WO2020110896A1 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
WO2020110896A1
WO2020110896A1 PCT/JP2019/045602 JP2019045602W WO2020110896A1 WO 2020110896 A1 WO2020110896 A1 WO 2020110896A1 JP 2019045602 W JP2019045602 W JP 2019045602W WO 2020110896 A1 WO2020110896 A1 WO 2020110896A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
unit
frequency
correlation matrix
spectrum
Prior art date
Application number
PCT/JP2019/045602
Other languages
English (en)
French (fr)
Inventor
尭之 北村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020110896A1 publication Critical patent/WO2020110896A1/ja
Priority to US17/332,440 priority Critical patent/US11892557B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • G01S7/2923Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods
    • G01S7/2926Extracting wanted echo-signals based on data belonging to a number of consecutive radar periods by integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/12Systems for measuring distance only using transmission of interrupted, pulse modulated waves wherein the pulse-recurrence frequency is varied to provide a desired time relationship between the transmission of a pulse and the receipt of the echo of a preceding pulse
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing

Definitions

  • the present disclosure relates to a radar device that detects an object that reflects a radar wave by transmitting and receiving a radar wave.
  • Patent Document 1 describes a radar device that calculates a relative velocity of an object based on a complex received signal in which a transmission signal repeatedly transmitted through an antenna at a predetermined repetition cycle is reflected by an object and received. ing.
  • FCM modulation which repeatedly transmits a chirp with a large frequency gradient at a repeating cycle, has been widely used in the in-vehicle radar field in a peripheral monitoring system using a millimeter wave radar.
  • FCM modulation is a modulation method that can separate the distance and velocity of an object on a two-dimensional spectrum.
  • the two-dimensional spectrum is obtained by the number of receiving channels.
  • one correlation matrix is obtained by using the peak complex information on the two-dimensional spectrum of several receiving channels, and the direction is estimated using this correlation matrix.
  • the number of correlation matrices corresponding to one object obtained in one cycle is one (that is, the snapshot is 1 ).
  • the present disclosure improves the direction estimation accuracy.
  • One aspect of the present disclosure is a transmission unit, a reception antenna unit, a reception unit, a frequency analysis unit, a first correlation matrix generation unit, an averaging processing unit, a first azimuth estimation unit, and a two-dimensional spectrum generation. And a second correlation matrix generation unit and a second azimuth estimation unit.
  • the transmitting unit is configured to repeatedly transmit a chirp whose frequency changes with time by a preset number of repetitions for each preset repeating period, every time a preset measurement period elapses. To be done.
  • the receiving antenna unit has a plurality of receiving antennas configured to receive the chirp reflected by the object.
  • the receiving unit is configured to generate a beat signal for each chirp for each of the plurality of received signals received by the plurality of receiving antennas of the receiving antenna unit.
  • the frequency analysis unit performs frequency analysis on each of the beat signals, and a frequency spectrum in which the distance to the object reflecting the chirp corresponds to the frequency for each of the plurality of receiving antennas and for each of the plurality of beat signals. Is configured to calculate a distance spectrum that is
  • the first correlation matrix generation unit for each of the repetitive number of chirps, based on the complex information of the far range bins in the range spectrum corresponding to each of the plurality of receiving antennas that have received the same chirp, for each far range bin. , And is configured to generate a first correlation matrix.
  • a plurality of frequency bins indicating different frequency ranges from each other in the distance spectrum are set as distance bins.
  • the distance bin whose corresponding frequency corresponding to the distance bin is equal to or lower than the preset short distance determination frequency is set as the short distance bin.
  • a range bin whose corresponding frequency exceeds the short range determination frequency is defined as a long range bin.
  • the averaging processing unit generates an average correlation matrix for each long-distance bin by executing averaging processing of the first correlation matrix of the number of repeats generated corresponding to the long-distance bin for each long-distance bin.
  • the first azimuth estimation unit is configured to execute, for each long distance bin, a direction estimation calculation using an average correlation matrix corresponding to the long distance bin.
  • the two-dimensional spectrum generation unit is configured to generate a two-dimensional spectrum represented by a distance spectrum and a velocity spectrum that is the result of frequency analysis over a plurality of chirps for each short distance bin of the distance spectrum.
  • the second correlation matrix generation unit is configured to generate one second correlation matrix based on the complex information of the peak in the two-dimensional spectrum.
  • the second azimuth estimation unit is configured to execute the azimuth estimation calculation using the second correlation matrix.
  • the radar device of the present disclosure configured as described above first calculates one velocity correlation spectrum for short range bins of the range spectrum to generate one second correlation matrix and executes the direction estimation calculation. Further, the radar device of the present disclosure performs correlation suppression on the long range bins of the range spectrum by performing the averaging process of the first correlation matrix of the number of iterations for each long range bin. Perform an estimation operation.
  • the radar device of the present disclosure can obtain a snapshot of the number of iterations and perform correlation suppression of the correlation matrix for long-distance direction estimation corresponding to a frequency exceeding the short-range determination frequency. Therefore, the radar device of the present disclosure can improve the ability to separate a plurality of objects existing at a long distance from the radar device according to the azimuth, and can improve the azimuth estimation accuracy.
  • the radar device 1 of the present embodiment is mounted on a vehicle and detects various objects existing around the vehicle.
  • the radar device 1 includes a transmitting unit 2, a transmitting antenna unit 3, a receiving antenna unit 4, a receiving unit 5, and a processing unit 6.
  • the transmission antenna unit 3 has one or more antennas used for transmission.
  • the reception antenna unit 4 has a plurality of antennas used for reception.
  • the radar device 1 is configured to have a plurality of transmission/reception channels with a combination of an antenna belonging to the transmission antenna unit 3 and an antenna belonging to the reception antenna unit 4 as a transmission/reception channel.
  • the radar device 1 is assumed to include M antennas belonging to the transmitting antenna unit 3, N antennas belonging to the receiving antenna unit 4, and M ⁇ N transmitting/receiving channels. M ⁇ N is an integer of 2 or more.
  • the arrangement intervals of the antennas belonging to the transmitting antenna unit 3 and the arrangement intervals of the antennas belonging to the receiving antenna unit 4 may be equal or unequal.
  • the transmitter 2 transmits a transmission signal modulated by the FCM method.
  • FCM is an abbreviation for Fast-Chirp Modulation.
  • the transmitter 2 includes an oscillator 21 and a modulator 22.
  • the oscillator 21 generates a continuous wave common signal.
  • the oscillator 21 supplies the generated common signal to the modulator 22 and also to the receiver 5 as the local signal L.
  • the oscillation unit 21 sets the measurement cycle Tf (for example, 50 ms) as one frame, and the frequency is linear with respect to the time during the measurement period Tm (for example, 10 ms) at the beginning of each frame.
  • the chirp that changes to is continuously transmitted by a preset number of repetitions K (for example, 256).
  • the transmitter 2 repeatedly transmits the chirp at each preset repetition cycle Tp.
  • the chirp numbers 1 to K (256 in this embodiment) are set to the chirps in ascending transmission time within one frame.
  • the oscillating unit 21 is configured so that the measurement period Tf, the measurement period Tm, and the repetition period Tp can be appropriately changed according to an instruction from the processing unit 6.
  • the frequency width of the chirp that is changed during the repeating cycle is constant regardless of the repeating cycle Tp. That is, the rate of change of the frequency of the chirp is changed by changing the repetition period Tp.
  • the permissible range of the repeating period Tp and thus the permissible range of the rate of change of the frequency of the chirp, is generated according to the relative velocity with the object when the beat signal generated by mixing the transmission signal and the reception signal is analyzed.
  • the frequency shift is set to be negligibly small as compared with the frequency shift that occurs depending on the distance to the object.
  • the modulation unit 22 branches the common signal generated by the oscillation unit 21 and generates M number of branch signals, which is the same number as the transmission antennas belonging to the transmission antenna unit 3.
  • the modulator 22 performs phase shift modulation on each of the M branch signals to change the phase of the branch signal at each repeating cycle Tp.
  • M transmission signals to be supplied to the respective transmission antennas are generated.
  • the phase rotation amount ⁇ of different magnitudes is set for each of the M branch signals, and the phase of the branch signal is rotated by the phase rotation amount ⁇ for each repeating cycle.
  • P the number of phases used in phase shift keying.
  • P is an integer larger than M.
  • the position of the transmission signal which is the signal after modulation with respect to the branch signal (that is, the common signal) that is the signal before modulation.
  • the phase difference is 0° in all the repeating cycles Tp.
  • the modulator 22 sets the number of phases P, selects M types of phase rotation amounts to be used for phase shift modulation among P types of phase rotation amounts ⁇ , and selects M types of phase rotation amounts and M transmissions. It is configured so that the setting of the correspondence relationship with the antenna can be changed appropriately.
  • the setting may be changed according to an instruction from the processing unit 6 or automatically. When changing automatically, it may be performed according to a predetermined pattern or may be performed randomly.
  • the reception unit 5 generates a beat signal that is a difference signal from the local signal L for each of the N reception signals output from each reception antenna belonging to the reception antenna unit 4, and generates the beat signal.
  • the beat signal thus generated is sampled and supplied to the processing unit 6.
  • the processing unit 6 is an electronic control unit mainly composed of a microcomputer including a CPU 61 and a memory 62.
  • the memory 62 is, for example, a ROM and a RAM.
  • Various functions of the microcomputer are realized by the CPU 61 executing a program stored in the non-transitional substantive recording medium.
