WO2020110621A1 - Laser marker - Google Patents

Laser marker Download PDF

Info

Publication number
WO2020110621A1
WO2020110621A1 PCT/JP2019/043219 JP2019043219W WO2020110621A1 WO 2020110621 A1 WO2020110621 A1 WO 2020110621A1 JP 2019043219 W JP2019043219 W JP 2019043219W WO 2020110621 A1 WO2020110621 A1 WO 2020110621A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
laser
connecting portion
rotation position
pin
Prior art date
Application number
PCT/JP2019/043219
Other languages
French (fr)
Japanese (ja)
Inventor
和浩 中嶋
慶介 野口
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2020110621A1 publication Critical patent/WO2020110621A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/47Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using the combination of scanning and modulation of light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J3/00Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed

Definitions

  • the present disclosure relates to a laser marker.
  • the present disclosure has been made in view of the above points, and secures safety by suppressing rotation of a housing that houses a scanning unit that scans laser light outward.
  • a laser marker that can be used is provided.
  • the present specification describes a laser marker having a laser light source that emits laser light and a scanning unit that scans the laser light outward, and a first housing that houses the laser light source and a scanning unit.
  • Second casing a connecting portion that allows the second casing to rotate with respect to the first casing, and a lock mechanism that fixes the second casing at the first rotation position or the second rotation position.
  • a laser marker including:
  • the laser marker can ensure safety by suppressing the rotation of the second housing that houses the scanning unit that scans the laser light outward.
  • FIG. 4 is a plan view showing a part of the laser marker of FIG. 3. It is sectional drawing showing the same laser marker cut
  • FIG. 6 is a cross-sectional view showing the same laser marker taken along line Y1-Y1 of FIG.
  • FIG. 6 is a cross-sectional view showing the same laser marker taken along line Y2-Y2 of FIG.
  • FIG. 5 is a plan view showing a part of the laser marker of FIG. 4. It is sectional drawing showing the same laser marker cut
  • FIGS. 1 to 12 and FIG. 16 used in the following description, a part of the basic configuration is omitted and drawn, and the dimensional ratios of the drawn parts are not necessarily accurate.
  • the up-down direction, the front-rear direction, and the left-right direction are as shown in FIGS. 2 to 12 and 16.
  • the laser marker 1 of the present embodiment includes a laser unit 10, a dichroic mirror 12, a reflection mirror 14, a galvano scanner 16, an f ⁇ lens 18, and a visible semiconductor laser 19.
  • the laser unit 10 has a laser oscillator 10A, a beam expander 10B, and the like.
  • the laser oscillator 10A is composed of a CO2 laser, a YAG laser, or the like, and emits a laser beam Q.
  • the optical diameter of the laser light Q is adjusted (for example, expanded) by the beam expander 10B.
  • the visible semiconductor laser 19 emits visible laser light R that is visible coherent light, for example, red laser light.
  • the visible laser light R is used, for example, to project an image of a print pattern to be marked (printed) with the laser light Q onto the object W to be processed.
  • the wavelength of the visible laser light R is different from the wavelength of the laser light Q. In the present embodiment, for example, the wavelength of the laser light Q is 1064 nm and the wavelength of the visible laser light R is 650 nm.
  • the dichroic mirror 12 In the dichroic mirror 12, almost all of the incident laser light Q is transmitted. Further, in the dichroic mirror 12, the visible laser light R is incident at an incident angle of 45 degrees at a substantially central position where the laser light Q is transmitted, and is reflected on the optical path of the laser light Q at a reflection angle of 45 degrees.
  • the reflectance of the dichroic mirror 12 has wavelength dependence. Specifically, the dichroic mirror 12 is subjected to a surface treatment of a multilayer film structure of a dielectric layer and a metal layer, has a high reflectance with respect to the wavelength of the visible laser light R, and has a wavelength of other wavelengths. It is configured to transmit most (99%) of light.
