WO2020110647A1 - Electronic control unit - Google Patents

Electronic control unit Download PDF

Info

Publication number
WO2020110647A1
WO2020110647A1 PCT/JP2019/043643 JP2019043643W WO2020110647A1 WO 2020110647 A1 WO2020110647 A1 WO 2020110647A1 JP 2019043643 W JP2019043643 W JP 2019043643W WO 2020110647 A1 WO2020110647 A1 WO 2020110647A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion
voltage
input
signal
capacitor
Prior art date
Application number
PCT/JP2019/043643
Other languages
French (fr)
Japanese (ja)
Inventor
英斗 塚越
小林 徹
村松 直樹
Original Assignee
株式会社ケーヒン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ケーヒン filed Critical 株式会社ケーヒン
Publication of WO2020110647A1 publication Critical patent/WO2020110647A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters

Definitions

  • the present invention relates to a control device that controls electric parts of a vehicle, and particularly to an electronic control device that includes an analog/digital converter that converts an analog signal into a digital signal.
  • a control device equipped with an analog/digital converter (hereinafter, referred to as an A/D converter) that performs analog/digital conversion (hereinafter, referred to as A/D conversion) for converting to a digital signal has been used.
  • Patent Document 1 relates to a sampling device, and relates to channels CH-2 and CH-3 to which an analog voltage is input, a sample & hold unit 2 having a sampling capacitor Cs for detecting the analog voltage, and a channel.
  • a multiplexer unit 1 for switching between the connection between the CH-2 and the sample & hold unit 2 and the connection between the channel CH-3 and the sample & hold unit 2, and the filter capacitor Cf is connected to the channel CH-3,
  • a sampling device which includes a dummy circuit (consisting of a resistor R2 and a capacitor Cf2) for setting the channel CH-2 to the same voltage as the channel CH-3, and the multiplexer unit 1 connects the sample & hold unit 2 to the channel CH-2. It discloses a configuration for connecting to channel CH-3 after connection.
  • Patent Document 2 relates to an analog input module, in which an analog input is channel-input to a multiplexer 1 through a CR input filter 4, and an analog input of a channel selected by the multiplexer is converted through a buffer 2 into a digital amount by an A/D converter 3.
  • the selection signal generation circuit 5 of the multiplexer discloses a configuration in which the “0” input channel is temporarily selected for each channel selection.
  • Patent Document 1 intends to prevent erroneous detection of an analog voltage due to sampling by setting the same voltage on the channel CH-2 and the channel CH-3.
  • it is necessary to add a dummy circuit and the configuration becomes complicated there is room for improvement.
  • Patent Document 2 by discharging the capacitor C of the filter, when the next analog input is selected, a conduction path is formed between the current input and the analog input selected immediately before. It is intended to prevent the capacitor from being recharged by preventing the voltage from being formed, but when the next analog input is selected, the voltage input to the multiplexer 1 is different from the value itself of the voltage of the analog input. There may be cases where the values differ, so there is room for improvement.
  • the present invention has been made through the above-described studies, and has a simple structure with no additional circuit provided, and an A/D with an appropriate accuracy obtained by performing A/D conversion with reduced error.
  • An object of the present invention is to provide an electronic control device capable of performing control processing using converted data.
  • the present invention provides a plurality of signal lines including a first signal line to which a first analog signal, which is one of a plurality of analog signals, is input, and the plurality of signal lines.
  • a multiplexer sequentially connected to each of the plurality of analog signals and sequentially inputting each of the plurality of analog signals, and each of the plurality of analog signals sequentially input to the multiplexer being input to a second signal line to sequentially output digital signals.
  • An A/D converter for converting to, a first capacitor connected between the first signal line and a ground potential, and a second capacitor connected between the second signal line and a ground potential, Within a period from when the connection state in which the multiplexer is connected to the first signal line is released to when the connection state in which the multiplexer is next connected to the first signal line is set. As a period included, a recovery time is ensured for the charge of the first capacitor to return to the charge corresponding to the voltage of the first analog signal input to the first signal line, and the A/D A first aspect is that a predetermined conversion stop period for stopping the conversion operation of the converter is set.
  • the predetermined conversion stop period is set as a period following a time point at which each of the plurality of analog signals is sequentially converted into a digital signal by the A/D converter. This is referred to as a second aspect.
  • the multiplexer is connected to the first signal line after the connection state in which the multiplexer is connected to the first signal line is released.
  • a recovery time for recovering the charge of the first capacitor to the charge corresponding to the voltage of the first analog signal input to the first signal line.
  • a predetermined conversion stop period for stopping the conversion operation of the A/D converter is set. Therefore, the error is reduced by a simple configuration without an additional circuit.
  • the control processing can be performed using the A/D conversion data with appropriate accuracy obtained by performing the /D conversion.
  • the predetermined conversion stop period is a period subsequent to a time point at which each of the plurality of analog signals is sequentially converted into a digital signal by the A/D converter. Since it is set, it is possible to complete one cycle of the plurality of A/D conversions this time for a plurality of analog signals to obtain a set of A/D conversion values required for control of the electronic control unit. The required control can be appropriately executed by using the control data based on the /D conversion value.
  • FIG. 1 is a block diagram showing a configuration of an electronic control device according to an embodiment of the present invention.
  • FIG. 2A is a time chart showing the flow of the A/D conversion process of the comparative example in the present embodiment.
  • FIG. 2B is a time chart showing the flow of A/D conversion processing in this embodiment.
  • FIG. 1 is a block diagram showing the configuration of the electronic control device according to the present embodiment.
  • the electronic control unit 1 is typically configured by an electronic control unit such as an ECU (Electronic Control Unit), and is an electric component of a vehicle such as a motorcycle or a four-wheeled vehicle. It is used as a control device for controlling the.
  • ECU Electronic Control Unit
  • the electronic control unit 1 includes a first ECU terminal 11a, a second ECU terminal 11b, a third ECU terminal 11c, a fourth ECU terminal 11d, a fifth ECU terminal 11e, a sixth ECU terminal 11f, a seventh ECU terminal 11g, an eighth ECU terminal 11h, and an internal power supply circuit 12. , And a microcomputer 13.
  • One end of the first ECU terminal 11 a is connected to the positive electrode of the battery 21 installed outside the electronic control unit 1, and the other end of the first ECU terminal 11 a is connected to the internal power supply circuit 12.
  • One end of the second ECU terminal 11b is connected to the negative electrode of the battery 21, and the other end of the second ECU terminal 11b is connected to the ground potential.
  • One end of the third ECU terminal 11c is connected to a first analog signal source Vin1 which is a sensor such as a temperature sensor or a pressure sensor, and the other end of the third ECU terminal 11c is connected to the microcomputer 13 via a signal line L1. It is connected to the input channel CH1. Also, a protective resistance element R1 is connected to the signal line L1, and a noise removing capacitor C1 is connected between the signal line L1 between the resistance element R1 and the input channel CH1 and the ground potential. .. In the figure, a connection point between the capacitor C1 and the signal line L1 is indicated by a point P1.
  • One end of the fourth ECU terminal 11d is connected to a second analog signal source Vin2 which is a sensor such as a temperature sensor or a pressure sensor, and the other end of the fourth ECU terminal 11d is connected to the microcomputer 13 via a signal line L2. It is connected to the input channel CH2. Further, a protective resistance element R2 is connected to the signal line L2, and a noise removing capacitor C2 is connected between the signal line L2 and the ground potential between the resistance element R2 and the input channel CH2. .. In the figure, a connection point between the capacitor C2 and the signal line L2 is indicated by a point P2.
  • One end of the fifth ECU terminal 11e is connected to a third analog signal source Vin3 which is a sensor such as a temperature sensor and a pressure sensor, and the other end of the fifth ECU terminal 11e is connected to the microcomputer 13 via a signal line L3. It is connected to the input channel CH3. Further, a protective resistance element R3 is connected to the signal line L3, and a noise removing capacitor C3 is connected between the signal line L3 between the resistance element R3 and the input channel CH3 and the ground potential. .. In the figure, a connection point between the capacitor C3 and the signal line L3 is indicated by a point P3.
  • One end of the sixth ECU terminal 11f is connected to the crank pulse sensor 22, and the other end of the sixth ECU terminal 11f is connected to the control unit 132 in the microcomputer 13 via the input circuit 14.
  • One end of the seventh ECU terminal 11g is connected to the control unit 132 in the microcomputer 13 via the output circuit 15a, and the other end of the seventh ECU terminal 11g is installed outside the electronic control unit 1. It is connected to a first actuator 23a such as a motor.
  • One end of the eighth ECU terminal 11h is connected to the control unit 132 in the microcomputer 13 via the output circuit 15b, and the other end of the eighth ECU terminal 11h is installed outside the electronic control unit 1. It is connected to a second actuator 23b such as a motor.
  • the internal power supply circuit 12 uses the voltage supplied from the battery 21 via the first ECU terminal 11a to generate the reference voltage signal AVref.
  • the microcomputer 13 includes an A/D conversion unit 131, a control unit 132, and a timer 133.
  • the A/D conversion unit 131 includes a multiplexer (MPX) 131a, an A/D converter (ADC) 131b, and a 1/2 reference voltage generation circuit 131c.
  • MPX multiplexer
  • ADC A/D converter
  • the multiplexer (MPX) 131a has a terminal T1 connected to the input channel CH1, a terminal T2 connected to the input channel CH2, a terminal T3 connected to the input channel CH3, and a voltage half the reference voltage signal AVref.
  • a terminal T4 to which a 1/2 reference voltage signal 1/2AVref which is a signal is supplied a terminal T5 connected to the A/D converter 131b via a signal line L4, and a terminal T5 among the terminals T1 to T4.
  • a switch element S for electrically switching the connected terminals is provided.
  • a sampling capacitor CIN is connected between the signal line L4 and the ground potential.
  • the capacitance of the sampling capacitor CIN is set to be one digit to two digits smaller than the capacitance of each of the capacitors C1, C2, and C3. Further, in the figure, a connection point between the sampling capacitor CIN and the signal line L4 is indicated by a point P4.
  • the reference voltage signal AVref is supplied to the A/D converter 131b via the signal line L5.
  • the A/D converter 131b uses the voltage of the reference voltage signal AVref as a reference voltage (reference voltage) to A/D-convert the voltage of the sampling capacitor CIN, and A/D-converts the voltage signal after A/D conversion.
  • the converted data is output to the control unit 132.
  • the 1 ⁇ 2 reference voltage generation circuit 131c is connected to the signal line L6 branched from the signal line L5 to generate the 1 ⁇ 2 reference voltage signal 1 ⁇ 2AVref, and the generated 1 ⁇ 2 reference voltage signal 1 ⁇ 2AVref as a terminal. Supply to T4.
  • the control unit 132 generates a control signal for each of the first actuator 23a and the second actuator 23b based on the A/D conversion data output from the A/D converter 131b, and the generated control signal is the first actuator.
  • the control unit 132 By outputting to 23a and the 2nd actuator 23b, operation of the 1st actuator 23a and the 2nd actuator 23b is controlled.
  • the timer 133 executes a timekeeping process according to a control signal from the control unit 132, and outputs a signal that can be referred to when the control unit 132 instructs the A/D converter 131b about the timing regarding A/D conversion, for example. Output to.
  • the electronic control unit 1 having such a configuration has a simple configuration without providing an additional circuit, and outputs A/D conversion data with appropriate accuracy obtained by performing A/D conversion with reduced error. A control process is performed by using. The operation of the electronic control unit 1 when executing the A/D conversion process will be described below with reference to FIG.
  • FIG. 2A is a time chart showing the flow of A/D conversion processing of the comparative example in the present embodiment
  • FIG. 2B is a time chart showing the flow of A/D conversion processing in the present embodiment.
  • the capacitors C1, C2 and C3 are charged in the initial state so as to correspond to the same voltages as the input voltages VCH1, VCH2 and VCH3 to the input channels CH1, CH2 and CH3, respectively.
  • the input voltage VCH1 is the voltage at which the output voltage of the first analog signal source Vin1 is applied to the capacitor C1 via the resistance element R1 at the point P1
  • the input voltage VCH2 is the output voltage of the second analog signal source Vin2.
  • the input voltage VCH3 is the voltage at which the second analog signal source Vin13 output voltage is applied to the capacitor C3 at the point P3 via the resistance element R3.
  • the multiplexer 131a controls the switch element S to connect the terminals T1 and T5, Select the input channel CH1.
  • the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH1 to the input channel CH1.
  • the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data.
  • the A/D conversion AD1 can A/D convert the input voltage VCH1 to the input channel CH1.
  • the multiplexer 131a controls the switch element S to disconnect the terminals T1 and T5 from each other and disconnect the terminals T1 and T5 from each other.
  • the input channel CH2 is selected by connecting to the terminal T5.
  • the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH2 to the input channel CH2, and the capacitor C1 is in the process of being charged so that its voltage approaches the applied voltage VCH1.
  • the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data.
  • the A/D conversion AD2 can A/D convert the input voltage VCH2 to the input channel CH2.
  • the multiplexer 131a controls the switch element S to disconnect the terminals T2 and T5 from each other and disconnect the terminals T3 and T5 from each other.
  • the input channel CH3 is selected by connecting to the terminal T5.
  • the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH3 to the input channel CH3, and the capacitor C2 is in the process of being charged so that its voltage approaches the applied voltage VCH2.
  • the A/D converter 131b uses the reference voltage signal AVref as a reference voltage to A/D-convert the voltage of the sampling capacitor CIN at a predetermined sampling cycle to generate A/D-converted data.
  • the A/D conversion AD3 can A/D convert the input voltage VCH3 to the input channel CH3.
  • the A/D conversion data generated in the A/D conversions AD1 to AD3 are collectively input to the control unit 132 for each software reference period.
  • the multiplexer 131a controls the switch element S to disconnect (disconnect) the terminals T3 and T5 while connecting the terminals T1 and T5.
  • the input channel CH1 is selected.
  • the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH1 to the input channel CH1, and the capacitor C3 is charged so that its voltage approaches the input voltage VCH3 to the input channel CH3. It will be in the middle of the state.
  • the second and subsequent A/D conversions AD2 and AD3 are executed.
  • a charge as an initial value exists in the sampling capacitor CIN after the first A/D conversion or thereafter, or a conversion of the A/D conversion immediately adjacent thereto is performed. Since the time may be insufficient and the electric charge at that time may remain, in the case of the A/D conversion AD1 after the first time, between the points P1 and P4 shown in FIG. 1, the A/D after the first time. A potential difference may occur between points P2 and P4 during conversion AD2 and between points P3 and P4 during the first and subsequent A/D conversions AD3.
  • the capacitor C1 and the sampling capacitor CIN are charged and discharged, and in the case of A/D conversion AD2, the capacitor C2 and the sampling capacitor CIN are charged and discharged, and the A/D conversion AD3.
  • the capacitor C3 and the sampling capacitor CIN are charged and discharged.
  • the multiplexer 131a controls the switch element S in the A/D conversion AD1 (time length tAD1) in response to the conversion start trigger.
  • the input channel CH1 is selected by connecting the terminal T1 and the terminal T5 with each other.
  • the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH1 to the input channel CH1.
  • the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data.
  • the A/D conversion AD1 can A/D convert the input voltage VCH1 to the input channel CH1.
  • the multiplexer 131a controls the switch element S to disconnect (disconnect) the terminals T1 and T5.
  • the 1 ⁇ 2 reference voltage signal 1 ⁇ 2 AVref is selected by connecting the terminal T4 and the terminal T5 in this state.
  • the sampling capacitor CIN is charged so that its voltage becomes equal to the 1 ⁇ 2 reference voltage signal 1 ⁇ 2 AVref, and the capacitor C1 follows the voltage at the point P1 to input to the input channel CH1.
  • the battery is in the process of being charged so as to approach the voltage VCH1.
  • the A/D converter 131b performs A/D conversion on the voltage of the sampling capacitor CIN using the reference voltage signal AVref as the reference voltage.
  • the A/D conversion 1/2Vcc following the A/D conversion AD1 has the advantages described below, it is not essential and can be omitted. If omitted, the A/D conversion AD1 as described below is executed subsequently to the A/D conversion AD1.
  • the multiplexer 131a disconnects (disconnects) the terminals T4 and T5 by controlling the switch element S.
  • the input channel CH2 is selected by connecting the terminal T2 and the terminal T5 while keeping the state.
  • the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH2 to the input channel CH2.
  • the capacitor C1 remains in the state of being charged so that its voltage approaches the input voltage VCH1 to the input channel CH1.
  • the capacitor C2 has a charge due to being charged so as to have the same voltage as the input voltage VCH2 to the input channel CH2, and the sampling capacitor. Since electric charges due to the voltage of the 1/2 reference voltage signal 1/2 AVref may remain in CIN, a potential difference occurs between the points P2 and P4. According to such a potential difference, the capacitor C2 A current flows between the sampling capacitor CIN and the sampling capacitor CIN to charge and discharge them. As a result, the voltage of the capacitor C2 and the voltage of the sampling capacitor CIN tend to deviate from the voltage VCH2 of the input channel CH2 once.
  • the sampling capacitor C2 is charged so that its voltage becomes the same voltage as the input voltage VCH2 to the input channel CH2, and the sampling capacitor CIN has a fixed value and is a predetermined positive value. Since it is discharged so as to have a voltage dropped from the voltage of 1/2 AVref, it takes time until the voltage of the sampling capacitor CIN is newly appropriately charged so as to be equal to the input voltage VCH2 to the input channel CH2. It becomes easier to assume, and the setting of the timing for starting the A/D conversion AD2 becomes simple and reliable. Then, the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data.
  • the input voltage VCH2 to the input channel CH2 can be more appropriately A/D converted.
  • the A/D conversion 1/2Vcc following the A/D conversion AD1 is not provided, the potential difference between the capacitor C2 and the sampling capacitor CIN when the terminal T2 and the terminal T5 are connected. May be larger, but since the capacitor C2 is charged so that its voltage becomes the same voltage as the input voltage VCH2 to the input channel CH2, when the capacitor C2 is not charged in this way Compared with the above, there is a significance that it is easier to estimate the time until the voltage of the sampling capacitor CIN is newly charged so that it becomes equal to the input voltage VCH2 to the input channel CH2.
  • the 1/2 reference voltage signal 1/ is obtained in the same manner as the A/D conversion 1/2 Vcc following the A/D conversion AD1.
  • 2 AVref is A/D converted.
  • the capacitor C1 remains in the state of being charged so that its voltage approaches the input voltage VCH1 to the input channel CH1, and the capacitor C2 follows its voltage at the point P2 to the input channel CH2. It is in the state of being charged so as to approach the input voltage VCH2.
  • the A/D conversion 1/2Vcc following the A/D conversion AD2 is not essential as in the case of the A/D conversion 1/2Vcc following the A/D conversion AD1 and may be omitted. If such an omission is made, the A/D conversion AD3 as described below is executed subsequently to the A/D conversion AD2.
  • the multiplexer 131a disconnects (disconnects) the terminals T4 and T5 by controlling the switch element S.
  • the input channel CH3 is selected by connecting the terminal T3 and the terminal T5 while keeping the state.
  • the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH3 to the input channel CH3.
  • the capacitor C1 remains in the state of being charged so that its voltage approaches the input voltage VCH1 to the input channel CH1, and the capacitor C2 charges so that its voltage approaches the input voltage VCH2 to the input channel CH2. It is still in the process of being processed.
  • the capacitor C3 has a charge due to being charged so as to have the same voltage as the input voltage VCH3 to the input channel CH3, and the sampling capacitor. Since electric charges due to the voltage of the 1/2 reference voltage signal 1/2AVref may remain in CIN, a potential difference occurs between the points P3 and P4. According to such a potential difference, the capacitor C3 A current flows between the sampling capacitor CIN and the sampling capacitor CIN to charge and discharge them. As a result, the voltage of the capacitor C2 and the voltage of the sampling capacitor CIN tend to deviate from the voltage VCH3 of the input channel CH3 once.
  • the sampling capacitor CIN is charged so that its voltage becomes the same voltage as the input voltage VCH3 to the input channel CH3, and the sampling capacitor CIN has a fixed reference voltage value of 1/2 reference voltage signal. Since it is discharged so as to have a voltage lower than the voltage of 1/2 AVref, it takes time until the voltage of the sampling capacitor CIN is newly appropriately charged so as to be equal to the input voltage VCH3 to the input channel CH3. It becomes easier to assume, and the setting of the timing for starting the A/D conversion AD2 becomes simple and reliable. Then, the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data.
  • the input voltage VCH2 to the input channel CH3 can be more appropriately A/D converted.
  • the A/D conversion 1/2Vcc subsequent to the A/D conversion AD3 is not provided, the potential difference between the capacitor C2 and the sampling capacitor CIN when the terminal T3 and the terminal T5 are connected. May be larger, but since the capacitor C3 is charged so that its voltage becomes the same voltage as the input voltage VCH3 to the input channel CH3, the case where the capacitor C3 is not charged in this way Compared with the above, it becomes easier to estimate the time until the voltage of the sampling capacitor CIN is newly charged so as to become equal to the input voltage VCH3 to the input channel CH3, and the timing of starting the A/D conversion AD2 is set. Has the significance of being simple and reliable.
  • the A/D conversion unit 131 uses the time measurement by the timer 133 to stop the A/D conversion operation during the predetermined conversion stop period.
  • the multiplexer 131a may control the switch element S to connect any one of the terminals T1 to T4 and the terminal T5, or disconnect all the terminals T1 to T4 and the terminal T5. May be.
  • the A/D conversion unit 131 uses the timing at which the conversion stop period has elapsed based on the timing of the timer 133 as a conversion start trigger, A/D conversion AD1, A/D conversion 1/2 Vcc, A/D conversion AD2, The processes of A/D conversion 1/2 Vcc and A/D conversion AD3 are sequentially executed again.
  • the conversion stop period is for stopping the A/D conversion operation of the A/D converter 131b, but the charges of the capacitors C1, C2 and C3 correspond to the charges of the next A/D conversion.
  • the time length is set to secure a recovery time necessary to recover the charges corresponding to the voltages VCH1, VCH2 and VCH3 of the input channels CH1, CH2 and CH3, respectively. More specifically, during the conversion stop period, the maximum values of the voltages VCH1, VCH2 and VCH3 of the input channels CH1, CH2 and CH3, the resistances of the corresponding protection resistive elements R1, R2 and R3, and the noise removing capacitor C1 are provided.
  • the time that is, from the time when the corresponding terminal of the multiplexer 131a is disconnected to the time when it is next connected
  • the conversion stop period has its time length tS and the time lengths of A/D conversion AD1, A/D conversion 1/2 Vcc, A/D conversion AD2, A/D conversion 1/2 Vcc, and A/D conversion AD3.
  • the time length t1 that is a combination of tR and tR is set to a time length that is less than the software reference period t2.
  • the control unit 132 can collectively acquire the A/D conversion data generated in the A/D conversions AD1 to AD3 for each software reference period t2.
  • the time length of the conversion stop period tS may be set only for the required one of the input channels CH1, CH2, and CH3. Further, if necessary, after the A/D conversion 1/2 Vcc, the conversion stop period may be divided and inserted continuously or instead of the respective A/D conversion 1/2 Vcc, and the conversion stop period may be dispersed. Good.
  • the multiplexer 131a is not connected to the signal line L1 (L2, L3), and then the connection state is released.
  • the charge of the capacitor C1 (C2, C3) is included in the period until the connection state connected next to L3) is set, and the charge of the capacitor C1 (C2, C3) of the analog signal input to the signal line L1 (L2, L3)
  • a conversion stop period for ensuring a recovery time for recovering the charges corresponding to the voltage Vin1 (Vin2, Vin3) and for stopping the A/D conversion operation of the A/D converter 131b is set.
  • the input voltage that is not affected by the voltage of the sampling capacitor CIN by the previous A/D conversion process can be reliably set for this A/D conversion process.
  • this A/D conversion process it is possible to reduce an error due to so-called crosstalk caused by the influence of the previous A/D conversion process.
  • the control process can be performed using the A/D conversion data with appropriate accuracy obtained by performing the A/D conversion with reduced error, with a simple configuration without providing an additional circuit. it can.
  • the conversion stop period continues after the analog signals input to the input channels CH1, CH2, and CH3 are sequentially converted into digital signals by the A/D converter 131b. Since it is set as the period, the plurality of A/D conversions of the analog signals input to the input channels CH1, CH2, and CH3 are cycled to obtain the A/D conversion value necessary for the control of the electronic control unit 1. A complete set can be obtained, and required control can be appropriately executed using the control data based on the A/D conversion value.
  • the present invention uses the A/D conversion data of appropriate accuracy obtained by performing the A/D conversion with a reduced error with a simple configuration without providing an additional circuit, It is possible to provide an electronic control device that can perform control processing, and it is expected that it can be widely applied to electronic control devices for vehicles such as motorcycles and four-wheeled vehicles because of its general-purpose universal character. It is possible to provide an electronic control device that can perform control processing, and it is expected that it can be widely applied to electronic control devices for vehicles such as motorcycles and four-wheeled vehicles because of its general-purpose universal character. It

