WO2020110990A1 - Urethane (meth)acrylate resin, curable resin composition, and cured product - Google Patents

Urethane (meth)acrylate resin, curable resin composition, and cured product Download PDF

Info

Publication number
WO2020110990A1
WO2020110990A1 PCT/JP2019/045947 JP2019045947W WO2020110990A1 WO 2020110990 A1 WO2020110990 A1 WO 2020110990A1 JP 2019045947 W JP2019045947 W JP 2019045947W WO 2020110990 A1 WO2020110990 A1 WO 2020110990A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
urethane
resin
polyol
Prior art date
Application number
PCT/JP2019/045947
Other languages
French (fr)
Japanese (ja)
Inventor
竜也 宇多村
達之 熊野
久憲 石田
瑞生 畠中
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201980076312.1A priority Critical patent/CN113166363B/en
Priority to JP2020557701A priority patent/JP7355033B2/en
Publication of WO2020110990A1 publication Critical patent/WO2020110990A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic

Definitions

  • the present invention relates to a urethane (meth)acrylate resin, a curable resin composition, and a cured product.
  • Patent Document 1 a urethane (meth) having a bisphenolmethane structure in a molecule, which is a reaction product of a (meth)acrylate having one hydroxyl group in one molecule, an aromatic diisocyanate, and an optional diol compound.
  • a resin composition for an optical material has been proposed, which contains an acrylate, a diluent and methylbenzoyl formate as a photopolymerization initiator.
  • Patent Document 2 proposes an active energy ray-curable resin composition containing a specific urethane (meth)acrylate oligomer as an active energy ray-curable resin composition having excellent adhesion to a polycarbonate substrate. ing.
  • Patent Document 3 proposes a cured film that is excellent in hardness and scratch resistance and has less curl and cracks, and a urethane (meth)acrylate compound that provides the cured film.
  • Patent Document 4 relates to an active energy ray-curable resin composition containing a urethane (meth)acrylate composition and a coating agent, and when a cured coating film is formed, curing shrinkage is small and curling is difficult, Further, an active energy ray-curable resin composition capable of forming a coating film excellent in flexibility has been proposed.
  • Patent Document 1 As described above, various urethane (meth)acrylate resin compositions have been proposed, but a curable resin composition that gives a cured film excellent in hardness, solvent resistance, adhesion, low curling property, and flexibility. Is not obtained at present.
  • Patent Document 1 the main purpose is fast curing and adhesion to a methacrylic resin, but performances such as flexibility and low curl are not mentioned.
  • Patent Document 2 has excellent adhesiveness to a polycarbonate plate, it does not mention performance such as adhesiveness to other resin substrates, hardness, solvent resistance, low curl property, and flexibility.
  • Patent Documents 3 and 4 are excellent in hardness, they are intended to improve flexibility and low curl, but there is still room for improvement in flexibility and low curl.
  • the present invention has been made in view of the above circumstances, and in addition to hardness, solvent resistance, flexibility and low curl, a urethane (meth)acrylate resin capable of giving a cured film excellent in adhesion, Another object is to provide a curable resin composition containing the resin and a cured product of the resin composition.
  • the present inventors have obtained by reacting a polyol-modified aromatic hydrocarbon formaldehyde resin obtained by modifying an aromatic hydrocarbon formaldehyde resin with a polyol, an aromatic group-containing diisocyanate, and a hydroxyl group-containing acrylate. It has been found that a urethane (meth)acrylate resin that can be used to solve the above-mentioned problems has led to the completion of the present invention.
  • the present invention is as follows. (1) Urethane (meth)acrylate obtained by reacting a polyol-modified aromatic hydrocarbon formaldehyde resin obtained by modifying an aromatic hydrocarbon formaldehyde resin with a polyol, an aromatic group-containing diisocyanate, and a hydroxyl group-containing (meth)acrylate compound. resin. (2) The urethane (meth)acrylate resin according to (1), which has a weight average molecular weight (Mw) of 500 to 100,000. (3) The urethane (meth)acrylate resin according to (1) or (2), wherein the polyol modified aromatic hydrocarbon formaldehyde resin has a weight average molecular weight of 300 to 5,000.
  • the urethane (meth)acrylate resin according to any one of (1) to (3), wherein the polyol-modified aromatic hydrocarbon formaldehyde resin has a hydroxyl value of 100 to 400 mgKOH/g.
  • the molar ratio (OH/NCO) between the hydroxyl group of the polyol-modified aromatic hydrocarbon formaldehyde resin and the isocyanate group of the aromatic group-containing diisocyanate is 0.50 to 0.95, and the polyol-modified aromatic carbon
  • the molar ratio (OH T /NCO) of the total hydroxyl groups of the hydrogen formaldehyde resin and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate compound to the isocyanate groups of the aromatic group-containing diisocyanate is 1.0 to 1.2.
  • the urethane (meth)acrylate resin according to any one of (1) to (4) which is obtained by reacting in the following ratio.
  • (6) The urethane (meth)acrylate resin according to any one of (1) to (5), wherein the polyol-modified aromatic hydrocarbon formaldehyde resin contains an ethylene glycol-modified xylene formaldehyde resin.
  • (7) The urethane (meth)acrylate according to any one of (1) to (6), wherein the aromatic group-containing diisocyanate is at least one aromatic diisocyanate selected from the group consisting of diphenylmethane diisocyanate and tolylene diisocyanate. resin.
  • (8) A curable resin composition containing the urethane (meth)acrylate resin according to any one of (1) to (7).
  • (9) A cured product obtained by curing the curable resin composition according to (8).
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be appropriately modified and implemented within the scope of the gist.
  • the description “XX to YY” means “XX or more and YY or less”.
  • (Meth)acrylate in the present specification means both “acrylate” and “methacrylate”. The same applies to other similar terms (“(meth)acrylic acid”, “(meth)acryloyl group”, etc.).
  • the urethane (meth)acrylate resin of this embodiment is obtained by reacting a polyol-modified aromatic hydrocarbon formaldehyde resin, an aromatic group-containing diisocyanate, and a hydroxyl group-containing (meth)acrylate compound. Since the urethane (meth)acrylate resin of the present embodiment contains a (meth)acryloyl group, it can be easily cured by irradiation with UV or heating. The obtained cured product has high hardness and high solvent resistance, and further has excellent adhesion and flexibility. It is considered that this is due to the excellent adhesiveness and flexibility which are the inherent properties of the aromatic hydrocarbon formaldehyde resin.
  • the urethane (meth)acrylate resin of the present embodiment is obtained from a polyol-modified aromatic hydrocarbon formaldehyde resin having a structure that is difficult to specify by analysis, and therefore, the urethane (meth)acrylate resin also has the same structure. Difficult to analyze and identify.
  • the weight average molecular weight (Mw) of the urethane (meth)acrylate resin of the present embodiment is preferably 500 to 100,000, more preferably 500 to 70,000, in terms of polystyrene, from the viewpoint of improving adhesion. , And more preferably 700 to 50,000.
  • the weight average molecular weight (Mw) can be measured by gel permeation chromatography (GPC).
  • the urethane (meth)acrylate resin of the present embodiment is obtained by reacting a polyol-modified aromatic hydrocarbon formaldehyde resin, an aromatic group-containing diisocyanate, and a hydroxyl group-containing (meth)acrylate compound.
  • the molar ratio (OH/NCO) of the hydroxyl group of the above polyol-modified aromatic hydrocarbon formaldehyde resin to the isocyanate group of the above aromatic group-containing diisocyanate is 0.50 to 0.95, and the above polyols are
  • the molar ratio (OH T /NCO) of the total hydroxyl groups of the modified aromatic hydrocarbon formaldehyde resin and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate compound to the isocyanate groups of the aromatic group-containing diisocyanate is 1.0 to Those obtained by reacting at a ratio of 1.2 are preferable.
  • the molar ratio (OH/NCO) of the hydroxyl group of the above polyol-modified aromatic hydrocarbon formaldehyde resin to the isocyanate group of the aromatic group-containing diisocyanate is more preferably 0.50 to 0.90, and 0.50. More preferably, it is from 0.80.
  • the molar ratio of the total hydroxyl groups (OH T ) of the hydroxyl groups of the polyol-modified aromatic hydrocarbon formaldehyde resin and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate compound to the isocyanate groups of the aromatic group-containing diisocyanate (OH T / NCO) is more preferably 1.0 to 1.1, still more preferably 1.0 to 1.05.
  • the hydroxyl value of the urethane (meth)acrylate resin of the present embodiment is preferably 40 mgKOH/g or less, more preferably 20 mgKOH/g or less, from the viewpoint of UV curability.
  • the lower limit is not particularly limited, but is, for example, 5 mgKOH/g or more.
  • the hydroxyl value can be measured by a method based on the acetic anhydride-pyridine method (JIS K 1557-1:2007).
  • the urethane (meth)acrylate in the present embodiment can sufficiently urethanize the hydroxyl group (alcoholic hydroxyl group) contained in the polyol-modified aromatic hydrocarbon formaldehyde resin. Therefore, it becomes possible to keep the hydroxyl value of the urethane (meth)acrylate resin low.
  • polyol-modified aromatic hydrocarbon formaldehyde resin refers to an aromatic hydrocarbon formaldehyde resin modified with polyols.
  • the aromatic hydrocarbon formaldehyde resin is obtained by reacting an aromatic hydrocarbon with formaldehyde.
  • aromatic hydrocarbon benzene, toluene, xylene, mesitylene, ethylbenzene, propylbenzene, decylbenzene, cyclohexylbenzene, biphenyl, methylbiphenyl, naphthalene, methylnaphthalene, dimethylnaphthalene, ethylnaphthalene, anthracene, methylanthracene, dimethylanthracene, At least one selected from the group consisting of ethylanthracene and binaphthyl can be mentioned.
  • Aromatic hydrocarbon formaldehyde resin of the present embodiment from the same viewpoint as above, a xylene formaldehyde resin obtained by reacting xylene with formaldehyde, a toluene formaldehyde resin obtained by reacting toluene with formaldehyde, and It preferably contains at least one selected from mesitylene formaldehyde resins obtained by reacting mesitylene and formaldehyde, and more preferably contains xylene formaldehyde resin.
  • the aromatic hydrocarbon formaldehyde resin may be a commercially available product or may be prepared by a known method.
  • Examples of commercially available products include "Nikanol LL" manufactured by Fudo Co., Ltd.
  • Known methods include, for example, a method of subjecting an aromatic hydrocarbon and formaldehyde to a condensation reaction in the presence of a catalyst by a method described in Japanese Patent Publication No. 37-5747.
  • Aliphatic polyols are preferred as the polyols.
  • the aliphatic polyol is not particularly limited, but trimethylolpropane, neopentyl glycol, ester glycol, spiroglycol, pentaerythritol, ethylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol.
  • the polyol-modified aromatic hydrocarbon formaldehyde resin preferably contains at least one selected from a polyol-modified xylene formaldehyde resin, a polyol-modified toluene formaldehyde resin, and a polyol-modified mesitylene formaldehyde resin, It is more preferable to include a polyol-modified xylene formaldehyde resin. Above all, it is preferable to contain an ethylene glycol-modified xylene formaldehyde resin.
  • the polyol-modified aromatic hydrocarbon formaldehyde resin of the present embodiment may be a commercially available product or may be prepared by a known method.
  • commercially available products include "K-100", “K-140", “K-100E” and “K-140E” manufactured by Fudoh Co., Ltd.
  • As a known method for example, as described in JP-A No. 04-224815, it can be produced by subjecting an aromatic hydrocarbon formaldehyde resin and a polyol to a condensation reaction under an acidic catalyst.
  • the hydroxyl value (OH value) of the polyol-modified aromatic hydrocarbon formaldehyde resin is preferably 100 to 400 mgKOH/g, more preferably 130 to 300 mgKOH/g, and further preferably 140 to 190 mgKOH/g. More preferable.
  • the properties (hardness, solvent resistance, etc.) of the resulting urethane (meth)acrylate and the properties of the polyol-modified aromatic hydrocarbon formaldehyde resin can be improved. You can secure a good balance.
  • the hydroxyl value can be measured by a method based on the acetic anhydride-pyridine method (JIS K 1557-1:2007).
  • the weight average molecular weight of GPC of the polyol-modified aromatic hydrocarbon formaldehyde resin of this embodiment is preferably 300 to 5,000, more preferably 400 to 1,000, and more preferably 500 to 1,000 in terms of polystyrene. It is more preferably 800 and even more preferably 550 to 700.
  • the weight average molecular weight is within the above range, it is possible to obtain a urethane (meth)acrylate resin which gives a cured film having excellent hardness, solvent resistance, flexibility and the like and also having excellent adhesion.
  • the aromatic group-containing diisocyanate in the present embodiment refers to an isocyanate compound having two isocyanate groups present in the molecule and an aromatic ring, and is not particularly limited as long as the requirements are satisfied.