  • the dotted line in FIG. 1 indicates the optical axis of the visible laser light R.
  • the alternate long and short dash line in FIG. 1 indicates the optical axis of the laser light Q.
  • the one-dot chain line between the dichroic mirror 12 and the processing object W also shows the optical axis of the visible laser light R.
  • the laser light Q that has passed through the dichroic mirror 12 and the visible laser light R that has reflected in the dichroic mirror 12 are reflected toward the galvano scanner 16.
  • the galvano scanner 16 two-dimensionally scans the laser light Q reflected by the reflection mirror 14 and the visible laser light R.
  • a galvano X-axis motor 17X and a galvano Y-axis motor 17Y shown in FIG. 13, which will be described later, are arranged such that their motor axes are orthogonal to each other, and are further attached to the tip ends of the motor shafts.
  • the scanning mirrors 16X and 16Y are made to face each other inside. In the galvano scanner 16 in such a state, when the motors 17X and 17Y are drive-controlled, the scanning mirrors 16X and 16Y rotate, and the laser light Q and the visible laser light R are two-dimensionally scanned. This two-dimensional scanning direction is the X direction and the Y direction.
  • the f ⁇ lens 18 collects the laser light Q and the visible laser light R, which are two-dimensionally scanned by the galvano scanner 16, on the object W to be processed. Therefore, the laser light Q and the visible laser light R are two-dimensionally scanned on the workpiece W by the drive control of the motors 17X and 17Y.
  • the laser marker 1 of the present embodiment includes a first housing 20 and a second housing 30.
  • the first housing 20 includes a rear first housing 20A and a front first housing 20B.
  • the first rear housing 20A, the first front housing 20B, and the second housing 30 have a substantially rectangular parallelepiped shape.
  • the first rear housing 20A contains the laser unit 10 and the like, and has a rear main body 22A and a rear cover 24A.
  • the laser unit 10 and the like are attached to the rear body 22A, and the rear cover 24A is fixed with a plurality of screws 26A. As a result, the laser unit 10 is housed in the first housing 20.
  • the front first housing 20B is attached to the rear main body 22A of the rear first housing 20A from the front side.
  • the first front housing 20B contains the dichroic mirror 12, the reflection mirror 14, the visible semiconductor laser 19, and the like, and has a front main body 22B and a front cover 24B.
  • the dichroic mirror 12, the reflection mirror 14, the visible semiconductor laser 19, and the like are attached to the front body 22B, and the front cover 24B is fixed with a plurality of screws 26B.
  • the first housing 20 houses the dichroic mirror 12, the reflection mirror 14, and the visible semiconductor laser 19.
  • the second housing 30 incorporates the galvano scanner 16 and the like, and has a main body 32 and a cover 34.
  • the galvano scanner 16 and the like are attached to the main body 32 (see FIGS. 6 and 10 described later), and the cover 34 is fixed with a plurality of screws 36.
  • the galvano scanner 16 is housed in the second housing 30.
  • the body 32 of the second housing 30 is provided with the f ⁇ lens 18 fitted therein (see FIGS. 4 and 6 described later).
  • the galvano scanner 16 two-dimensionally scans the laser light Q and the visible laser light R reflected by the scanning mirrors 16X and 16Y, outside the laser marker 1 of the present embodiment, via the f ⁇ lens 18. Is possible.
  • the cable C of the galvano scanner 16 is bridged between the second housing 30 and the rear first housing 20A.
  • the cable C is drawn into the second housing 30 and the rear first housing 20A via the cable gland 200.
  • FIG. 3 and 4 are perspective views showing the front portion of the laser marker 1 of the present embodiment with the front cover 24B removed from the front main body 22B.
  • the laser marker 1 of this embodiment can change the orientation of the second housing 30 to the orientation shown in FIG. 3 or the orientation shown in FIG. 4. Therefore, the second housing 30 is rotatably provided with respect to the front first housing 20B by a connecting member 60 shown in FIG. The details of the connecting member 60 will be described later.
