JP6554748B2 - Voltage detector - Google Patents

Voltage detector Download PDF

Info

Publication number
JP6554748B2
JP6554748B2 JP2016058461A JP2016058461A JP6554748B2 JP 6554748 B2 JP6554748 B2 JP 6554748B2 JP 2016058461 A JP2016058461 A JP 2016058461A JP 2016058461 A JP2016058461 A JP 2016058461A JP 6554748 B2 JP6554748 B2 JP 6554748B2
Authority
JP
Japan
Prior art keywords
filter
battery
voltage detection
voltage
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016058461A
Other languages
Japanese (ja)
Other versions
JP2017175757A (en
Inventor
鎌田 誠二
誠二 鎌田
小森 修
修 小森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2016058461A priority Critical patent/JP6554748B2/en
Publication of JP2017175757A publication Critical patent/JP2017175757A/en
Application granted granted Critical
Publication of JP6554748B2 publication Critical patent/JP6554748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電圧検出装置に関する。   The present invention relates to a voltage detection device.

下記特許文献1には、ローパスフィルタのコンデンサのリーク故障が検出可能な電圧検出装置が開示されている。この電圧検出装置は、組電池を構成する各電池セルの電圧(セル電圧)を検出する装置であり、セル電圧の入力経路に各々設けられるCRフィルタ(ローパスフィルタ)におけるコンデンサのリーク故障をCRフィルタを介して検出されるセル電圧とCRフィルタを迂回して検出されるセル電圧とを比較することにより検出するものである。   Patent Document 1 below discloses a voltage detection device capable of detecting a leak failure of a capacitor of a low-pass filter. This voltage detection device is a device for detecting the voltage (cell voltage) of each battery cell constituting the assembled battery, and a CR filter is used to detect a capacitor leakage failure in a CR filter (low-pass filter) provided in each cell voltage input path. This is detected by comparing the cell voltage detected via the cell voltage with the cell voltage detected bypassing the CR filter.

特開2014−064404号公報JP 2014-064404 A

ところで、上記従来の電圧検出装置では、CRフィルタを介してセル電圧を検出回路に入力する第1の電圧入力経路とCRフィルタを迂回してセル電圧を検出回路に入力する第2の電圧入力経路とを設ける必要がある。すなわち、従来の電圧検出装置では、組電池に多数設けられる個々の電池セルについて2つの電圧入力経路を設ける必要があるので、電圧入力経路を構成するための部品点数が多くなるので、また検出回路における入力端子数が多くなるので、電圧検出装置のコストを押し上げる一因になっていた。   By the way, in the conventional voltage detection device, the first voltage input path for inputting the cell voltage to the detection circuit via the CR filter and the second voltage input path for bypassing the CR filter and inputting the cell voltage to the detection circuit. Must be provided. That is, in the conventional voltage detection device, since it is necessary to provide two voltage input paths for each battery cell provided in a large number of battery packs, the number of components for configuring the voltage input path increases, and the detection circuit As the number of input terminals increases, the cost of the voltage detection device is increased.

本発明は、上述した事情に鑑みてなされたものであり、セル電圧の入力経路を従来よりも削減した状態でCRフィルタの異常を検出することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to detect an abnormality of a CR filter in a state where the input path of the cell voltage is reduced as compared with the conventional one.

上記目的を達成するために、本発明では、電圧検出装置に係る第1の解決手段として、電池から入力された被検出電圧をCRフィルタを介して取り込んで検出する電圧検出装置であって、前記電池の端子間にバイパス抵抗を接続するスイッチ回路と、前記CRフィルタを介して取り込んだ前記被検出電圧を所定のサンプリング周期でサンプリングして電圧検出データに変換するA/D変換回路と、前記スイッチ回路が前記電池の端子間に前記バイパス抵抗を接続する前後の前記電圧検出データに基づいて前記CRフィルタの時定数を複数算出する時定数算出手段と、前記複数の時定数の平均に基づいて前記CRフィルタの異常を判定する異常判定手段とを備える、という手段を採用する。   In order to achieve the above object, according to the present invention, as a first solving means related to a voltage detection device, a voltage detection device that takes in a detected voltage input from a battery and detects it through a CR filter, A switch circuit for connecting a bypass resistor between the terminals of the battery, an A / D conversion circuit for sampling the detected voltage taken in via the CR filter at a predetermined sampling period and converting it into voltage detection data, and the switch Time constant calculating means for calculating a plurality of time constants of the CR filter based on the voltage detection data before and after the circuit connects the bypass resistor between the terminals of the battery, and based on the average of the plurality of time constants A means is provided that includes an abnormality determination unit that determines abnormality of the CR filter.

本発明では、電圧検出装置に係る第2の解決手段として、上記第1の解決手段において、前記時定数算出手段は、前記バイパス抵抗が前記電池の端子間に接続されることによる前記被検出電圧の低下量と前記CRフィルタの時定数との関係式に基づいて前記複数の時定数を演算する、という手段を採用する。   In the present invention, as a second solving means relating to the voltage detecting device, in the first solving means, the time constant calculating means is configured to detect the detected voltage by connecting the bypass resistor between terminals of the battery. The plurality of time constants are calculated on the basis of a relational expression between the amount of decrease in the above and the time constant of the CR filter.