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

As a time period included in a time period from releasement of a connection state in which a multiplexor (131a) is connected to signal lines (L1, L2, L3) until setting of a connection state in which the multiplexor (131a) becomes connected to the signal lines (L1, L2, L3) next time, an electronic control unit (1) sets a conversion halt time period for securing a return time for the charges of capacitors (C1, C2, C3) to return to charges corresponding to the voltages (Vin1, Vin2, Vin3) of analog signals inputted to the signal lines (L1, L2, L3) and for halting the operation of the A/D conversion of an A/D converter (131b).

Description

電子制御装置Electronic control unit
 本発明は、車両の電気部品を制御する制御装置に関し、特に、アナログ信号をデジタル信号に変換するアナログ/デジタル変換器を備える電子制御装置に関する。 The present invention relates to a control device that controls electric parts of a vehicle, and particularly to an electronic control device that includes an analog/digital converter that converts an analog signal into a digital signal.
 近年、自動車等の車両には種々の電気部品が搭載されており、かかる電気部品を精度よく制御するために、車両の内燃機関等の動作状態を示す物理量を検出する各種センサからのアナログ信号をデジタル信号に変換するアナログ/デジタル変換(以下、A/D変換という)を行うアナログ/デジタル変換器(以下、A/D変換器という)を備えた制御装置が用いられるようになっている。 In recent years, various electric parts are mounted on vehicles such as automobiles, and in order to control such electric parts with high accuracy, analog signals from various sensors for detecting a physical quantity indicating an operating state of an internal combustion engine of the vehicle are transmitted. A control device equipped with an analog/digital converter (hereinafter, referred to as an A/D converter) that performs analog/digital conversion (hereinafter, referred to as A/D conversion) for converting to a digital signal has been used.
 かかる制御装置においては、複数のアナログ信号源である各種センサからのアナログ出力電圧が対応して入力されるA/D変換の複数のチャンネルについての入力電圧を、連続してA/D変換し、制御対象であるアクチュエータ等の電気部品の制御に必要な制御データを迅速に得ることが求められるが、今回のA/D変換が前回のA/D変換の影響を受けるようないわゆるクロストークが発生して、A/D変換に誤差が生じる事象も発生する傾向にある。 In such a control device, input voltages for a plurality of A/D conversion channels to which analog output voltages from various sensors, which are a plurality of analog signal sources, are correspondingly input are continuously A/D converted, It is required to quickly obtain the control data necessary for controlling the electrical parts such as the actuators to be controlled, but so-called crosstalk occurs in which this A/D conversion is affected by the previous A/D conversion. As a result, there is a tendency that an error occurs in the A/D conversion.
 かかる状況下で、特許文献1は、サンプリング装置に関し、アナログ電圧が入力されるチャンネルCH-2及びCH-3と、アナログ電圧を検出するためのサンプリングコンデンサCsを有するサンプル&ホールド部2と、チャンネルCH-2とサンプル&ホールド部2との接続とチャンネルCH-3とサンプル&ホールド部2との接続とを切り替えるマルチプレクサ部1とを有し、チャンネルCH-3にフィルタコンデンサCfが接続された、サンプリング装置であって、チャンネルCH-2をチャンネルCH-3と同電圧にするダミー回路(抵抗R2とコンデンサCf2から構成)を備え、マルチプレクサ部1は、サンプル&ホールド部2をチャンネルCH-2に接続後にチャンネルCH-3に接続する構成を開示している。 Under such circumstances, Patent Document 1 relates to a sampling device, and relates to channels CH-2 and CH-3 to which an analog voltage is input, a sample & hold unit 2 having a sampling capacitor Cs for detecting the analog voltage, and a channel. A multiplexer unit 1 for switching between the connection between the CH-2 and the sample & hold unit 2 and the connection between the channel CH-3 and the sample & hold unit 2, and the filter capacitor Cf is connected to the channel CH-3, A sampling device, which includes a dummy circuit (consisting of a resistor R2 and a capacitor Cf2) for setting the channel CH-2 to the same voltage as the channel CH-3, and the multiplexer unit 1 connects the sample & hold unit 2 to the channel CH-2. It discloses a configuration for connecting to channel CH-3 after connection.
 また、特許文献2は、アナログ入力モジュールに関し、アナログ入力をCR入力フィルタ4を通してマルチプレクサ1にチャネル入力し、マルチプレクサで選択したチャネルのアナログ入力をバッファ2を通してA/D変換器3でデジタル量に変換・出力するアナログ入力モジュールにおいて、マルチプレクサの選択信号生成回路5は、1つのチャネル選択毎に一旦「0」入力チャネルを選択する構成を開示している。 Further, Patent Document 2 relates to an analog input module, in which an analog input is channel-input to a multiplexer 1 through a CR input filter 4, and an analog input of a channel selected by the multiplexer is converted through a buffer 2 into a digital amount by an A/D converter 3. In the output analog input module, the selection signal generation circuit 5 of the multiplexer discloses a configuration in which the “0” input channel is temporarily selected for each channel selection.
特開2007-235244号公報JP 2007-235244A 特開2004-080281号公報JP, 2004-080281, A
 しかしながら、本発明者の検討によれば、特許文献1の構成は、チャンネルCH-2とチャンネルCH-3とを同電圧にすることによりサンプリングに伴うアナログ電圧の誤検出を防止することを企図したものであるが、ダミー回路を付加する必要があってその構成が煩雑なものとなるため、改良の余地がある。 However, according to the study by the present inventor, the configuration of Patent Document 1 intends to prevent erroneous detection of an analog voltage due to sampling by setting the same voltage on the channel CH-2 and the channel CH-3. However, since it is necessary to add a dummy circuit and the configuration becomes complicated, there is room for improvement.
 また、本発明者の検討によれば、特許文献2の構成は、フィルタのコンデンサCを放電させることにより、次のアナログ入力を選択したときに直前に選択したアナログ入力との間に通電経路が形成されることを防いでそのコンデンサの再充電を防止することを企図したものであるが、次のアナログ入力を選択した時点ではマルチプレクサ1に入力される電圧がアナログ入力の電圧の値自体からは相違する値となる場合も生じるため、改良の余地がある。 Further, according to the study by the present inventor, in the configuration of Patent Document 2, by discharging the capacitor C of the filter, when the next analog input is selected, a conduction path is formed between the current input and the analog input selected immediately before. It is intended to prevent the capacitor from being recharged by preventing the voltage from being formed, but when the next analog input is selected, the voltage input to the multiplexer 1 is different from the value itself of the voltage of the analog input. There may be cases where the values differ, so there is room for improvement.
 本発明は、以上の検討を経てなされたものであり、付加的な回路を設けることない簡便な構成で、誤差を低減したA/D変換をすることにより得られた適切な精度のA/D変換データを用いて、制御処理を行うことができる電子制御装置を提供することを目的とする。 The present invention has been made through the above-described studies, and has a simple structure with no additional circuit provided, and an A/D with an appropriate accuracy obtained by performing A/D conversion with reduced error. An object of the present invention is to provide an electronic control device capable of performing control processing using converted data.
 以上の目的を達成するべく、本発明は、複数のアナログ信号の内のいずれかである第1のアナログ信号が入力される第1の信号線を含む複数の信号線と、前記複数の信号線の各々に順次接続して、前記複数のアナログ信号の各々が順次入力されるマルチプレクサと、前記マルチプレクサに順次入力された前記複数のアナログ信号の各々が第2の信号線に入力され、順次デジタル信号に変換するA/D変換器と、前記第1の信号線及びグランド電位間に接続された第1のコンデンサと、前記第2の信号線及びグランド電位間に接続された第2のコンデンサと、を備え、前記マルチプレクサが前記第1の信号線に接続した接続状態が解除されてから、前記マルチプレクサが前記第1の信号線にその次に接続された接続状態が設定されるまでの期間内に含まれる期間として、前記第1のコンデンサの電荷が前記第1の信号線に入力される第1のアナログ信号の電圧に対応した電荷に復帰するための復帰時間を確保し、かつ前記A/D変換器の前記変換の動作を停止するための所定の変換停止期間を設定したことを第1の局面とする。 In order to achieve the above object, the present invention provides a plurality of signal lines including a first signal line to which a first analog signal, which is one of a plurality of analog signals, is input, and the plurality of signal lines. A multiplexer sequentially connected to each of the plurality of analog signals and sequentially inputting each of the plurality of analog signals, and each of the plurality of analog signals sequentially input to the multiplexer being input to a second signal line to sequentially output digital signals. An A/D converter for converting to, a first capacitor connected between the first signal line and a ground potential, and a second capacitor connected between the second signal line and a ground potential, Within a period from when the connection state in which the multiplexer is connected to the first signal line is released to when the connection state in which the multiplexer is next connected to the first signal line is set. As a period included, a recovery time is ensured for the charge of the first capacitor to return to the charge corresponding to the voltage of the first analog signal input to the first signal line, and the A/D A first aspect is that a predetermined conversion stop period for stopping the conversion operation of the converter is set.
 また、本発明は、第1の局面に加えて、前記所定の変換停止期間は、前記複数のアナログ信号の各々が前記A/D変換器で順次デジタル信号に変換され終わる時点に引き続く期間として設定されることを第2の局面とする。 In the present invention, in addition to the first aspect, the predetermined conversion stop period is set as a period following a time point at which each of the plurality of analog signals is sequentially converted into a digital signal by the A/D converter. This is referred to as a second aspect.
 以上の本発明の第1の局面にかかる電子制御装置によれば、マルチプレクサが第1の信号線に接続した接続状態が解除されてから、マルチプレクサが第1の信号線にその次に接続された接続状態が設定されるまでの期間内に含まれる期間として、第1のコンデンサの電荷が第1の信号線に入力される第1のアナログ信号の電圧に対応した電荷に復帰するための復帰時間を確保し、かつA/D変換器の変換の動作を停止するための所定の変換停止期間を設定したものであるため、付加的な回路を設けることない簡便な構成で、誤差を低減したA/D変換をすることにより得られた適切な精度のA/D変換データを用いて、制御処理を行うことができる。 According to the electronic control device of the first aspect of the present invention, the multiplexer is connected to the first signal line after the connection state in which the multiplexer is connected to the first signal line is released. As a period included in the period until the connection state is set, a recovery time for recovering the charge of the first capacitor to the charge corresponding to the voltage of the first analog signal input to the first signal line. And a predetermined conversion stop period for stopping the conversion operation of the A/D converter is set. Therefore, the error is reduced by a simple configuration without an additional circuit. The control processing can be performed using the A/D conversion data with appropriate accuracy obtained by performing the /D conversion.
 また、本発明の第2の局面にかかる電子制御装置によれば、所定の変換停止期間は、複数のアナログ信号の各々がA/D変換器で順次デジタル信号に変換され終わる時点に引き続く期間として設定されるものであるため、複数のアナログ信号についての今回の複数のA/D変換を一巡させて、電子制御装置の制御に必要なA/D変換値を一揃い得ることができ、かかるA/D変換値に基づく制御データを用いて所要の制御を適切に実行することができる。 Further, according to the electronic control device of the second aspect of the present invention, the predetermined conversion stop period is a period subsequent to a time point at which each of the plurality of analog signals is sequentially converted into a digital signal by the A/D converter. Since it is set, it is possible to complete one cycle of the plurality of A/D conversions this time for a plurality of analog signals to obtain a set of A/D conversion values required for control of the electronic control unit. The required control can be appropriately executed by using the control data based on the /D conversion value.
