汚れの除去効率を高くすることができる。 Since the contact angle of silicon with respect to pure water is small, with such a configuration, the efficiency of removing dirt can be increased when cleaning is performed using a water-soluble detergent.
 珪素の濃度は、接液面を含む研磨した断面を対象に、電子線マイクロアナライザ(EPMA)を用いた珪素のカラーマッピング像(横方向の長さが120μm、縦方向の長さが:90μm)を観察すればよい。 Regarding the silicon concentration, a color mapping image of silicon (electron beam microanalyzer (EPMA)) was used for the polished cross section including the liquid contact surface (horizontal length 120 μm, vertical length: 90 μm). You can observe.
 また、凸部4の接液面におけるセラミックスは、複数の結晶粒子と、粒界相とを有し、隣り合う結晶粒子の間に位置する粒界相の幅(w)は、0.7μm~2.6μmであって、粒界相の幅(w)に対する粒界相の深さ(d)の比(d/w)は、0.06~0.18であってもよい。粒界相の幅(w)が上記範囲であって、粒界相の深さ(d)の比(d/w)が0.06以上であると、純水に対する接触角が小さくなるので、水溶性の洗剤を用いて洗浄した場合、汚れの除去効率を高くすることができる。粒界相の幅(w)が上記範囲であって、粒界相の深さ(d)の比(d/w)が0.18以下であると、粒界相による結晶粒子同士の結合力が十分維持されているので、水溶性の洗剤を用いて高圧洗浄しても、脱粒のおそれが減少する。 The ceramic on the liquid contact surface of the convex portion 4 has a plurality of crystal grains and a grain boundary phase, and the width (w) of the grain boundary phase located between the adjacent crystal grains is 0.7 μm to The ratio (d/w) of the depth (d) of the grain boundary phase to the width (w) of the grain boundary phase may be 0.06 to 0.18. When the width (w) of the grain boundary phase is in the above range and the ratio (d/w) of the depth (d) of the grain boundary phase is 0.06 or more, the contact angle with respect to pure water becomes small, When cleaning is performed using a water-soluble detergent, the efficiency of removing dirt can be increased. When the width (w) of the grain boundary phase is in the above range and the ratio (d/w) of the depth (d) of the grain boundary phase is 0.18 or less, the binding force between crystal grains due to the grain boundary phase Is maintained sufficiently, the risk of shedding is reduced even when high-pressure washing is performed using a water-soluble detergent.
 粒界相の幅(w)および深さ(d)は、原子間力顕微鏡(キーサイトテクノロジー製、7500AFM/SPM)を用い、測定モードをACAFMモード、測定に用いるプローブのスキャン速度を0.15lines/sec、測定領域を20μm×20μm、測定対象の長さを7μm~20μm、解像度を512ピクセル×512ピクセルとして、接液面の断面プロファイルを求め、その比(d/w)は、粒界相の幅(w)および深さ(d)の各測定値を用いて算出すればよい。 For the width (w) and the depth (d) of the grain boundary phase, an atomic force microscope (7500AFM/SPM manufactured by Keysight Technology) was used, the measurement mode was ACAFM mode, and the scanning speed of the probe used for measurement was 0.15lines. /Sec, the measurement area is 20 μm×20 μm, the length of the measurement target is 7 μm to 20 μm, and the resolution is 512 pixels×512 pixels, the cross-sectional profile of the liquid contact surface is obtained, and the ratio (d/w) is the grain boundary phase. It may be calculated using the respective measured values of the width (w) and the depth (d).
 また、凸部4の接液面における前記セラミックスの結晶粒子の平均径は、2μm~8μmであってもよい。結晶粒子の平均径が上記範囲であると、純水に対する接触角がさらに小さくなるので、水溶性の洗剤を用いて洗浄した場合、汚れの除去効率を高くすることができる。 The average diameter of the crystal particles of the ceramics on the liquid contact surface of the convex portion 4 may be 2 μm to 8 μm. When the average diameter of the crystal particles is in the above range, the contact angle with respect to pure water becomes smaller, so that the efficiency of removing stains can be increased when the particles are washed with a water-soluble detergent.
 ここで、セラミックスの結晶粒子の平均径は、以下のようにして求めることができる。 Here, the average diameter of crystal particles of ceramics can be obtained as follows.