本発明では、電圧検出装置に係る第3の解決手段として、上記第2の解決手段において、前記時定数算出手段は、前記電池の端子間に前記バイパス抵抗を接続する前後の前記電圧検出データを前記関係式に代入することによって前記複数の時定数を演算する、という手段を採用する。   In the present invention, as a third solving means relating to the voltage detecting device, in the second solving means, the time constant calculating means uses the voltage detection data before and after connecting the bypass resistor between the terminals of the battery. A means of calculating the plurality of time constants by substituting into the relational expression is adopted.

本発明では、電圧検出装置に係る第4の解決手段として、上記第1または2の解決手段において、前記電池は複数のセル電池を備えた組電池である、という手段を採用する。   In the present invention, as a fourth solving means relating to the voltage detecting device, a means is used in which the battery is an assembled battery including a plurality of cell batteries in the first or second solving means.

本発明によれば、電池の端子間にバイパス抵抗を接続する前後の電圧検出データに基づいてCRフィルタの時定数を複数算出し、当該複数の時定数の平均に基づいてCRフィルタの異常を判定するので、被検出電圧の入力経路を従来よりも削減した状態でCRフィルタの異常を検出することが可能である。  According to the present invention, a plurality of CR filter time constants are calculated based on voltage detection data before and after connecting a bypass resistor between battery terminals, and an abnormality of the CR filter is determined based on an average of the plurality of time constants. Therefore, it is possible to detect an abnormality of the CR filter in a state where the input path of the detected voltage is reduced as compared with the conventional case.

本発明の一実施形態に係る電圧検出装置の構成を示す回路図である。It is a circuit diagram which shows the structure of the voltage detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電圧検出装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the voltage detection apparatus which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態について説明する。
本実施形態に係る電圧検出装置Aは、図1に示すように、組電池Bを構成するn個の電池セルb1〜bnの電圧(セル電圧)を被検出電圧として検出する装置であり、所定サイズのプリント基板上に実装されたn個の放電回路D1〜Dn(スイッチ回路)、n+1本の伝送線路S1〜Sn+1、n+1個のCRフィルタF1〜Fn+1、セル電圧検出部K及びマイコンM(A/D変換回路、時定数算出手段、異常判定手段)を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the voltage detection device A according to the present embodiment is a device that detects a voltage (cell voltage) of n battery cells b1 to bn constituting the assembled battery B as a detected voltage. N discharge circuits D1 to Dn (switch circuit), n + 1 transmission lines S1 to Sn + 1, n + 1 CR filters F1 to Fn + 1, a cell voltage detector K, and a microcomputer M (A / D conversion circuit, time constant calculation means, abnormality determination means).

組電池Bは、複数(n個)の電池セルb1〜bnを備えるものである。合計n個の電池セルb1〜bnは、一列に直列接続されており、電池セルb1のプラス端子は組電池Bのプラス端子であり、また電池セルbnのマイナス端子は組電池Bのマイナス端子である。すなわち、n個の電池セルb1〜bnは、電池セルb1→電池セルb2→(中略)→電池セルbnの順に直列接続されており、各電池セルb1〜bnのセル電圧の合計値が組電池Bの出力電圧となる。   The assembled battery B includes a plurality (n pieces) of battery cells b1 to bn. A total of n battery cells b1 to bn are connected in series in a line, the plus terminal of the battery cell b1 is the plus terminal of the assembled battery B, and the minus terminal of the battery cell bn is the minus terminal of the assembled battery B. is there. That is, n battery cells b1 to bn are connected in series in the order of battery cell b1 → battery cell b2 → (omitted) → battery cell bn, and the total value of the cell voltages of each battery cell b1 to bn is an assembled battery. B output voltage.

n個の放電回路D1〜Dnは、上記n個の電池セルb1〜bnに各々並列接続されており、各々にバイパス抵抗とスイッチング素子との直列回路である。これら放電回路B1〜Bnは、スイッチング素子がON状態になることによりバイパス抵抗を電池セルb1〜bnに並列接続させるスイッチ回路である。   The n discharge circuits D1 to Dn are respectively connected in parallel to the n battery cells b1 to bn, and each is a series circuit of a bypass resistor and a switching element. These discharge circuits B1 to Bn are switch circuits that connect the bypass resistors in parallel to the battery cells b1 to bn when the switching elements are turned on.