図1は、本発明の実施形態における電子制御装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an electronic control device according to an embodiment of the present invention. 図2Aは、本実施形態における比較例のA/D変換処理の流れを示すタイムチャートである。FIG. 2A is a time chart showing the flow of the A/D conversion process of the comparative example in the present embodiment. 図2Bは本実施形態におけるA/D変換処理の流れを示すタイムチャートである。FIG. 2B is a time chart showing the flow of A/D conversion processing in this embodiment.
 以下、図面を適宜参照して、本実施形態における電子制御装置につき、詳細に説明する。 Hereinafter, the electronic control device according to the present embodiment will be described in detail with reference to the drawings as appropriate.
 〔構成〕
 まず、図1を参照して、本発明の実施形態における電子制御装置の構成について説明する。
〔Constitution〕
First, the configuration of an electronic control device according to an embodiment of the present invention will be described with reference to FIG.
 図1は、本実施形態における電子制御装置の構成を示すブロック図である。 FIG. 1 is a block diagram showing the configuration of the electronic control device according to the present embodiment.
 図1に示すように、本実施形態における電子制御装置1は、典型的には、ECU(Electronic Control Unit)等の電子制御装置によって構成され、自動二輪車や自動四輪車等の車両の電気部品を制御する制御装置として用いられる。 As shown in FIG. 1, the electronic control unit 1 according to the present embodiment is typically configured by an electronic control unit such as an ECU (Electronic Control Unit), and is an electric component of a vehicle such as a motorcycle or a four-wheeled vehicle. It is used as a control device for controlling the.
 電子制御装置1は、第1ECU端子11a、第2ECU端子11b、第3ECU端子11c、第4ECU端子11d、第5ECU端子11e、第6ECU端子11f、第7ECU端子11g、第8ECU端子11h、内部電源回路12、及びマイクロコンピュータ13を備えている。 The electronic control unit 1 includes a first ECU terminal 11a, a second ECU terminal 11b, a third ECU terminal 11c, a fourth ECU terminal 11d, a fifth ECU terminal 11e, a sixth ECU terminal 11f, a seventh ECU terminal 11g, an eighth ECU terminal 11h, and an internal power supply circuit 12. , And a microcomputer 13.
 第1ECU端子11aの一方の端部は電子制御装置1の外部に設置されているバッテリ21の正極に接続され、第1ECU端子11aの他方の端部は内部電源回路12に接続されている。 One end of the first ECU terminal 11 a is connected to the positive electrode of the battery 21 installed outside the electronic control unit 1, and the other end of the first ECU terminal 11 a is connected to the internal power supply circuit 12.
 第2ECU端子11bの一方の端部はバッテリ21の負極に接続され、第2ECU端子11bの他方の端部はグランド電位に接続されている。 One end of the second ECU terminal 11b is connected to the negative electrode of the battery 21, and the other end of the second ECU terminal 11b is connected to the ground potential.
 第3ECU端子11cの一方の端部は温度センサや圧力センサ等のセンサである第1アナログ信号源Vin1に接続され、第3ECU端子11cの他方の端部は信号線L1を介してマイクロコンピュータ13の入力チャネルCH1に接続されている。また、信号線L1には保護用の抵抗素子R1が接続され、抵抗素子R1と入力チャネルCH1との間の信号線L1とグランド電位との間にはノイズ除去用のコンデンサC1が接続されている。なお、図中、コンデンサC1と信号線L1との接続点を点P1で示す。 One end of the third ECU terminal 11c is connected to a first analog signal source Vin1 which is a sensor such as a temperature sensor or a pressure sensor, and the other end of the third ECU terminal 11c is connected to the microcomputer 13 via a signal line L1. It is connected to the input channel CH1. Also, a protective resistance element R1 is connected to the signal line L1, and a noise removing capacitor C1 is connected between the signal line L1 between the resistance element R1 and the input channel CH1 and the ground potential. .. In the figure, a connection point between the capacitor C1 and the signal line L1 is indicated by a point P1.
 第4ECU端子11dの一方の端部は温度センサや圧力センサ等のセンサである第2アナログ信号源Vin2に接続され、第4ECU端子11dの他方の端部は信号線L2を介してマイクロコンピュータ13の入力チャネルCH2に接続されている。また、信号線L2には保護用の抵抗素子R2が接続され、抵抗素子R2と入力チャネルCH2との間の信号線L2とグランド電位との間にはノイズ除去用のコンデンサC2が接続されている。なお、図中、コンデンサC2と信号線L2との接続点を点P2で示す。 One end of the fourth ECU terminal 11d is connected to a second analog signal source Vin2 which is a sensor such as a temperature sensor or a pressure sensor, and the other end of the fourth ECU terminal 11d is connected to the microcomputer 13 via a signal line L2. It is connected to the input channel CH2. Further, a protective resistance element R2 is connected to the signal line L2, and a noise removing capacitor C2 is connected between the signal line L2 and the ground potential between the resistance element R2 and the input channel CH2. .. In the figure, a connection point between the capacitor C2 and the signal line L2 is indicated by a point P2.
 第5ECU端子11eの一方の端部は温度センサや圧力センサ等のセンサである第3アナログ信号源Vin3に接続され、第5ECU端子11eの他方の端部は信号線L3を介してマイクロコンピュータ13の入力チャネルCH3に接続されている。また、信号線L3には保護用の抵抗素子R3が接続され、抵抗素子R3と入力チャネルCH3との間の信号線L3とグランド電位との間にはノイズ除去用のコンデンサC3が接続されている。なお、図中、コンデンサC3と信号線L3との接続点を点P3で示す。 One end of the fifth ECU terminal 11e is connected to a third analog signal source Vin3 which is a sensor such as a temperature sensor and a pressure sensor, and the other end of the fifth ECU terminal 11e is connected to the microcomputer 13 via a signal line L3. It is connected to the input channel CH3. Further, a protective resistance element R3 is connected to the signal line L3, and a noise removing capacitor C3 is connected between the signal line L3 between the resistance element R3 and the input channel CH3 and the ground potential. .. In the figure, a connection point between the capacitor C3 and the signal line L3 is indicated by a point P3.
 第6ECU端子11fの一方の端部はクランクパルスセンサ22に接続され、第6ECU端子11fの他方の端部は入力回路14を介してマイクロコンピュータ13内の制御部132に接続されている。 One end of the sixth ECU terminal 11f is connected to the crank pulse sensor 22, and the other end of the sixth ECU terminal 11f is connected to the control unit 132 in the microcomputer 13 via the input circuit 14.
 第7ECU端子11gの一方の端部は出力回路15aを介してマイクロコンピュータ13内の制御部132に接続され、第7ECU端子11gの他方の端部は電子制御装置1の外部に設置されている電動モータ等の第1アクチュエータ23aに接続されている。 One end of the seventh ECU terminal 11g is connected to the control unit 132 in the microcomputer 13 via the output circuit 15a, and the other end of the seventh ECU terminal 11g is installed outside the electronic control unit 1. It is connected to a first actuator 23a such as a motor.
 第8ECU端子11hの一方の端部は出力回路15bを介してマイクロコンピュータ13内の制御部132に接続され、第8ECU端子11hの他方の端部は電子制御装置1の外部に設置されている電動モータ等の第2アクチュエータ23bに接続されている。 One end of the eighth ECU terminal 11h is connected to the control unit 132 in the microcomputer 13 via the output circuit 15b, and the other end of the eighth ECU terminal 11h is installed outside the electronic control unit 1. It is connected to a second actuator 23b such as a motor.
 内部電源回路12は、第1ECU端子11aを介してバッテリ21から供給された電圧を利用して基準電圧信号AVrefを生成する。 The internal power supply circuit 12 uses the voltage supplied from the battery 21 via the first ECU terminal 11a to generate the reference voltage signal AVref.
 マイクロコンピュータ13は、A/D変換部131、制御部132、及びタイマ133を備えている。 The microcomputer 13 includes an A/D conversion unit 131, a control unit 132, and a timer 133.
 A/D変換部131は、マルチプレクサ(MPX)131a、A/D変換器(ADC)131b、及び1/2基準電圧生成回路131cを備えている。 The A/D conversion unit 131 includes a multiplexer (MPX) 131a, an A/D converter (ADC) 131b, and a 1/2 reference voltage generation circuit 131c.
 マルチプレクサ(MPX)131aは、入力チャネルCH1に接続されている端子T1、入力チャネルCH2に接続されている端子T2、入力チャネルCH3に接続されている端子T3、基準電圧信号AVrefの1/2の電圧信号である1/2基準電圧信号1/2AVrefが供給される端子T4、信号線L4を介してA/D変換器131bに接続されている端子T5、及び端子T1からT4の中で端子T5と接続される端子を電気的に切り換えるスイッチ素子Sを備えている。また、信号線L4とグランド電位との間にはサンプリング用コンデンサCINが接続されている。なお、サンプリング用コンデンサCINの静電容量は、コンデンサC1、C2及びC3の各々の静電容量よりもそのオーダーが一桁から二桁は小さい容量に設定されている。また、図中、サンプリング用コンデンサCINと信号線L4との接続点を点P4で示す。 The multiplexer (MPX) 131a has a terminal T1 connected to the input channel CH1, a terminal T2 connected to the input channel CH2, a terminal T3 connected to the input channel CH3, and a voltage half the reference voltage signal AVref. A terminal T4 to which a 1/2 reference voltage signal 1/2AVref which is a signal is supplied, a terminal T5 connected to the A/D converter 131b via a signal line L4, and a terminal T5 among the terminals T1 to T4. A switch element S for electrically switching the connected terminals is provided. A sampling capacitor CIN is connected between the signal line L4 and the ground potential. Note that the capacitance of the sampling capacitor CIN is set to be one digit to two digits smaller than the capacitance of each of the capacitors C1, C2, and C3. Further, in the figure, a connection point between the sampling capacitor CIN and the signal line L4 is indicated by a point P4.
 A/D変換器131bには、信号線L5を介して基準電圧信号AVrefが供給される。A/D変換器131bは、基準電圧信号AVrefの電圧を基準電圧(参照電圧)として用いて、サンプリング用コンデンサCINの電圧をA/D変換し、A/D変換後の電圧信号をA/D変換データとして制御部132に出力する。 The reference voltage signal AVref is supplied to the A/D converter 131b via the signal line L5. The A/D converter 131b uses the voltage of the reference voltage signal AVref as a reference voltage (reference voltage) to A/D-convert the voltage of the sampling capacitor CIN, and A/D-converts the voltage signal after A/D conversion. The converted data is output to the control unit 132.
 1/2基準電圧生成回路131cは、信号線L5から分岐した信号線L6に接続されて1/2基準電圧信号1/2AVrefを生成すると共に、生成した1/2基準電圧信号1/2AVrefを端子T4に供給する。 The ½ reference voltage generation circuit 131c is connected to the signal line L6 branched from the signal line L5 to generate the ½ reference voltage signal ½AVref, and the generated ½ reference voltage signal ½AVref as a terminal. Supply to T4.
 制御部132は、A/D変換器131bから出力されたA/D変換データに基づいて、各々、第1アクチュエータ23a及び第2アクチュエータ23bの制御信号を生成し、生成した制御信号を第1アクチュエータ23a及び第2アクチュエータ23bに出力することにより、第1アクチュエータ23a及び第2アクチュエータ23bの動作を制御する。 The control unit 132 generates a control signal for each of the first actuator 23a and the second actuator 23b based on the A/D conversion data output from the A/D converter 131b, and the generated control signal is the first actuator. By outputting to 23a and the 2nd actuator 23b, operation of the 1st actuator 23a and the 2nd actuator 23b is controlled.
 タイマ133は、制御部132からの制御信号に従って計時処理を実行し、制御部132がA/D変換器131bにA/D変換に関するタイミングを指示するとき等に参照自在な信号を、制御部132に出力する。 The timer 133 executes a timekeeping process according to a control signal from the control unit 132, and outputs a signal that can be referred to when the control unit 132 instructs the A/D converter 131b about the timing regarding A/D conversion, for example. Output to.