 上記研磨面を、温度を、例えば、1480℃で結晶粒子と粒界層とが識別可能になるまでエッチングして観察面を得る。 The observation surface is obtained by etching the polished surface at a temperature of, for example, 1480° C. until the crystal particles and the grain boundary layer can be distinguished from each other.
 走査型電子顕微鏡を用いて、観察面の反射電子像を2000倍に拡大した60μm×44μmの範囲で、任意の点を中心にして放射状に同じ長さ、例えば、30μmの直線を6本引き、直線の合計長さを、直線上に存在する結晶の個数の合計で除すことによって平均径を求めることができる。 Using a scanning electron microscope, a backscattered electron image of the observation surface was magnified 2000 times in a range of 60 μm×44 μm, and a straight line of the same length, for example, 30 μm, was drawn radially around an arbitrary point, The average diameter can be obtained by dividing the total length of the straight line by the total number of crystals existing on the straight line.
 特に、凸部4の接液面の純水に対する接触角が37°以下であって、その変動係数が0.02以下であってもよい。これにより、水溶性の洗剤を用いて洗浄した場合、汚れの除去効率を高くすることができるとともに、局部的な汚れの取り残しを抑制することができる。 In particular, the contact angle of the liquid contact surface of the convex portion 4 with respect to pure water may be 37° or less and the coefficient of variation thereof may be 0.02 or less. As a result, when cleaning is performed using a water-soluble detergent, it is possible to increase the efficiency of removing stains, and it is possible to suppress the local leaving of stains.
 また、凸部4は、側面および端面の少なくともいずれかがフッ素化したポリシロキサンを含む化合物からなる膜によって被覆されていてもよい。水溶性の洗剤を用いて洗浄した後、上記膜によって被覆された表面に付着した水滴が汚れを吸着するロータス効果が得られるので、汚れの除去効率を高くすることができる。 Further, at least one of the side surface and the end surface of the convex portion 4 may be covered with a film made of a compound containing fluorinated polysiloxane. After washing with a water-soluble detergent, the Lotus effect that water droplets adhering to the surface covered with the above film adsorb the dirt can be obtained, so that the dirt removal efficiency can be increased.
 膜の接液面の純水に対する接触角が104°以上であって、その変動係数が0.01以下であってもよい。水溶性の洗剤を用いて洗浄した場合、汚れの除去効率を高くすることができるとともに、局部的な汚れの取り残しを抑制することができる。 The contact angle of the liquid contact surface of the membrane with pure water may be 104° or more, and the coefficient of variation may be 0.01 or less. When cleaning is performed using a water-soluble detergent, it is possible to increase the efficiency of removing stains, and it is possible to suppress the local leaving of stains.
 接液面の接触角は、JIS R 3257:1999に準拠して求めることができ、例えば、接触角計(協和界面科学(株)製、型式CA-X)を用い、5カ所以上測定すればよい。 The contact angle of the liquid contact surface can be determined according to JIS R 3257:1999. For example, if a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., model CA-X) is used, it can be measured at 5 or more points. Good.
 次に、本開示の撹拌棒の製造方法を、撹拌棒が高純度アルミナのセラミックスからなる場合について説明する。 Next, the manufacturing method of the stirring rod of the present disclosure will be described when the stirring rod is made of high-purity alumina ceramics.
 主成分である酸化アルミニウム粉末(純度が99.9質量%以上)と、水酸化マグネシウム、酸化珪素および炭酸カルシウムの各粉末に、有機結合剤、可塑剤、潤滑剤およびイオン交換水とを添加し、万能撹拌機、回転ミルまたはV型撹拌機等を使って撹拌した後、さらに三本ロールミルや混練機等を用いて混練することにより可塑化した坏土を得る。 Aluminum oxide powder (purity of 99.9 mass% or more) as the main component, and magnesium hydroxide, silicon oxide, and calcium carbonate powders were mixed with an organic binder, a plasticizer, a lubricant, and ion-exchanged water. After being stirred using a universal stirrer, a rotary mill, a V-type stirrer, or the like, further kneading is performed using a three-roll mill, a kneader, or the like to obtain a plasticized kneaded clay.