すなわち、これら放電回路B1〜Bnは、バイパス抵抗を電池セルb1〜bnに並列接続させることにより電池セルb1〜bnを放電状態とする一方、スイッチング素子がOFF状態になってバイパス抵抗の電池セルb1〜bnへの並列接続を解除することにより電池セルb1〜bnを非放電状態とする。このようなn個の放電回路D1〜Dnのうち、放電回路D1は電池セルb1に並列接続され、放電回路D2は電池セルb2に並列接続され、(中略)、放電回路Dnは電池セルbnに並列接続されている。   That is, these discharge circuits B1 to Bn place the battery cells b1 to bn in a discharged state by connecting the bypass resistors in parallel to the battery cells b1 to bn, while the switching element is turned off and the battery cell b1 having the bypass resistance. The battery cells b1 to bn are brought into a non-discharged state by releasing the parallel connection to .about.bn. Among such n discharge circuits D1 to Dn, the discharge circuit D1 is connected in parallel to the battery cell b1, the discharge circuit D2 is connected in parallel to the battery cell b2, and (the omission), the discharge circuit Dn is connected to the battery cell bn. Connected in parallel.

n+1本の伝送線路S1〜Snは、上記組電池Bとプリント基板とを接続する配線(セル電圧検出用配線)である。これらn+1本の伝送線路S1〜Snは、n個の電池セルb1〜bnの各端子の端子電圧をn+1個のCRフィルタF1〜Fn+1の各入力端に伝送する。   The n + 1 transmission lines S1 to Sn are wirings (cell voltage detection wirings) that connect the assembled battery B and the printed circuit board. These n + 1 transmission lines S1 to Sn transmit the terminal voltages of the n battery cells b1 to bn to the input terminals of the n + 1 CR filters F1 to Fn + 1.

すなわち、伝送線路S1は電池セルb1のプラス端子とCRフィルタF1の入力端とを接続し、伝送線路S2は電池セルb1のマイナス端子と電池セルb2のプラス端子との接続点とCRフィルタF2の入力端とを接続する。伝送線路S3は、電池セルb2のマイナス端子と電池セルb3のプラス端子との接続点とCRフィルタF3の入力端とを接続する。(中略)また、伝送線路Snは、電池セルbn−1(図示略)のマイナス端子と電池セルbnのプラス端子との接続点とCRフィルタFnの第n入力端とを接続し、伝送線路Sn+1は、電池セルbnのマイナス端子とCRフィルタFn+1の入力端とを接続する。   That is, the transmission line S1 connects the positive terminal of the battery cell b1 and the input end of the CR filter F1, and the transmission line S2 connects the connection point between the negative terminal of the battery cell b1 and the positive terminal of the battery cell b2 and the CR filter F2. Connect the input terminal. The transmission line S3 connects the connection point between the negative terminal of the battery cell b2 and the positive terminal of the battery cell b3 and the input end of the CR filter F3. (Omitted) The transmission line Sn connects the connection point between the negative terminal of the battery cell bn-1 (not shown) and the positive terminal of the battery cell bn and the nth input terminal of the CR filter Fn, and the transmission line Sn + 1. Connects the negative terminal of the battery cell bn and the input end of the CR filter Fn + 1.

n+1個のCRフィルタF1〜Fn+1は、13本の伝送線路S1〜Sn+1に各々設けられたノイズ除去用のローパスフィルタであり、フィルタ抵抗R1〜Rn+1及びフィルタコンデンサC1〜Cn+1から構成されている。すなわち、CRフィルタF1は伝送線路S1に設けられており、CRフィルタF2は伝送線路S2に設けられており、CRフィルタF3は伝送線路S3に設けられており、(中略)、CRフィルタFnは伝送線路Snに設けられており、CRフィルタFn+1は伝送線路Sn+1に設けられている。   The n + 1 CR filters F1 to Fn + 1 are low-pass filters for noise removal provided on the 13 transmission lines S1 to Sn + 1, respectively, and include filter resistors R1 to Rn + 1 and filter capacitors C1 to Cn + 1. That is, the CR filter F1 is provided in the transmission line S1, the CR filter F2 is provided in the transmission line S2, the CR filter F3 is provided in the transmission line S3 (omitted), and the CR filter Fn is transmitted. The CR filter Fn + 1 is provided on the transmission line Sn + 1.

上記フィルタ抵抗R1〜Rn+1は、n+1本の伝送線路S1〜Sn+1の各々に直列に接続されており、また上記フィルタコンデンサC1〜Cn+1は、一端がn+1本の伝送線路S1〜Sn+1の各々に、また他端がGND(接地電位)に接続されている。フィルタ抵抗R1〜Rn+1は同一の抵抗値Rを有し、またフィルタコンデンサC1〜Cn+1は同一の静電容量Cを有している。このような抵抗値R及び静電容量Cは、CRフィルタF1〜Fn+1の時定数τ、つまりCRフィルタF1〜Fn+1のフィルタ特性を規定する量である。   The filter resistors R1 to Rn + 1 are connected in series to each of n + 1 transmission lines S1 to Sn + 1, and the filter capacitors C1 to Cn + 1 have one end connected to each of n + 1 transmission lines S1 to Sn + 1. The other end is connected to GND (ground potential). The filter resistors R1 to Rn + 1 have the same resistance value R, and the filter capacitors C1 to Cn + 1 have the same capacitance C. The resistance value R and the capacitance C are amounts that define the time constant τ of the CR filters F1 to Fn + 1, that is, the filter characteristics of the CR filters F1 to Fn + 1.