 このような構成を有する電子制御装置1は、付加的な回路を設けることない簡便な構成で、誤差を低減したA/D変換をすることにより得られた適切な精度のA/D変換データを用いて、制御処理を行う。以下、図2を参照して、A/D変換処理を実行する際の電子制御装置1の動作について説明する。 The electronic control unit 1 having such a configuration has a simple configuration without providing an additional circuit, and outputs A/D conversion data with appropriate accuracy obtained by performing A/D conversion with reduced error. A control process is performed by using. The operation of the electronic control unit 1 when executing the A/D conversion process will be described below with reference to FIG.
 〔A/D変換処理〕
 図2Aは、本実施形態における比較例のA/D変換処理の流れを示すタイムチャートであり、図2Bは、本実施形態におけるA/D変換処理の流れを示すタイムチャートである。なお、以下の説明では、コンデンサC1、C2及びC3は、各々、初期状態において、入力チャネルCH1、CH2及びCH3への入力電圧VCH1、VCH2及びVCH3と同一電圧に対応して充電されているものとする。ここで、入力電圧VCH1は、第1アナログ信号源Vin1の出力電圧が抵抗素子R1を介し点P1でコンデンサC1に印加される電圧であり、入力電圧VCH2は、第2アナログ信号源Vin2の出力電圧が抵抗素子R2を介し点P2でコンデンサC2に印加される電圧であり、入力電圧VCH3は、第2アナログ信号源Vin13出力電圧が抵抗素子R3を介し点P3でコンデンサC3に印加される電圧である。
[A/D conversion processing]
FIG. 2A is a time chart showing the flow of A/D conversion processing of the comparative example in the present embodiment, and FIG. 2B is a time chart showing the flow of A/D conversion processing in the present embodiment. In the following description, it is assumed that the capacitors C1, C2 and C3 are charged in the initial state so as to correspond to the same voltages as the input voltages VCH1, VCH2 and VCH3 to the input channels CH1, CH2 and CH3, respectively. To do. Here, the input voltage VCH1 is the voltage at which the output voltage of the first analog signal source Vin1 is applied to the capacitor C1 via the resistance element R1 at the point P1, and the input voltage VCH2 is the output voltage of the second analog signal source Vin2. Is the voltage applied to the capacitor C2 at the point P2 via the resistance element R2, and the input voltage VCH3 is the voltage at which the second analog signal source Vin13 output voltage is applied to the capacitor C3 at the point P3 via the resistance element R3. .
 まず、図2Aを参照して、本実施形態における比較例のA/D変換処理の流れについて説明する。 First, with reference to FIG. 2A, a flow of A/D conversion processing of a comparative example in the present embodiment will be described.
 図2Aに示すように、比較例のA/D変換処理では、まず、A/D変換AD1において、マルチプレクサ131aが、スイッチ素子Sを制御することによって端子T1と端子T5とを接続することにより、入力チャネルCH1を選択する。これにより、サンプリング用コンデンサCINはその電圧が入力チャネルCH1への入力電圧VCH1と等しくなるように充電される。そして、A/D変換器131bが、基準電圧信号AVrefを基準電圧として用いて、サンプリング用コンデンサCINの電圧をA/D変換してA/D変換データを生成する。これにより、A/D変換AD1では、入力チャネルCH1への入力電圧VCH1をA/D変換することができる。 As shown in FIG. 2A, in the A/D conversion process of the comparative example, first, in the A/D conversion AD1, the multiplexer 131a controls the switch element S to connect the terminals T1 and T5, Select the input channel CH1. As a result, the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH1 to the input channel CH1. Then, the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data. As a result, the A/D conversion AD1 can A/D convert the input voltage VCH1 to the input channel CH1.
 次に、A/D変換AD1に続くA/D変換AD2では、マルチプレクサ131aが、スイッチ素子Sを制御することによって端子T1と端子T5とを非接続(接続解除)にした状態にしながら端子T2と端子T5とを接続することにより、入力チャネルCH2を選択する。これにより、サンプリング用コンデンサCINはその電圧が入力チャネルCH2への入力電圧VCH2と等しくなるように充電されると共に、コンデンサC1はその電圧がかかる入力電圧VCH1に近づくように充電される途中状態となる。そして、A/D変換器131bが、基準電圧信号AVrefを基準電圧として用いて、サンプリング用コンデンサCINの電圧をA/D変換してA/D変換データを生成する。これにより、A/D変換AD2では、入力チャネルCH2への入力電圧VCH2をA/D変換することができる。 Next, in the A/D conversion AD2 subsequent to the A/D conversion AD1, the multiplexer 131a controls the switch element S to disconnect the terminals T1 and T5 from each other and disconnect the terminals T1 and T5 from each other. The input channel CH2 is selected by connecting to the terminal T5. As a result, the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH2 to the input channel CH2, and the capacitor C1 is in the process of being charged so that its voltage approaches the applied voltage VCH1. .. Then, the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data. As a result, the A/D conversion AD2 can A/D convert the input voltage VCH2 to the input channel CH2.
 次に、A/D変換AD2に続くA/D変換AD3では、マルチプレクサ131aが、スイッチ素子Sを制御することによって端子T2と端子T5とを非接続(接続解除)にした状態にしながら端子T3と端子T5とを接続することにより、入力チャネルCH3を選択する。これにより、サンプリング用コンデンサCINはその電圧が入力チャネルCH3への入力電圧VCH3と等しくなるように充電されると共に、コンデンサC2はその電圧がかかる入力電圧VCH2に近づくように充電される途中状態となる。そして、A/D変換器131bが、基準電圧信号AVrefを基準電圧として用いて、サンプリング用コンデンサCINの電圧を所定のサンプリング周期でA/D変換してA/D変換データを生成する。これにより、A/D変換AD3では、入力チャネルCH3への入力電圧VCH3をA/D変換することができる。また、A/D変換AD1からAD3において生成された各A/D変換データは、ソフトウェア参照周期毎にまとめて制御部132に入力される。なお、2回目以後のA/D変換AD1では、マルチプレクサ131aが、スイッチ素子Sを制
御することによって端子T3と端子T5とを非接続(接続解除)にする一方で端子T1と端子T5とを接続することにより、入力チャネルCH1を選択する。これにより、サンプリング用コンデンサCINはその電圧が入力チャネルCH1への入力電圧VCH1と等しくなるように充電されると共に、コンデンサC3はその電圧がかかる入力チャネルCH3への入力電圧VCH3に近づくように充電される途中状態となる。以降、同様に、2回目以後のA/D変換AD2及びAD3を実行することになる。
Next, in the A/D conversion AD3 subsequent to the A/D conversion AD2, the multiplexer 131a controls the switch element S to disconnect the terminals T2 and T5 from each other and disconnect the terminals T3 and T5 from each other. The input channel CH3 is selected by connecting to the terminal T5. As a result, the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH3 to the input channel CH3, and the capacitor C2 is in the process of being charged so that its voltage approaches the applied voltage VCH2. . Then, the A/D converter 131b uses the reference voltage signal AVref as a reference voltage to A/D-convert the voltage of the sampling capacitor CIN at a predetermined sampling cycle to generate A/D-converted data. As a result, the A/D conversion AD3 can A/D convert the input voltage VCH3 to the input channel CH3. The A/D conversion data generated in the A/D conversions AD1 to AD3 are collectively input to the control unit 132 for each software reference period. In the A/D conversion AD1 after the second time, the multiplexer 131a controls the switch element S to disconnect (disconnect) the terminals T3 and T5 while connecting the terminals T1 and T5. By doing so, the input channel CH1 is selected. As a result, the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH1 to the input channel CH1, and the capacitor C3 is charged so that its voltage approaches the input voltage VCH3 to the input channel CH3. It will be in the middle of the state. Thereafter, similarly, the second and subsequent A/D conversions AD2 and AD3 are executed.
 ここで、このような比較例のA/D変換処理では、初回のA/D変換及びそれ以後、サンプリング用コンデンサCINに初期値としての電荷が存在したり又はその直近のA/D変換の変換時間が不足してその際の電荷が残っている場合があるので、1回目以後のA/D変換AD1のときは図1に示す点P1と点P4との間、1回目以後のA/D変換AD2のときは点P2と点P4との間、1回目以後のA/D変換AD3のときは点P3と点P4との間に電位差が生じる場合が生じる。そして、このような電位差によれば、A/D変換AD1のときはコンデンサC1とサンプリング用コンデンサCINとの間、A/D変換AD2のときはコンデンサC2とサンプリング用コンデンサCINとの間、A/D変換AD3のときはコンデンサC3とサンプリング用コンデンサCINとの間に電流が流れることとなる。 Here, in such an A/D conversion process of the comparative example, a charge as an initial value exists in the sampling capacitor CIN after the first A/D conversion or thereafter, or a conversion of the A/D conversion immediately adjacent thereto is performed. Since the time may be insufficient and the electric charge at that time may remain, in the case of the A/D conversion AD1 after the first time, between the points P1 and P4 shown in FIG. 1, the A/D after the first time. A potential difference may occur between points P2 and P4 during conversion AD2 and between points P3 and P4 during the first and subsequent A/D conversions AD3. According to such a potential difference, between the capacitor C1 and the sampling capacitor CIN in the case of A/D conversion AD1, between the capacitor C2 and the sampling capacitor CIN in the case of A/D conversion AD2, A/ In the case of D conversion AD3, a current will flow between the capacitor C3 and the sampling capacitor CIN.
 このため、A/D変換AD1のときはコンデンサC1とサンプリング用コンデンサCINとが充放電され、A/D変換AD2のときはコンデンサC2とサンプリング用コンデンサCINとが充放電され、A/D変換AD3のときはコンデンサC3とサンプリング用コンデンサCINとが充放電される。この結果、A/D変換AD1のときはコンデンサC1の電圧及びサンプリング用コンデンサCINの電圧が入力チャンネルCH1の電圧VCH1から乖離し、A/D変換AD2のときはコンデンサC2の電圧及びサンプリング用コンデンサCINの電圧が入力チャンネルCH2の電圧VCH2から乖離し、A/D変換AD3のときはコンデンサC3の電圧及びサンプリング用コンデンサCINの電圧が入力チャンネルCH3の電圧VCH3から乖離してしまう傾向が生じる。このような電圧の乖離が発生する現象は、クロストークと呼ばれるもので、A/D変換処理の誤差の要因となるものである。 Therefore, in the case of A/D conversion AD1, the capacitor C1 and the sampling capacitor CIN are charged and discharged, and in the case of A/D conversion AD2, the capacitor C2 and the sampling capacitor CIN are charged and discharged, and the A/D conversion AD3. In this case, the capacitor C3 and the sampling capacitor CIN are charged and discharged. As a result, the voltage of the capacitor C1 and the voltage of the sampling capacitor CIN deviate from the voltage VCH1 of the input channel CH1 in the A/D conversion AD1, and the voltage of the capacitor C2 and the sampling capacitor CIN in the A/D conversion AD2. Of the input channel CH2 deviates from the voltage VCH2 of the input channel CH2, and in the case of A/D conversion AD3, the voltage of the capacitor C3 and the voltage of the sampling capacitor CIN tend to deviate from the voltage VCH3 of the input channel CH3. The phenomenon in which such voltage deviation occurs is called crosstalk, and causes an error in the A/D conversion processing.
 そこで、本実施形態におけるA/D変換処理のでは以下に示すようにしてクロストークの影響を抑制して、適切な精度のA/D変換データを生成する。以下、図2Bを参照して、本実施形態におけるA/D変換処理の流れについて説明する。 Therefore, in the A/D conversion processing according to the present embodiment, the influence of crosstalk is suppressed as described below, and A/D conversion data with appropriate accuracy is generated. Hereinafter, the flow of the A/D conversion process in this embodiment will be described with reference to FIG. 2B.
 図2Bに示すように、本実施形態におけるA/D変換処理では、変換開始トリガに応じて、まず、A/D変換AD1(時間長tAD1)において、マルチプレクサ131aが、スイッチ素子Sを制御することによって端子T1と端子T5とを接続することにより、入力チャネルCH1を選択する。これにより、サンプリング用コンデンサCINはその電圧が入力チャネルCH1への入力電圧VCH1と等しくなるように充電される。そして、A/D変換器131bが、基準電圧信号AVrefを基準電圧として用いて、サンプリング用コンデンサCINの電圧をA/D変換してA/D変換データを生成する。これにより、A/D変換AD1では、入力チャネルCH1への入力電圧VCH1をA/D変換することができる。 As shown in FIG. 2B, in the A/D conversion process according to the present embodiment, first, the multiplexer 131a controls the switch element S in the A/D conversion AD1 (time length tAD1) in response to the conversion start trigger. The input channel CH1 is selected by connecting the terminal T1 and the terminal T5 with each other. As a result, the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH1 to the input channel CH1. Then, the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data. As a result, the A/D conversion AD1 can A/D convert the input voltage VCH1 to the input channel CH1.