  • the memory 62 corresponds to a non-transitional substantive recording medium storing a program. By executing this program, the method corresponding to the program is executed.
  • some or all of the functions executed by the CPU 61 may be configured as hardware by one or a plurality of ICs or the like. Further, the number of microcomputers forming the processing unit 6 may be one or plural.
  • the object detection process is a process that is repeatedly executed after the processing unit 6 is activated.
  • the processing unit 6 When the object detection process is executed, the processing unit 6 first sets a repetition cycle Tp, which is a parameter related to the common signal generated by the oscillation unit 21, in S10, as shown in FIG. As described above, when the repeating cycle is changed, the rate of change in the frequency of the chirp changes.
  • the repetition cycle Tp may be a fixed value, or the repetition cycle Tp is set each time this process is executed, by selecting from a plurality of types of values according to a predetermined pattern or randomly. You may do it. Further, in S10, the measurement cycle Tf and the measurement period Tm may be appropriately variably set.
  • the processing unit 6 sets the number of phases P used for the phase shift keying in the modulation unit 22 in S20.
  • the phase number P may be a fixed value, or the phase number P is set according to a predetermined pattern or randomly selected from a plurality of types of values each time this processing is executed. Good.
  • the processing unit 6 selects M types of phase rotation amounts to be used for the phase shift modulation in the modulation unit 22 from P types of phase rotation amounts determined by the phase number P.
  • the M kinds of phase rotation amounts are selected so that the rotation amounts are not evenly arranged within 360°, that is, non-uniform arrangement.
  • the combinations of the phase rotation amounts are (0°, 90°), (90°, 180°), (180°, 270°). , (270°, 0°) are selectable, but (0°, 180°) and (90°, 270°) are not selectable.
  • the selection of the amount of phase rotation may be always constant, or may be switched in a selectable combination according to a predetermined pattern or randomly each time this process is executed.
  • the processing unit 6 sets the correspondence relationship between the M types of phase rotation amounts selected in S30 and each transmitting antenna in S40, as shown in FIG.
  • This association may be assigned according to a preset rule, or may be assigned randomly. Further, the association may be always fixed, or may be randomly switched according to a predetermined pattern each time this process is executed.
  • the phase of the transmission signal supplied to each of the transmission antennas TX1 and TX2 changes.
  • the processing unit 6 determines in S50 whether it is the measurement start timing, as shown in FIG. When it is not the measurement start timing, the processing unit 6 waits by repeating the process of S50 until the measurement start timing. When it is the measurement start timing, the processing unit 6 moves to S60.
  • the measurement start timing is a timing at which frames whose length is determined by the measurement cycle Tf are switched.
  • the processing unit 6 operates the transmitting unit 2 according to the setting result and performs radar measurement. Specifically, the transmitter 2 is caused to repeatedly transmit the chirp signal for each repeating period Tp during the measurement period Tm, and the sampling result of the beat signal generated from the received signal is acquired.
  • the processing unit 6 frequency-analyzes the sampling results of the beat signals obtained from the N receiving antennas for each receiving antenna and for each chirp signal, and as shown in FIG. K distance spectra are calculated for each of the reception antennas.
  • a peak appears at a frequency according to the time required to reciprocate the object reflecting the radiation wave transmitted from the transmitting antenna (that is, the distance to the object).
  • the frequency bins in the distance spectrum are called distance bins.
  • the processing unit 6 sets the short-distance determination frequency Fs in S80, as shown in FIG. Specifically, the processing unit 6 first acquires current position information indicating the current position of the vehicle and road information about roads around the current position from the navigation device mounted on the vehicle. Then, the processing unit 6 determines whether or not the vehicle is traveling in the tunnel based on the acquired current position information and road information. Here, when it is determined that the vehicle is traveling in the tunnel, the processing unit 6 sets the short distance determination frequency Fs to the preset first determination value. On the other hand, when it is determined that the vehicle is not traveling in the tunnel, the short distance determination frequency Fs is set to the first determination value that is set to be higher than the first determination value.
  • the processing unit 6 sets a defective chirp in S90. Specifically, the processing unit 6 first determines whether or not the noise level of the distance spectrum is equal to or higher than a preset defect determination level for each of the N ⁇ K distance spectra calculated in S70. To do. Then, the processing unit 6 sets a chirp corresponding to the distance spectrum whose noise level is equal to or higher than the defect determination level as a defect chirp.
  • the processing unit 6 calculates the velocity spectrum for each receiving antenna in S100, using the N ⁇ K distance spectra calculated in S70. Specifically, signals of the same frequency bin are extracted from the K distance spectrums of the receiving antenna of interest, and the frequency analysis processing in the time axis direction is executed on the extracted signals. As shown in FIG. 8, the processing unit 6 executes this processing for distance bins (hereinafter, short-distance bins) having a preset short-distance determination frequency Fs or less.
  • distance bins hereinafter, short-distance bins
  • Doppler observation range the range in which the Doppler frequency is observed (hereinafter, Doppler observation range) is determined by the repeat cycle Tp. Further, the Doppler frequency is detected at M points among the points obtained by dividing the Doppler observation range into P, as shown in FIG. In FIG. 9, the upper limit of the Doppler observation range is normalized to 1.
  • these M Doppler frequencies are shifted by an amount according to the relative velocity, and depending on the magnitude of the relative velocity, the frequency wrapping occurs. To do.
  • a two-dimensional spectrum (hereinafter referred to as a reception spectrum) that represents the distance and relative velocity with respect to the object that reflected the radar wave is generated for each reception antenna.
  • FIG. 10 shows the reception spectrum when there are four reception antennas, and the peaks detected in the reception spectrum.
  • the processing unit 6 uses the reception spectrum for each reception antenna in S110 as shown in FIG. Information generation processing for calculating the existing azimuth is executed.
  • the processing unit 6 When the information generation process is executed, the processing unit 6 first performs incoherent integration of the N reception spectra generated for each reception antenna in S100 in S210, as shown in FIG. Calculate two integrated spectra g(r,v).
  • the integrated spectrum g(r,v) is calculated using equation (1), where the received spectrum for each receiving antenna is represented by s(r,v,Rch). r is a distance, v is a normalized Doppler velocity with the velocity corresponding to the upper limit frequency of the Doppler observation range being 1, and Rch is a number for identifying the receiving antenna.
  • the processing unit 6 sets, as a candidate distance, a distance at which M or more peaks having an intensity equal to or higher than a preset threshold value are detected on the integrated spectrum.
  • the distance that has not been selected as the target of the processing of 1 is selected as the target distance r.
  • the processing unit 6 sets the speed corresponding to the peak not yet selected as the processing target in the following S240 to S270 among the plurality of peaks detected at the target distance r selected in S220 as the target speed. Select as v. Here, the processing unit 6 selects in order from the smallest speed.
  • the processing unit 6 determines whether or not there is a peak (that is, a secondary maximum point) on the integrated spectrum for all of the corresponding points estimated in S240, and in the case of affirmative determination, S260. If the determination is negative, the process proceeds to S290.
  • a peak that is, a secondary maximum point
  • the processing unit 6 determines whether or not the candidate peak group satisfies the power condition. If the determination is affirmative, the processing proceeds to S270, and if the determination is negative, the processing shifts to S290.
  • the power condition it is used that the signal intensity difference of the peaks belonging to the candidate peak group is within the preset allowable range. This is based on the finding that the signal intensities of the peaks based on the reflected waves from the same object should be similar.
  • the processing unit 6 determines whether or not the candidate peak group satisfies the phase condition. If the determination is affirmative, the processing shifts to S280, and if the determination is negative, the processing shifts to S290.
  • the phase condition the phase difference between the reference reception channel and the reception channels other than the reference reception channel is calculated, and the difference between the phase differences between the candidate peaks is within the preset allowable range. This is based on the knowledge that all peaks based on reflected waves from the same object should come from the same direction, and the phase differences between reception peaks that arrive from the same direction are of similar magnitude. Based on the fact that In the following, the candidate peak group that is affirmatively determined in S270 is referred to as the same object peak group.
  • the processing unit 6 registers the set of the target distance r and the target speed v as the object information. Further, the processing unit 6 adds the azimuth ⁇ calculated as follows to the object information. That is, the processing unit 6 extracts each peak corresponding to M identical object peak groups from each of the N received spectra calculated for each receiving antenna. Further, the processing unit 6 regards the extracted M ⁇ N peaks as received signals from the M ⁇ N transmission/reception channels, and determines M ⁇ N peaks based on the complex information of the M ⁇ N peaks. A correlation matrix (hereinafter, second correlation matrix) that represents the correlation between the transmission and reception channels is generated.
  • the complex information is information in which the amplitude and phase of the received signal are represented by complex numbers.
  • the processing unit 6 calculates the orientation ⁇ of the object by executing the orientation detection processing such as MUSIC or ESPRIT using the generated second correlation matrix.
  • MUSIC is an abbreviation for Multiple signal classification.
  • ESPRIT is an abbreviation for Estimation of Signal Parameters via Rotational Invariance Techniques.
  • the processing unit 6 determines whether or not all the peaks (that is, the velocities) detected at the target distance r are selected as the target velocity v, and when a positive determination is made, the process proceeds to S300. If the determination is negative, the process proceeds to S230.
  • the processing unit 6 determines whether or not all the candidate distances have been selected as the target distance r. If an affirmative determination is made, the information generation process ends, and if a negative determination is made, S220 is performed. Move to.