セル電圧検出部Kは、n個の電池セルb1〜bnに対応して設けられており、n+1個のCRフィルタF1〜Fnを介してn+1本の伝送線路S1〜Snから入力されたn個の電池セルb1〜bnの各端子電圧を所定周期でサンプリングすることにより各電池セルb1〜bnの端子間電圧(セル電圧)を検出する。すなわち、各セル電圧検出部Kは、各電池セルb1〜bnの各端子電圧の差分(差電圧)をセル電圧V1〜Vnとして検出する。また、このセル電圧検出部Kは、自らが検出したセル電圧V1〜VnをマイコンMに出力する。   The cell voltage detection unit K is provided corresponding to n battery cells b1 to bn, and n pieces of n input from n + 1 transmission lines S1 to Sn via n + 1 CR filters F1 to Fn. By sampling each terminal voltage of the battery cells b1 to bn at a predetermined cycle, the voltage between the terminals (cell voltage) of each battery cell b1 to bn is detected. That is, each cell voltage detection part K detects the difference (difference voltage) of each terminal voltage of each battery cell b1-bn as cell voltage V1-Vn. Further, the cell voltage detection unit K outputs the cell voltages V1 to Vn detected by itself to the microcomputer M.

すなわち、セル電圧検出部Kは、伝送線路S1と伝送線路S2とを介して入力される一対の端子電圧に基づいて電池セルb1のセル電圧V1を検出し、伝送線路S2と伝送線路S3とを介して入力される一対の端子電圧に基づいて電池セルb2のセル電圧V2を検出し、(中略)、伝送線路Snと伝送線路Sn+1とを介して入力される一対の端子電圧に基づいて電池セルbnのセル電圧Vnを検出する。   That is, the cell voltage detection unit K detects the cell voltage V1 of the battery cell b1 based on a pair of terminal voltages input via the transmission line S1 and the transmission line S2, and detects the transmission line S2 and the transmission line S3. The cell voltage V2 of the battery cell b2 is detected based on a pair of terminal voltages input via the battery cell (omitted), and the battery cell based on the pair of terminal voltages input via the transmission line Sn and the transmission line Sn + 1. The cell voltage Vn of bn is detected.

マイコンMは、CPU(Central Processing Unit)やメモリ、入出力インターフェイス等が一体的に組み込まれた所謂ワンチップマイコンであり、内部メモリに記憶された電圧検知プログラムを実行することにより所定の機能を発揮する。   The microcomputer M is a so-called one-chip microcomputer in which a CPU (Central Processing Unit), a memory, an input / output interface, etc. are integrated, and exhibits a predetermined function by executing a voltage detection program stored in the internal memory. To do.

このようなマイコンMは、セル電圧検出部Kから入力されるn個のセル電圧V1〜Vnを所定のサンプリング周期でサンプリングしてn個の電圧検出データVd1〜Vdnに変換する。また、このマイコンMは、上記電圧検出データVd1〜Vdnを内部メモリに記憶すると共に上記電圧検知プログラムに従った所定の演算処理を施すことにより、各電池セルb1〜bnの充電状態のバランス制御処理、各伝送線路S1〜Sn+1の断線診断処理、またn+1個のCRフィルタF1〜Fn+1の異常診断処理を行う。   Such a microcomputer M samples n cell voltages V1 to Vn input from the cell voltage detection unit K at a predetermined sampling period and converts them into n voltage detection data Vd1 to Vdn. In addition, the microcomputer M stores the voltage detection data Vd1 to Vdn in an internal memory and performs a predetermined calculation process according to the voltage detection program, thereby performing a balance control process for the state of charge of each battery cell b1 to bn. Then, disconnection diagnosis processing of each transmission line S1 to Sn + 1 and abnormality diagnosis processing of n + 1 CR filters F1 to Fn + 1 are performed.

すなわち、マイコンMは、電圧検出データVd1〜Vdnに基づいて各放電回路D1〜Dnを制御することにより、電池セルb1〜bnのセル電圧V1〜Vnを均等化する。また、マイコンMは、互いに隣り合う電池セルb1〜bnの電圧検出データVd1〜Vdnの差分に基づいて各伝送線路S1〜Sn+1の何れが断線したかを診断する。   That is, the microcomputer M equalizes the cell voltages V1 to Vn of the battery cells b1 to bn by controlling the discharge circuits D1 to Dn based on the voltage detection data Vd1 to Vdn. Further, the microcomputer M diagnoses which of the transmission lines S1 to Sn + 1 is disconnected based on the difference between the voltage detection data Vd1 to Vdn of the battery cells b1 to bn adjacent to each other.

さらに、マイコンMは、各放電回路D1〜Dnを「ON」状態にした前後の各電圧検出データVd1〜Vdnに基づいて各CRフィルタF1〜Fn+1の時定数τを複数算出し、当該複数の時定数の平均に基づいて各CRフィルタF1〜Fn+1の異常を判定する。このようなマイコンMは、本発明におけるA/D変換回路、時定数算出手段及び異常判定手段に相当する。   Further, the microcomputer M calculates a plurality of time constants τ of the respective CR filters F1 to Fn + 1 based on the respective voltage detection data Vd1 to Vdn before and after the discharge circuits D1 to Dn are set to the “ON” state. The abnormality of each CR filter F1 to Fn + 1 is determined based on the average of the constants. Such a microcomputer M corresponds to an A / D conversion circuit, a time constant calculation unit, and an abnormality determination unit in the present invention.