  • aromatic group-containing diisocyanates include 2,4-toluylene diisocyanate, 2,6-toluylene diisocyanate, diphenylmethane diisocyanate, naphthene diisocyanate, tolylene diisocyanate, tolidine diisocyanate, diphenylmethylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, At least one selected from the group consisting of dibenzyl diisocyanate, phenylene diisocyanate, xylene diisocyanate and the like can be mentioned.
  • aromatic diisocyanate refers to an isocyanate compound in which two isocyanate groups existing in the molecule are directly bonded to an aromatic ring.
  • the hydroxyl group-containing (meth)acrylate compound in the present embodiment is not particularly limited as long as it is a compound having a hydroxyl group and a (meth)acryloyl group in at least one molecule.
  • Specific examples of the hydroxyl group-containing (meth)acrylate compound include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and 4-hydroxycyclohexyl (meth)acrylate.
  • Hydroxyalkyl (meth)acrylates such as 5-hydroxycyclooctyl (meth)acrylate, 2-hydroxy-3-phenyloxypropyl (meth)acrylate, pentaerythritol tri(meth)acrylate; polyethylene glycol mono(meth)acrylate, polypropylene Glycol mono(meth)acrylate; Hydroxy group-containing (meth)acrylamide such as N-methylol(meth)acrylamide; Reaction product obtained by reacting vinyl alcohol, vinylphenol, diglycidyl ester of bisphenol A with (meth)acrylic acid Etc. can be mentioned. Among these, hydroxyalkyl (meth)acrylate is preferable, and 2-hydroxyethyl (meth)acrylate is more preferable.
  • the urethane (meth)acrylate resin in the present embodiment is prepared by adding the above-mentioned polyol-modified aromatic hydrocarbon formaldehyde resin, aromatic group-containing diisocyanate compound, and hydroxyl group-containing (meth)acrylate to an organic solvent and reacting them. Can be manufactured. It can also be obtained by reacting a hydroxyl group-containing (meth)acrylate with a terminal isocyanate urethane prepolymer obtained by reacting the above-mentioned polyol-modified aromatic hydrocarbon formaldehyde resin with an aromatic group-containing diisocyanate compound.
  • All of the above reactions are reactions of a hydroxyl group and an isocyanate group, which are inert to the isocyanate group, that is, in the presence of a hydrocarbon-based or ester-based organic solvent, a common solvent such as dibutyltin dilaurate or dibutyltin diethylhexoate is used.
  • a urethanization catalyst it can be continuously carried out at a temperature of usually 10 to 100° C., preferably 30 to 90° C. for about 1 to 20 hours.
  • the molar ratio (OH/NCO) of the hydroxyl group of the polyol-modified aromatic hydrocarbon formaldehyde resin to the isocyanate group of the aromatic group-containing diisocyanate is 0.50 to 0.95, and the polyols are The molar ratio (OH T /NCO) of the total hydroxyl groups of the modified aromatic hydrocarbon formaldehyde resin and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate compound to the isocyanate groups of the aromatic group-containing diisocyanate is 1.0 to By reacting so as to be 1.2, it is possible to produce a urethane (meth)acrylate resin having excellent adhesion and flexibility, high hardness and high solvent resistance, which is preferable. A more preferable molar ratio is as described above.
  • urethanization catalysts such as dibutyltin dilaurate, dioctyltin dilaurate, bismuth tris-2-ethylhexanoate and zirconium tetraacetylacetonate can be used.
  • the urethanization catalyst can be used in an amount of usually 50 to 1,000 mass ppm, preferably 50 to 500 mass ppm, based on the total mass of the raw materials used in the reaction. However, in order to keep the properties of the obtained urethane (meth)acrylate good, it is preferable that the amount of the urethanization catalyst used is small.
  • the reaction in the presence of (meth)acrylate is preferably carried out in the presence of air or oxygen for the purpose of preventing the polymerization of the (meth)acryloyl group.
  • the reaction may be carried out by adding a commonly used polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether or 2,6-di-tert-butyl-4-methylphenol (BHT).
  • a commonly used polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether or 2,6-di-tert-butyl-4-methylphenol (BHT).
  • the curable resin composition of the present embodiment contains the urethane (meth)acrylate resin.
  • the curable resin composition contains a (meth)acrylate resin other than the urethane (meth)acrylate resin, an epoxy resin, a cyanate ester compound, a phenol resin, an oxetane resin, as long as the characteristics of the present embodiment are not impaired.
  • Resins such as benzoxazine compounds, various polymer compounds such as oligomers and elastomers, monomers having a polymerizable functional group such as compounds having an ethylenically unsaturated group, maleimide compounds, fillers, flame retardants, silane coupling agents , A wetting dispersant, a photopolymerization initiator, a photocuring initiator, a thermosetting accelerator, various additives and the like.
  • the components contained in the curable resin composition of the present embodiment are not particularly limited as long as they are generally used.
  • ultraviolet absorbers As various additives, ultraviolet absorbers, antioxidants, fluorescent whitening agents, photosensitizers, dyes, pigments, thickeners, lubricants, defoamers, leveling agents, surface conditioners, brighteners, polymerization inhibition Agents and the like.
  • the above-mentioned components other than the urethane (meth)acrylate resin may be used alone or in an appropriate mixture of two or more. Various amounts of each component can be prepared depending on the application.
  • the urethane (meth)acrylate resin in order to obtain the characteristics of the present embodiment, it is preferable that the urethane (meth)acrylate resin is 40% by mass or more.
  • the urethane (meth)acrylate resin in the curable resin composition is more preferably 60% by mass or more, further preferably 70% by mass or more.
  • the method for producing the curable resin composition of this embodiment is not particularly limited. For example, a method may be mentioned in which the above-mentioned components are sequentially mixed in a solvent and sufficiently stirred.
  • a known treatment for uniformly dissolving or dispersing each component can be performed, if necessary.
  • Stirring, mixing, kneading treatment for example, a stirring device for the purpose of dispersion such as an ultrasonic homogenizer, a device for mixing such as a three-roll, ball mill, bead mill, sand mill, or revolution or rotation type mixing device, etc. Can be appropriately performed by using a known device.
  • an organic solvent can be used if necessary.
  • the type of organic solvent is not particularly limited as long as it can dissolve the resin in the composition.
  • the organic solvent is not particularly limited, but examples thereof include ketones such as acetone, methyl ethyl ketone, and methyl cellosolve; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide; propylene glycol monomethyl ether and its acetate. Can be mentioned. These organic solvents can be used alone or in an appropriate mixture of two or more.
  • the cured product of this embodiment is obtained by curing the cured resin composition.
  • a cured product can be obtained by various known methods. Examples of the curing method include irradiation with UV and EUV, heating, and the like, and these can be used in combination. Since the urethane (meth)acrylate resin of the present embodiment has high reactivity, it is suitable for a highly productive process of instant curing with UV or EUV. Further, since it has high reactivity, a high quality cured product can be stably supplied.
  • the urethane (meth)acrylate resin and the cured product of the present embodiment are suitably used for a protective coating material, an adhesive for various base materials, a sealing material, a film type liquid crystal element, a touch panel, an antireflection film for plastic optical parts, and the like. be able to.
  • Case of ultraviolet irradiation can adjust its dose optionally, the irradiation can be carried out, for example 0.05J / cm 2 ⁇ 10J / cm 2 of about dose.
  • the heating conditions may be appropriately selected depending on the urethane (meth)acrylate resin, each component in the composition containing the resin, the content of the resin and each component, and the like, but preferably 150° C. to 220° C.
  • the temperature is selected in the range of 20 to 180 minutes at 0°C, more preferably in the range of 160 to 200°C for 30 to 150 minutes.
  • the urethane (meth)acrylate resin, curable resin composition and cured product of the present embodiment can be used for various purposes.
  • Examples include leather and synthetic leather applications, polymerization raw materials, molding materials, gas separation membranes, fuel cell membranes, optical waveguides, holograms, and the like.
  • Weight average molecular weight (Mw) The weight average molecular weight (Mw) in terms of polystyrene was determined by GPC analysis. The equipment and analysis conditions used for the analysis are as follows. Equipment: Shodex GPC-101 type (Product of Showa Denko KK) Column: Shodex LF-804 x 3 (Showa Denko KK product) Eluent: Tetrahydrofuran Flow rate: 1.0 mL/min. Column temperature: 40°C Detector: RI (differential refraction detector)
  • Adhesion The obtained cured coating film was evaluated for adhesion by making 100 square notches at 1 mm intervals according to JIS K 5600-5-6:1999. The evaluation criteria are shown below. ⁇ : The number of squares that did not peel off was 90 or more in 100 squares. X: The number of squares that did not peel off was less than 90 in 100 squares.
  • Example 1 240 parts by mass of toluene, 205 parts by mass of diphenylmethane diisocyanate, K-140E (manufactured by Fudou Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mg KOH/g, weight average molecular weight: 580) 260 parts by mass in a 2 L three-necked flask, 2- 95 parts by mass of hydroxyethyl acrylate, 0.2 parts by mass of dibutyltin dilaurate, and 0.4 parts by mass of 2,6-tert-butyl-4-methylphenol (BHT) were charged and uniformly mixed (ethylene glycol modified xylene resin.
  • K-140E manufactured by Fudou Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mg KOH/g, weight average molecular weight: 580
  • the molar ratio (OH/NCO) of the hydroxyl groups of OH to the isocyanate groups of diphenylmethane diisocyanate is 0.50, and the molar ratio of the total hydroxyl groups (ethylene glycol modified xylene resin + 2-hydroxyethyl acrylate) to the isocyanate groups of diphenylmethane diisocyanate (OH T /NCO) is 1.0).
  • the temperature was raised to 70° C., the reaction was terminated by stirring the solution for 15 hours while controlling the temperature at 70° C., and the desired urethane (meth)acrylate resin solution A (weight average molecular weight: 3517) was obtained. Obtained.
  • the resin concentration in the obtained urethane (meth)acrylate resin solution A was 70% by mass.
  • Example 2 Using 161 parts by mass of tolylene diisocyanate instead of diphenylmethane diisocyanate, 292 parts by mass of K-140E (manufactured by Fudo Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mgKOH/g, weight average molecular weight: 580), 2-hydroxy A urethane (meth)acrylate resin solution B (weight average molecular weight: 2038) was obtained in the same manner as in Example 1 except that 107 parts by mass of ethyl acrylate was used (hydroxyl group of ethylene glycol-modified xylene resin and tolylene diisocyanate).
  • K-140E manufactured by Fudo Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mgKOH/g, weight average molecular weight: 580
  • 2-hydroxy A urethane (meth)acrylate resin solution B weight average molecular weight: 2038
  • Example 3 170 parts by mass of metaxylylene diisocyanate was used instead of diphenylmethane diisocyanate, and 286 parts by mass of K-140E (manufactured by Fudo Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mgKOH/g, weight average molecular weight: 580) Urethane (meth)acrylate resin solution C (weight average molecular weight: 2727) was obtained in the same manner as in Example 1 except that 105 parts by mass of hydroxyethyl acrylate was used (hydroxyl group of ethylene glycol-modified xylene resin and meta-xylylene).
  • the molar ratio (OH/NCO) of the diisocyanate to the isocyanate group is 0.50, and the molar ratio of the total hydroxyl groups (ethylene glycol modified xylene resin + 2-hydroxyethyl acrylate) to the isocyanate group of the metaxylylene diisocyanate (OH T / NCO) is 1.0).
  • the resin concentration in the obtained urethane (meth)acrylate resin solution C was 70% by mass.
  • urethane (meth)acrylate resin solution D weight average molecular weight: 3621 was obtained in the same manner as in Example 1 except that 94 parts by mass of 2-hydroxyethyl acrylate was used.
  • the resin concentration in the obtained urethane (meth)acrylate resin solution D was 70%.
  • Examples 4 to 6 and Comparative Examples 4 to 6 The urethane (meth)acrylate resin solutions A to F obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were mixed with a photopolymerization initiator (manufactured by BASF, Irgacure (registered trademark) 184) to obtain a curable composition. A resin composition was obtained.
  • this curable resin composition was applied onto various base materials using a bar coater, and then at 100° C. for 2 min. After drying, UV irradiation was performed using an ultraviolet irradiation device (high pressure mercury lamp, manufactured by Eye Graphics Co., Ltd., ECS-1511U) so as to be 500 mJ/cm 2 to obtain a cured coating film. Each of the above evaluation tests was carried out on the obtained cured coating film. The results are shown in Table 1.
  • the base material used is as follows.