  • the processing unit 6 at S120 shows a correlation matrix (hereinafter, referred to as a correlation matrix) representing the correlation between the receiving antennas for each far-range bin in the distance spectrum calculated at S70.
  • a first correlation matrix is generated.
  • a long range bin is a range bin that exceeds the short range determination frequency Fs in the range spectrum.
  • the correlation is expressed by a coefficient indicating the degree of similarity of signals obtained by each receiving antenna. That is, the closer the absolute value of the coefficient is to 0, the weaker the correlation, and the closer the absolute value of the coefficient is to 1, the stronger the correlation.
  • n is an integer of 2 or more.
  • the processing unit 6 first generates the first correlation matrix based on the complex information of the long distance bin Bf(1) in the N distance spectra corresponding to the chirp number 1. That is, the processing unit 6 generates the first correlation matrix indicating the correlation between the N reception antennas that have received the reception signal corresponding to the chirp number 1 and corresponding to the long distance bin Bf(1).
  • the processing unit 6 generates the first correlation matrix based on the complex information of the long distance bin Bf(2) in the N distance spectra corresponding to the chirp number 1. In this way, the processing unit 6 repeats the generation of the first correlation matrix up to the long-distance bin Bf(n). As a result, the processing unit 6 generates n first correlation matrices corresponding to the chirp number 1 and corresponding to the long distance bins Bf(1) to Bf(n).
  • the processing unit 6 also performs n number of chirp numbers 2 to 256 corresponding to the chirp numbers 2 to 256 and the long distance bins Bf(1) to Bf(n). Generate a first correlation matrix of
  • the processing unit 6 executes the averaging process of the first correlation matrix in S130, as shown in FIG. Specifically, the processing unit 6 first calculates the average value of each of the components of the 256 first correlation matrices corresponding to the long-distance bin Bf(1) by addition averaging, and the averaged values are calculated. Generate two correlation matrices. Further, the processing unit 6 calculates the average value of each component for the 256 first correlation matrices corresponding to the long-distance bins Bf(2) to Bf(n) in the same manner as the long-distance bin Bf(1).
  • one averaged correlation matrix (hereinafter, average correlation matrix) is generated for each of the long-distance bins Bf(2) to Bf(n).
  • average correlation matrix n average correlation matrices corresponding to the long distance bins Bf(1) to Bf(n) are generated.
  • the average correlation matrix generated in S110 the value of the non-diagonal component representing the cross-correlation between the receiving antennas is suppressed as compared with the first correlation matrix generated in S100.
  • the processing unit 6 executes the averaging process by excluding the first correlation matrix corresponding to the chirp for which the bad chirp is set in S90.
  • the processing unit 6 executes the orientation estimation calculation such as MUSIC or ESPRIT for each average correlation matrix using the n average correlation matrices generated in S130 in S140, Calculate the azimuth in which Thus, the azimuth is calculated for each of the long distance bins Bf(1) to Bf(n).
  • the processing unit 6 registers the set of the distance corresponding to the long-distance bin and the azimuth calculated in S140 as the object information, and once ends the object detection processing.
  • the radar device 1 configured as described above includes a transmission unit 2, a reception antenna unit 4, a reception unit 5, and a processing unit 6.
  • the transmitting unit 2 repeatedly transmits a chirp whose frequency changes with time by a preset number of repeats K for each preset repeat period Tp each time a preset measurement period Tf elapses. To do.
  • the receiving antenna unit 4 has a plurality of receiving antennas configured to receive the chirp reflected by the object.
  • the receiving unit 5 generates a beat signal for each chirp with respect to each of the plurality of received signals received by the plurality of receiving antennas of the receiving antenna unit 4.
  • the processing unit 6 performs frequency analysis on each of the beat signals, and for each of the plurality of receiving antennas and for each of the plurality of beat signals, the frequency spectrum in which the distance to the object reflecting the chirp corresponds to the frequency. To calculate the distance spectrum.
  • the processing unit 6 determines, for each far-distance bin, on the basis of complex information of the far-distance bin in the distance spectrum corresponding to each of the plurality of receiving antennas that have received the same chirp. 1 Generate a correlation matrix.
  • the processing unit 6 generates an average correlation matrix for each long-distance bin by executing the averaging process of the first correlation matrix of the number of repetitions K generated corresponding to the long-distance bin for each long-distance bin. To do.
  • the processing unit 6 executes, for each long distance bin, an orientation estimation calculation using an average correlation matrix corresponding to the long distance bin.
  • the processing unit 6 generates a reception spectrum represented by a distance spectrum and a velocity spectrum that is the result of frequency analysis over a plurality of chirps for each short distance bin of the distance spectrum.
  • the processing unit 6 generates one second correlation matrix based on the complex information of the peak in the reception spectrum.
  • the processing unit 6 executes the orientation estimation calculation using the second correlation matrix.
  • the radar device 1 first calculates the velocity spectrum for the short range bin of the range spectrum to generate one second correlation matrix and executes the direction estimation calculation.
  • the radar device 1 performs the azimuth estimation calculation after performing the correlation suppression on the long range bins of the range spectrum by performing the averaging process of the first correlation matrix of the repeat count K for each long range bin. To execute.
  • the radar device 1 can obtain a snapshot of the number of repetitions K and suppress the correlation of the correlation matrix with respect to the long-range direction estimation corresponding to the frequency exceeding the short-range determination frequency Fs. Therefore, the radar device 1 can improve the ability to separate a plurality of objects existing at a long distance from the radar device 1 according to the azimuth, and can improve the azimuth estimation accuracy.
  • the radar device 1 requires the speed separation performance rather than the azimuth angle separation performance in the short distance area As in which the distance to the object is equal to or less than the distance Rs corresponding to the short distance determination frequency Fs. .. Further, the radar device 1 requires the azimuth angle separation performance rather than the speed separation performance in the long-distance area Af where the distance to the object exceeds the distance Rs.
  • Vehicles VH2 and VH3 have the same relative distance and relative speed from vehicle VH1. Therefore, the conventional processing method cannot separate the vehicle VH2 and the vehicle VH3 by distance and speed. Further, since the vehicles VH2 and VH3 are very close to each other at a long distance, the difference ⁇ between the azimuth angle of the vehicle VH2 and the azimuth angle of the vehicle H3 is very small. Therefore, in the conventional processing method, it is difficult to separate the vehicle VH2 and the vehicle VH3 by the azimuth, as indicated by the solid line SP1 in the azimuth spectrum of FIG.
  • the short range determination frequency Fs is variable. Therefore, the radar device 1 can set an area in which the azimuth estimation accuracy is improved according to the situation around the vehicle in which the radar device 1 is mounted.
  • the radar device 1 has a preset determination frequency setting condition indicating that a stationary object is continuous along at least one of both sides of the road on which a vehicle equipped with the radar device 1 is traveling.
  • the short-distance determination frequency Fs is set lower than that when the determination frequency setting condition is not satisfied.
  • the determination frequency setting condition is that the vehicle is traveling in the tunnel.
  • the radar device 1 can set the short-distance determination frequency Fs so as to extend the area where the target signal and the mirror ghost signal can be separated in a situation where the mirror ghost signal is likely to occur, and the azimuth estimation accuracy can be improved. It can be further improved.
  • the target signal is a signal obtained by directly receiving the chirp reflected by the object.
  • the mirror ghost signal is a signal obtained by receiving the chirp reflected by the object and further reflected by the stationary object (the tunnel wall in this embodiment).
  • the radar device 1 determines whether or not the chirp received by the receiving antenna unit 4 is defective. Then, the radar device 1 excludes the first correlation matrix corresponding to the chirp determined to be defective and executes the averaging process. As a result, the radar device 1 can execute the heading estimation calculation by excluding the first correlation matrix corresponding to the chirp on which noise is superimposed, and the heading estimation accuracy can be further improved.
  • S70 corresponds to the processing as the frequency analysis unit
  • S120 corresponds to the processing as the first correlation matrix generation unit
  • S130 corresponds to the processing as the averaging processing unit
  • S140 corresponds to the first processing. This corresponds to the processing as the one-direction estimating unit.
  • S100 corresponds to a process as a two-dimensional spectrum generation unit
  • S280 corresponds to a process as a second correlation matrix generation unit and a second direction estimation unit
  • a reception spectrum corresponds to a two-dimensional spectrum.
  • S80 corresponds to the process as the frequency setting unit
  • S90 corresponds to the process as the failure determining unit.
  • Modification 1 For example, in the above-described embodiment, the mode in which the FCM method is used as the modulation method has been shown, but the present invention is not limited to the FCM method, and for example, as in the pulse Doppler modulation method, a two-dimensional spectrum corresponding to the distance and the speed is generated. Any modulation method that can be obtained by analysis may be used.
  • the determination frequency setting condition is that the vehicle is traveling in the tunnel.
  • the determination frequency setting condition may be that the guardrail is continuous along at least one of both sides of the road.
  • the function of one component in the above embodiment may be shared by a plurality of components, or the function of a plurality of components may be exerted by one component. Further, a part of the configuration of the above embodiment may be omitted. Further, at least a part of the configuration of the above-described embodiment may be added to or replaced with the configuration of the other above-described embodiment.
  • the present disclosure is provided in various forms such as a system having the radar device 1 as a component, a program for causing a computer to function as the radar device 1, a medium recording the program, and an azimuth estimation method. Can also be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