またこのようなマイコンMは、所定の絶縁素子を介して外部のバッテリECUと通信可能に接続されており、上記各診断結果を外部のバッテリECUに通知する。上記絶縁素子は、マイコンMとバッテリECUとのアイソレーションをとるための素子であり、例えばフォトカプラである。   Such a microcomputer M is connected to an external battery ECU via a predetermined insulating element so as to be communicable, and notifies the external battery ECU of the diagnosis results. The insulating element is an element for isolating the microcomputer M and the battery ECU, and is, for example, a photocoupler.

次に、本実施形態に係る電圧検出装置Aの動作、特にCRフィルタF1〜Fn+1の異常診断動作について詳しく説明する。   Next, the operation of the voltage detection apparatus A according to the present embodiment, particularly the abnormality diagnosis operation of the CR filters F1 to Fn + 1 will be described in detail.

CRフィルタF1〜Fn+1の異常診断を行う場合、マイコンMは、所定の時間間隔で放電回路D1〜DnをOFF状態からON状態になるように順次制御し、当該状態遷移の前後における電圧検出データVd1〜Vdnに基づいてCRフィルタF1〜Fn+1の時定数τを演算する。ここで、この異常診断に関するマイコンMは、各CRフィルタF1〜Fn+1について全く同様なので、以下では代表としてCRフィルタF1,F2に関する異常診断動作について、図2を参照して詳しく説明する。   When performing abnormality diagnosis of the CR filters F1 to Fn + 1, the microcomputer M sequentially controls the discharge circuits D1 to Dn from the OFF state to the ON state at predetermined time intervals, and the voltage detection data Vd1 before and after the state transition. The time constant τ of the CR filters F1 to Fn + 1 is calculated based on ˜Vdn. Here, since the microcomputer M relating to the abnormality diagnosis is exactly the same for each of the CR filters F1 to Fn + 1, the abnormality diagnosis operation relating to the CR filters F1 and F2 will be described in detail below with reference to FIG.

マイコンMは、セル電圧検出部Kから入力されるセル電圧V1を順次取り込んで電圧検出データVd1に変換(A/D変換)するが、CRフィルタF1の異常診断では、放電駆動信号を放電回路D1nに出力することにより、放電回路D1nをOFF状態からON状態、つまり電池セルb1にバイパス抵抗を並列接続しない状態からバイパス抵抗を並列接続する状態に切り替える。ここで、放電回路D1nをON状態をする時間幅Tは、CRフィルタF1の正常時の時定数τの10倍以上の時間である。   The microcomputer M sequentially takes the cell voltage V1 input from the cell voltage detection unit K and converts it into voltage detection data Vd1 (A / D conversion). However, in the abnormality diagnosis of the CR filter F1, the discharge drive signal is output to the discharge circuit D1n. Is switched from the OFF state to the ON state, that is, the state in which the bypass resistor is not connected in parallel to the battery cell b1 to the state in which the bypass resistor is connected in parallel. Here, the time width T during which the discharge circuit D1n is turned on is a time that is 10 times or more the time constant τ when the CR filter F1 is normal.

放電回路D1nがOFF状態からON状態に切り替わると、電池セルb1にバイパス抵抗が並列接続されるので、バイパス抵抗を介して電池セルb1のプラス端子からマイナス端子に向かってバランス電流Ibが流れる。この結果、CRフィルタF1の入力端の電圧Vi1はバランス電流IbによってΔVだけ低下し、また電池セルb1のマイナス端子に接続されたCRフィルタF2の入力端の電圧Vi2はΔVだけ上昇する。この電圧低下ΔVは、伝送線路S1の内部抵抗に起因するものであり、また電圧上昇ΔVは、伝送線路S2の内部抵抗に起因するものである。 When the discharge circuit D1n is switched from the OFF state to the ON state, a bypass resistor is connected in parallel to the battery cell b1, so that a balance current Ib flows from the plus terminal to the minus terminal of the battery cell b1 via the bypass resistor. As a result, the voltage V i1 at the input end of the CR filter F1 is decreased by ΔV 1 due to the balance current Ib, and the voltage V i2 at the input end of the CR filter F2 connected to the negative terminal of the battery cell b1 is increased by ΔV 2. To do. This voltage drop ΔV 1 is caused by the internal resistance of the transmission line S1, and the voltage rise ΔV 2 is caused by the internal resistance of the transmission line S2.