 ここで、上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.43~0.53質量%、酸化珪素粉末の含有量は0.02~0.04質量%、炭酸カルシウム粉末の含有量は0.020~0.071質量%であり、残部が酸化アルミニウム粉末および不可避不純物である。また、有機結合剤は、メチルセルロース、ヒドロキシプロピルメチルセルロース等の水溶性バインダである。 Here, the content of the magnesium hydroxide powder is 0.43 to 0.53 mass%, the content of the silicon oxide powder is 0.02 to 0.04 mass%, and the content of the calcium carbonate powder is 100% by mass. The content is 0.020 to 0.071% by mass, and the balance is aluminum oxide powder and unavoidable impurities. The organic binder is a water-soluble binder such as methyl cellulose or hydroxypropyl methyl cellulose.
 次に、坏土を押出成形機で成形し、複数の凸部を有する撹拌部の前駆体と、この前駆体の軸方向の一端面にこの前駆体と同一軸心を有する軸部の前駆体とを備えた成形体を得る。そして、成形体を、焼成温度を1500℃~1700℃、保持時間を4時間~6時間として焼成することによって本開示の撹拌棒を得ることができる。 Next, the kneaded material is molded by an extrusion molding machine, the precursor of the stirring portion having a plurality of convex portions, and the precursor of the shaft portion having the same axial center as this precursor on one end face in the axial direction of the precursor A molded body having and is obtained. Then, the stirring bar of the present disclosure can be obtained by firing the molded body at a firing temperature of 1500° C. to 1700° C. and a holding time of 4 hours to 6 hours.
 焼成した後、凸部の側面および端面の少なくともいずれかを研磨した後、温度を1600℃~1700℃として、1時間~4時間保持して熱処理してもよく、研磨および熱処理することにより、凸部の接液面の純水に対する接触角が37°以下であって、その変動係数が0.02以下である撹拌棒を得ることができる。研磨は、例えば、研磨の対象となる側面または端面にかかる面圧を0.03MPa~0.05MPaとし、平均粒径が1μm~2μmのダイヤモンド砥粒、銅からなるラップ盤を用いればよい。 After firing, at least one of the side face and the end face of the convex portion may be polished, and then heat-treated at a temperature of 1600° C. to 1700° C. for 1 hour to 4 hours. It is possible to obtain a stirring bar in which the contact angle of the liquid contact surface of the part to pure water is 37° or less and the coefficient of variation is 0.02 or less. For the polishing, for example, a surface pressure applied to the side surface or the end surface to be polished is 0.03 MPa to 0.05 MPa, and a lapping machine made of diamond abrasive grains having an average grain size of 1 μm to 2 μm and copper may be used.
 ここで、凸部は、側面および端面の少なくともいずれかがフッ素化したポリシロキサンを含む化合物またはシリコーンオリゴマーを含む組成物からなる膜によって被覆された撹拌棒を得るには、少なくとも被覆の対象とする凸部の表面に対して、フローコートやディッピング、スプレー法等の方法を用いて被覆した後、例えば、130℃~150℃で乾燥すればよい。 Here, in order to obtain a stir bar coated with a film made of a composition containing a compound containing a fluorinated polysiloxane or a composition containing a silicone oligomer, at least one of the side surface and the end surface of the convex portion is at least a target of coating. The surface of the convex portion may be coated by a method such as flow coating, dipping or spraying, and then dried at, for example, 130°C to 150°C.
 膜の接液面の純水に対する接触角が104°以上であって、その変動係数が0.01以下である撹拌棒を得るには、例えば、上記温度で20分~40分乾燥すればよい。 In order to obtain a stirring bar having a contact angle of pure water of the liquid contact surface of the membrane of 104° or more and a coefficient of variation of 0.01 or less, for example, drying at the above temperature for 20 to 40 minutes may be performed. ..
 本開示は、上述の実施形態に限定されるものではなく、特許請求の範囲に記載の範囲内で種々の変更や改良が可能である。 The present disclosure is not limited to the above-described embodiments, and various modifications and improvements can be made within the scope of the claims.
1  撹拌棒
2、2a,2b,2c  撹拌部
3  軸部
4  凸部
8  試料溶液
9  撹拌槽
A  軸心
 