Abstract

Provided is a urethane (meth)acrylate resin obtained by reacting: a polyol-modified aromatic hydrocarbon formaldehyde resin, in which an aromatic hydrocarbon formaldehyde resin is modified by a polyol; an aromatic-group-containing diisocyanate; and a hydroxyl-group-containing (meth)acrylate compound.

Description

ウレタン(メタ)アクリレート樹脂、硬化性樹脂組成物、及び硬化物Urethane (meth)acrylate resin, curable resin composition, and cured product
 本発明は、ウレタン(メタ)アクリレート樹脂、硬化性樹脂組成物、及び硬化物に関する。 The present invention relates to a urethane (meth)acrylate resin, a curable resin composition, and a cured product.
 近年、各種基材表面の擦傷防止や汚染防止のための保護コーティング材、各種基材の接着剤、シーリング材、フィルム型液晶素子、タッチパネル、およびプラスチック光学部品等の反射防止膜の用途において、硬度、柔軟性、耐擦傷性、耐摩耗性、低カール性、高屈折率、密着性および透明性に優れた硬化膜を形成し得る硬化性樹脂組成物が要求されている。これらの要求性能の中でも、近年、特に密着性と柔軟性、および硬度の両立が求められている。このような要求を満たすために、種々の組成物が提案されているが、硬化膜が高硬度であるとともに、密着性及び柔軟性にも優れているという特性を備えた硬化性樹脂組成物はまだ得られていないのが現状である。 In recent years, the hardness of anti-reflection coatings such as protective coating materials for preventing scratches and contamination of various base materials, adhesives for various base materials, sealing materials, film type liquid crystal elements, touch panels, and plastic optical parts There is a demand for a curable resin composition capable of forming a cured film having excellent flexibility, scratch resistance, abrasion resistance, low curl property, high refractive index, adhesion and transparency. Among these required performances, in recent years, it has been particularly demanded that the adhesion, flexibility, and hardness are compatible. In order to meet such requirements, various compositions have been proposed, but a curable resin composition having characteristics that a cured film has high hardness and also has excellent adhesion and flexibility is provided. The current situation is that it has not been obtained yet.
 例えば特許文献1には、1分子中に1個の水酸基を有する(メタ)アクリレート、芳香族ジイソシアネート及び任意成分としてジオール化合物との反応物であって分子中にビスフェノールメタン構造を有するウレタン(メタ)アクリレート、希釈剤及び光重合開始剤としてのメチルベンゾイルホルメートを含有することを特徴とする光学材料用樹脂組成物が提案されている。
 特許文献2には、ポリカーボネート基材に対する接着性に優れた活性エネルギー線硬化型樹脂組成物として、特定のウレタン(メタ)アクリレート系オリゴマーを含有してなる活性エネルギー線硬化型樹脂組成物が提案されている。
 特許文献3には、硬度や擦傷性に優れると共にカールやクラックの発生も少ない硬化皮膜、及びそれを与えるウレタン(メタ)アクリレート化合物が提案されている。
 特許文献4には、ウレタン(メタ)アクリレート系組成物を含有してなる活性エネルギー線硬化性樹脂組成物及びコーティング剤に関し、硬化塗膜を形成した際に、硬化収縮が小さくカールがしにくく、更に屈曲性にも優れた塗膜を形成することができる活性エネルギー線硬化性樹脂組成物が提案されている。
For example, in Patent Document 1, a urethane (meth) having a bisphenolmethane structure in a molecule, which is a reaction product of a (meth)acrylate having one hydroxyl group in one molecule, an aromatic diisocyanate, and an optional diol compound. A resin composition for an optical material has been proposed, which contains an acrylate, a diluent and methylbenzoyl formate as a photopolymerization initiator.
Patent Document 2 proposes an active energy ray-curable resin composition containing a specific urethane (meth)acrylate oligomer as an active energy ray-curable resin composition having excellent adhesion to a polycarbonate substrate. ing.
Patent Document 3 proposes a cured film that is excellent in hardness and scratch resistance and has less curl and cracks, and a urethane (meth)acrylate compound that provides the cured film.
Patent Document 4 relates to an active energy ray-curable resin composition containing a urethane (meth)acrylate composition and a coating agent, and when a cured coating film is formed, curing shrinkage is small and curling is difficult, Further, an active energy ray-curable resin composition capable of forming a coating film excellent in flexibility has been proposed.
特開平10-324726号公報Japanese Patent Laid-Open No. 10-324726 特開2006-45361号公報JP, 2006-45361, A 国際公開第2010/146801号International Publication No. 2010/146801 特開2017-203068号公報JP, 2017-203068, A
 上述のように、種々のウレタン(メタ)アクリレート樹脂組成物が提案されているが、硬度、耐溶剤性、密着性、低カール性、柔軟性の全てに優れる硬化膜を与える硬化性樹脂組成物は得られていないのが現状である。
 特許文献1では速硬化性、メタクリル樹脂への密着性を主たる目的としているが、柔軟性や低カール性などの性能には言及されていない。
 特許文献2はポリカーボネート板への接着性に優れるものの、他の樹脂基板への接着性や硬度、耐溶剤性、低カール性、柔軟性などの性能には言及されていない。
 特許文献3、4は硬度について優れているが、柔軟性、低カール性の改良を目的としているが、柔軟性、低カール性についてはまだ改善の余地がある。
As described above, various urethane (meth)acrylate resin compositions have been proposed, but a curable resin composition that gives a cured film excellent in hardness, solvent resistance, adhesion, low curling property, and flexibility. Is not obtained at present.
In Patent Document 1, the main purpose is fast curing and adhesion to a methacrylic resin, but performances such as flexibility and low curl are not mentioned.
Although Patent Document 2 has excellent adhesiveness to a polycarbonate plate, it does not mention performance such as adhesiveness to other resin substrates, hardness, solvent resistance, low curl property, and flexibility.
Although Patent Documents 3 and 4 are excellent in hardness, they are intended to improve flexibility and low curl, but there is still room for improvement in flexibility and low curl.
 本発明は、上記事情に鑑みてなされたものであって、硬度、耐溶剤性、柔軟性、低カール性に加え、密着性にも優れる硬化膜を与えることができるウレタン(メタ)アクリレート樹脂、並びに当該樹脂を含む硬化性樹脂組成物及び当該樹脂組成物の硬化物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and in addition to hardness, solvent resistance, flexibility and low curl, a urethane (meth)acrylate resin capable of giving a cured film excellent in adhesion, Another object is to provide a curable resin composition containing the resin and a cured product of the resin composition.
 本発明者らは、鋭意検討した結果、芳香族炭化水素ホルムアルデヒド樹脂をポリオール類により変性したポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂と、芳香族基含有ジイソシアネートと、水酸基含有アクリレートとを反応させて得られる、ウレタン(メタ)アクリレート樹脂が、上記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the present inventors have obtained by reacting a polyol-modified aromatic hydrocarbon formaldehyde resin obtained by modifying an aromatic hydrocarbon formaldehyde resin with a polyol, an aromatic group-containing diisocyanate, and a hydroxyl group-containing acrylate. It has been found that a urethane (meth)acrylate resin that can be used to solve the above-mentioned problems has led to the completion of the present invention.
 すなわち、本発明は以下の通りである。
(1)
 芳香族炭化水素ホルムアルデヒド樹脂をポリオール類により変性したポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂と、芳香族基含有ジイソシアネートと、水酸基含有(メタ)アクリレート化合物とを反応させて得られる、ウレタン(メタ)アクリレート樹脂。
(2)
 重量平均分子量(Mw)が500~100,000である、(1)に記載のウレタン(メタ)アクリレート樹脂。
(3)
 前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の重量平均分子量が300~5,000である、(1)又は(2)に記載のウレタン(メタ)アクリレート樹脂。
(4)
 前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基価が100~400mgKOH/gである、(1)~(3)のいずれか一つに記載のウレタン(メタ)アクリレート樹脂。
(5)
 前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と、前記芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OH/NCO)が0.50~0.95であり、前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と前記水酸基含有(メタ)アクリレート化合物の水酸基との合計水酸基と、前記芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OHT/NCO)が1.0~1.2となる比率で反応させて得られる、(1)~(4)のいずれか一つに記載のウレタン(メタ)アクリレート樹脂。
(6)
 前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂が、エチレングリコール変性キシレンホルムアルデヒド樹脂を含有する、(1)~(5)のいずれか一つに記載のウレタン(メタ)アクリレート樹脂。
(7)
 前記芳香族基含有ジイソシアネートが、ジフェニルメタンジイソシアネート及びトリレンジイソシアネートからなる群から選ばれる少なくとも1種の芳香族ジイソシアネートである、(1)~(6)のいずれか一つに記載のウレタン(メタ)アクリレート樹脂。
(8)
 (1)~(7)のいずれか一つに記載のウレタン(メタ)アクリレート樹脂を含む、硬化性樹脂組成物。
(9)
 (8)に記載の硬化性樹脂組成物を硬化して得られる硬化物。
That is, the present invention is as follows.
(1)
Urethane (meth)acrylate obtained by reacting a polyol-modified aromatic hydrocarbon formaldehyde resin obtained by modifying an aromatic hydrocarbon formaldehyde resin with a polyol, an aromatic group-containing diisocyanate, and a hydroxyl group-containing (meth)acrylate compound. resin.
(2)
The urethane (meth)acrylate resin according to (1), which has a weight average molecular weight (Mw) of 500 to 100,000.
(3)
The urethane (meth)acrylate resin according to (1) or (2), wherein the polyol modified aromatic hydrocarbon formaldehyde resin has a weight average molecular weight of 300 to 5,000.
(4)
The urethane (meth)acrylate resin according to any one of (1) to (3), wherein the polyol-modified aromatic hydrocarbon formaldehyde resin has a hydroxyl value of 100 to 400 mgKOH/g.
(5)
The molar ratio (OH/NCO) between the hydroxyl group of the polyol-modified aromatic hydrocarbon formaldehyde resin and the isocyanate group of the aromatic group-containing diisocyanate is 0.50 to 0.95, and the polyol-modified aromatic carbon The molar ratio (OH T /NCO) of the total hydroxyl groups of the hydrogen formaldehyde resin and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate compound to the isocyanate groups of the aromatic group-containing diisocyanate is 1.0 to 1.2. The urethane (meth)acrylate resin according to any one of (1) to (4), which is obtained by reacting in the following ratio.
(6)
The urethane (meth)acrylate resin according to any one of (1) to (5), wherein the polyol-modified aromatic hydrocarbon formaldehyde resin contains an ethylene glycol-modified xylene formaldehyde resin.
(7)
The urethane (meth)acrylate according to any one of (1) to (6), wherein the aromatic group-containing diisocyanate is at least one aromatic diisocyanate selected from the group consisting of diphenylmethane diisocyanate and tolylene diisocyanate. resin.
(8)
A curable resin composition containing the urethane (meth)acrylate resin according to any one of (1) to (7).
(9)
A cured product obtained by curing the curable resin composition according to (8).
 本発明によれば、硬度、耐溶剤性、柔軟性、低カール性を兼ね備え、さらに密着性にも優れる硬化膜を与えることができる。 According to the present invention, it is possible to provide a cured film having hardness, solvent resistance, flexibility, and low curl, and further having excellent adhesion.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。本明細書において、「XX~YY」の記載は、「XX以上YY以下」を意味する。 Hereinafter, a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be appropriately modified and implemented within the scope of the gist. In the present specification, the description “XX to YY” means “XX or more and YY or less”.
 本明細書における「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を意味する。他の類似用語(「(メタ)アクリル酸」、「(メタ)アクリロイル基」等)についても同様である。 “(Meth)acrylate” in the present specification means both “acrylate” and “methacrylate”. The same applies to other similar terms (“(meth)acrylic acid”, “(meth)acryloyl group”, etc.).
[ウレタン(メタ)アクリレート樹脂]