そして、セル電圧V1は、CRフィルタF1の出力端の電圧とCRフィルタF2の出力端の電圧との差電圧であり、上記電圧低下ΔV及び電圧上昇ΔVに起因して、図2に示すように低下する。すなわち、セル電圧V1の低下は、CRフィルタF1を構成しているフィルタ抵抗R1及びフィルタコンデンサC1及びCRフィルタF2を構成しているフィルタ抵抗R2及びフィルタコンデンサC2のうち、フィルタコンデンサC1に貯えられた電荷がフィルタ抵抗R1及びバイパス抵抗を介して放電電流として電池セルb1のマイナス端子に流れることによって、またフィルタコンデンサC2に貯えられた電荷がフィルタ抵抗R2及びバイパス抵抗を介して放電電流として電池セルb1のプラス端子に流れることによって発生するものである。 Then, the cell voltage V1 is a difference voltage between the voltage at the output terminal of the CR filter F1 of the output end of the voltage and the CR filter F2, due to the voltage drop [Delta] V 1 and the voltage rise [Delta] V 2, shown in FIG. 2 To decline. That is, the drop in the cell voltage V1 is stored in the filter capacitor C1 among the filter resistor R1 and the filter capacitor C1 constituting the CR filter F1 and the filter resistor R2 and the filter capacitor C2 constituting the CR filter F2. The charge flows through the filter resistor R1 and the bypass resistor as a discharge current to the negative terminal of the battery cell b1, and the charge stored in the filter capacitor C2 is discharged as the discharge current through the filter resistor R2 and the bypass resistor. It is generated by flowing through the positive terminal.

ここで、バイパス抵抗は、電池セルb1〜bnのセル電圧V1〜Vnを均等化するために設けられたものであり、抵抗値がフィルタ抵抗R1の抵抗値Rよりも大幅に小さく設定されている。したがって、セル電圧V1の低下量ΔVは、2つのフィルタコンデンサC1,C2の静電容量Cと2つのフィルタ抵抗R1、R2の抵抗値Rによって、つまり2つのCRフィルタF1,F2の時定数τによって主に支配される。  Here, the bypass resistor is provided to equalize the cell voltages V1 to Vn of the battery cells b1 to bn, and the resistance value is set to be significantly smaller than the resistance value R of the filter resistor R1. . Therefore, the amount of decrease ΔV of the cell voltage V1 is determined by the capacitance C of the two filter capacitors C1 and C2 and the resistance value R of the two filter resistors R1 and R2, that is, by the time constant τ of the two CR filters F1 and F2. Dominated by the Lord.

すなわち、バイパス抵抗が電池セルb1に並列接続されることによるセル電圧V1の低下量ΔVは、上記電圧低下ΔV及び電圧上昇ΔV並びに時定数τを定数とし、時間tを変数とする下式(1)、つまり上記低下量ΔVと時定数τとの関係式によって表すことができる。 That is, the amount of decrease in the cell voltage V1 due to the bypass resistor is connected in parallel to the battery cell b1 [Delta] V, under the above voltage drop [Delta] V 1 and the voltage rise [Delta] V 2 and a time constant τ constant, the time t as a variable type (1) That is, it can be expressed by a relational expression between the amount of decrease ΔV and the time constant τ.

Figure 0006554748
Figure 0006554748

また、上記電圧検出データVd1は、セル電圧V1を所定のサンプリング周期でサンプリングすることによって得られたものなので、上式(1)に電圧検出データVd1を適用することにとり、時定数τについて下式(2)が式(1)の近似式として得られる。この式(2)によって表される時定数τ(1)〜τ(3)は時定数τの近似値である。   Since the voltage detection data Vd1 is obtained by sampling the cell voltage V1 at a predetermined sampling period, the voltage detection data Vd1 is applied to the above equation (1), and the time constant τ is expressed by the following equation: (2) is obtained as an approximation of equation (1). The time constants τ (1) to τ (3) represented by the equation (2) are approximate values of the time constant τ.

Figure 0006554748
Figure 0006554748

すなわち、放電回路D1nがOFF状態からON状態に切り替わる直前にサンプリングされたサンプル値AD(0)に基づく電圧検出データV(0)、放電回路D1nがOFF状態からON状態に切り替わった直後にサンプリングされたサンプル値AD(1)に基づく電圧検出データV(1)、サンプル値AD(1)の次にサンプリングされたサンプル値AD(2)に基づく電圧検出データV(2)、サンプル値AD(2)の次にサンプリングされたサンプル値AD(3)に基づく電圧検出データV(3)、また放電回路D1nがOFF状態からON状態に切り替わった後に十分な時間が経過した時点つまり上記時間幅Tが経過する直前にサンプリングされたサンプル値AD(L)に基づく電圧検出データV(L)によって、時定数τの近似値である時定数τ(1)〜τ(3)を求めることができる。   That is, the voltage detection data V (0) based on the sample value AD (0) sampled immediately before the discharge circuit D1n switches from the OFF state to the ON state, and sampled immediately after the discharge circuit D1n switches from the OFF state to the ON state. Voltage detection data V (1) based on the sample value AD (1), voltage detection data V (2) based on the sample value AD (2) sampled next to the sample value AD (1), and sample value AD (2 ), The voltage detection data V (3) based on the sampled value AD (3) sampled next, and the time width T when a sufficient time has elapsed after the discharge circuit D1n is switched from the OFF state to the ON state. Approximation of time constant τ by voltage detection data V (L) based on sample value AD (L) sampled immediately before the passage Can be obtained constant τ (1) ~τ (3) when it is.