1 Stirring bar 2, 2a, 2b, 2c Stirring part 3 Shaft part 4 Convex part 8 Sample solution 9 Stirring tank A Shaft center

Claims (13)

  1.  軸心に直交する断面が軸方向に沿って一定の形状を有する撹拌部を備えた、セラミックスの一体成形品からなり、前記断面において、複数の凸部が周方向に配置されていることを特徴とする撹拌棒。 A cross-section orthogonal to the axis is made of a ceramics integrally-molded product having an agitating portion having a constant shape along the axial direction, and in the cross-section, a plurality of convex portions are arranged in the circumferential direction. And a stirring rod.
  2.  前記撹拌部は軸心が反っている、請求項1に記載の撹拌棒。 The stirring rod according to claim 1, wherein an axis of the stirring unit is warped.
  3.  前記複数の凸部は、前記断面において、先端に向かって幅が細くなる先細形状を有する請求項1または2に記載の撹拌棒。 The stirring bar according to claim 1 or 2, wherein each of the plurality of protrusions has a tapered shape in which the width becomes smaller toward the tip in the cross section.
  4.  前記断面において、前記複数の凸部は曲面状である請求項1~3のいずれかに記載の撹拌棒。 The stirring rod according to any one of claims 1 to 3, wherein the plurality of convex portions are curved in the cross section.
  5.  前記セラミックスは、閉気孔を有し、隣り合う該閉気孔の重心間距離から前記閉気孔の円相当径の平均値を差し引いた値(A)が20μm~85μmである、請求項1~4のいずれかに記載の撹拌棒。 The ceramics has closed pores, and the value (A) obtained by subtracting the average value of the equivalent circle diameters of the closed pores from the distance between the centers of gravity of the adjacent closed pores is 20 μm to 85 μm. The stirring bar according to any one of the above.
  6.  前記凸部の接液面を含む断面において、前記接液面上における珪素の濃度は、前記接液面と平行な内部の仮想面上における珪素の濃度よりも高い、請求項1~5のいずれかに記載の攪拌棒。 6. The cross section including the liquid contact surface of the convex portion, wherein the silicon concentration on the liquid contact surface is higher than the silicon concentration on an internal virtual surface parallel to the liquid contact surface. A stir bar described in Crab.
  7.  前記凸部の接液面における前記セラミックスは、複数の結晶粒子と、粒界相とを有し、隣り合う前記結晶粒子の間に位置する前記粒界相の幅(w)は、0.7μm~2.6μmであって、前記粒界相の幅(w)に対する、前記粒界相の深さ(d)の比(d/w)は、0.06~0.18である、請求項1~6のいずれかに記載の攪拌棒。 The ceramic on the liquid contact surface of the convex portion has a plurality of crystal grains and a grain boundary phase, and the width (w) of the grain boundary phase located between the adjacent crystal grains is 0.7 μm. The ratio (d/w) of the depth (d) of the grain boundary phase to the width (w) of the grain boundary phase is 0.06 to 0.18. The stirring rod according to any one of 1 to 6.
  8.  前記凸部の接液面における前記セラミックスの結晶粒子の平均径は、2μm~8μmである、請求項7に記載の撹拌棒。 The stirring rod according to claim 7, wherein the average diameter of the ceramic crystal particles on the liquid contact surface of the convex portion is 2 μm to 8 μm.
  9.  前記凸部の接液面の純水に対する接触角が37°以下であって、その変動係数が0.02以下である請求項6~8のいずれかに記載の撹拌棒。 The stirring rod according to any one of claims 6 to 8, wherein the liquid contact surface of the convex portion has a contact angle with pure water of 37° or less and a coefficient of variation of 0.02 or less.
  10.  請求項6~9のいずれかに記載の撹拌棒の製造方法であって、前記凸部の側面および端面の少なくともいずれかを研磨した後、温度を1600℃~1700℃として、1時間~4時間保持して熱処理する、撹拌棒の製造方法。 The method for manufacturing a stirring rod according to any one of claims 6 to 9, wherein the temperature is set to 1600°C to 1700°C for 1 hour to 4 hours after polishing at least one of the side surface and the end surface of the convex portion. A method for manufacturing a stirring rod, which holds and heat-treats.
  11.  前記凸部は、側面および端面の少なくともいずれかがフッ素化したポリシロキサンを含む化合物またはシリコーンオリゴマーを含む組成物からなる膜によって被覆されてなる、請求項1~5のいずれかに記載の撹拌棒。 6. The stirring rod according to claim 1, wherein at least one of the side surface and the end surface is covered with a film made of a compound containing a fluorinated polysiloxane or a composition containing a silicone oligomer. ..
  12.  前記膜の接液面の純水に対する接触角が104°以上であって、その変動係数が0.01以下である請求項11に記載の撹拌棒。 The stirring rod according to claim 11, wherein the contact angle of the liquid contact surface of the membrane with pure water is 104° or more, and the coefficient of variation thereof is 0.01 or less.
  13.  請求項1~9のいずれか、請求項11または12に記載の撹拌棒を備えた撹拌装置。
     