 本実施形態のウレタン(メタ)アクリレート樹脂は、ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂と、芳香族基含有ジイソシアネートと、水酸基含有(メタ)アクリレート化合物とを反応させて得られる。
 本実施形態のウレタン(メタ)アクリレート樹脂は(メタ)アクリロイル基を含むため、UV等の照射又は加熱により容易に硬化させることができる。得られた硬化物は高い硬度及び高い耐溶剤性を有するとともに、密着性及び柔軟性にもさらに優れる。これは、芳香族炭化水素ホルムアルデヒド樹脂の固有の特性である優れた密着性及び柔軟性に起因しているものと考えられる。
[Urethane (meth)acrylate resin]
The urethane (meth)acrylate resin of this embodiment is obtained by reacting a polyol-modified aromatic hydrocarbon formaldehyde resin, an aromatic group-containing diisocyanate, and a hydroxyl group-containing (meth)acrylate compound.
Since the urethane (meth)acrylate resin of the present embodiment contains a (meth)acryloyl group, it can be easily cured by irradiation with UV or heating. The obtained cured product has high hardness and high solvent resistance, and further has excellent adhesion and flexibility. It is considered that this is due to the excellent adhesiveness and flexibility which are the inherent properties of the aromatic hydrocarbon formaldehyde resin.
 本実施形態のウレタン(メタ)アクリレート樹脂は、分析による特定が困難である構造を有するポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂を原料として得られるため、ウレタン(メタ)アクリレート樹脂もまた、その構造を分析して特定することが困難である。 The urethane (meth)acrylate resin of the present embodiment is obtained from a polyol-modified aromatic hydrocarbon formaldehyde resin having a structure that is difficult to specify by analysis, and therefore, the urethane (meth)acrylate resin also has the same structure. Difficult to analyze and identify.
 本実施形態のウレタン(メタ)アクリレート樹脂の重量平均分子量(Mw)は、密着性向上の観点から、ポリスチレン換算で、好ましくは500~100,000であり、より好ましくは500~70,000であり、更に好ましくは700~50,000である。重量平均分子量(Mw)は、ゲルパーミエイションクロマトグラフィー(GPC)により測定することができる。 The weight average molecular weight (Mw) of the urethane (meth)acrylate resin of the present embodiment is preferably 500 to 100,000, more preferably 500 to 70,000, in terms of polystyrene, from the viewpoint of improving adhesion. , And more preferably 700 to 50,000. The weight average molecular weight (Mw) can be measured by gel permeation chromatography (GPC).
 本実施形態のウレタン(メタ)アクリレート樹脂は、上記した通り、ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂と、芳香族基含有ジイソシアネートと、水酸基含有(メタ)アクリレート化合物とを反応させて得られ、具体的には、上記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と、上記芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OH/NCO)が0.50~0.95であり、上記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と上記水酸基含有(メタ)アクリレート化合物の水酸基との合計水酸基と、上記芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OHT/NCO)が1.0~1.2となる比率で反応させて得られるものが好ましい。
 ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水素基と、芳香族基含有ジイソシアネートのイソシアネート基と、水酸基含有(メタ)アクリレートの水酸基との各モル比が上記範囲にあることで、密着性及び柔軟性に優れると共に、高い硬度及び高い耐溶剤性を有するウレタン(メタ)アクリレート樹脂を得ることができる。
As described above, the urethane (meth)acrylate resin of the present embodiment is obtained by reacting a polyol-modified aromatic hydrocarbon formaldehyde resin, an aromatic group-containing diisocyanate, and a hydroxyl group-containing (meth)acrylate compound. Specifically, the molar ratio (OH/NCO) of the hydroxyl group of the above polyol-modified aromatic hydrocarbon formaldehyde resin to the isocyanate group of the above aromatic group-containing diisocyanate is 0.50 to 0.95, and the above polyols are The molar ratio (OH T /NCO) of the total hydroxyl groups of the modified aromatic hydrocarbon formaldehyde resin and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate compound to the isocyanate groups of the aromatic group-containing diisocyanate is 1.0 to Those obtained by reacting at a ratio of 1.2 are preferable.
Adhesion and flexibility when the molar ratios of the hydrogen groups of the polyol-modified aromatic hydrocarbon formaldehyde resin, the isocyanate groups of the aromatic group-containing diisocyanate, and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate are within the above ranges. It is possible to obtain a urethane (meth)acrylate resin having excellent hardness and high solvent resistance.
 上記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と、芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OH/NCO)が、0.50~0.90であることがより好ましく、0.50~0.80であることがさらに好ましい。
 上記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と上記水酸基含有(メタ)アクリレート化合物の水酸基との合計水酸基(OHT)と、上記芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OHT/NCO)が1.0~1.1であることがより好ましく、1.0~1.05であることがさらに好ましい。
The molar ratio (OH/NCO) of the hydroxyl group of the above polyol-modified aromatic hydrocarbon formaldehyde resin to the isocyanate group of the aromatic group-containing diisocyanate is more preferably 0.50 to 0.90, and 0.50. More preferably, it is from 0.80.
The molar ratio of the total hydroxyl groups (OH T ) of the hydroxyl groups of the polyol-modified aromatic hydrocarbon formaldehyde resin and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate compound to the isocyanate groups of the aromatic group-containing diisocyanate (OH T / NCO) is more preferably 1.0 to 1.1, still more preferably 1.0 to 1.05.
 本実施形態のウレタン(メタ)アクリレート樹脂の水酸基価は、UV硬化性の観点から、好ましくは40mgKOH/g以下であり、より好ましくは20mgKOH/g以下である。下限は特に限定されないが、例えば5mgKOH/g以上である。水酸基価は、無水酢酸-ピリジン法(JIS K 1557-1:2007)に準拠した方法により測定できる。
 本実施形態におけるウレタン(メタ)アクリレートは、ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂中に含まれる水酸基(アルコール性水酸基)を十分にウレタン化することが可能である。したがって、ウレタン(メタ)アクリレート樹脂の水酸基価を低く抑えることが可能となる。
The hydroxyl value of the urethane (meth)acrylate resin of the present embodiment is preferably 40 mgKOH/g or less, more preferably 20 mgKOH/g or less, from the viewpoint of UV curability. The lower limit is not particularly limited, but is, for example, 5 mgKOH/g or more. The hydroxyl value can be measured by a method based on the acetic anhydride-pyridine method (JIS K 1557-1:2007).
The urethane (meth)acrylate in the present embodiment can sufficiently urethanize the hydroxyl group (alcoholic hydroxyl group) contained in the polyol-modified aromatic hydrocarbon formaldehyde resin. Therefore, it becomes possible to keep the hydroxyl value of the urethane (meth)acrylate resin low.
[ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂]
 本実施形態において、ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂とは、芳香族炭化水素ホルムアルデヒド樹脂をポリオール類により変性したものをいう。
[Polyol-modified aromatic hydrocarbon formaldehyde resin]
In the present embodiment, the polyol-modified aromatic hydrocarbon formaldehyde resin refers to an aromatic hydrocarbon formaldehyde resin modified with polyols.
(芳香族炭化水素ホルムアルデヒド樹脂)
 上記芳香族炭化水素ホルムアルデヒド樹脂は、芳香族炭化水素とホルムアルデヒドとを反応させることにより得られる。芳香族炭化水素としては、ベンゼン、トルエン、キシレン、メシチレン、エチルベンゼン、プロピルベンゼン、デシルベンゼン、シクロヘキシルベンゼン、ビフェニル、メチルビフェニル、ナフタレン、メチルナフタレン、ジメチルナフタレン、エチルナフタレン、アントラセン、メチルアントラセン、ジメチルアントラセン、エチルアントラセン、及びビナフチルからなる群より選ばれる少なくとも1種が挙げられる。より粘接着性に優れる観点から、キシレン、トルエン、及びメシチレンからなる群より選ばれる少なくとも1種であることが好ましく、キシレンであることがより好ましい。本実施形態の芳香族炭化水素ホルムアルデヒド樹脂は、上記と同様の観点から、キシレンとホルムアルデヒドとを反応させることにより得られるキシレンホルムアルデヒド樹脂、トルエンとホルムアルデヒドとを反応させることにより得られるトルエンホルムアルデヒド樹脂、及びメシチレンとホルムアルデヒドとを反応させることにより得られるメシチレンホルムアルデヒド樹脂から選ばれる少なくとも1種を含むことが好ましく、キシレンホルムアルデヒド樹脂を含むことがより好ましい。
(Aromatic hydrocarbon formaldehyde resin)
The aromatic hydrocarbon formaldehyde resin is obtained by reacting an aromatic hydrocarbon with formaldehyde. As the aromatic hydrocarbon, benzene, toluene, xylene, mesitylene, ethylbenzene, propylbenzene, decylbenzene, cyclohexylbenzene, biphenyl, methylbiphenyl, naphthalene, methylnaphthalene, dimethylnaphthalene, ethylnaphthalene, anthracene, methylanthracene, dimethylanthracene, At least one selected from the group consisting of ethylanthracene and binaphthyl can be mentioned. From the viewpoint of more excellent adhesiveness, at least one selected from the group consisting of xylene, toluene, and mesitylene is preferable, and xylene is more preferable. Aromatic hydrocarbon formaldehyde resin of the present embodiment, from the same viewpoint as above, a xylene formaldehyde resin obtained by reacting xylene with formaldehyde, a toluene formaldehyde resin obtained by reacting toluene with formaldehyde, and It preferably contains at least one selected from mesitylene formaldehyde resins obtained by reacting mesitylene and formaldehyde, and more preferably contains xylene formaldehyde resin.
 芳香族炭化水素ホルムアルデヒド樹脂は、市販品を用いてもよく、公知の方法により調製してもよい。市販品としては、例えば、フドー株式会社製の「ニカノールLL」が挙げられる。公知の方法としては、例えば、特公昭37-5747号公報などに記載された方法により、芳香族炭化水素及びホルムアルデヒドを、触媒の存在下で縮合反応させる方法が挙げられる。 The aromatic hydrocarbon formaldehyde resin may be a commercially available product or may be prepared by a known method. Examples of commercially available products include "Nikanol LL" manufactured by Fudo Co., Ltd. Known methods include, for example, a method of subjecting an aromatic hydrocarbon and formaldehyde to a condensation reaction in the presence of a catalyst by a method described in Japanese Patent Publication No. 37-5747.
(ポリオール類)
 ポリオール類としては、脂肪族ポリオールが好ましい。脂肪族ポリオールとしては、特に限定されないが、トリメチロールプロパン、ネオペンチルグリコール、エステルグリコール、スピログリコール、ペンタエリスリトール、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,2-ヘキサンジオール、トリメチロールエタン、1,2-オクタンジオール、1,10-デカンジオール、3-ヘキシン-2,5-ジオール、2,5-ジメチル-3-ヘキシン-2,5-ジオール、2,2,4-トリメチル-1,3-ペンタンジオール、ポリエチレングリコール、及びポリオキシプロピレングリコール等を挙げることができる。これらの中でも、トリメチロールプロパン及びエチレングリコールがより好ましい。これらのポリオール類は、1種を単独で、又は2種以上を組み合わせて用いることができる。
(Polyols)
Aliphatic polyols are preferred as the polyols. The aliphatic polyol is not particularly limited, but trimethylolpropane, neopentyl glycol, ester glycol, spiroglycol, pentaerythritol, ethylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol. 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 2,5-hexanediol, 1,2-hexanediol, trimethylolethane, 1,2-octanediol, 1,10 -Decanediol, 3-hexyne-2,5-diol, 2,5-dimethyl-3-hexyne-2,5-diol, 2,2,4-trimethyl-1,3-pentanediol, polyethylene glycol, and poly Examples thereof include oxypropylene glycol. Among these, trimethylolpropane and ethylene glycol are more preferable. These polyols may be used alone or in combination of two or more.
 ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂は、柔軟性の観点から、ポリオール類変性キシレンホルムアルデヒド樹脂、ポリオール類変性トルエンホルムアルデヒド樹脂、及びポリオール類変性メシチレンホルムアルデヒド樹脂から選ばれる少なくとも1種を含むことが好ましく、ポリオール類変性キシレンホルムアルデヒド樹脂を含むことがより好ましい。中でも、エチレングリコール変性キシレンホルムアルデヒド樹脂を含むことが好ましい。 From the viewpoint of flexibility, the polyol-modified aromatic hydrocarbon formaldehyde resin preferably contains at least one selected from a polyol-modified xylene formaldehyde resin, a polyol-modified toluene formaldehyde resin, and a polyol-modified mesitylene formaldehyde resin, It is more preferable to include a polyol-modified xylene formaldehyde resin. Above all, it is preferable to contain an ethylene glycol-modified xylene formaldehyde resin.