マイコンMは、このような電圧検出データV(0)〜V(L)を上式(2)に代入することによって3つの時定数τ(1)〜τ(3)を演算する。そして、マイコンMは、3つの時定数τ(1)〜τ(3)の算術平均を演算することによって最終的に時定数τを取得する。なお、電圧検出データV(0),V(L)については、図2に示すように、3つのサンプル値AD(0)をそれぞれ取得し、当該3つサンプル値AD(0)の算術平均を演算することによって各々取得される。このような演算処理によって、より正確な時定数τ(1)〜τ(3)を取得することができる。   The microcomputer M calculates three time constants τ (1) to τ (3) by substituting such voltage detection data V (0) to V (L) into the above equation (2). The microcomputer M finally obtains the time constant τ by calculating the arithmetic average of the three time constants τ (1) to τ (3). For the voltage detection data V (0) and V (L), as shown in FIG. 2, three sample values AD (0) are obtained, and the arithmetic average of the three sample values AD (0) is obtained. Each is obtained by computing. More accurate time constants τ (1) to τ (3) can be acquired by such arithmetic processing.

このような本実施形態によれば、各放電回路D1〜Dnがバイパス抵抗を接続する前後の電圧検出データVd1〜Vdnに基づいて各CRフィルタF1〜Fn+1の時定数τ(近似値)を順次演算し、当該時定数τ(近似値)に基づいて各CRフィルタF1〜Fn+1の異常、例えば各CRフィルタF1〜Fn+1を構成する各フィルタコンデンサC1〜Cn+1のリーク故障を検出することができる。   According to the present embodiment, the time constants τ (approximate values) of the CR filters F1 to Fn + 1 are sequentially calculated based on the voltage detection data Vd1 to Vdn before and after the discharge circuits D1 to Dn connect the bypass resistors. Based on the time constant τ (approximate value), an abnormality of each CR filter F1 to Fn + 1, for example, a leak failure of each filter capacitor C1 to Cn + 1 that constitutes each CR filter F1 to Fn + 1 can be detected.

すなわち、本実施形態によれば、組電池Bを構成する各電池セルb1〜bnのセル電圧V1〜Vn(被検出電圧)の入力経路を従来よりも削減した状態で、各CRフィルタF1〜Fn+1の異常の異常を検出することが可能である。   That is, according to the present embodiment, each of the CR filters F1 to Fn + 1 in a state where the input paths of the cell voltages V1 to Vn (detected voltages) of the battery cells b1 to bn constituting the assembled battery B are reduced as compared with the prior art. It is possible to detect abnormalities.

なお、本発明は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記実施形態では、組電池Bを構成するn個の電池セルb1〜bnのセル電圧を被検出電圧としたが、本発明はこれに限定されない。本発明は、組電池以外の様々な電池の電圧検出に適用することが可能である。
In addition, this invention is not limited to the said embodiment, For example, the following modifications can be considered.
(1) In the above embodiment, the cell voltages of the n battery cells b1 to bn constituting the assembled battery B are detected voltages, but the present invention is not limited to this. The present invention can be applied to voltage detection of various batteries other than the assembled battery.

(2)上記実施形態では、一例として3つの時定数τ(1)〜τ(3)を求めたが、本発明はこれに限定されない。演算によって求める時定数(近似値)は、2つ以上であれば良い。ただし、各CRフィルタF1〜Fn+1の時定数τは、図2に示すように各電池セルb1〜bnにバイパス抵抗を接続した直後における各セル電圧V1〜Vnが漸次低下する領域に相関を有するものであり、各セル電圧V1〜Vnが十分い低下して一定値に漸近する領域では相関が低い。したがって、複数の時定数(近似値)としては、上述した漸次低下する領域でサンプリングしたサンプル値に基づくものが好ましい。 (2) In the above embodiment, three time constants τ (1) to τ (3) are obtained as an example, but the present invention is not limited to this. The time constant (approximate value) calculated | required by a calculation should just be two or more. However, the time constant τ of each CR filter F1 to Fn + 1 has a correlation with the region where each cell voltage V1 to Vn gradually decreases immediately after connecting the bypass resistance to each battery cell b1 to bn as shown in FIG. The correlation is low in the region where the cell voltages V1 to Vn are sufficiently lowered and asymptotic to a constant value. Accordingly, the plurality of time constants (approximate values) are preferably based on sample values sampled in the above-described gradually decreasing region.

A 電圧検出装置
B 組電池
b1〜bn 電池セル
D1〜Dn 放電回路(スイッチ回路)
F1〜Fn CRフィルタ
K セル電圧検出部
M マイコン(A/D変換回路、断線判定部、充電バランス調整部)
S1〜S13 伝送線路
A voltage detection device B assembled battery b1 to bn battery cell D1 to Dn discharge circuit (switch circuit)
F1 to Fn CR filter K Cell voltage detection unit M Microcomputer (A / D conversion circuit, disconnection determination unit, charge balance adjustment unit)
S1 to S13 Transmission line

Claims (4)