 次に、A/D変換AD1に続くA/D変換1/2Vcc(時間長tVcc)では、マルチプレクサ131aが、スイッチ素子Sを制御することによって端子T1と端子T5とを非接続(接続解除)にした状態にしながら端子T4と端子T5とを接続することにより、1/2基準電圧信号1/2AVrefを選択する。これにより、サンプリング用コンデンサCINはその電圧が1/2基準電圧信号1/2AVrefと等しくなるように充電されると共に、コンデンサC1はその電圧が点P1の電圧に追従して入力チャネルCH1への入力電圧VCH1に近づくように充電される途中状態となる。そして、A/D変換器131bが、基準電圧信号AVrefを基準電圧として用いて、サンプリング用コンデンサCINの電圧をA/D変換する。なお、このようなA/D変換AD1に続くA/D変換1/2Vccは、次に説明するような利点を有するものではあるが、必須のものではなく省略することも可能であり、このような省略をした場合には、A/D変換AD1に引き続き次に説明するようなA/D変換AD2を実行することになる。 Next, in the A/D conversion 1/2 Vcc (time length tVcc) following the A/D conversion AD1, the multiplexer 131a controls the switch element S to disconnect (disconnect) the terminals T1 and T5. The ½ reference voltage signal ½ AVref is selected by connecting the terminal T4 and the terminal T5 in this state. As a result, the sampling capacitor CIN is charged so that its voltage becomes equal to the ½ reference voltage signal ½ AVref, and the capacitor C1 follows the voltage at the point P1 to input to the input channel CH1. The battery is in the process of being charged so as to approach the voltage VCH1. Then, the A/D converter 131b performs A/D conversion on the voltage of the sampling capacitor CIN using the reference voltage signal AVref as the reference voltage. Although the A/D conversion 1/2Vcc following the A/D conversion AD1 has the advantages described below, it is not essential and can be omitted. If omitted, the A/D conversion AD1 as described below is executed subsequently to the A/D conversion AD1.
 次に、A/D変換1/2Vccに続くA/D変換AD2(時間長tAD2)では、マルチプレクサ131aが、スイッチ素子Sを制御することによって端子T4と端子T5とを非接続(接続解除)にした状態にしながら端子T2と端子T5とを接続することにより、入力チャネルCH2を選択する。これにより、サンプリング用コンデンサCINはその電圧が入力チャネルCH2への入力電圧VCH2と等しくなるように充電される。この際、コンデンサC1はその電圧が入力チャネルCH1への入力電圧VCH1に近づくように充電される途中状態のままである。また、端子T2と端子T5とが接続された際に、コンデンサC2には入力チャネルCH2への入力電圧VCH2と同一電圧になるように充電されていることに起因する電荷があり、またサンプリング用コンデンサCINには1/2基準電圧信号1/2AVrefの電圧に起因する電荷が残っている場合があるため、点P2と点P4との間に電位差が生じ、このような電位差によれば、コンデンサC2とサンプリング用コンデンサCINとの間に電流が流れてこれらが充放電され、この結果、コンデンサC2の電圧及びサンプリング用コンデンサCINの電圧が入力チャンネルCH2の電圧VCH2から一旦乖離する傾向が生じるが、コンデンサC2はその電圧が入力チャネルCH2への入力電圧VCH2と同一電圧になるように充電されており、サンプリング用コンデンサCINはその電圧が固定値であって所定の正値である1/2基準電圧信号1/2AVrefの電圧から降下した電圧になるように放電されているため、サンプリング用コンデンサCINの電圧が入力チャネルCH2への入力電圧VCH2と等しくなるように新たに適切に充電されるまでの時間を想定し易くなって、A/D変換AD2を開始するタイミングの設定が簡便かつ確実なものとなる。そして、A/D変換器131bが、基準電圧信号AVrefを基準電圧として用いて、サンプリング用コンデンサCINの電圧をA/D変換してA/D変換データを生成する。これにより、A/D変換AD2では、入力チャネルCH2への入力電圧VCH2をより適切にA/D変換することができる。なお、A/D変換AD1に続くA/D変換1/2Vccが設けられていない場合には、端子T2と端子T5とが接続された際に、コンデンサC2とサンプリング用コンデンサCINとの間の電位差がより大きくなっている場合も考えられるが、コンデンサC2はその電圧が入力チャネルCH2への入力電圧VCH2と同一電圧になるように充電されているため、このようにコンデンサC2が充電されていない場合に比べれば、サンプリング用コンデンサCINの電圧が入力チャネルCH2への入力電圧VCH2と等しくなるように新たに充電されるまでの時間を想定し易くなるという有意性がある。 Next, in the A/D conversion AD2 (time length tAD2) subsequent to the A/D conversion 1/2 Vcc, the multiplexer 131a disconnects (disconnects) the terminals T4 and T5 by controlling the switch element S. The input channel CH2 is selected by connecting the terminal T2 and the terminal T5 while keeping the state. As a result, the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH2 to the input channel CH2. At this time, the capacitor C1 remains in the state of being charged so that its voltage approaches the input voltage VCH1 to the input channel CH1. Further, when the terminal T2 and the terminal T5 are connected, the capacitor C2 has a charge due to being charged so as to have the same voltage as the input voltage VCH2 to the input channel CH2, and the sampling capacitor. Since electric charges due to the voltage of the 1/2 reference voltage signal 1/2 AVref may remain in CIN, a potential difference occurs between the points P2 and P4. According to such a potential difference, the capacitor C2 A current flows between the sampling capacitor CIN and the sampling capacitor CIN to charge and discharge them. As a result, the voltage of the capacitor C2 and the voltage of the sampling capacitor CIN tend to deviate from the voltage VCH2 of the input channel CH2 once. C2 is charged so that its voltage becomes the same voltage as the input voltage VCH2 to the input channel CH2, and the sampling capacitor CIN has a fixed value and is a predetermined positive value. Since it is discharged so as to have a voltage dropped from the voltage of 1/2 AVref, it takes time until the voltage of the sampling capacitor CIN is newly appropriately charged so as to be equal to the input voltage VCH2 to the input channel CH2. It becomes easier to assume, and the setting of the timing for starting the A/D conversion AD2 becomes simple and reliable. Then, the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data. As a result, in the A/D conversion AD2, the input voltage VCH2 to the input channel CH2 can be more appropriately A/D converted. When the A/D conversion 1/2Vcc following the A/D conversion AD1 is not provided, the potential difference between the capacitor C2 and the sampling capacitor CIN when the terminal T2 and the terminal T5 are connected. May be larger, but since the capacitor C2 is charged so that its voltage becomes the same voltage as the input voltage VCH2 to the input channel CH2, when the capacitor C2 is not charged in this way Compared with the above, there is a significance that it is easier to estimate the time until the voltage of the sampling capacitor CIN is newly charged so that it becomes equal to the input voltage VCH2 to the input channel CH2.
 次に、A/D変換AD2に続くA/D変換1/2Vcc(時間長tVcc)では、A/D変換AD1に続くA/D変換1/2Vccと同様にして1/2基準電圧信号1/2AVrefをA/D変換する。この際、コンデンサC1はその電圧が入力チャネルCH1への入力電圧VCH1に近づくように充電される途中状態のままであり、コンデンサC2はその電圧が点P2の電圧に追従して入力チャネルCH2への入力電圧VCH2に近づくように充電される途中状態となる。なお、このようなA/D変換AD2に続くA/D変換1/2Vccも、A/D変換AD1に続くA/D変換1/2Vccと同様に、必須のものではなく省略することも可能であり、このような省略をした場合には、A/D変換AD2に引き続き次に説明するようなA/D変換AD3を実行することになる。 Next, in the A/D conversion 1/2 Vcc (time length tVcc) following the A/D conversion AD2, the 1/2 reference voltage signal 1/ is obtained in the same manner as the A/D conversion 1/2 Vcc following the A/D conversion AD1. 2 AVref is A/D converted. At this time, the capacitor C1 remains in the state of being charged so that its voltage approaches the input voltage VCH1 to the input channel CH1, and the capacitor C2 follows its voltage at the point P2 to the input channel CH2. It is in the state of being charged so as to approach the input voltage VCH2. The A/D conversion 1/2Vcc following the A/D conversion AD2 is not essential as in the case of the A/D conversion 1/2Vcc following the A/D conversion AD1 and may be omitted. If such an omission is made, the A/D conversion AD3 as described below is executed subsequently to the A/D conversion AD2.
 次に、A/D変換1/2Vccに続くA/D変換AD3(時間長tAD3)では、マルチプレクサ131aが、スイッチ素子Sを制御することによって端子T4と端子T5とを非接続(接続解除)にした状態にしながら端子T3と端子T5とを接続することにより、入力チャネルCH3を選択する。これにより、サンプリング用コンデンサCINはその電圧が入力チャネルCH3への入力電圧VCH3と等しくなるように充電される。この際、コンデンサC1はその電圧が入力チャネルCH1への入力電圧VCH1に近づくように充電される途中状態のままであり、コンデンサC2はその電圧が入力チャネルCH2への入力電圧VCH2に近づくように充電される途中状態のままである。また、端子T3と端子T5とが接続された際に、コンデンサC3には入力チャネルCH3への入力電圧VCH3と同一電圧になるように充電されていることに起因する電荷があり、またサンプリング用コンデンサCINには1/2基準電圧信号1/2AVrefの電圧に起因する電荷が残っている場合があるため、点P3と点P4との間に電位差が生じ、このような電位差によれば、コンデンサC3とサンプリング用コンデンサCINとの間に電流が流れてこれらが充放電され、この結果、コンデンサC2の電圧及びサンプリング用コンデンサCINの電圧が入力チャンネルCH3の電圧VCH3から一旦乖離する傾向が生じるが、コンデンサC3はその電圧が入力チャネルCH3への入力電圧VCH3と同一電圧になるように充電されており、サンプリング用コンデンサCINはその電圧が固定値であって所定の正値である1/2基準電圧信号1/2AVrefの電圧から降下した電圧になるように放電されているため、サンプリング用コンデンサCINの電圧が入力チャネルCH3への入力電圧VCH3と等しくなるように新たに適切に充電されるまでの時間を想定し易くなって、A/D変換AD2を開始するタイミングの設定が簡便かつ確実なものとなる。そして、A/D変換器131bが、基準電圧信号AVrefを基準電圧として用いて、サンプリング用コンデンサCINの電圧をA/D変換してA/D変換データを生成する。これにより、A/D変換AD3では、入力チャネルCH3への入力電圧VCH2をより適切にA/D変換することができる。なお、A/D変換AD3に続くA/D変換1/2Vccが設けられていない場合には、端子T3と端子T5とが接続された際に、コンデンサC2とサンプリング用コンデンサCINとの間の電位差がより大きくなっている場合も考えられるが、コンデンサC3はその電圧が入力チャネルCH3への入力電圧VCH3と同一電圧になるように充電されているため、このようにコンデンサC3が充電されていない場合に比べれば、サンプリング用コンデンサCINの電圧が入力チャネルCH3への入力電圧VCH3と等しくなるように新たに充電されるまでの時間を想定し易くなって、A/D変換AD2を開始するタイミングの設定が簡便かつ確実なものとなるという有意性がある。 Next, in the A/D conversion AD3 (time length tAD3) subsequent to the A/D conversion 1/2 Vcc, the multiplexer 131a disconnects (disconnects) the terminals T4 and T5 by controlling the switch element S. The input channel CH3 is selected by connecting the terminal T3 and the terminal T5 while keeping the state. As a result, the sampling capacitor CIN is charged so that its voltage becomes equal to the input voltage VCH3 to the input channel CH3. At this time, the capacitor C1 remains in the state of being charged so that its voltage approaches the input voltage VCH1 to the input channel CH1, and the capacitor C2 charges so that its voltage approaches the input voltage VCH2 to the input channel CH2. It is still in the process of being processed. Further, when the terminals T3 and T5 are connected, the capacitor C3 has a charge due to being charged so as to have the same voltage as the input voltage VCH3 to the input channel CH3, and the sampling capacitor. Since electric charges due to the voltage of the 1/2 reference voltage signal 1/2AVref may remain in CIN, a potential difference occurs between the points P3 and P4. According to such a potential difference, the capacitor C3 A current flows between the sampling capacitor CIN and the sampling capacitor CIN to charge and discharge them. As a result, the voltage of the capacitor C2 and the voltage of the sampling capacitor CIN tend to deviate from the voltage VCH3 of the input channel CH3 once. C3 is charged so that its voltage becomes the same voltage as the input voltage VCH3 to the input channel CH3, and the sampling capacitor CIN has a fixed reference voltage value of 1/2 reference voltage signal. Since it is discharged so as to have a voltage lower than the voltage of 1/2 AVref, it takes time until the voltage of the sampling capacitor CIN is newly appropriately charged so as to be equal to the input voltage VCH3 to the input channel CH3. It becomes easier to assume, and the setting of the timing for starting the A/D conversion AD2 becomes simple and reliable. Then, the A/D converter 131b uses the reference voltage signal AVref as the reference voltage to A/D-convert the voltage of the sampling capacitor CIN to generate A/D-converted data. As a result, in the A/D conversion AD3, the input voltage VCH2 to the input channel CH3 can be more appropriately A/D converted. When the A/D conversion 1/2Vcc subsequent to the A/D conversion AD3 is not provided, the potential difference between the capacitor C2 and the sampling capacitor CIN when the terminal T3 and the terminal T5 are connected. May be larger, but since the capacitor C3 is charged so that its voltage becomes the same voltage as the input voltage VCH3 to the input channel CH3, the case where the capacitor C3 is not charged in this way Compared with the above, it becomes easier to estimate the time until the voltage of the sampling capacitor CIN is newly charged so as to become equal to the input voltage VCH3 to the input channel CH3, and the timing of starting the A/D conversion AD2 is set. Has the significance of being simple and reliable.