  • the case where the orientation of the second housing 30 is the orientation shown in FIG. 3 is referred to as “the (the rotational position of) the second housing 30 is at the first rotational position”. In this case Is in a state in which the f ⁇ lens 18 faces downward.
  • the case where the orientation of the second housing 30 is the orientation shown in FIG. 4 is referred to as “the (the rotational position of) the second housing 30 is in the second rotational position”. Is in a state in which the f ⁇ lens 18 faces forward.
  • the laser marker 1 of this embodiment can rotate the second housing 30 with respect to the first housing 20 between 0 degrees and 90 degrees.
  • the rotation position of the second housing 30 is changed to the first rotation position shown in FIG. 3 and the lock mechanism L shown in FIG. It is possible to fix it in the second rotation position shown in FIG.
  • the lock mechanism L includes the pin 50 and the mounting plate 52 provided on the front main body 22B of the front first housing 20B, and the details thereof will be described later.
  • a transmission window 11 is provided at a position where the front first housing 20B is attached to the rear first housing 20A, extending between the front main body 22B and the rear main body 22A.
  • the laser light Q emitted from the laser unit 10 passes from the rear first housing 20A toward the front first housing 20B.
  • the holder 13, the disc 40, the first sensor S1, the second sensor S2, the reflection mirror 14 and the like are provided on the front main body 22B of the front first housing 20B.
  • the holder 13 is attached to the front main body 22B.
  • a visible semiconductor laser 19 is attached to the holder 13 in a state of being incorporated in a substrate (not shown).
  • the dichroic mirror 12 and the like are attached to the holder 13.
  • a first sensor S1 and a second sensor S2 are attached to the front side wall surface of the holder 13.
  • the first sensor S1 and the second sensor S2 are micro switches.
  • the disc 40 is provided with an opening in the center thereof and is rotatable with the second housing 30. The details will be described later.
  • a protrusion 42 is formed in a predetermined region on the outer periphery of the disc 40 so as to protrude toward the rear first housing 20A.
  • the detected portion 44 is formed on the protruding portion 42 in a state of protruding toward the rear first housing 20A.
  • the detected portion 44 is pressed against the actuator portion of the first sensor S1 when the rotation position of the second housing 30 is at the first rotation position. Accordingly, the first sensor S1 detects that the rotation position of the second housing 30 is at the first rotation position. On the other hand, as shown in FIG. 4, when the rotation position of the second housing 30 is at the second rotation position, the detected portion 44 is pressed against the actuator portion of the second sensor S2. Be done. As a result, the second sensor S2 detects that the rotation position of the second housing 30 is at the second rotation position.
  • the first sensor S1 may be any type of sensor as long as it detects that the rotation position of the second housing 30 is at the first rotation position.
  • the second sensor S2 may be any type of sensor as long as it detects that the rotation position of the second housing 30 is at the second rotation position.
  • the reflection mirror 14 is attached to the front main body 22B of the front first housing 20B at a position facing the opening of the disc 40 in the front-rear direction and the vertical direction. However, the reflection mirror 14 is omitted in FIGS. 3 and 4. This point is the same in FIGS. 5, 7, 9, and 11 described later.
  • 5 to 8 are diagrams showing the front portion of the laser marker 1 of the present embodiment when the turning position of the second housing 30 is at the first turning position. 5 to 7, the front cover 24B is shown in a state of being removed from the front main body 22B.
  • the connecting member 60 has a substantially cylindrical shape with both end surfaces facing each other in the left-right direction, and is arranged over the front first housing 20B and the second housing 30. It is set up.
  • the left end of the connecting member 60 is fixed to the main body 32 of the second housing 30 with a screw 74 (see FIG. 5) via an O-ring 62 (see FIG. 6).
  • the right end of the connecting member 60 is attached to the front main body 22B of the front first housing 20B via the X ring 64 (see FIG. 6). Accordingly, the connecting member 60 allows the second housing 30 to rotate with respect to the front first housing 20B. Further, the right end surface of the connecting member 60 is arranged in the front first housing 20B.