電池から入力された被検出電圧をCRフィルタを介して取り込んで検出する電圧検出装置であって、
前記電池の端子間に所定のバイパス抵抗を接続するスイッチ回路と、
前記CRフィルタを介して取り込んだ前記被検出電圧を所定のサンプリング周期でサンプリングして電圧検出データに変換するA/D変換回路と、
前記スイッチ回路が前記電池の端子間に前記バイパス抵抗を接続する前後の前記電圧検出データに基づいて前記CRフィルタの時定数を複数算出する時定数算出手段と、
前記複数の時定数の平均に基づいて前記CRフィルタの異常を判定する異常判定手段と
を備えることを特徴とする電圧検出装置。
A voltage detection device that detects and detects a detected voltage input from a battery via a CR filter,
A switch circuit for connecting a predetermined bypass resistor between the terminals of the battery;
An A / D conversion circuit that samples the detected voltage taken in via the CR filter at a predetermined sampling period and converts it into voltage detection data;
Time constant calculating means for calculating a plurality of time constants of the CR filter based on the voltage detection data before and after the switch circuit connects the bypass resistor between the terminals of the battery;
An abnormality determination unit that determines abnormality of the CR filter based on an average of the plurality of time constants.
前記時定数算出手段は、前記バイパス抵抗が前記電池の端子間に接続されることによる前記被検出電圧の低下量と前記CRフィルタの時定数との関係式に基づいて前記複数の時定数を演算することを特徴とする請求項1に記載の電圧検出装置。   The time constant calculating means calculates the plurality of time constants based on a relational expression between a decrease amount of the detected voltage due to the bypass resistor being connected between the terminals of the battery and a time constant of the CR filter. The voltage detection device according to claim 1, wherein: 前記時定数算出手段は、前記電池の端子間に前記バイパス抵抗を接続する前後の前記電圧検出データを前記関係式に代入することによって前記複数の時定数を演算することを特徴とする請求項2に記載の電圧検出装置。   The time constant calculating means calculates the plurality of time constants by substituting the voltage detection data before and after connecting the bypass resistor between the terminals of the battery into the relational expression. The voltage detection apparatus described in 1. 前記電池は、複数のセル電池を備えた組電池であることを特徴とする請求項1または2に記載の電圧検出装置。

The voltage detection apparatus according to claim 1, wherein the battery is an assembled battery including a plurality of cell batteries.

JP2016058461A 2016-03-23 2016-03-23 Voltage detector Active JP6554748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016058461A JP6554748B2 (en) 2016-03-23 2016-03-23 Voltage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016058461A JP6554748B2 (en) 2016-03-23 2016-03-23 Voltage detector

Publications (2)

Publication Number Publication Date
JP2017175757A JP2017175757A (en) 2017-09-28
JP6554748B2 true JP6554748B2 (en) 2019-08-07

Family

ID=59973972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016058461A Active JP6554748B2 (en) 2016-03-23 2016-03-23 Voltage detector

Country Status (1)

Country Link
JP (1) JP6554748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816639B1 (en) * 2018-06-27 2023-09-27 Nuvoton Technology Corporation Japan Integrated circuit, battery monitoring device, and battery monitoring system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008121524A (en) * 2006-11-10 2008-05-29 Hitachi Ltd Air-fuel ratio sensor diagnostic device
JP5470821B2 (en) * 2008-11-29 2014-04-16 日産自動車株式会社 Vehicle driving force control device
JP6168813B2 (en) * 2013-03-29 2017-07-26 株式会社ケーヒン Voltage detector
JP6201395B2 (en) * 2013-04-19 2017-09-27 株式会社ケーヒン Voltage detector

Also Published As

Publication number Publication date
JP2017175757A (en) 2017-09-28

Similar Documents

Publication Publication Date Title
CN107643490B (en) Battery monitoring system
JP5606997B2 (en) Battery cell monitoring circuit, battery cell module, automobile equipped with battery cell module
JP6477593B2 (en) Battery pack monitoring system
US9958505B2 (en) Voltage sensing circuit and battery pack monitoring system
JP6740698B2 (en) Voltage detector and assembled battery monitoring system
JP2007240299A (en) Flying capacitor system voltage measuring device
EP3336565A1 (en) Secondary battery monitoring device and method for diagnosing failure
JP6539618B2 (en) Battery monitoring system
JP6324333B2 (en) Cell balance circuit and fault diagnosis device thereof
US20210208201A1 (en) Battery monitoring device
KR102431408B1 (en) Secondary battery monitoring apparatus and fault diagnosis method
JP2016121967A (en) Semiconductor device and method for measuring battery voltage
JP6386816B2 (en) Battery state monitoring circuit and battery device
CN106959419B (en) Voltage detection device
JP6554748B2 (en) Voltage detector
JP2005003618A (en) Power supply voltage measuring apparatus
JP2017183092A (en) Voltage detector
JP2018078748A (en) Voltage detector
CN111123106B (en) Sensor and method for checking a sensor
US20230288491A1 (en) Battery monitoring device
WO2014054270A1 (en) Leak processing device and cell power source device
JP5752086B2 (en) Secondary battery monitoring device
JP7331543B2 (en) BUILD BATTERY MONITORING SYSTEM AND BATTERY FAILURE DETERMINATION METHOD
JP6507989B2 (en) Battery monitoring device
JP6020038B2 (en) Storage module monitoring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181005

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190621

R150 Certificate of patent or registration of utility model

Ref document number: 6554748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250