 次に、変換停止期間(時間長tS)では、A/D変換部131は、タイマ133での計時を利用して、所定の変換停止期間の間、A/D変換動作を停止する。この際、マルチプレクサ131aは、スイッチ素子Sを制御して、端子T1から端子T4のいずれかと端子T5とを接続させていてもよいし、端子T1から端子T4の全てと端子T5とを非接続にしていてもよい。そして、A/D変換部131は、タイマ133の計時に基づいて変換停止期間が経過したタイミングを変換開始トリガとして、A/D変換AD1、A/D変換1/2Vcc、A/D変換AD2、A/D変換1/2Vcc、A/D変換AD3の処理を再度順次実行することになる。ここで、変換停止期間は、A/D変換器131bのA/D変換動作を停止するためのものであるが、コンデンサC1、C2及びC3の電荷がそれらに対応する次のA/D変換の開始までに各々入力チャネルCH1、CH2及びCH3の電圧VCH1、VCH2及びVCH3に対応した電荷に復帰するために必要な復帰時間を確保するための時間長に設定されている。より詳しくは、かかる変換停止期間は、入力チャネルCH1、CH2及びCH3の電圧VCH1、VCH2及びVCH3の最大値、対応する保護用の抵抗素子R1、R2及びR3の抵抗、並びにノイズ除去用のコンデンサC1、C2及びC3の静電容量の大きさ等を考慮して、電荷の復帰に最も時間がかかるコンデンサであっても、今回のA/D変換の終了時から次回のA/D変換の開始時までに、つまりマルチプレクサ131aにおける対応する端子が非接続状態になってからその次に接続状態となるまでに、その電荷をその入力チャンネルへの入力電圧に対応する電荷量にまで復帰させ得る時間長さを確保することができる所定値に設定されている。換言すれば、変換停止期間は、コンデンサC1、C2及びC3の全てについて、マルチプレクサ131aにおける対応する端子が非接続状態になってからその次に接続状態となるまでに、その電荷をその入力チャンネルへの入力電圧に対応する電荷量にまで復帰させ得る時間長さを確保することができる所定値に設定されている。これにより、コンデンサC1、C2及びC3は、各々、対応するA/D変換の開始時において、入力チャネルCH1、CH2及びCH3への入力電圧VCH1、VCH2及びVCH3と同一電圧に対応して充電されていることになり、毎回のA/D変換を、それらが開始された初期状態と同様のコンデンサC1、C2及びC3の充電状態で実行することが可能となる。また、変換停止期間は、その時間長tSと、A/D変換AD1、A/D変換1/2Vcc、A/D変換AD2、A/D変換1/2Vcc、及びA/D変換AD3の時間長tRと、を合わせた時間長t1が、ソフトウェア参照周期t2未満になる時間長に設定されている。これにより、制御部132は、A/D変換AD1からAD3において生成された各A/D変換データをソフトウェア参照周期t2毎にまとめて取得することが可能となる。なお、必要に応じて、入力チャネルCH1、CH2及びCH3の内で所要のもののみを対象として変換停止期間tSの時間長を設定してもよい。また、必要に応じて、A/D変換1/2Vccの後に引き続き又は各々のA/D変換1/2Vccの代わりに変換停止期間を分割して挿入し、変換停止期間の分散化を図ってもよい。 Next, during the conversion stop period (time length tS), the A/D conversion unit 131 uses the time measurement by the timer 133 to stop the A/D conversion operation during the predetermined conversion stop period. At this time, the multiplexer 131a may control the switch element S to connect any one of the terminals T1 to T4 and the terminal T5, or disconnect all the terminals T1 to T4 and the terminal T5. May be. Then, the A/D conversion unit 131 uses the timing at which the conversion stop period has elapsed based on the timing of the timer 133 as a conversion start trigger, A/D conversion AD1, A/D conversion 1/2 Vcc, A/D conversion AD2, The processes of A/D conversion 1/2 Vcc and A/D conversion AD3 are sequentially executed again. Here, the conversion stop period is for stopping the A/D conversion operation of the A/D converter 131b, but the charges of the capacitors C1, C2 and C3 correspond to the charges of the next A/D conversion. By the start, the time length is set to secure a recovery time necessary to recover the charges corresponding to the voltages VCH1, VCH2 and VCH3 of the input channels CH1, CH2 and CH3, respectively. More specifically, during the conversion stop period, the maximum values of the voltages VCH1, VCH2 and VCH3 of the input channels CH1, CH2 and CH3, the resistances of the corresponding protection resistive elements R1, R2 and R3, and the noise removing capacitor C1 are provided. , C2 and C3 considering the magnitude of the capacitance, etc., even if the capacitor takes the longest time to restore the charge, from the end of this A/D conversion to the start of the next A/D conversion By the time, that is, from the time when the corresponding terminal of the multiplexer 131a is disconnected to the time when it is next connected, the length of time that the charge can be returned to the charge amount corresponding to the input voltage to the input channel. It is set to a predetermined value that can secure the height. In other words, during the conversion stop period, for all of the capacitors C1, C2 and C3, the corresponding charges in the multiplexer 131a are transferred to the input channel from the non-connected state to the next connected state. Is set to a predetermined value capable of ensuring a time length capable of returning to the amount of electric charge corresponding to the input voltage. As a result, the capacitors C1, C2 and C3 are charged at the same voltage as the input voltages VCH1, VCH2 and VCH3 to the input channels CH1, CH2 and CH3, respectively, at the start of the corresponding A/D conversion. Therefore, it is possible to perform the A/D conversion each time in the charged state of the capacitors C1, C2 and C3 similar to the initial state in which they are started. Further, the conversion stop period has its time length tS and the time lengths of A/D conversion AD1, A/D conversion 1/2 Vcc, A/D conversion AD2, A/D conversion 1/2 Vcc, and A/D conversion AD3. The time length t1 that is a combination of tR and tR is set to a time length that is less than the software reference period t2. As a result, the control unit 132 can collectively acquire the A/D conversion data generated in the A/D conversions AD1 to AD3 for each software reference period t2. If necessary, the time length of the conversion stop period tS may be set only for the required one of the input channels CH1, CH2, and CH3. Further, if necessary, after the A/D conversion 1/2 Vcc, the conversion stop period may be divided and inserted continuously or instead of the respective A/D conversion 1/2 Vcc, and the conversion stop period may be dispersed. Good.
 以上の説明から明らかなように、本実施形態における電子制御装置1では、マルチプレクサ131aが信号線L1(L2、L3)に接続した接続状態が解除されてから、マルチプレクサ131aが信号線L1(L2、L3)にその次に接続された接続状態が設定されるまでの期間内に含まれる期間として、コンデンサC1(C2、C3)の電荷が信号線L1(L2、L3)に入力されるアナログ信号の電圧Vin1(Vin2、Vin3)に対応した電荷に復帰するための復帰時間を確保し、かつA/D変換器131bのA/D変換の動作を停止するための変換停止期間を設定する。そして、このような構成によれば、前回のA/D変換処理によるサンプリング用コンデンサCINの電圧に影響されない入力電圧を、今回のA/D変換処理に対して確実に設定することができるので、今回のA/D変換処理において、前回のA/D変換処理の影響に起因するいわゆるクロストークによる誤差を低減することができる。この結果、付加的な回路を設けることない簡便な構成で、誤差を低減したA/D変換をすることにより得られた適切な精度のA/D変換データを用いて、制御処理を行うことができる。 As is clear from the above description, in the electronic control unit 1 according to the present embodiment, the multiplexer 131a is not connected to the signal line L1 (L2, L3), and then the connection state is released. The charge of the capacitor C1 (C2, C3) is included in the period until the connection state connected next to L3) is set, and the charge of the capacitor C1 (C2, C3) of the analog signal input to the signal line L1 (L2, L3) A conversion stop period for ensuring a recovery time for recovering the charges corresponding to the voltage Vin1 (Vin2, Vin3) and for stopping the A/D conversion operation of the A/D converter 131b is set. With such a configuration, the input voltage that is not affected by the voltage of the sampling capacitor CIN by the previous A/D conversion process can be reliably set for this A/D conversion process. In this A/D conversion process, it is possible to reduce an error due to so-called crosstalk caused by the influence of the previous A/D conversion process. As a result, the control process can be performed using the A/D conversion data with appropriate accuracy obtained by performing the A/D conversion with reduced error, with a simple configuration without providing an additional circuit. it can.
 また、本実施形態における電子制御装置1では、変換停止期間が、入力チャネルCH1、CH2及びCH3に入力されるアナログ信号の各々がA/D変換器131bで順次デジタル信号に変換され終わる時点に引き続く期間として設定されるので、入力チャネルCH1、CH2及びCH3に入力されるアナログ信号についての今回の複数のA/D変換を一巡させて、電子制御装置1の制御に必要なA/D変換値を一揃い得ることができ、かかるA/D変換値に基づく制御データを用いて所要の制御を適切に実行することができる。 Further, in the electronic control unit 1 in the present embodiment, the conversion stop period continues after the analog signals input to the input channels CH1, CH2, and CH3 are sequentially converted into digital signals by the A/D converter 131b. Since it is set as the period, the plurality of A/D conversions of the analog signals input to the input channels CH1, CH2, and CH3 are cycled to obtain the A/D conversion value necessary for the control of the electronic control unit 1. A complete set can be obtained, and required control can be appropriately executed using the control data based on the A/D conversion value.
 なお、本発明は、部材の種類、形状、配置、個数等は前述の実施形態に限定されるものではなく、その構成要素を同等の作用効果を奏するものに適宜置換する等、発明の要旨を
逸脱しない範囲で適宜変更可能であることはもちろんである。
It should be noted that the present invention is not limited to the type, shape, arrangement, number, etc. of the members described above in the embodiment, and appropriately replaces the constituent elements thereof with those having the same operational effect. Of course, it is possible to make appropriate changes without departing from the scope.
 以上のように、本発明は、付加的な回路を設けることない簡便な構成で、誤差を低減したA/D変換をすることにより得られた適切な精度のA/D変換データを用いて、制御処理を行うことができる電子制御装置を提供することができるものであり、その汎用普遍的な性格から自動二輪車や自動四輪車等の車両の電子制御装置に広く適用され得るものと期待される。 As described above, the present invention uses the A/D conversion data of appropriate accuracy obtained by performing the A/D conversion with a reduced error with a simple configuration without providing an additional circuit, It is possible to provide an electronic control device that can perform control processing, and it is expected that it can be widely applied to electronic control devices for vehicles such as motorcycles and four-wheeled vehicles because of its general-purpose universal character. It