 本実施形態のポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂は、市販品を用いてもよく、公知の方法により調製してもよい。市販品としては、例えば、フドー株式会社製の「K-100」、「K-140」、「K-100E」及び「K-140E」が挙げられる。公知の方法としては、例えば、特開平04-224815号公報に記載のように、芳香族炭化水素ホルムアルデヒド樹脂及びポリオール類を酸性触媒下で縮合反応させることにより製造することができる。 The polyol-modified aromatic hydrocarbon formaldehyde resin of the present embodiment may be a commercially available product or may be prepared by a known method. Examples of commercially available products include "K-100", "K-140", "K-100E" and "K-140E" manufactured by Fudoh Co., Ltd. As a known method, for example, as described in JP-A No. 04-224815, it can be produced by subjecting an aromatic hydrocarbon formaldehyde resin and a polyol to a condensation reaction under an acidic catalyst.
[ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の物性]
 ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基価(OH価)は、100~400mgKOH/gであることが好ましく、130~300mgKOH/gであることがより好ましく、140~190mgKOH/gであることがさらに好ましい。水酸基価が上記範囲となることにより、得られるウレタン(メタ)アクリレートとしての特性(硬度、耐溶剤性等)、及びポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の特性(密着性、柔軟性等)をバランスよく確保することができる。水酸基価は、無水酢酸-ピリジン法(JIS K 1557-1:2007)に準拠した方法により測定できる。
[Physical properties of polyol-modified aromatic hydrocarbon formaldehyde resin]
The hydroxyl value (OH value) of the polyol-modified aromatic hydrocarbon formaldehyde resin is preferably 100 to 400 mgKOH/g, more preferably 130 to 300 mgKOH/g, and further preferably 140 to 190 mgKOH/g. More preferable. When the hydroxyl value is in the above range, the properties (hardness, solvent resistance, etc.) of the resulting urethane (meth)acrylate and the properties of the polyol-modified aromatic hydrocarbon formaldehyde resin (adhesion, flexibility, etc.) can be improved. You can secure a good balance. The hydroxyl value can be measured by a method based on the acetic anhydride-pyridine method (JIS K 1557-1:2007).
 本実施形態のポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂のGPCにおける重量平均分子量は、ポリスチレン換算で、300~5,000であることが好ましく、400~1,000であることがより好ましく、500~800であることがさらに好ましく、550~700であることがよりさらに好ましい。重量平均分子量が上記範囲にあることにより、硬度、耐溶剤性、柔軟性等に優れ、かつ密着性にも優れる硬化膜を与えるウレタン(メタ)アクリレート樹脂を得ることができる。 The weight average molecular weight of GPC of the polyol-modified aromatic hydrocarbon formaldehyde resin of this embodiment is preferably 300 to 5,000, more preferably 400 to 1,000, and more preferably 500 to 1,000 in terms of polystyrene. It is more preferably 800 and even more preferably 550 to 700. When the weight average molecular weight is within the above range, it is possible to obtain a urethane (meth)acrylate resin which gives a cured film having excellent hardness, solvent resistance, flexibility and the like and also having excellent adhesion.
[芳香族基含有ジイソシアネート]
 本実施形態における芳香族基含有ジイソシアネートとは、分子中に存在する2つのイソシアネート基と芳香環とを有するイソシアネート化合物を指し、該要件を満たす限り特に限定されない。具体的な芳香族基含有ジイソシアネートとしては、2,4-トルイレンジイソシアネート、2,6-トルイレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフテンジイソシアネート、トリレンジイソシアネート、トリジンジイソシアネート、ジフェニルメチルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、ジベンジルジイソシアネート、フェニレンジイソシアネート及びキシレンジイソシアネート等からなる群から選択される少なくとも1種を挙げることができる。
 中でも、芳香族基含有ジイソシアネートとして、ジフェニルメタンジイソシアネート及びトリレンジイソシアネートからなる群から選択される少なくとも1種の芳香族ジイソシアネートを用いることがより好ましい。「芳香族ジイソシアネート」とは、分子中に存在する2つのイソシアネート基が芳香環に直結しているイソシアネート化合物のことを指す。
[Aromatic group-containing diisocyanate]
The aromatic group-containing diisocyanate in the present embodiment refers to an isocyanate compound having two isocyanate groups present in the molecule and an aromatic ring, and is not particularly limited as long as the requirements are satisfied. Specific aromatic group-containing diisocyanates include 2,4-toluylene diisocyanate, 2,6-toluylene diisocyanate, diphenylmethane diisocyanate, naphthene diisocyanate, tolylene diisocyanate, tolidine diisocyanate, diphenylmethylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, At least one selected from the group consisting of dibenzyl diisocyanate, phenylene diisocyanate, xylene diisocyanate and the like can be mentioned.
Among them, it is more preferable to use at least one aromatic diisocyanate selected from the group consisting of diphenylmethane diisocyanate and tolylene diisocyanate as the aromatic group-containing diisocyanate. The "aromatic diisocyanate" refers to an isocyanate compound in which two isocyanate groups existing in the molecule are directly bonded to an aromatic ring.
[水酸基含有(メタ)アクリレート化合物]
 本実施形態における水酸基含有(メタ)アクリレート化合物は、少なくとも1分子中に水酸基及び(メタ)アクリロイル基を有する化合物であれば、特に限定されない。具体的な水酸基含有(メタ)アクリレート化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシシクロヘキシル(メタ)アクリレート、5-ヒドロキシシクロオクチル(メタ)アクリレート、2-ヒドロキシ-3-フェニルオキシプロピル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート;N-メチロール(メタ)アクリルアミド等のヒドロキシ基含有(メタ)アクリルアミド;ビニルアルコール、ビニルフェノール、ビスフェノールAのジグリシジルエステルに(メタ)アクリル酸を反応させて得られる反応物等を挙げることができる。これらの中でも、ヒドロキシアルキル(メタ)アクリレートが好ましく、2-ヒドロキシエチル(メタ)アクリレートがより好ましい。
[Hydroxyl group-containing (meth)acrylate compound]
The hydroxyl group-containing (meth)acrylate compound in the present embodiment is not particularly limited as long as it is a compound having a hydroxyl group and a (meth)acryloyl group in at least one molecule. Specific examples of the hydroxyl group-containing (meth)acrylate compound include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, and 4-hydroxycyclohexyl (meth)acrylate. Hydroxyalkyl (meth)acrylates such as 5-hydroxycyclooctyl (meth)acrylate, 2-hydroxy-3-phenyloxypropyl (meth)acrylate, pentaerythritol tri(meth)acrylate; polyethylene glycol mono(meth)acrylate, polypropylene Glycol mono(meth)acrylate; Hydroxy group-containing (meth)acrylamide such as N-methylol(meth)acrylamide; Reaction product obtained by reacting vinyl alcohol, vinylphenol, diglycidyl ester of bisphenol A with (meth)acrylic acid Etc. can be mentioned. Among these, hydroxyalkyl (meth)acrylate is preferable, and 2-hydroxyethyl (meth)acrylate is more preferable.
[ウレタン(メタ)アクリレート樹脂の製造方法]
 本実施形態におけるウレタン(メタ)アクリレート樹脂は、上記したポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂と、芳香族基含有ジイソシアネート化合物と、水酸基含有(メタ)アクリレートを有機溶媒に投入し、反応させることにより製造できる。
 また、上記したポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂と、芳香族基含有ジイソシアネート化合物とを反応させて得られる末端イソシアネートウレタンプレポリマーに、水酸基含有(メタ)アクリレートを反応させて得ることもできる。
 上記反応はいずれも水酸基とイソシアネート基との反応であり、イソシアネート基に不活性な、すなわち、炭化水素系またはエステル系の有機溶媒存在下、ジブチルスズジラウレートやジブチルスズジエチルヘキソエートのような一般的なウレタン化触媒を用いて、通常10~100℃、好ましくは、30~90℃の温度範囲で、1~20時間程度継続して行うことができる。
[Method for producing urethane (meth)acrylate resin]
The urethane (meth)acrylate resin in the present embodiment is prepared by adding the above-mentioned polyol-modified aromatic hydrocarbon formaldehyde resin, aromatic group-containing diisocyanate compound, and hydroxyl group-containing (meth)acrylate to an organic solvent and reacting them. Can be manufactured.
It can also be obtained by reacting a hydroxyl group-containing (meth)acrylate with a terminal isocyanate urethane prepolymer obtained by reacting the above-mentioned polyol-modified aromatic hydrocarbon formaldehyde resin with an aromatic group-containing diisocyanate compound.
All of the above reactions are reactions of a hydroxyl group and an isocyanate group, which are inert to the isocyanate group, that is, in the presence of a hydrocarbon-based or ester-based organic solvent, a common solvent such as dibutyltin dilaurate or dibutyltin diethylhexoate is used. Using a urethanization catalyst, it can be continuously carried out at a temperature of usually 10 to 100° C., preferably 30 to 90° C. for about 1 to 20 hours.
 上述した通り、上記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と、上記芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OH/NCO)が0.50~0.95であり、上記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と上記水酸基含有(メタ)アクリレート化合物の水酸基との合計水酸基と、上記芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OHT/NCO)が1.0~1.2となるように反応させることにより、密着性及び柔軟性に優れると共に、高い硬度及び高い耐溶剤性を有するウレタン(メタ)アクリレート樹脂を製造することができるため好ましい。より好ましいモル比は上述した通りである。 As described above, the molar ratio (OH/NCO) of the hydroxyl group of the polyol-modified aromatic hydrocarbon formaldehyde resin to the isocyanate group of the aromatic group-containing diisocyanate is 0.50 to 0.95, and the polyols are The molar ratio (OH T /NCO) of the total hydroxyl groups of the modified aromatic hydrocarbon formaldehyde resin and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate compound to the isocyanate groups of the aromatic group-containing diisocyanate is 1.0 to By reacting so as to be 1.2, it is possible to produce a urethane (meth)acrylate resin having excellent adhesion and flexibility, high hardness and high solvent resistance, which is preferable. A more preferable molar ratio is as described above.
 ジブチルスズジラウレート、ジオクチルスズジラウレート、ビスマストリス2-エチルヘキサノエート、ジルコニウムテトラアセチルアセトネート等の公知のウレタン化触媒を用いることができる。該ウレタン化触媒は、反応に供される原料の合計質量基準で、通常50~1,000質量ppm、好ましくは50~500質量ppmの量で用いることができる。但し、得られるウレタン(メタ)アクリレートの性質を良好に保つためには、ウレタン化触媒の使用量は少ないほど好ましい。
 (メタ)アクリレートが存在する反応においては、(メタ)アクリロイル基の重合を防止するという目的で空気または酸素の存在下で行うのが好ましい。ハイドロキノンやハイドロキノンモノメチルエーテル、2,6-ジ-tert-ブチル-4-メチルフェノール(BHT)のような一般的に用いられている重合禁止剤を添加して反応を行ってもよい。
Known urethanization catalysts such as dibutyltin dilaurate, dioctyltin dilaurate, bismuth tris-2-ethylhexanoate and zirconium tetraacetylacetonate can be used. The urethanization catalyst can be used in an amount of usually 50 to 1,000 mass ppm, preferably 50 to 500 mass ppm, based on the total mass of the raw materials used in the reaction. However, in order to keep the properties of the obtained urethane (meth)acrylate good, it is preferable that the amount of the urethanization catalyst used is small.
The reaction in the presence of (meth)acrylate is preferably carried out in the presence of air or oxygen for the purpose of preventing the polymerization of the (meth)acryloyl group. The reaction may be carried out by adding a commonly used polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether or 2,6-di-tert-butyl-4-methylphenol (BHT).
[ウレタン(メタ)アクリレート樹脂を含む硬化性樹脂組成物]
 本実施形態の硬化性樹脂組成物は、上記ウレタン(メタ)アクリレート樹脂を含む。