  • the disc 40 is fixed to the right end surface of the connecting member 60 with a screw 46 (see FIG. 7). As a result, the disc 40 rotates together with the second housing 30 via the connecting member 60. Further, the protruding portion 42 and the detected portion 44 are in a state of protruding from the outer peripheral surface of the right end of the connecting member 60 in the direction away from the rotation center 68 (see FIG. 8) of the connecting member 60. Furthermore, in the front first housing 20 ⁇ /b>B, the outer peripheral surface of the disc 40 and the protruding portion 42 and the detected portion 44 protruding from the disc 40 are outside the connecting member 60 more than the outer peripheral surface at the right end of the connecting member 60. It will be in a state of protruding toward.
  • the connecting member 60 is provided so as not to come off from the front first housing 20B when the second housing 30 rotates with respect to the front first housing 20B. It should be noted that the protruding portion 42 and the detected portion 44 may be in a state of protruding from the outer peripheral surface of the connecting member 60 in the direction away from the rotation center 68 of the connecting member 60 near the right end of the connecting member 60.
  • the disk 40, the protruding portion 42, and the detected portion 44 are inscribed in the front first housing 20B. Furthermore, the left end of the connecting member 60 projects outward from the cylindrical portion of the connecting member 60 and is fixed in a state of being sandwiched between the front main body 22B of the front first housing 20B and the main body 32 of the second housing 30. Has been done. As a result, the second housing 30 can rotate with respect to the front first housing 20B without being displaced in the left-right direction.
  • the connecting member 60 has a hollow structure 66 in which cavities pass through at both end surfaces thereof.
  • the cavity left side of the hollow structure 66 communicates with a through hole 38 provided in the main body 32 of the second housing 30.
  • the right side of the hollow structure 66 communicates with the opening of the disc 40 in the front first housing 20B.
  • the laser light Q and the visible laser light R are reflected by the reflection mirror 14 in the front first housing 20B, then pass through the hollow structure 66 of the connecting member 60, and the galvano scanner in the second housing 30. It is incident on 16.
  • the hollow structure 66 may be any structure as long as the laser light Q and the visible laser light R pass through from the front first housing 20B toward the second housing 30, and is not limited to the cylindrical structure. Therefore, for example, the hollow structure 66 may be a structure in which the cavity is exposed on the side surface of the connecting member 60. However, in such a case, the exposed portion of the cavity of the hollow structure 66 is shielded by the front main body 22B of the front first housing 20B or the main body 32 of the second housing 30.
  • the lock mechanism L includes a housing side hole 29, a first hole 70, a second hole 72, and the like in addition to the pin 50 and the mounting plate 52 described above.
  • the pin 50 has a collar portion 54 that projects outward from the outer peripheral surface of the shaft.
  • the tip 56 of the pin 50 is formed in a tapered shape.
  • a male screw 50A is threaded on the shaft of the pin 50 between the flange 54 and the tapered tip 56.
  • the housing-side hole 29 is provided in the front main body 22B of the front first housing 20B in a state of penetrating to the hole into which the right end of the connecting member 60 is inserted, and is formed in a step shape in the vertical direction.
  • the inner diameter on the lower side is smaller than the inner diameter on the upper side.
  • a female screw 29A to be fitted with the male screw 50A of the pin 50 is threaded on the inner peripheral surface of the lower stage.
  • the mounting plate 52 is mounted on the upper surface of the front main body 22B of the front first housing 20B while being bent in a convex shape.
  • the pin 50 is inserted into the housing side hole 29 while penetrating the mounting plate 52.
  • the flange portion 54 of the pin 50 is arranged between the upper side of the housing side hole portion 29 and the mounting plate 52.
  • a coil spring 80 is arranged between the flange portion 54 of the pin 50 and the step surface of the housing side hole portion 29 with the shaft of the pin 50 being inserted therethrough.