    A stirring device comprising the stirring rod according to any one of claims 1 to 9 and claim 11.
PCT/JP2019/046677 2018-11-29 2019-11-28 Stirring rod and stirring device WO2020111206A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020557841A JP7279076B2 (en) 2018-11-29 2019-11-28 Stirring Bars and Stirring Devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-223754 2018-11-29
JP2018223754 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020111206A1 true WO2020111206A1 (en) 2020-06-04

Family

ID=70853472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046677 WO2020111206A1 (en) 2018-11-29 2019-11-28 Stirring rod and stirring device

Country Status (2)

Country Link
JP (1) JP7279076B2 (en)
WO (1) WO2020111206A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107140A1 (en) * 2019-11-29 2021-06-03 京セラ株式会社 Liquid contact member, method for producing same, member for analyzers, analyzer, sliding member and sliding device
CN114304204A (en) * 2022-01-14 2022-04-12 温州大学 Automatic making devices of cake embryo magma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041448U (en) * 1990-04-17 1992-01-08
JP3102011U (en) * 2003-12-01 2004-06-24 照子 村上 Electric natto agitator
JP2015221427A (en) * 2014-05-22 2015-12-10 ポスコ Stirrer
WO2016043269A1 (en) * 2014-09-17 2016-03-24 積水化学工業株式会社 Powder feeder, film-forming device, and film-forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041448U (en) * 1990-04-17 1992-01-08
JP3102011U (en) * 2003-12-01 2004-06-24 照子 村上 Electric natto agitator
JP2015221427A (en) * 2014-05-22 2015-12-10 ポスコ Stirrer
WO2016043269A1 (en) * 2014-09-17 2016-03-24 積水化学工業株式会社 Powder feeder, film-forming device, and film-forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021107140A1 (en) * 2019-11-29 2021-06-03 京セラ株式会社 Liquid contact member, method for producing same, member for analyzers, analyzer, sliding member and sliding device
CN114304204A (en) * 2022-01-14 2022-04-12 温州大学 Automatic making devices of cake embryo magma

Also Published As

Publication number Publication date
JP7279076B2 (en) 2023-05-22
JPWO2020111206A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
WO2020111206A1 (en) Stirring rod and stirring device
WO2020111209A1 (en) Stirrer bar and stirring device
KR101276506B1 (en) Surface-treated ceramic member, method for producing same, and vacuum processing device
KR20130030292A (en) Electrostatic chuck and production method thereof
WO2020111207A1 (en) Stirring rod and stirring device
WO2020111208A1 (en) Stirrer bar and stirring device
KR20040031771A (en) Rolling unit
CN107407421B (en) The mechanically-sealing apparatus used in water environment and its slip ring
JP4895152B2 (en) Paste stirrer and paste manufacturing method
WO2021107140A1 (en) Liquid contact member, method for producing same, member for analyzers, analyzer, sliding member and sliding device
CN1293174C (en) Solid lubricant on the basis of RBC powder
JP2020143327A (en) Sputtering target and its manufacturing method
JP7343996B2 (en) Zirconium oxide ceramics and biochemical sample collection parts
TW201900585A (en) Refractory article, composition for coating refractory article, and method of manufacturing the same
CN1882743A (en) Materials for dewatering elements
KR100795339B1 (en) Fabrication of ceramic ball and alumina ceramic bearing
JP7211664B2 (en) Corrosion resistant ceramics
JP2008080683A (en) Molding process of ceramics, and ceramic member using it
CN1245742C (en) Grinding pad collation device
JP7534254B2 (en) Chromatography tube and its manufacturing method, and high performance liquid chromatograph
JP4159029B2 (en) Ceramic plate
JP2005201327A (en) Rolling device
JP6994194B2 (en) Plain bearing device and pump equipped with it
WO2020045433A1 (en) False twister disc and false twister disc production method
JP3741844B2 (en) Corrosion-resistant rolling bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888940

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888940

Country of ref document: EP

Kind code of ref document: A1