レーダ装置(1)は、送信部(2)と受信アンテナ部(4)と受信部(5)と周波数解析部(S70)と第1相関行列生成部(S120)と平均化処理部(S130)とを備える。送信部は、チャープを繰返周期毎に繰返数だけ送信する。周波数解析部は、受信アンテナ毎に且つビート信号毎に、距離スペクトラムを算出する。第1相関行列生成部は、チャープのそれぞれについて、同一のチャープを受信した受信アンテナのそれぞれに対応する距離スペクトラムにおける遠距離ビンの複素情報に基づいて、遠距離ビン毎に第1相関行列を生成する。平均化処理部は、遠距離ビン毎に、遠距離ビンに対応して生成された繰返数の第1相関行列の平均化処理を実行することにより、平均相関行列を生成する。

Description

レーダ装置 関連出願の相互参照
 本国際出願は、2018年11月28日に日本国特許庁に出願された日本国特許出願第2018-222524号に基づく優先権を主張するものであり、日本国特許出願第2018-222524号の全内容を参照により本国際出願に援用する。
 本開示は、レーダ波を送受信することにより、レーダ波を反射した物体を検出するレーダ装置に関する。
 特許文献1には、アンテナを介して所定の繰返周期で繰り返し送信された送信信号が物体で反射されて受信された複素受信信号に基づいて、物体の相対速度を算出するレーダ装置が記載されている。
 従来、ミリ波レーダによる周辺監視システムにおいては、周波数傾きを大きくしたチャープを繰返周期で繰り返して送信するFCM変調が、車載レーダ分野で広く用いられている。
特開2013-167580号公報
 FCM変調は、物体の距離および速度を二次元スペクトラム上で分離することが可能な変調方式である。二次元スペクトラムは受信チャネルの数だけ得られる。FCM変調では、受信チャネル数個の二次元スペクトラム上のピーク複素情報を用いて一つの相関行列を求め、この相関行列を用いて方位推定を行う。
 この二次元スペクトラムを求めるためには,全チャープの全サンプル点を用いるため、1サイクルの間に得られる1個の物体に対応する相関行列の数は1個である(すなわち、スナップショットは1)。
 方位推定において複数の到来波を正確に分離するには、スナップショット数を増やし、複数到来波の相関抑圧を行う必要がある。発明者の詳細な検討の結果、上述の通り、一般的なFCM変調の処理方式では、スナップショットは1であるため、複数の物体の方位分離が難しいという課題が見出された。
 本開示は、方位推定精度を向上させる。
 本開示の一態様は、送信部と、受信アンテナ部と、受信部と、周波数解析部と、第1相関行列生成部と、平均化処理部と、第1方位推定部と、二次元スペクトラム生成部と、第2相関行列生成部と、第2方位推定部とを備えるレーダ装置である。
 送信部は、予め設定された測定周期が経過する毎に、時間に対して周波数が変化するチャープを予め設定された繰返周期毎に予め設定された繰返数だけ繰り返して送信するように構成される。
 受信アンテナ部は、物体で反射したチャープを受信するように構成された複数の受信アンテナを有する。
 受信部は、受信アンテナ部の複数の受信アンテナで受信した複数の受信信号のそれぞれについて、チャープ毎にビート信号を生成するように構成される。
 周波数解析部は、ビート信号のそれぞれに対して周波数解析を行い、複数の受信アンテナ毎に、且つ、複数のビート信号毎に、チャープを反射した物体までの距離が周波数と対応している周波数スペクトラムである距離スペクトラムを算出するように構成される。
 第1相関行列生成部は、繰返数のチャープのそれぞれについて、同一のチャープを受信した複数の受信アンテナのそれぞれに対応する距離スペクトラムにおける遠距離ビンの複素情報に基づいて、遠距離ビン毎に、第1相関行列を生成するように構成される。距離スペクトラムにおいて互いに異なる周波数範囲を示す複数の周波数ビンをそれぞれ距離ビンとする。複数の距離ビンのうち、距離ビンに対応する対応周波数が予め設定された近距離判定周波数以下の距離ビンを近距離ビンとする。対応周波数が近距離判定周波数を超える距離ビンを遠距離ビンとする。
 平均化処理部は、遠距離ビン毎に、遠距離ビンに対応して生成された繰返数の第1相関行列の平均化処理を実行することにより、遠距離ビン毎に平均相関行列を生成するように構成される。第1方位推定部は、遠距離ビン毎に、遠距離ビンに対応する平均相関行列を用いた方位推定演算を実行するように構成される。
 二次元スペクトラム生成部は、距離スペクトラムと、距離スペクトラムの近距離ビン毎に複数のチャープに渡って周波数解析した結果である速度スペクトラムとにより表される二次元スペクトラムを生成するように構成される。
 第2相関行列生成部は、二次元スペクトラムにおけるピークの複素情報に基づいて、一つの第2相関行列を生成するように構成される。第2方位推定部は、第2相関行列を用いた方位推定演算を実行するように構成される。
 このように構成された本開示のレーダ装置は、まず、距離スペクトラムの近距離ビンに対しては速度スペクトラムを算出することにより、一つの第2相関行列を生成して方位推定演算を実行する。また、本開示のレーダ装置は、距離スペクトラムの遠距離ビンに対しては、遠距離ビン毎に繰返数の第1相関行列の平均化処理を実行することにより相関抑圧を施した上で方位推定演算を実行する。
 すなわち、本開示のレーダ装置は、近距離判定周波数を超える周波数に対応する遠距離の方位推定に関して、繰返数のスナップショットを得ることができ、相関行列の相関抑圧を行うことができる。このため、本開示のレーダ装置は、レーダ装置から遠距離に存在する複数の物体を、方位により分離する能力を向上させることができ、方位推定精度を向上させることができる。
レーダ装置の構成を示すブロック図である。 発振部の機能を示す図である。 チャープの繰返周期を示す図である。 変調部での位相偏移変調に使用する位相回転量の例を示す図である。 物体検出処理を示すフローチャートである。 選択可および選択不可な位相回転量の組み合わせパターンを示す図である。 位相回転量の選択例を示す図である。 チャープと距離スペクトラムとの関係を示す図である。 速度スペクトラムに出現する同一物体ピーク群の例を示す図である。 受信スペクトラムを示す図である。 情報生成処理を示すフローチャートである。 遠距離ビンを示す図である。 近距離領域および遠距離領域を示す図である。 遠距離で2台の車両が併走している状況を示す図である。 方位スペクトルを示す図である。
 以下に本開示の実施形態を図面とともに説明する。
 本実施形態のレーダ装置1は、車両に搭載され、車両の周囲に存在する様々な物体を検出する。
 レーダ装置1は、図1に示すように、送信部2と、送信アンテナ部3と、受信アンテナ部4と、受信部5と、処理部6とを備える。
 送信アンテナ部3は、送信に使用される一つ以上のアンテナを有する。受信アンテナ部4は、受信に使用される複数のアンテナを有する。
 つまり、レーダ装置1は、送信アンテナ部3に属するアンテナと、受信アンテナ部4に属するアンテナとの組み合わせを送受信チャネルとして、複数の送受信チャネルを有するように構成される。本実施形態では、レーダ装置1は、送信アンテナ部3に属するアンテナをM個、受信アンテナ部4に属するアンテナをN個備え、M×N個の送受信チャネルを備えるとする。M×Nは2以上の整数である。なお、送信アンテナ部3に属するアンテナの配置間隔と、受信アンテナ部4に属するアンテナの配置間隔とは、等間隔であっても不等間隔であってもよい。
 送信部2は、FCM方式で変調された送信信号を送信する。FCMは、Fast-Chirp Modulationの略である。送信部2は、発振部21と、変調部22とを備える。発振部21は、連続波の共通信号を生成する。発振部21は、生成した共通信号を、変調部22に供給するとともに、ローカル信号Lとして受信部5にも供給する。また発振部21は、図2に示すように、測定周期Tf(例えば、50ms)を1フレームとして、各フレームの先頭の測定期間Tm(例えば、10ms)の間、時間に対して周波数が直線的に変化するチャープを、予め設定された繰返数K(例えば、256個)だけ連続的に送信する。送信部2は、図3に示すように、予め設定された繰返周期Tp毎にチャープを繰り返し送信する。チャープには、1フレーム内において送信時間が早い順に、1からK(本実施形態では、256)までのチャープ番号が設定される。
 発振部21は、測定周期Tf、測定期間Tmおよび繰返周期Tpを、処理部6からの指示に従って適宜変更できるように構成されている。なお、繰返周期の間に変化させるチャープの周波数幅は、繰返周期Tpによらず一定である。つまり、繰返周期Tpを変化させることで、チャープの周波数の変化率が変化するように構成されている。
 また、繰返周期Tpの許容範囲、ひいてはチャープの周波数の変化率の許容範囲は、送信信号と受信信号とを混合して生成するビート信号を解析した時に、物体との相対速度に応じて生じる周波数偏移が、物体との距離に応じて生じる周波数偏移と比較して無視できる程度に小さくなるように設定される。
 変調部22は、発振部21が生成した共通信号を分岐させ、送信アンテナ部3に属する送信アンテナと同数であるM個の分岐信号を生成する。変調部22は、M個の分岐信号のそれぞれについて、繰返周期Tp毎に分岐信号の位相を変化させる位相偏移変調を行う。これにより、送信アンテナのそれぞれに供給するM個の送信信号を生成する。位相偏移変調では、M個の分岐信号のそれぞれに対して互いに異なる大きさの位相回転量Δφを設定し、繰返周期毎に、その位相回転量Δφだけ分岐信号の位相を回転させる。
 ここで、位相偏移変調で使用する位相の数をPとする。PはMより大きい整数である。変調部22では、p=0,1,2,…P-1として、Δφ=p×360°/Pで表されるP種類の位相回転量を用いる。例えば、P=4の場合、図4に示すように、p=0ではΔφ=0°となり、変調前の信号である分岐信号(すなわち、共通信号)に対する変調後の信号である送信信号の位相差は、全ての繰返周期Tpで0°となる。p=1ではΔφ=90°となり、共通信号に対する送信信号の位相差は繰返周期Tp毎に切り替わり、0°→90°→180°→270°→0°(以下同様)の順に変化する。p=2ではΔφ=180°となり、共通信号に対する送信信号の位相差は繰返周期毎に切り替わり、0°→180°→0°→180°→0°(以下同様)の順に変化する。p=3ではΔφ=270°となり、共通信号に対する送信信号の位相差は繰返周期毎に切り替わり、0°→270°→180°→90°→0°(以下同様)の順に変化する。