  • the upper end of the coil spring 80 is pressed against the collar portion 54 of the pin 50, and the lower end of the coil spring 80 is pressed against the step surface of the housing side hole 29. Therefore, the pin 50 is biased upward.
  • the flange 54 abuts the mounting plate 52.
  • the pin 50 is provided so as not to come off from the mounting plate 52.
  • the first hole portion 70 and the second hole portion 72 are provided in the connecting member 60.
  • the first hole portion 70 and the second hole portion 72 are formed such that their inner diameters become smaller toward the inner side, so that the tip end 56 of the tapered pin 50 can be fitted while being guided. I have to. Therefore, the inner diameters of the first hole portion 70 and the second hole portion 72 are at least a predetermined depth range in which the first hole portion 70 and the second hole portion 72 can be fitted while guiding the tip 56 of the pin 50. In, it should just become small as it goes to the back.
  • the first hole portion 70 and the second hole portion 72 are arranged such that when the right end of the connecting member 60 is viewed from the direction (left-right direction) in which the right end of the connecting member 60 is inserted into the front first casing 20B, the connecting member 60 is rotated from the outer peripheral surface of the connecting member 60. It is formed toward the moving center 68. Further, a direction from the first hole 70 toward the rotation center 68 of the connecting member 60 (vertical direction in FIG. 8) and a direction from the second hole 72 toward the rotation center 68 of the connecting member 60 (left and right in FIG. 8). Direction) intersects at 90 degrees.
  • the first sensor S1 and the second sensor S2 are viewed from the direction in which the front first housing 20B and the second housing 30 are arranged (the left-right direction), the first sensor S1 and the second sensor S2 are separated from the actuator section of the first sensor S1.
  • the direction toward the rotation center 68 of the second housing 30 and the direction toward the rotation center 68 of the second housing 30 from the actuator portion of the second sensor S2 intersect at 90 degrees.
  • the housing-side hole portion 29 of the front first housing 20B and the first hole portion 70 of the connecting member 60 communicate with each other.
  • the pin 50 is pushed down against the biasing force of the coil spring 80 and rotated in a predetermined direction
  • the tip 56 of the pin 50 projects downward from the housing side hole 29, and It is fitted into one hole 70.
  • the second housing 30 is fixed in the first rotation position.
  • the pin 50 is biased upward by the coil spring 80
  • the male screw 50A of the pin 50 and the female screw 29A of the housing side hole portion 29 are fitted to each other so that the tip 56 of the pin 50 moves to the first position. It is in a state where it does not come out of the one hole 70.
  • the male screw 50A of the pin 50 is disengaged from the female screw 29A of the housing side hole 29, and the tip 56 of the pin 50 is moved to the first hole. Get out of 70.
  • the pin 50 moves upward due to the urging force of the coil spring 80 to be separated from the connecting member 60, and the tip end 56 of the pin 50 moves to a position where it comes out of the first hole 70.
  • the state in which the second housing 30 is fixed at the first rotation position is released.
  • the first wall surface portion 27 is provided on the upper side of the disc 40 and on the lower side of the disc 40.
  • the second wall surface portion 28 is provided.
  • the disc 40 has the first end surface portion 42A and the second end surface portion 42B of the protrusion 42 formed by the step between the outer peripheral surface of the disc 40 and the outer peripheral surface of the protrusion 42. ing.
  • the first end surface portion 42A of the disk 40 comes to the first wall surface portion 27 of the front first housing 20B. It abuts, or the second end surface portion 42B of the disc 40 abuts on the second wall surface portion 28 of the front first housing 20B. This limits the rotation range of the second housing 30.
  • the first end surface portion 42A of the disc 40 is in a state of abutting against the first wall surface portion 27 of the front first housing 20B, and in such a state, the rotation position of the second housing 30 is the first position. 1 turn position.