Claims (2)

  1.  複数のアナログ信号の内のいずれかである第1のアナログ信号が入力される第1の信号線を含む複数の信号線と、
     前記複数の信号線の各々に順次接続して、前記複数のアナログ信号の各々が順次入力されるマルチプレクサと、
     前記マルチプレクサに順次入力された前記複数のアナログ信号の各々が第2の信号線に入力され、順次デジタル信号に変換するA/D変換器と、
     前記第1の信号線及びグランド電位間に接続された第1のコンデンサと、
     前記第2の信号線及びグランド電位間に接続された第2のコンデンサと、
     を備え、
     前記マルチプレクサが前記第1の信号線に接続した接続状態が解除されてから、前記マルチプレクサが前記第1の信号線にその次に接続された接続状態が設定されるまでの期間内に含まれる期間として、前記第1のコンデンサの電荷が前記第1の信号線に入力される第1のアナログ信号の電圧に対応した電荷に復帰するための復帰時間を確保し、かつ前記A/D変換器の前記変換の動作を停止するための所定の変換停止期間を設定したことを特徴とする電子制御装置。
    A plurality of signal lines including a first signal line to which a first analog signal, which is one of the plurality of analog signals, is input;
    A multiplexer that is sequentially connected to each of the plurality of signal lines and sequentially receives each of the plurality of analog signals,
    An A/D converter that converts each of the plurality of analog signals sequentially input to the multiplexer into a second signal line and sequentially converts the analog signals into digital signals;
    A first capacitor connected between the first signal line and the ground potential;
    A second capacitor connected between the second signal line and the ground potential;
    Equipped with
    A period included in a period from the release of the connection state in which the multiplexer is connected to the first signal line to the setting of the connection state in which the multiplexer is next connected to the first signal line. As a result, the recovery time for the charge of the first capacitor to return to the charge corresponding to the voltage of the first analog signal input to the first signal line is secured, and the A/D converter An electronic control device, wherein a predetermined conversion stop period for stopping the conversion operation is set.
  2.  前記所定の変換停止期間は、前記複数のアナログ信号の各々が前記A/D変換器で順次デジタル信号に変換され終わる時点に引き続く期間として設定されることを特徴とする請求項1に記載の電子制御装置。 The electronic device according to claim 1, wherein the predetermined conversion stop period is set as a period subsequent to a time point at which each of the plurality of analog signals is sequentially converted into a digital signal by the A/D converter. Control device.
PCT/JP2019/043643 2018-11-26 2019-11-07 Electronic control unit WO2020110647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018220512A JP2020088603A (en) 2018-11-26 2018-11-26 Electronic control device
JP2018-220512 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020110647A1 true WO2020110647A1 (en) 2020-06-04