 当該硬化性樹脂組成物には、本実施形態の特性が損なわれない範囲において、上記ウレタン(メタ)アクリレート樹脂以外の(メタ)アクリレート樹脂、エポキシ樹脂、シアン酸エステル化合物、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物などの樹脂、オリゴマー、エラストマー類などの種々の高分子化合物、エチレン性不飽和基を有する化合物などの重合性官能基を有するモノマー、マレイミド化合物、充填材、難燃剤、シランカップリング剤、湿潤分散剤、光重合開始剤、光硬化開始剤、熱硬化促進剤、各種添加剤などを含むことができる。本実施形態の硬化性樹脂組成物に含まれる成分は、一般に使用されているものであれば、特に限定されるものではない。
[Curable resin composition containing urethane (meth)acrylate resin]
The curable resin composition of the present embodiment contains the urethane (meth)acrylate resin.
The curable resin composition contains a (meth)acrylate resin other than the urethane (meth)acrylate resin, an epoxy resin, a cyanate ester compound, a phenol resin, an oxetane resin, as long as the characteristics of the present embodiment are not impaired. Resins such as benzoxazine compounds, various polymer compounds such as oligomers and elastomers, monomers having a polymerizable functional group such as compounds having an ethylenically unsaturated group, maleimide compounds, fillers, flame retardants, silane coupling agents , A wetting dispersant, a photopolymerization initiator, a photocuring initiator, a thermosetting accelerator, various additives and the like. The components contained in the curable resin composition of the present embodiment are not particularly limited as long as they are generally used.
 各種添加剤としては、紫外線吸収剤、酸化防止剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、表面調整剤、光沢剤、重合禁止剤などが挙げられる。
 ウレタン(メタ)アクリレート樹脂以外の上記成分は、1種を単独で、又は2種以上を適宜混合して使用することも可能である。各成分の配合量も、用途に応じて、種々調製できる。
As various additives, ultraviolet absorbers, antioxidants, fluorescent whitening agents, photosensitizers, dyes, pigments, thickeners, lubricants, defoamers, leveling agents, surface conditioners, brighteners, polymerization inhibition Agents and the like.
The above-mentioned components other than the urethane (meth)acrylate resin may be used alone or in an appropriate mixture of two or more. Various amounts of each component can be prepared depending on the application.
 本実施形態の硬化性樹脂組成物中、本実施形態の特性を得るため、上記ウレタン(メタ)アクリレート樹脂が40質量%以上であることが好ましい。硬化性樹脂組成物中のウレタン(メタ)アクリレート樹脂はより好ましくは60質量%以上であり、さらに好ましくは70質量%以上である。 In the curable resin composition of the present embodiment, in order to obtain the characteristics of the present embodiment, it is preferable that the urethane (meth)acrylate resin is 40% by mass or more. The urethane (meth)acrylate resin in the curable resin composition is more preferably 60% by mass or more, further preferably 70% by mass or more.
 本実施形態の硬化性樹脂組成物の製造方法は特に限定されない。例えば、上述した各成分を順次溶剤に配合し、十分に撹拌する方法が挙げられる。
 硬化樹脂組成物の製造時には、必要に応じて各成分を均一に溶解又は分散させるための公知の処理(撹拌、混合、混練処理など)を行うことができる。撹拌、混合、混練処理は、例えば、超音波ホモジナイザーなどの分散を目的とした撹拌装置、三本ロール、ボールミル、ビーズミル、サンドミルなどの混合を目的とした装置、又は公転若しくは自転型の混合装置などの公知の装置を用いて適宜行うことができる。
The method for producing the curable resin composition of this embodiment is not particularly limited. For example, a method may be mentioned in which the above-mentioned components are sequentially mixed in a solvent and sufficiently stirred.
At the time of producing the cured resin composition, a known treatment (stirring, mixing, kneading treatment, etc.) for uniformly dissolving or dispersing each component can be performed, if necessary. Stirring, mixing, kneading treatment, for example, a stirring device for the purpose of dispersion such as an ultrasonic homogenizer, a device for mixing such as a three-roll, ball mill, bead mill, sand mill, or revolution or rotation type mixing device, etc. Can be appropriately performed by using a known device.
 本実施形態の組成物の調製時においては、必要に応じて有機溶剤を使用することができる。有機溶剤の種類は、組成物中の樹脂を溶解可能なものであれば、特に限定されない。
 有機溶剤としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルセルソルブなどのケトン類;トルエン、キシレンなどの芳香族炭化水素類;ジメチルホルムアミドなどのアミド類;プロピレングリコールモノメチルエーテル及びそのアセテートが挙げられる。これら有機溶剤は、1種を単独で、又は2種以上を適宜混合して使用することが可能である。
When preparing the composition of the present embodiment, an organic solvent can be used if necessary. The type of organic solvent is not particularly limited as long as it can dissolve the resin in the composition.
The organic solvent is not particularly limited, but examples thereof include ketones such as acetone, methyl ethyl ketone, and methyl cellosolve; aromatic hydrocarbons such as toluene and xylene; amides such as dimethylformamide; propylene glycol monomethyl ether and its acetate. Can be mentioned. These organic solvents can be used alone or in an appropriate mixture of two or more.
[硬化物]
 本実施形態の硬化物は、上記硬化樹脂組成物を硬化して得られる。種々の公知の方法により硬化物を得ることができる。硬化方法としては、たとえば、UVやEUVなどによる照射や加熱などが挙げられ、これらを併用することも可能である。
 本実施形態のウレタン(メタ)アクリレート樹脂は、高い反応性を有するため、UVやEUVなどで瞬時に硬化する生産性の高いプロセスに好適である。また、高い反応性を有するため、高品質の硬化物を安定して供給できる。本実施形態のウレタン(メタ)アクリレート樹脂及び硬化物は、保護コーティング材、各種基材の接着剤、シーリング材、フィルム型液晶素子、タッチパネル、およびプラスチック光学部品等の反射防止膜等に好適に用いることができる。
[Cured product]
The cured product of this embodiment is obtained by curing the cured resin composition. A cured product can be obtained by various known methods. Examples of the curing method include irradiation with UV and EUV, heating, and the like, and these can be used in combination.
Since the urethane (meth)acrylate resin of the present embodiment has high reactivity, it is suitable for a highly productive process of instant curing with UV or EUV. Further, since it has high reactivity, a high quality cured product can be stably supplied. The urethane (meth)acrylate resin and the cured product of the present embodiment are suitably used for a protective coating material, an adhesive for various base materials, a sealing material, a film type liquid crystal element, a touch panel, an antireflection film for plastic optical parts, and the like. be able to.
 紫外線を照射させる場合は必要に応じてその照射量を調整することができ、例えば0.05J/cm2~10J/cm2程度の照射量で照射を行うことができる。
 加熱の条件は、ウレタン(メタ)アクリレート樹脂や、該樹脂を含む組成物中の各成分や、該樹脂及び各成分の含有量などに応じて適宜選択すればよいが、好ましくは150℃~220℃で20分間~180分間の範囲、より好ましくは160℃~200℃で30分間~150分間の範囲で選択される。
Case of ultraviolet irradiation can adjust its dose optionally, the irradiation can be carried out, for example 0.05J / cm 2 ~ 10J / cm 2 of about dose.
The heating conditions may be appropriately selected depending on the urethane (meth)acrylate resin, each component in the composition containing the resin, the content of the resin and each component, and the like, but preferably 150° C. to 220° C. The temperature is selected in the range of 20 to 180 minutes at 0°C, more preferably in the range of 160 to 200°C for 30 to 150 minutes.
[用途]
 本実施形態のウレタン(メタ)アクリレート樹脂、硬化性樹脂組成物及び硬化物は、種々の用途に使用できる。
 例えば、粘・接着剤、タッチパネルなどの家電用途、各種レンズ材料、歯科材料などの光学材料及び医療材料用途、塗料、コーティング剤、プライマーなどの自動車・建築材料用途、靴、鞄、ランドセルなどの人工皮革及び合成皮革用途、重合原料、成形材料、ガス分離膜、燃料電池用膜、光導波路、ホログラムなどが挙げられる。
[Use]
The urethane (meth)acrylate resin, curable resin composition and cured product of the present embodiment can be used for various purposes.
For example, adhesives, adhesives, home electric appliances such as touch panels, various lens materials, optical materials such as dental materials and medical materials, paints, coating agents, automotive applications such as primers, construction materials, shoes, bags, school bags, etc. Examples include leather and synthetic leather applications, polymerization raw materials, molding materials, gas separation membranes, fuel cell membranes, optical waveguides, holograms, and the like.
 特に、自動車用、モバイル端末・弱電製品用、光ディスク用、光ファイバー用、化粧品容器用、建材用・床用の自己修復性塗料・コーティング用各種UV硬化型塗料・コーティング材;UV硬化型インクジェットインキ、ナノインプリント用UV硬化型樹脂、3Dプリンタ用UV硬化型樹脂、感光性導電ペーストなどのUVインキ、UV硬化型接着剤、タッチパネル用OCA、タッチパネル用OCR、有機EL用シール材などのUV接着剤;シーリング材;バッファーコート膜用材料;レンズ(ピックアップレンズ、マイクロレンズ、眼鏡レンズ);偏光膜(液晶ディスプレイ用など);反射防止フィルム(表示デバイス用反射防止フィルムなど);タッチパネル用フィルム;フレキシブル基板用フィルム;PDP(プラズマディスプレイ)、LCD(液晶ディスプレイ)、VFD(真空蛍光ディスプレイ)、SED(表面伝導型電子放出素子ディスプレイ)、FED(電界放出ディスプレイ)、NED(ナノ・エミッシブ・ディスプレイ)、ブラウン管、電子ペーパーなどのディスプレイ(特に薄型ディスプレイ)用フィルム(フィルタ、保護フィルム、反射防止膜など)の光学材料に好適に利用できる。 In particular, various UV curable paints/coating materials for automobiles, mobile terminals/light electrical appliances, optical disks, optical fibers, cosmetic containers, building materials/floor self-healing paints/coatings; UV curable inkjet inks, UV curable resin for nanoimprint, UV curable resin for 3D printer, UV ink such as photosensitive conductive paste, UV curable adhesive, OCA for touch panel, OCR for touch panel, UV adhesive such as sealing material for organic EL; Sealing Materials; Buffer coat film materials; Lenses (pickup lenses, microlenses, spectacle lenses); Polarizing films (for liquid crystal displays, etc.); Antireflection films (display devices, antireflection films, etc.); Touch panel films; Flexible substrate films PDP (plasma display), LCD (liquid crystal display), VFD (vacuum fluorescent display), SED (surface conduction electron-emitting device display), FED (field emission display), NED (nano-emissive display), CRT, electron It can be suitably used as an optical material for films (filters, protective films, antireflection films, etc.) for displays (especially thin displays) such as paper.
 以下、実施例及び比較例により本発明を更に詳しく説明するが、本発明はこれらの実施例により何ら限定されない。
 本実施例及び比較例で採用した評価方法は以下の通りである。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
The evaluation methods used in this example and the comparative example are as follows.
(1)重量平均分子量(Mw)
 GPC分析により、ポリスチレン換算の重量平均分子量(Mw)を求めた。分析に用いた装置及び分析条件は下記の通りである。
 装置:Shоdex GPC-101型(昭和電工株式会社製製品)
 カラム:Shоdex LF-804×3(昭和電工株式会社製製品)
 溶離液:テトラヒドロフラン
 流速:1.0mL/min.
 カラム温度:40℃
 検出器:RI(示差屈折検出器)
(1) Weight average molecular weight (Mw)
The weight average molecular weight (Mw) in terms of polystyrene was determined by GPC analysis. The equipment and analysis conditions used for the analysis are as follows.
Equipment: Shodex GPC-101 type (Product of Showa Denko KK)
Column: Shodex LF-804 x 3 (Showa Denko KK product)
Eluent: Tetrahydrofuran Flow rate: 1.0 mL/min.
Column temperature: 40°C
Detector: RI (differential refraction detector)
(2)水酸基価(OH価,mgKOH/g)
 無水酢酸-ピリジン法(JIS K 1557-1:2007)に準じて測定した。
(2) Hydroxyl value (OH value, mgKOH/g)
It was measured according to the acetic anhydride-pyridine method (JIS K 1557-1:2007).
(3)ラビング試験
 得られた硬化塗膜について、アセトンを含浸させた綿棒でコート層を擦った。表面が未溶解であった場合は○、溶解した場合は×と評価した。
(3) Rubbing test The obtained cured coating film was rubbed with a cotton swab impregnated with acetone. When the surface was undissolved, it was evaluated as ○, and when it was dissolved, it was evaluated as ×.
(4)鉛筆硬度
 得られた硬化塗膜について、JIS K 5600-5-4:1999に準じて測定した。
(4) Pencil hardness The obtained cured coating film was measured according to JIS K 5600-5-4:1999.