  • FIGS. 9 to 12 are diagrams showing the front portion of the laser marker 1 of the present embodiment when the turning position of the second housing 30 is at the second turning position. 9 to 11, the front cover 24B is shown in a state of being removed from the front main body 22B. Note that FIGS. 9 to 12 correspond to FIGS. 5 to 8 when the rotation position of the second housing 30 is at the first rotation position. Therefore, in the following description, points common to the case where the rotation position of the second housing 30 is at the first rotation position will be omitted.
  • the housing-side hole portion 29 of the front first housing 20B and the second hole of the connecting member 60 are formed.
  • the part 72 communicates.
  • the pin 50 is pushed down against the biasing force of the coil spring 80 and rotated in a predetermined direction, the tip 56 of the pin 50 projects downward from the housing side hole 29, It is fitted into the second hole 72.
  • the second housing 30 is fixed in the second rotation position.
  • the pin 50 is biased upward by the coil spring 80, the male screw 50A of the pin 50 and the female screw 29A of the housing side hole portion 29 are fitted to each other so that the tip 56 of the pin 50 moves to the first position.
  • the two holes 72 are configured so as not to come out.
  • the connecting member 60 rotates together with the second housing 30, and the first wall surface portion 27 and the second wall surface portion 28 of the protruding portion 42.
  • the rotation range of the second housing 30 is limited between the first rotation position and the second rotation position by the abutment of the first end surface portion 42A or the second end surface portion 42B.
  • the first hole portion 70 of the connecting member 60 corresponds to the first rotating position
  • the second hole portion 72 of the connecting member 60 corresponds to the second rotating position.
  • the locking mechanism L fixes the second housing 30 at the first rotation position or the second rotation position by fixing the rotation of the connecting member 60 in the front first housing 20B. ..
  • the laser marker 1 of the present embodiment is composed of a print information creation unit 2 and a laser processing unit 3.
  • the print information creation unit 2 includes an input operation unit 101, a control unit 103, a CD-R/W 113, a liquid crystal display (LCD) 115, and the like.
  • An input operation unit 101, a CD-R/W 113, a liquid crystal display 115, etc. are connected to the control unit 103 via an input/output interface (not shown).
  • the input operation unit 101 is composed of a mouse, a keyboard, and the like (not shown). For example, the user selects the rotation position of the second housing 30 from the first rotation position and the second rotation position. Used when specifying.
  • the CD-R/W 113 reads various data and various application software from the CD-ROM 117 or writes them in the CD-ROM 117.
  • the control unit 103 controls the entire print information creation unit 2, and includes a CPU 105, a RAM 107, a ROM 109, a hard disk drive (hereinafter referred to as “HDD”) 111, and the like.
  • the CPU 105 is an arithmetic unit and a control unit that controls the entire print information creation unit 2.
  • the CPU 105, RAM 107, and ROM 109 are connected to each other by a bus line (not shown), and data is exchanged with each other. Further, the CPU 105 and the HDD 111 are connected via an input/output interface (not shown), and data is exchanged with each other.
  • the RAM 107 is for temporarily storing various calculation results calculated by the CPU 105.
  • the ROM 109 stores various programs and the like.
  • the HDD 111 stores various application software programs, various data files, and the like.
  • the laser processing unit 3 includes a controller 201, a galvano driver 213, a semiconductor laser driver 215, a first sensor S1, a second sensor S2, a 24VDC/DC power supply unit (24VDCDC) 217, and the like.
  • the controller 201 controls the entire laser processing unit 3.
  • a galvano driver 213, a semiconductor laser driver 215, a first sensor S1, a second sensor S2, a 24V DC/DC power supply unit 217, and the like are electrically connected to the controller 201.
  • the print information creation unit 2 is connected to the controller 201 so as to be able to perform two-way communication, and each information transmitted from the print information creation unit 2 (for example, print information, control parameters for the laser processing unit 3, various information from the user). (Instruction information, etc.).
  • various instruction information from the user includes designation information indicating a result designated by the user as the rotation position of the second housing 30 from the first rotation position and the second rotation position.