 上述したようにP>Mに設定されるため、位相偏移変調には、P種類の位相回転量Δφの全種類が使用されることはなく、その一部が使用される。
 変調部22は、位相数Pの設定、P種類の位相回転量Δφのうち位相偏移変調に使用するM種類の位相回転量の選択、選択されたM種類の位相回転量とM個の送信アンテナとの対応関係の設定を適宜変更できるように構成されている。設定の変更は、処理部6からの指示に従ってもよいし、自動的に行ってもよい。自動的に変更する場合は、予め決められたパターンに従って行ってもよいし、ランダムに行ってもよい。
 受信部5は、図1に示すように、受信アンテナ部4に属する各受信アンテナから出力されるN個の受信信号のそれぞれについて、ローカル信号Lとの差信号であるビート信号を生成し、生成されたビート信号をサンプリングして処理部6に供給する。
 処理部6は、CPU61およびメモリ62を備えたマイクロコンピュータを中心に構成された電子制御装置である。メモリ62は、例えばROMおよびRAMである。マイクロコンピュータの各種機能は、CPU61が非遷移的実体的記録媒体に格納されたプログラムを実行することにより実現される。この例では、メモリ62が、プログラムを格納した非遷移的実体的記録媒体に該当する。また、このプログラムの実行により、プログラムに対応する方法が実行される。なお、CPU61が実行する機能の一部または全部を、一つあるいは複数のIC等によりハードウェア的に構成してもよい。また、処理部6を構成するマイクロコンピュータの数は1つでも複数でもよい。
 次に、処理部6が実行する物体検出処理の手順を説明する。物体検出処理は、処理部6が起動した後に繰り返し実行される処理である。
 物体検出処理が実行されると、処理部6は、図5に示すように、まずS10にて、発振部21に生成させる共通信号に関するパラメータである繰返周期Tpを設定する。上述したように、繰返周期を変化させると、チャープの周波数の変化率が変化する。なお、繰返周期Tpは固定値であってもよいし、本処理が実行される毎に予め決められたパターンに従って或いはランダムに複数種類の値の中から選択して繰返周期Tpが設定されるようにしてもよい。また、S10において、測定周期Tfおよび測定期間Tmが適宜可変設定されるようにしてもよい。
 処理部6は、S20にて、変調部22での位相偏移変調に用いる位相数Pを設定する。位相数Pは、少なくとも送信アンテナ数Mより大きな値が用いられる。例えば、P=M+1に設定してもよい。位相数Pは固定値であってもよいし、本処理が実行される毎に予め決められたパターンに従って或いはランダムに複数種類の値の中から選択して位相数Pが設定されるようにしてもよい。
 処理部6は、S30にて、位相数Pによって決まるP種類の位相回転量のうち、変調部22での位相偏移変調に用いるM種類の位相回転量を選択する。M種類の位相回転量は、360°の中で各回転量が均等に配置されることがないように、すなわち、不均一な配置となるように選択される。
 具体的には、PとMとが公約数を持たない場合は、任意に位相回転量を選択することができる。PとMとが公約数を有する場合は、配置間隔が同一パターンの繰り返しとなることがないように注意して選択する必要がある。
 例えば、図6に示すように、P=4且つM=2である場合、位相回転量の組み合わせとして、(0°,90°)、(90°,180°)、(180°,270°)、(270°,0°)は選択可であるが、(0°,180°)、(90°,270°)は選択不可である。また、P=4且つM=3である場合、位相回転量の組み合わせとして、(0°,90°,180°)、(90°,180°,270°)、(180°,270°,0°)、(270°,0°,90°)の全てが選択可である。但し、本実施形態では、必ずΔφ=0°を含んだ組み合わせを選択する。
 なお、位相回転量の選択は、常に一定でもよいし、本処理が実行される毎に、選択可能な組み合わせの中で、予め決められたパターンに従って又はランダムに切り替えられるようにしてもよい。
 S30の処理が終了すると、処理部6は、図5に示すように、S40にて、S30で選択されたM種類の位相回転量と、各送信アンテナとの対応関係を設定する。この対応づけは、例えば、予め設定された規則に従って割り当てられてもよいし、ランダムに割り当てられてもよい。また、対応付けは、常に一定でもよいし、本処理が実行される毎に、予め決められたパターンに従って或いはランダムに切り替えられてもよい。
 図7は、P=4且つM=2であり、位相回転量の組み合わせとして(0°,90°)が選択され、送信アンテナTX1にΔφ=0°、送信アンテナTX2にΔφ=90°を割り当てた場合に、送信アンテナTX1,TX2のそれぞれに供給される送信信号の位相が変化する様子を表現している。
 S40の処理が終了すると、処理部6は、図5に示すように、S50にて、測定開始タイミングであるか否かを判断する。処理部6は、測定開始タイミングでない場合には、測定開始タイミングになるまで、S50の処理を繰り返すことで待機する。処理部6は、測定開始タイミングである場合には、S60に移行する。測定開始タイミングとは、測定周期Tfによって長さが決まるフレームが切り替わるタイミングである。
 S60に移行すると、処理部6は、設定結果に従って送信部2を作動させ、レーダ測定を実施する。具体的には、送信部2に、測定期間Tmの間、繰返周期Tp毎にチャープ信号を繰り返し送信させ、その受信信号から生成されるビート信号のサンプリング結果を取得する。
 処理部6は、S70にて、N個の受信アンテナから得られるビート信号のサンプリング結果を、受信アンテナ毎に、且つ、チャープ信号毎に周波数解析することによって、図8に示すように、N個の受信アンテナのそれぞれについてK個ずつの距離スペクトラムを算出する。各距離スペクトラムでは、送信アンテナから送信された放射波を反射した物体を往復するのに要した時間(すなわち、物体までの距離)に応じた周波数にピークが出現する。距離スペクトラムにおける周波数ビンを距離ビンという。
 S70の処理が終了すると、処理部6は、図5に示すように、S80にて、近距離判定周波数Fsを設定する。具体的には、処理部6は、まず、車両に搭載されているナビゲーション装置から、車両の現在位置を示す現在位置情報と、現在位置周辺の道路に関する道路情報とを取得する。そして処理部6は、取得した現在位置情報と道路情報とに基づいて、車両がトンネル内を走行中であるか否かを判断する。ここで、車両がトンネル内を走行中であると判断した場合には、処理部6は、近距離判定周波数Fsを、予め設定された第1判定値に設定する。一方、車両がトンネル内を走行中でないと判断した場合には、近距離判定周波数Fsを、第1判定値より大きくなるように設定された第1判定値に設定する。
 S80の処理が終了すると、処理部6は、S90にて、不良チャープを設定する。具体的には、処理部6は、まず、S70にて算出されたN×K個の距離スペクトラムのそれぞれについて、距離スペクトラムのノイズレベルが予め設定された不良判定レベル以上であるか否かを判断する。そして処理部6は、ノイズレベルが不良判定レベル以上である距離スペクトラムに対応するチャープを不良チャープとして設定する。
 S90の処理が終了すると、処理部6は、S100にて、S70にて算出されたN×K個の距離スペクトラムを用いて、受信アンテナ毎に速度スペクトラムを算出する。具体的には、着目する受信アンテナに関するK個の距離スペクトラムから、同一周波数ビンの信号を抽出し、抽出した信号に対して時間軸方向への周波数解析処理を実行する。処理部6は、この処理を、図8に示すように、予め設定された近距離判定周波数Fs以下の距離ビン(以下、近距離ビン)について実行する。
 速度スペクトラムでは、送信アンテナ部3からの放射波を反射した物体との相対速度がゼロである場合は、各送信アンテナに割り当てられた位相回転量に応じた周波数が、ドップラ周波数として抽出される。つまり、Δφ=0°に対応する信号成分の周波数は0Hzである。
 なお、ドップラ周波数が観測される範囲(以下、ドップラ観測範囲)は、繰返周期Tpによって決まる。また、ドップラ周波数は、図9に示すように、ドップラ観測範囲をP分割した地点のうち、M個の地点にて検出される。図9では、ドップラ観測範囲の上限が1に正規化されている。
 また、速度スペクトラムでは、物体との間に相対速度がある場合は、これらM個のドップラ周波数は、相対速度に応じた大きさだけシフトし、相対速度の大きさによっては、周波数の折り返しが発生する。
 これらS70およびS100の算出結果から、レーダ波を反射した物体との距離および相対速度を表す二次元スペクトラム(以下、受信スペクトラム)が、受信アンテナ毎に生成される。図10は、受信アンテナが4個である場合の受信スペクトラムと、受信スペクトラムで検出されるピークとを示す。
 S100の処理が終了すると、処理部6は、図5に示すように、S110にて、受信アンテナ毎に、受信スペクトラムを用いて、レーダ波を反射した物体との距離および相対速度と、物体が存在する方位とを算出する情報生成処理を実行する。
 次に、S110で実行される情報生成処理の手順を説明する。
 情報生成処理が実行されると、処理部6は、図11に示すように、まずS210にて、S100にて受信アンテナ毎に生成されたN個の受信スペクトラムを、インコヒーレント積分して、一つの統合スペクトラムg(r,v)を算出する。受信アンテナ毎の受信スペクトラムをs(r,v,Rch)で表すものとして、統合スペクトラムg(r,v)は、式(1)を用いて算出される。rは距離であり、vは、ドップラ観測範囲の上限周波数に対応する速度を1とする正規化ドップラ速度であり、Rchは、受信アンテナを識別する番号である。
Figure JPOXMLDOC01-appb-M000001
 