(5)柔軟性
 得られた硬化塗膜について、JIS K 5600-5-1:1999に準拠して、下記基準に基づいて評価した。
○:直径2mmの芯棒で硬化膜に割れや剥がれがない。
×:直径2mmの芯棒で硬化膜に割れや剥がれが生じる。
(5) Flexibility The obtained cured coating film was evaluated based on the following criteria according to JIS K 5600-5-1:1999.
◯: With a core rod having a diameter of 2 mm, the cured film is not cracked or peeled.
X: A core rod having a diameter of 2 mm causes cracking or peeling of the cured film.
(6)カール性(四隅の跳ね上がり高さ)
 易接着PETフィルム(東洋紡株式会社製、コスモシャインA4100)に塗工し、硬化させた塗膜を10cm×10cmとなるように切り出し、四角の跳ね上がり高さの平均値(mm)をカール値として測定した。評価基準を以下に示す。
○:四角の跳ね上がり高さの平均値が5mm未満であった。
×:四角の跳ね上がり高さの平均値が5mm以上であった。
(6) Curl property (height at the four corners)
An easy-adhesion PET film (manufactured by Toyobo Co., Ltd., Cosmo Shine A4100) was applied, and the cured coating film was cut out to have a size of 10 cm×10 cm, and the average value (mm) of the rectangular rising height was measured as the curl value did. The evaluation criteria are shown below.
◯: The average value of the height of the squares jumped up was less than 5 mm.
X: The average value of the height of the squares jumped up was 5 mm or more.
(7)密着性
 得られた硬化塗膜について、JIS K 5600-5-6:1999に準じ、1mm間隔の100個のマス目状の切り込みを入れ、密着性の評価を行った。評価基準を以下に示す。
○:100個のマス目中、剥離しなかったマス目の数が90以上であった。
×:100個のマス目中、剥離しなかったマス目の数が90未満であった。
(7) Adhesion The obtained cured coating film was evaluated for adhesion by making 100 square notches at 1 mm intervals according to JIS K 5600-5-6:1999. The evaluation criteria are shown below.
◯: The number of squares that did not peel off was 90 or more in 100 squares.
X: The number of squares that did not peel off was less than 90 in 100 squares.
<実施例1>
 2Lの三口フラスコにトルエン240質量部、ジフェニルメタンジイソシアネート205質量部、K-140E(フドー株式会社製、エチレングリコール変性キシレン樹脂、水酸基価:177mgKOH/g、重量平均分子量:580)260質量部、2-ヒドロキシエチルアクリレート95質量部、ジブチルスズジラウリエート0.2質量部、2,6-tert-ブチル-4-メチルフェノール(BHT)0.4質量部を仕込み、均一に混合した(エチレングリコール変性キシレン樹脂の水酸基と、ジフェニルメタンジイソシアネートのイソシアネート基とのモル比(OH/NCO)は0.50,合計水酸基(エチレングリコール変性キシレン樹脂+2-ヒドロキシエチルアクリレート)と、ジフェニルメタンジイソシアネートのイソシアネート基とのモル比(OHT/NCO)は1.0)。均一に混合した後、70℃まで昇温し、溶液を70℃に制御しながら15時間攪拌して反応を終結させ、目的とするウレタン(メタ)アクリレート樹脂溶液A(重量平均分子量:3517)を得た。得られたウレタン(メタ)アクリレート樹脂溶液A中の樹脂濃度は70質量%であった。
<Example 1>
240 parts by mass of toluene, 205 parts by mass of diphenylmethane diisocyanate, K-140E (manufactured by Fudou Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mg KOH/g, weight average molecular weight: 580) 260 parts by mass in a 2 L three-necked flask, 2- 95 parts by mass of hydroxyethyl acrylate, 0.2 parts by mass of dibutyltin dilaurate, and 0.4 parts by mass of 2,6-tert-butyl-4-methylphenol (BHT) were charged and uniformly mixed (ethylene glycol modified xylene resin. The molar ratio (OH/NCO) of the hydroxyl groups of OH to the isocyanate groups of diphenylmethane diisocyanate is 0.50, and the molar ratio of the total hydroxyl groups (ethylene glycol modified xylene resin + 2-hydroxyethyl acrylate) to the isocyanate groups of diphenylmethane diisocyanate (OH T /NCO) is 1.0). After uniformly mixing, the temperature was raised to 70° C., the reaction was terminated by stirring the solution for 15 hours while controlling the temperature at 70° C., and the desired urethane (meth)acrylate resin solution A (weight average molecular weight: 3517) was obtained. Obtained. The resin concentration in the obtained urethane (meth)acrylate resin solution A was 70% by mass.
<実施例2>
 ジフェニルメタンジイソシアネートに代えてトリレンジイソシアネートを161質量部用い、K-140E(フドー株式会社製、エチレングリコール変性キシレン樹脂、水酸基価:177mgKOH/g、重量平均分子量:580)を292質量部、2-ヒドロキシエチルアクリレートを107質量部用いたこと以外は、実施例1と同様にしてウレタン(メタ)アクリレート樹脂溶液B(重量平均分子量:2038)を得た(エチレングリコール変性キシレン樹脂の水酸基と、トリレンジイソシアネートのイソシアネート基とのモル比(OH/NCO)は0.50,合計水酸基(エチレングリコール変性キシレン樹脂+2-ヒドロキシエチルアクリレート)と、トリレンジイソシアネートのイソシアネート基とのモル比(OHT/NCO)は1.0)。得られたウレタン(メタ)アクリレート樹脂溶液B中の樹脂濃度は70質量%であった。
<Example 2>
Using 161 parts by mass of tolylene diisocyanate instead of diphenylmethane diisocyanate, 292 parts by mass of K-140E (manufactured by Fudo Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mgKOH/g, weight average molecular weight: 580), 2-hydroxy A urethane (meth)acrylate resin solution B (weight average molecular weight: 2038) was obtained in the same manner as in Example 1 except that 107 parts by mass of ethyl acrylate was used (hydroxyl group of ethylene glycol-modified xylene resin and tolylene diisocyanate). Is 0.50, and the molar ratio (OH T /NCO) of the total hydroxyl groups (ethylene glycol modified xylene resin + 2-hydroxyethyl acrylate) to the isocyanate groups of tolylene diisocyanate is (OH T /NCO). 1.0). The resin concentration in the obtained urethane (meth)acrylate resin solution B was 70% by mass.
<実施例3>
 ジフェニルメタンジイソシアネートに代えてメタキシリレンジイソシアネートを170質量部用い、K-140E(フドー株式会社製、エチレングリコール変性キシレン樹脂、水酸基価:177mgKOH/g、重量平均分子量:580)を286質量部、2-ヒドロキシエチルアクリレートを105質量部用いたこと以外は、実施例1と同様にしてウレタン(メタ)アクリレート樹脂溶液C(重量平均分子量:2727)を得た(エチレングリコール変性キシレン樹脂の水酸基と、メタキシリレンジイソシアネートのイソシアネート基とのモル比(OH/NCO)は0.50,合計水酸基(エチレングリコール変性キシレン樹脂+2-ヒドロキシエチルアクリレート)と、メタキシリレンジイソシアネートのイソシアネート基とのモル比(OHT/NCO)は1.0)。得られたウレタン(メタ)アクリレート樹脂溶液C中の樹脂濃度は70質量%であった。
<Example 3>
170 parts by mass of metaxylylene diisocyanate was used instead of diphenylmethane diisocyanate, and 286 parts by mass of K-140E (manufactured by Fudo Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mgKOH/g, weight average molecular weight: 580) Urethane (meth)acrylate resin solution C (weight average molecular weight: 2727) was obtained in the same manner as in Example 1 except that 105 parts by mass of hydroxyethyl acrylate was used (hydroxyl group of ethylene glycol-modified xylene resin and meta-xylylene). The molar ratio (OH/NCO) of the diisocyanate to the isocyanate group is 0.50, and the molar ratio of the total hydroxyl groups (ethylene glycol modified xylene resin + 2-hydroxyethyl acrylate) to the isocyanate group of the metaxylylene diisocyanate (OH T / NCO) is 1.0). The resin concentration in the obtained urethane (meth)acrylate resin solution C was 70% by mass.
<比較例1>
 ジフェニルメタンジイソシアネートに代えてジシクロヘキシルメタン 4,4’-ジイソシアネートを211質量部用い、K-140E(フドー株式会社製、エチレングリコール変性キシレン樹脂、水酸基価:177mgKOH/g、重量平均分子量:580)を255質量部、2-ヒドロキシエチルアクリレートを94質量部用いたこと以外は、実施例1と同様にしてウレタン(メタ)アクリレート樹脂溶液D(重量平均分子量:3621)を得た。得られたウレタン(メタ)アクリレート樹脂溶液D中の樹脂濃度は70%であった。
<Comparative Example 1>
211 parts by mass of dicyclohexylmethane 4,4′-diisocyanate was used instead of diphenylmethane diisocyanate, and 255 parts by mass of K-140E (manufactured by Fudo Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mgKOH/g, weight average molecular weight: 580) Parts, a urethane (meth)acrylate resin solution D (weight average molecular weight: 3621) was obtained in the same manner as in Example 1 except that 94 parts by mass of 2-hydroxyethyl acrylate was used. The resin concentration in the obtained urethane (meth)acrylate resin solution D was 70%.
<比較例2>
 ジフェニルメタンジイソシアネートに代えてヘキサメチレンジイソシアネートを157質量部用い、K-140E(フドー株式会社製、エチレングリコール変性キシレン樹脂、水酸基価:177mgKOH/g、重量平均分子量:580)を295質量部、2-ヒドロキシエチルアクリレートを108質量部用いたこと以外は、実施例1と同様にしてウレタン(メタ)アクリレート樹脂溶液E(重量平均分子量:3039)を得た。得られたウレタン(メタ)アクリレート樹脂溶液E中の樹脂濃度は70%であった。
<Comparative example 2>
157 parts by mass of hexamethylene diisocyanate was used instead of diphenylmethane diisocyanate, and 295 parts by mass of K-140E (manufactured by Fudo Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mgKOH/g, weight average molecular weight: 580), 2-hydroxy A urethane (meth)acrylate resin solution E (weight average molecular weight: 3039) was obtained in the same manner as in Example 1 except that 108 parts by mass of ethyl acrylate was used. The resin concentration in the obtained urethane (meth)acrylate resin solution E was 70%.
<比較例3>
 ジフェニルメタンジイソシアネートに代えて1,3-ビス(イソシアナトメチル)シクロヘキサンを170質量部用い、K-140E(フドー株式会社製、エチレングリコール変性キシレン樹脂、水酸基価:177mgKOH/g、重量平均分子量:580)を286質量部、2-ヒドロキシエチルアクリレートを105質量部用いたこと以外は、実施例1と同様にしてウレタン(メタ)アクリレート樹脂溶液F(重量平均分子量:2803)を得た。得られたウレタン(メタ)アクリレート樹脂溶液F中の樹脂濃度は70%であった。
<Comparative example 3>
170 parts by mass of 1,3-bis(isocyanatomethyl)cyclohexane was used instead of diphenylmethane diisocyanate, and K-140E (manufactured by Fudo Co., Ltd., ethylene glycol modified xylene resin, hydroxyl value: 177 mgKOH/g, weight average molecular weight: 580) Was used, and a urethane (meth)acrylate resin solution F (weight average molecular weight: 2803) was obtained in the same manner as in Example 1, except that 286 parts by weight and 105 parts by weight of 2-hydroxyethyl acrylate were used. The resin concentration in the obtained urethane (meth)acrylate resin solution F was 70%.
<実施例4~6及び比較例4~6>
 実施例1~3及び比較例1~3で得られたウレタン(メタ)アクリレート樹脂溶液A~Fそれぞれと、光重合開始剤(BASF製、イルガキュア(登録商標)184)とを混合し、硬化性樹脂組成物を得た。
<Examples 4 to 6 and Comparative Examples 4 to 6>
The urethane (meth)acrylate resin solutions A to F obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were mixed with a photopolymerization initiator (manufactured by BASF, Irgacure (registered trademark) 184) to obtain a curable composition. A resin composition was obtained.
 続いて、この硬化性樹脂組成物を各種基材上にバーコーターを用いて塗布し、100℃で2min.乾燥させた後、紫外線照射装置(高圧水銀ランプ、アイグラフィックス株式会社製、ECS-1511U)を用いて、500mJ/cm2となるようにUV照射を行い、硬化塗膜を得た。得られた硬化塗膜について上記の各評価試験を実施した。結果を表1に示す。
 用いた基材は、以下の通りである。
・PET(東洋紡株式会社製「A4100」、厚さ:100μm)
・鋼板(株式会社パルテック製「PB-N144」、厚さ:200μm)
・ポリカーボネート板(汎用品、厚さ:2mm)
・アクリル板(汎用品、厚さ:2mm)
・ABS(アクリロニトリル-ブタジエン-スチレン共重合樹脂)板(汎用品、厚さ:2mm)
Then, this curable resin composition was applied onto various base materials using a bar coater, and then at 100° C. for 2 min. After drying, UV irradiation was performed using an ultraviolet irradiation device (high pressure mercury lamp, manufactured by Eye Graphics Co., Ltd., ECS-1511U) so as to be 500 mJ/cm 2 to obtain a cured coating film. Each of the above evaluation tests was carried out on the obtained cured coating film. The results are shown in Table 1.
The base material used is as follows.
・PET ("A4100" manufactured by Toyobo Co., Ltd., thickness: 100 μm)
・Steel plate (“PB-N144” manufactured by Paltec Co., Ltd., thickness: 200 μm)
・Polycarbonate plate (general-purpose product, thickness: 2 mm)
・Acrylic plate (general-purpose product, thickness: 2 mm)
・ABS (acrylonitrile-butadiene-styrene copolymer resin) plate (general purpose product, thickness: 2 mm)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例4~6と比較して、比較例4~6ではプラスチック基板への密着性が低下した。これは、比較例4~6で使用したウレタン(メタ)アクリレート樹脂が、ジイソシアネート部分に芳香環を有していないことに起因するものと推測されるが、本発明はこの推測により何ら限定されない。