Family

ID=70852237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043643 WO2020110647A1 (en) 2018-11-26 2019-11-07 Electronic control unit

Country Status (2)

Country Link
JP (1) JP2020088603A (en)
WO (1) WO2020110647A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888164U (en) * 1981-12-10 1983-06-15 横河電機株式会社 Multi-point current measurement device
JP2000165217A (en) * 1998-11-27 2000-06-16 Horiba Ltd Changeover circuit for analog signal
JP2001111424A (en) * 1999-10-13 2001-04-20 Fuji Electric Co Ltd Method for a/d conversion
JP2002185322A (en) * 2000-12-18 2002-06-28 Nissin Electric Co Ltd Processor for input signals of plural input channels
JP2007235244A (en) * 2006-02-27 2007-09-13 Toyota Motor Corp Sampling device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888164U (en) * 1981-12-10 1983-06-15 横河電機株式会社 Multi-point current measurement device
JP2000165217A (en) * 1998-11-27 2000-06-16 Horiba Ltd Changeover circuit for analog signal
JP2001111424A (en) * 1999-10-13 2001-04-20 Fuji Electric Co Ltd Method for a/d conversion
JP2002185322A (en) * 2000-12-18 2002-06-28 Nissin Electric Co Ltd Processor for input signals of plural input channels
JP2007235244A (en) * 2006-02-27 2007-09-13 Toyota Motor Corp Sampling device

Also Published As

Publication number Publication date
JP2020088603A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US9194905B2 (en) Processing circuit having self-diagnosis function
JP2009055689A (en) Protection device for assembled battery and assembled battery including the same
CN102243291B (en) For measuring the method for battery current in a motor vehicle
JP2011044920A (en) A/d converting device
US20160190832A1 (en) Semiconductor device and battery voltage measuring method
JP6309979B2 (en) Insulation detector
JP2017163473A (en) Voltage detector
US11054484B2 (en) Assembled battery monitoring system
JP5033754B2 (en) AD converter and fault detection method of AD converter
US6750800B2 (en) Analog-digital converter and method for converting data of the same
WO2020110647A1 (en) Electronic control unit
JP7395240B2 (en) Ground fault detection device
US9787318B2 (en) Signal control device
JP2010154441A (en) Apparatus and method for diagnosing fault of a/d input circuit
JP2001056350A (en) Circuit for detecting voltage of a set of electric cell
JP2017118180A (en) A/d converter
US10401434B2 (en) Semiconductor device, battery monitoring device, and voltage detection method of battery cell
JP2017063355A (en) Semiconductor device
US9304105B2 (en) Control device for oxygen concentration sensor
JP4687256B2 (en) Sensor signal processing circuit
US20160291091A1 (en) Battery voltage detection device
JP2022123504A (en) Battery monitoring device
EP2136219A2 (en) Voltage detecting device of assembled battery and assembled battery system comprising same
JP4910405B2 (en) Analog input device
JP6554748B2 (en) Voltage detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889467

Country of ref document: EP

Kind code of ref document: A1