 処理部6は、S220にて、統合スペクトラム上で、予め設定された閾値以上の強度を有するピークがM個以上検出されている距離を候補距離として、候補距離のうち、以下のS230からS280での処理の対象として未だ選択されていない距離を、対象距離rとして選択する。
 処理部6は、S230にて、S220で選択された対象距離rで検出される複数のピークのうち、以下のS240からS270での処理対象として未だ選択されていないピークに対応する速度を対象速度vとして選択する。ここでは、処理部6は、速度が小さいものから順番に選択する。
 処理部6は、S240にて、対象速度vのピークが、位相回転量Δφ=0°に対応したピークであると仮定し、式(2)に従って、他の位相回転量に対応したピークが存在すると推定されるM-1個の対応点(r,vj)、但し、j=2~Mを算出する。x(j)は、S30で選択されたΔφ=0°以外の位相回転量である。v,vjは正規化されたドップラ周波数であり、0~1の値をとる。mod(a,m)は、aをmで割った後の余りを示す。
Figure JPOXMLDOC01-appb-M000002
 
 処理部6は、S250にて、S240で推定された対応点の全てについて、統合スペクトラム上でピーク(すなわち、二次極大点)が存在するか否かを判断し、肯定判断された場合はS260に移行し、否定判断された場合は、S290に移行する。以下では、対応点に対応するM個のピークを候補ピーク群という。
 S260に移行すると、処理部6は、候補ピーク群が電力条件を満たすか否かを判断し、肯定判断された場合は、S270に移行し、否定判断された場合は、S290に移行する。ここでは、電力条件として、候補ピーク群に属するピークの信号強度差が、予め設定された許容範囲内にあることを用いる。これは、同一物体からの反射波に基づくピークの信号強度は、いずれも類似しているはずであるとの知見に基づく。
 S270に移行すると、処理部6は、候補ピーク群が位相条件を満たすか否かを判断し、肯定判断された場合は、S280に移行し、否定判断された場合は、S290に移行する。ここでは、位相条件として、基準受信チャンネルとそれ以外の受信チャンネル位相差を算出し、候補ピーク間でこの位相差の差異が予め設定された許容範囲にあることを用いる。これは、同一物体からの反射波に基づくピークは、いずれも同じ方向から到来するはずであるとの知見に基づき、同じ方向から到来するピークの受信間位相差は、いずれも似たような大きさになることに基づく。以下では、S270にて肯定判断された候補ピーク群を、同一物体ピーク群という。
 S280に移行すると、処理部6は、対象距離rと対象速度vとの組を、物体情報として登録する。更に、処理部6は、以下のようにして算出した方位θも物体情報に追加する。すなわち処理部6は、受信アンテナ毎に算出されたN個の受信スペクトラムのそれぞれから、M個の同一物体ピーク群に対応する各ピークを抽出する。また処理部6は、抽出されたM×N個のピークを、M×N個の送受信チャネルからの受信信号とみなして、M×N個のピークの複素情報に基づいて、M×N個の送受信チャネル間の相関関係を表す相関行列(以下、第2相関行列)を生成する。複素情報は、受信信号の振幅および位相を複素数で表した情報である。
 そして処理部6は、生成された第2相関行列を用いて、MUSICまたはESPRIT等の方位検出処理を実行することで、物体の方位θを算出する。MUSICは、Multiple signal classificationの略である。ESPRITは、Estimation of Signal Parameters via Rotational Invariance Techniquesの略である。
 S290に移行すると、処理部6は、対象距離rで検出される全てのピーク(すなわち、速度)が、対象速度vとして選択された否かを判断し、肯定判断された場合はS300に移行し、否定判断された場合は、S230に移行する。
 S300に移行すると、処理部6は、全ての候補距離が対象距離rとして選択されたか否かを判断し、肯定判断された場合は、情報生成処理を終了し、否定判断された場合は、S220に移行する。
 S110の処理が終了すると、処理部6は、図5に示すように、S120にて、S70で算出された距離スペクトラムにおける遠距離ビン毎に、受信アンテナ間の相関関係を表す相関行列(以下、第1相関行列)を生成する。遠距離ビンは、距離スペクトラムにおいて近距離判定周波数Fsを超える距離ビンである。相関関係は、各受信アンテナで得られる信号の類似度合いを表す係数で表現される。すなわち、係数の絶対値が0に近づくほど相関が弱く、係数の絶対値が1に近づくほど相関が強い。
 ここで、距離スペクトラムにおける複数の遠距離ビンを、図12に示すように、周波数が低い順に、Bf(1),Bf(2),Bf(3),・・・,Bf(n-1),Bf(n)と表記する。nは、2以上の整数である。
 具体的には、処理部6は、まず、チャープ番号1に対応するN個の距離スペクトラムにおける遠距離ビンBf(1)の複素情報に基づいて、第1相関行列を生成する。すなわち、処理部6は、チャープ番号1に対応し且つ遠距離ビンBf(1)に対応する受信信号を受信したN個の受信アンテナ間の相関関係を示す第1相関行列を生成する。
 さらに、処理部6は、チャープ番号1に対応するN個の距離スペクトラムにおける遠距離ビンBf(2)の複素情報に基づいて、第1相関行列を生成する。このようして、処理部6は、遠距離ビンBf(n)まで第1相関行列の生成を繰り返す。これにより、処理部6は、チャープ番号1に対応し且つ遠距離ビンBf(1)~Bf(n)に対応するn個の第1相関行列を生成する。
 次に、処理部6は、チャープ番号1と同様にして、チャープ番号2~256についても、チャープ番号2~256に対応し且つ遠距離ビンBf(1)~Bf(n)に対応するn個の第1相関行列を生成する。
 こうして、遠距離ビンBf(1)~Bf(n)のそれぞれについて、256個の第1相関行列が生成される。すなわち、n×256個の第1相関行列が生成される。
 S120の処理が終了すると、処理部6は、図5に示すように、S130にて、第1相関行列の平均化処理を実行する。具体的には、処理部6は、まず、遠距離ビンBf(1)に対応する256個の第1相関行列について、各成分の平均値を加算平均により算出することで、平均化された一つの相関行列を生成する。さらに、処理部6は、遠距離ビンBf(1)と同様にして、遠距離ビンBf(2)~Bf(n)に対応する256個の第1相関行列について、各成分の平均値を算出することで、遠距離ビンBf(2)~Bf(n)のそれぞれについて、平均化された一つの相関行列(以下、平均相関行列)を生成する。これにより、遠距離ビンBf(1)~Bf(n)のそれぞれに対応するn個の平均相関行列が生成される。S110で生成される平均相関行列は、S100で生成される第1相関行列と比較して、受信アンテナ間の相互相関を表す非対角成分の値が抑圧される。
 但し、S130では、処理部6は、S90において不良チャープを設定されたチャープに対応する第1相関行列を除外して平均化処理を実行する。
 S130の処理が終了すると、処理部6は、S140にて、S130で生成されたn個の平均相関行列を用いて、平均相関行列毎に、MUSICまたはESPRIT等の方位推定演算を実行し、物体が存在する方位を算出する。これにより、遠距離ビンBf(1)~Bf(n)のそれぞれについて、方位が算出される。