 
As compared with Examples 4 to 6, in Comparative Examples 4 to 6, the adhesion to the plastic substrate was lowered. It is presumed that this is because the urethane (meth)acrylate resin used in Comparative Examples 4 to 6 does not have an aromatic ring in the diisocyanate part, but the present invention is not limited to this.

Claims (9)

  1.  芳香族炭化水素ホルムアルデヒド樹脂をポリオール類により変性したポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂と、芳香族基含有ジイソシアネートと、水酸基含有(メタ)アクリレート化合物とを反応させて得られる、ウレタン(メタ)アクリレート樹脂。 Urethane (meth)acrylate obtained by reacting a polyol-modified aromatic hydrocarbon formaldehyde resin obtained by modifying an aromatic hydrocarbon formaldehyde resin with a polyol, an aromatic group-containing diisocyanate, and a hydroxyl group-containing (meth)acrylate compound. resin.
  2.  重量平均分子量(Mw)が500~100,000である、請求項1に記載のウレタン(メタ)アクリレート樹脂。 The urethane (meth)acrylate resin according to claim 1, which has a weight average molecular weight (Mw) of 500 to 100,000.
  3.  前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の重量平均分子量が300~5,000である、請求項1又は2に記載のウレタン(メタ)アクリレート樹脂。 The urethane (meth)acrylate resin according to claim 1 or 2, wherein the polyol-modified aromatic hydrocarbon formaldehyde resin has a weight average molecular weight of 300 to 5,000.
  4.  前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基価が100~400mgKOH/gである、請求項1~3のいずれか一項に記載のウレタン(メタ)アクリレート樹脂。 The urethane (meth)acrylate resin according to any one of claims 1 to 3, wherein the hydroxyl value of the polyol-modified aromatic hydrocarbon formaldehyde resin is 100 to 400 mgKOH/g.
  5.  前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と、前記芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OH/NCO)が0.50~0.95であり、前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂の水酸基と前記水酸基含有(メタ)アクリレート化合物の水酸基との合計水酸基と、前記芳香族基含有ジイソシアネートのイソシアネート基とのモル比(OHT/NCO)が1.0~1.2となる比率で反応させて得られる、請求項1~4のいずれか一項に記載のウレタン(メタ)アクリレート樹脂。 The molar ratio (OH/NCO) between the hydroxyl group of the polyol-modified aromatic hydrocarbon formaldehyde resin and the isocyanate group of the aromatic group-containing diisocyanate is 0.50 to 0.95, and the polyol-modified aromatic carbon The molar ratio (OH T /NCO) of the total hydroxyl groups of the hydrogen formaldehyde resin and the hydroxyl groups of the hydroxyl group-containing (meth)acrylate compound to the isocyanate groups of the aromatic group-containing diisocyanate is 1.0 to 1.2. The urethane (meth)acrylate resin according to any one of claims 1 to 4, which is obtained by reacting in the following ratio.
  6.  前記ポリオール類変性芳香族炭化水素ホルムアルデヒド樹脂が、エチレングリコール変性キシレンホルムアルデヒド樹脂を含有する、請求項1~5のいずれか一項に記載のウレタン(メタ)アクリレート樹脂。 The urethane (meth)acrylate resin according to any one of claims 1 to 5, wherein the polyol-modified aromatic hydrocarbon formaldehyde resin contains an ethylene glycol-modified xylene formaldehyde resin.
  7.  前記芳香族基含有ジイソシアネートが、ジフェニルメタンジイソシアネート及びトリレンジイソシアネートからなる群から選ばれる少なくとも1種の芳香族ジイソシアネートである、請求項1~6のいずれか一項に記載のウレタン(メタ)アクリレート樹脂。 The urethane (meth)acrylate resin according to any one of claims 1 to 6, wherein the aromatic group-containing diisocyanate is at least one aromatic diisocyanate selected from the group consisting of diphenylmethane diisocyanate and tolylene diisocyanate.
  8.  請求項1~7のいずれか一項に記載のウレタン(メタ)アクリレート樹脂を含む、硬化性樹脂組成物。 A curable resin composition containing the urethane (meth)acrylate resin according to any one of claims 1 to 7.
  9.  請求項8に記載の硬化性樹脂組成物を硬化して得られる硬化物。

     
    A cured product obtained by curing the curable resin composition according to claim 8.

PCT/JP2019/045947 2018-11-29 2019-11-25 Urethane (meth)acrylate resin, curable resin composition, and cured product WO2020110990A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980076312.1A CN113166363B (en) 2018-11-29 2019-11-25 Urethane (meth) acrylate resin, curable resin composition, and cured product
JP2020557701A JP7355033B2 (en) 2018-11-29 2019-11-25 Urethane (meth)acrylate resin, curable resin composition, and cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018223769 2018-11-29
JP2018-223769 2018-11-29

Publications (1)

Publication Number Publication Date
WO2020110990A1 true WO2020110990A1 (en) 2020-06-04

Family

ID=70853486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045947 WO2020110990A1 (en) 2018-11-29 2019-11-25 Urethane (meth)acrylate resin, curable resin composition, and cured product

Country Status (4)

Country Link
JP (1) JP7355033B2 (en)
CN (1) CN113166363B (en)
TW (1) TWI822913B (en)
WO (1) WO2020110990A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354298A (en) * 1976-10-27 1978-05-17 Mitsubishi Gas Chem Co Inc Preparation of modified polyurethane
JPH0565471A (en) * 1991-02-01 1993-03-19 Sanyo Chem Ind Ltd Reactive hot melt adhesive
JPH1077444A (en) * 1996-09-03 1998-03-24 Dainippon Ink & Chem Inc Moisture-curable urethane primer composition and method of its application
JP2001354749A (en) * 2000-06-09 2001-12-25 Nippon Shokubai Co Ltd Resin composition, moisture-curable solution, and coating material composition and application method thereof
JP2005272767A (en) * 2004-03-26 2005-10-06 Dainippon Ink & Chem Inc Two-pack curing type polyurethane composition

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224815A (en) * 1990-12-26 1992-08-14 Mitsubishi Gas Chem Co Inc Polyol-type aromatic hydrocarbon/formaldehyde resin
JP2001261815A (en) * 2000-03-15 2001-09-26 Mitsubishi Gas Chem Co Inc Alkylene oxide adduct of aromatic hydrocarbon formaldehyde resin
JP4826865B2 (en) * 2001-04-19 2011-11-30 Dic株式会社 Urethane hard coating resin composition and coating material
JP4816003B2 (en) * 2005-10-28 2011-11-16 Dic株式会社 Composition for photo-alignment film, method for producing photo-alignment film, optical anisotropic body using the same, optical element, and method for producing the same
CN103145939A (en) * 2013-04-02 2013-06-12 开滦(集团)有限责任公司 Modification method of xylene formaldehyde resin
CN103923287B (en) * 2014-05-13 2016-06-29 山东圣泉新材料股份有限公司 A kind of method preparing xylene formaldehyde resin
CN107207694B (en) * 2015-02-12 2020-08-07 Dic株式会社 Urethane (meth) acrylate resin, curable resin composition, cured product thereof, and plastic lens
CN105131896B (en) * 2015-10-13 2017-05-24 烟台德邦科技有限公司 Method for preparing polyurethane hot melt adhesive capable of achieving quick positioning
CN106433546A (en) * 2016-09-13 2017-02-22 烟台德邦科技有限公司 Solvent-free unfoamed polyurethane structured adhesive and preparation method thereof
CN108467705A (en) * 2018-02-13 2018-08-31 嘉兴市建川新材料科技有限公司 A kind of moisture-curable polyurethane hot melt adhesive and preparation method of high initial bonding strength
CN114341218A (en) * 2019-08-27 2022-04-12 三菱瓦斯化学株式会社 Modified aromatic hydrocarbon formaldehyde resin, aqueous epoxy resin composition, and cured product thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5354298A (en) * 1976-10-27 1978-05-17 Mitsubishi Gas Chem Co Inc Preparation of modified polyurethane
JPH0565471A (en) * 1991-02-01 1993-03-19 Sanyo Chem Ind Ltd Reactive hot melt adhesive
JPH1077444A (en) * 1996-09-03 1998-03-24 Dainippon Ink & Chem Inc Moisture-curable urethane primer composition and method of its application
JP2001354749A (en) * 2000-06-09 2001-12-25 Nippon Shokubai Co Ltd Resin composition, moisture-curable solution, and coating material composition and application method thereof
JP2005272767A (en) * 2004-03-26 2005-10-06 Dainippon Ink & Chem Inc Two-pack curing type polyurethane composition

Also Published As

Publication number Publication date
CN113166363A (en) 2021-07-23
TWI822913B (en) 2023-11-21
JP7355033B2 (en) 2023-10-03
CN113166363B (en) 2023-10-20
TW202028280A (en) 2020-08-01
JPWO2020110990A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP5557274B2 (en) Ultraviolet curable hard coat resin composition, hard coat film and hard coat molded article using the same
JP5470957B2 (en) Active energy ray-curable resin composition for film protective layer
TWI585175B (en) Resin composition and adhesive for UV hardening adhesive
KR101726201B1 (en) Two-pack type curable coating agent
CN107722916B (en) UV-curable resin composition
JP6414883B2 (en) Resin composition for light diffusion film and light diffusion film
JP6958513B2 (en) UV curable adhesive composition for protective film, adhesive layer, protective sheet
JP4750473B2 (en) Active energy ray curable resin composition and coating agent using the same
TW200906873A (en) Active energy ray curable composition, coating composition, coating member, and optical material
JP6261247B2 (en) Active energy ray-curable resin composition, coating agent composition using the same, and cured coating film
JP2018135512A (en) Active energy ray-curable resin composition
TW201610027A (en) Ultraviolet curable resin composition and laminate using the same
JP6147130B2 (en) Photocurable composition capable of forming a cured coating having anti-fingerprint property, coating and coating substrate thereof
JP2014231574A (en) Urethane (meth)acrylate, curable composition and cured product
JP5098722B2 (en) Curable resin composition, film laminate for sticking, and laminate for impact absorption
JP2018087284A (en) Active energy ray-curable composition for optical articles, and optical article prepared therewith
JP7355033B2 (en) Urethane (meth)acrylate resin, curable resin composition, and cured product
JP7355032B2 (en) Urethane (meth)acrylate resin, curable resin composition, and cured product
JP2016221922A (en) Film for processing, processed film, and method for producing them
JP2019059918A (en) Curable composition and cured product thereof
JP2008222985A (en) Active energy ray-curable resin composition
WO2019117030A1 (en) Active energy ray-curable resin composition and coating agent
JP6255860B2 (en) Curable resin composition, cured product, laminate, hard coat film and film laminate
WO2023276944A1 (en) Pressure-sensitive adhesive composition and protective sheet
WO2023277008A1 (en) Ethylenically unsaturated group-containing urethane polymer, method for producing same, and adhesive composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020557701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890893

Country of ref document: EP

Kind code of ref document: A1