 処理部6は、S150にて、遠距離ビンに対応する距離と、S140で算出された方位との組を、物体情報として登録し、物体検出処理を一旦終了する。
 このように構成されたレーダ装置1は、送信部2と、受信アンテナ部4と、受信部5と、処理部6とを備える。
 送信部2は、予め設定された測定周期Tfが経過する毎に、時間に対して周波数が変化するチャープを予め設定された繰返周期Tp毎に予め設定された繰返数Kだけ繰り返して送信する。
 受信アンテナ部4は、物体で反射したチャープを受信するように構成された複数の受信アンテナを有する。
 受信部5は、受信アンテナ部4の複数の受信アンテナで受信した複数の受信信号のそれぞれについて、チャープ毎にビート信号を生成する。
 処理部6は、ビート信号のそれぞれに対して周波数解析を行い、複数の受信アンテナ毎に、且つ、複数のビート信号毎に、チャープを反射した物体までの距離が周波数と対応している周波数スペクトラムである距離スペクトラムを算出する。
 処理部6は、繰返数Kのチャープのそれぞれについて、同一のチャープを受信した複数の受信アンテナのそれぞれに対応する距離スペクトラムにおける遠距離ビンの複素情報に基づいて、遠距離ビン毎に、第1相関行列を生成する。
 処理部6は、遠距離ビン毎に、遠距離ビンに対応して生成された繰返数Kの第1相関行列の平均化処理を実行することにより、遠距離ビン毎に平均相関行列を生成する。処理部6は、遠距離ビン毎に、遠距離ビンに対応する平均相関行列を用いた方位推定演算を実行する。
 処理部6は、距離スペクトラムと、距離スペクトラムの近距離ビン毎に複数のチャープに渡って周波数解析した結果である速度スペクトラムとにより表される受信スペクトラムを生成する。
 処理部6は、受信スペクトラムにおけるピークの複素情報に基づいて、一つの第2相関行列を生成する。処理部6は、第2相関行列を用いた方位推定演算を実行する。
 このようにレーダ装置1は、まず、距離スペクトラムの近距離ビンに対しては速度スペクトラムを算出することにより、一つの第2相関行列を生成して方位推定演算を実行する。またレーダ装置1は、距離スペクトラムの遠距離ビンに対しては、遠距離ビン毎に繰返数Kの第1相関行列の平均化処理を実行することにより相関抑圧を施した上で方位推定演算を実行する。
 すなわち、レーダ装置1は、近距離判定周波数Fsを超える周波数に対応する遠距離の方位推定に関して、繰返数Kのスナップショットを得ることができ、相関行列の相関抑圧を行うことができる。このため、レーダ装置1は、レーダ装置1から遠距離に存在する複数の物体を、方位により分離する能力を向上させることができ、方位推定精度を向上させることができる。
 レーダ装置1は、図13に示すように、物体までの距離が近距離判定周波数Fsに対応する距離Rs以下である近距離領域Asでは、方位角度分離性能よりも、速度分離性能を必要としている。またレーダ装置1は、物体までの距離が距離Rsを超える遠距離領域Afでは、速度分離性能よりも、方位角度分離性能を必要としている。
 例えば、図14に示すように、レーダ装置1を搭載する車両VH1の前方において、同一速度Vで併走する2台の車両VH2,VH3が存在するとする。なお、車両VH2,VH3は、レーダ装置1の遠距離領域Af内に存在している。
 車両VH2,VH3は、車両VH1からの相対距離および相対速度が等しい。このため、従来の処理方式では、車両VH2と車両VH3とを、距離および速度で分離することができない。また、車両VH2,VH3は遠距離において非常に接近しているため、車両VH2の方位角度と車両H3の方位角度との差Δθが非常に小さい。このため、従来の処理方式では、図15の方位スペクトルにおける実線SP1で示すように、車両VH2と車両VH3とを方位で分離することが困難である。一方、本実施形態の処理方式では、図15の方位スペクトルにおける破線SP2で示すように、車両VH2の方位角度θ2と、車両VH3の方位角度θ3とを分離することが可能である。
 またレーダ装置1では、近距離判定周波数Fsは可変である。これにより、レーダ装置1は、レーダ装置1を搭載する車両の周囲の状況に応じて、方位推定精度を向上させる領域を設定することができる。
 またレーダ装置1は、レーダ装置1を搭載している車両が走行している道路において、道路の両側の少なくとも一方に沿って静止物が連続していることを示す予め設定された判定周波数設定条件が成立している場合には、近距離判定周波数Fsを、判定周波数設定条件が成立していない場合と比較して低くする。本実施形態では、判定周波数設定条件は、車両がトンネル内を走行中であることである。これにより、レーダ装置1は、ミラーゴースト信号が発生し易い状況において、ターゲット信号とミラーゴースト信号とを分離できる領域を拡張するように近距離判定周波数Fsを設定することができ、方位推定精度を更に向上させることができる。上記のターゲット信号は、物体で反射したチャープを直接受信することで得られる信号である。上記のミラーゴースト信号は、物体で反射して更に上記の静止物(本実施形態では、トンネル壁)で反射したチャープを受信することで得られる信号である。
 またレーダ装置1は、受信アンテナ部4で受信したチャープが不良であるか否かを判断する。そしてレーダ装置1は、不良と判断されたチャープに対応する第1相関行列を除外して平均化処理を実行する。これにより、レーダ装置1は、例えばノイズが重畳したチャープに対応した第1相関行列を除外して方位推定演算を実行することができ、方位推定精度を更に向上させることができる。
 以上説明した実施形態において、S70は周波数解析部としての処理に相当し、S120は第1相関行列生成部としての処理に相当し、S130は平均化処理部としての処理に相当し、S140は第1方位推定部としての処理に相当する。
 また、S100は二次元スペクトラム生成部としての処理に相当し、S280は第2相関行列生成部および第2方位推定部としての処理に相当し、受信スペクトラムは二次元スペクトラムに相当する。
 また、S80は周波数設定部としての処理に相当し、S90は不良判断部としての処理に相当する。
 以上、本開示の一実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、種々変形して実施することができる。
 [変形例1]
 例えば上記実施形態では、変調方式としてFCM方式を用いる形態を示したが、FCM方式に限定されるものではなく、例えば、パルスドップラー変調方式のように、距離および速度に対応した二次元スペクトラムを周波数解析により得ることができる変調方式であればよい。
 [変形例2]
 上記実施形態では、判定周波数設定条件が、トンネル内を走行中であることである形態を示した。しかし、例えば、判定周波数設定条件は、道路の両側の少なくとも一方に沿ってガードレールが連続していることであるようにしてもよい。
 また、上記実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。
 上述したレーダ装置1の他、当該レーダ装置1を構成要素とするシステム、当該レーダ装置1としてコンピュータを機能させるためのプログラム、このプログラムを記録した媒体、方位推定方法など、種々の形態で本開示を実現することもできる。

Claims (4)

  1.  予め設定された測定周期が経過する毎に、時間に対して周波数が変化するチャープを予め設定された繰返周期毎に予め設定された繰返数だけ繰り返して送信するように構成された送信部(2)と、
     物体で反射した前記チャープを受信するように構成された複数の受信アンテナを有する受信アンテナ部(4)と、
     前記受信アンテナ部の前記複数の受信アンテナで受信した複数の受信信号のそれぞれについて、前記チャープ毎にビート信号を生成するように構成された受信部(5)と、
     前記ビート信号のそれぞれに対して周波数解析を行い、前記複数の受信アンテナ毎に、且つ、複数の前記ビート信号毎に、前記チャープを反射した物体までの距離が周波数と対応している周波数スペクトラムである距離スペクトラムを算出するように構成された周波数解析部(S70)と、
     前記距離スペクトラムにおいて互いに異なる周波数範囲を示す複数の周波数ビンをそれぞれ距離ビンとし、複数の前記距離ビンのうち、前記距離ビンに対応する対応周波数が予め設定された近距離判定周波数以下の前記距離ビンを近距離ビンとし、前記対応周波数が前記近距離判定周波数を超える前記距離ビンを遠距離ビンとして、前記繰返数の前記チャープのそれぞれについて、同一の前記チャープを受信した前記複数の受信アンテナのそれぞれに対応する前記距離スペクトラムにおける前記遠距離ビンの複素情報に基づいて、前記遠距離ビン毎に、第1相関行列を生成するように構成された第1相関行列生成部(S120)と、
     前記遠距離ビン毎に、前記遠距離ビンに対応して生成された前記繰返数の前記第1相関行列の平均化処理を実行することにより、前記遠距離ビン毎に平均相関行列を生成するように構成された平均化処理部(S130)と、
     前記遠距離ビン毎に、前記遠距離ビンに対応する前記平均相関行列を用いた方位推定演算を実行するように構成された第1方位推定部(S140)と、
     前記距離スペクトラムと、前記距離スペクトラムの前記近距離ビン毎に複数の前記チャープに渡って周波数解析した結果である速度スペクトラムとにより表される二次元スペクトラムを生成するように構成された二次元スペクトラム生成部(S100)と、
     前記二次元スペクトラムにおけるピークの複素情報に基づいて、一つの第2相関行列を生成するように構成された第2相関行列生成部(S280)と、
     前記第2相関行列を用いた方位推定演算を実行するように構成された第2方位推定部(S280)と
     を備えるレーダ装置(1)。
  2.  請求項1に記載のレーダ装置であって、
     前記近距離判定周波数は、可変であるレーダ装置。
  3.  請求項2に記載のレーダ装置であって、
     前記レーダ装置を搭載している車両が走行している道路において、前記道路の両側の少なくとも一方に沿って静止物が連続していることを示す予め設定された判定周波数設定条件が成立している場合には、前記近距離判定周波数を、前記判定周波数設定条件が成立していない場合と比較して低くするように構成された周波数設定部(S80)を備えるレーダ装置。
  4.  請求項1~請求項3の何れか1項に記載のレーダ装置であって、
     前記受信アンテナ部で受信した前記チャープが不良であるか否かを判断するように構成された不良判断部(S90)を備え、
     前記平均化処理部は、前記不良判断部において不良と判断された前記チャープに対応する前記第1相関行列を除外して前記平均化処理を実行するレーダ装置。
PCT/JP2019/045602 2018-11-28 2019-11-21 レーダ装置 WO2020110896A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/332,440 US11892557B2 (en) 2018-11-28 2021-05-27 Radar device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018222524A JP7103190B2 (ja) 2018-11-28 2018-11-28 レーダ装置
JP2018-222524 2018-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/332,440 Continuation US11892557B2 (en) 2018-11-28 2021-05-27 Radar device

Publications (1)

Publication Number Publication Date
WO2020110896A1 true WO2020110896A1 (ja) 2020-06-04

Family

ID=70853158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045602 WO2020110896A1 (ja) 2018-11-28 2019-11-21 レーダ装置

Country Status (3)

Country Link
US (1) US11892557B2 (ja)
JP (1) JP7103190B2 (ja)
WO (1) WO2020110896A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885874B2 (en) * 2018-12-19 2024-01-30 Semiconductor Components Industries, Llc Acoustic distance measuring circuit and method for low frequency modulated (LFM) chirp signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308542A (ja) * 2005-03-29 2006-11-09 Honda Motor Co Ltd 電子走査型ミリ波レーダ装置およびコンピュータプログラム
WO2009081981A1 (ja) * 2007-12-25 2009-07-02 Honda Elesys Co., Ltd. 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2017058291A (ja) * 2015-09-17 2017-03-23 富士通テン株式会社 レーダ装置、レーダ装置用の信号処理装置及び測速方法
JP2018115930A (ja) * 2017-01-17 2018-07-26 株式会社デンソーテン レーダ装置および物標検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769684B2 (ja) 2006-10-12 2011-09-07 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置
JP5114187B2 (ja) 2007-12-25 2013-01-09 株式会社ホンダエレシス 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2013167580A (ja) 2012-02-16 2013-08-29 Furuno Electric Co Ltd 物標速度測定装置、信号処理装置、レーダー装置、物標速度測定方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308542A (ja) * 2005-03-29 2006-11-09 Honda Motor Co Ltd 電子走査型ミリ波レーダ装置およびコンピュータプログラム
WO2009081981A1 (ja) * 2007-12-25 2009-07-02 Honda Elesys Co., Ltd. 電子走査型レーダ装置、受信波方向推定方法及び受信波方向推定プログラム
JP2017058291A (ja) * 2015-09-17 2017-03-23 富士通テン株式会社 レーダ装置、レーダ装置用の信号処理装置及び測速方法
JP2018115930A (ja) * 2017-01-17 2018-07-26 株式会社デンソーテン レーダ装置および物標検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11885874B2 (en) * 2018-12-19 2024-01-30 Semiconductor Components Industries, Llc Acoustic distance measuring circuit and method for low frequency modulated (LFM) chirp signals

Also Published As

Publication number Publication date
JP2020085730A (ja) 2020-06-04
US11892557B2 (en) 2024-02-06
US20210286048A1 (en) 2021-09-16
JP7103190B2 (ja) 2022-07-20

Similar Documents

Publication Publication Date Title
US11131764B2 (en) Radar device
JP6729864B2 (ja) レーダ装置、レーダ装置の信号処理装置及び信号処理方法
JP4724694B2 (ja) 電波レーダ装置
US11448723B2 (en) Radar apparatus
JP5503961B2 (ja) 観測信号処理装置
EP1376153A1 (en) Fm-cw radar processing device
KR102661797B1 (ko) 자동차용 각도 분해 광대역 레이더 센서
JP4668198B2 (ja) レーダ装置
US20220413132A1 (en) Radar apparatus
WO2021106792A1 (ja) レーダ装置
US11125857B2 (en) Moving object detection system and moving object detection method
WO2020111052A1 (ja) レーダ装置
CA2541242A1 (en) Measuring device for a motor vehicle
JP2012042214A (ja) レーダ装置
CN114167420A (zh) 雷达系统和用于运行雷达系统的方法
EP3335058B1 (en) Processing received radiation reflected from a target
WO2020110896A1 (ja) レーダ装置
CN102147461B (zh) 观测信号处理装置
US10379212B2 (en) Multi frequency range estimation
JP2022046300A (ja) 移動速度の検出装置および検出方法
JPWO2019159231A1 (ja) レーダ装置
US12066516B2 (en) Radar apparatus and signal processing method thereof
JP2020041818A (ja) レーダ装置および物体判別方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889797

Country of ref document: EP

Kind code of ref document: A1