  • the controller 201 includes a CPU 203, a RAM 205, a ROM 207, an FPGA (Field-Programmable Gate Array) 211, and the like.
  • the CPU 203 is an arithmetic unit and a control unit that controls the entire laser processing unit 3.
  • the CPU 203, the RAM 205, the ROM 207, and the FPGA 211 are connected to each other by a bus line (not shown) to exchange data with each other.
  • the RAM 205 is for temporarily storing various calculation results calculated by the CPU 203, XY coordinate data of print patterns, and the like.
  • the ROM 207 stores various programs.
  • the ROM 207 stores a program for calculating the XY coordinate data of the print pattern based on the print information transmitted from the print information creating unit 2 and storing the XY coordinate data in the RAM 205.
  • the various programs include, for example, the thickness, depth and number of the print pattern corresponding to the print information input from the print information creating unit 2, and the laser beam Q scanned by the galvano scanner 16.
  • the ROM 207 stores data such as font start point, end point, focus, curvature, etc. of each character constituted by a straight line and an elliptic arc for each font type.
  • the CPU 203 performs various calculations and controls based on various programs stored in the ROM 207.
  • the CPU 203 calculates XY coordinate data of the print pattern, galvano scanning speed information indicating the speed at which the galvano scanner 16 scans the laser beam Q, and the like, based on the print information input from the print information creating unit 2. Further, the CPU 203 calculates a drive angle, a rotation speed, etc. of the galvano X-axis motor 17X and the galvano Y-axis motor 17Y based on the respective information (for example, XY coordinate data of print pattern, galvano scanning speed information, etc.). The motor drive information indicating the drive angle and the rotation speed is output to the galvanometer driver 213.
  • the galvano driver 213 drives and controls the galvano X-axis motor 17X and the galvano Y-axis motor 17Y based on the motor drive information input from the controller 201, and two-dimensionally scans the laser light Q and the visible laser light R.
  • the CPU 203 outputs to the semiconductor laser driver 215 an ON signal for instructing to start lighting the visible semiconductor laser 19 or an OFF signal for instructing to turn off the visible semiconductor laser 19.
  • the semiconductor laser driver 215 turns on or off the visible semiconductor laser 19 based on an on signal or an off signal input from the controller 201.
  • the FPGA 211 is built in the controller 201, and the galvano driver 213, the semiconductor laser driver 215, the first sensor S1, the second sensor S2, the 24V DC/DC power supply unit 217, etc. are electrically connected.
  • a safety relay unit (hereinafter, referred to as “SRU”) 219 with a manual reset mode is electrically connected to the 24 VDC/DC power supply unit 217.
  • SRU safety relay unit
  • a DC power relay (DCPR) 221 is electrically connected to the SRU 219.
  • the DC power relay 221 is wired between the laser power supply 223 and the laser unit 10.
  • the laser power supply 223 supplies electric power to the laser unit 10.
  • the SRU 219 When the power supply to the SRU 219 is cut off by turning off the 24VDC/DC power supply unit 217 by the FPGA 211, the SRU 219 opens the contact of the DC power relay 221. Therefore, it becomes impossible to supply power to the laser unit 10 by the laser power supply 223. At that time, if the manual reset mode of the SRU 219 is set, the SRU 219 does not recover itself.
  • the FPGA 211 turns on the 24VDC/DC power supply unit 217 to supply power to the SRU 219
  • the SRU 219 executes a manual reset and closes the contact of the DC power relay 221. .. Therefore, power can be supplied to the laser unit 10 by the laser power supply 223.
  • Each component of the laser processing unit 3 is housed in the above-described first housing 20 or second housing 30.
  • the galvano driver 213 is housed in the rear first housing 20A, and the galvano X-axis motor 17X and the galvano Y-axis motor 17Y are housed in the second housing 30.
  • the galvano driver 213 and the motors 17X and 17Y are electrically connected by the cable C described above.
  • the FPGA 211 incorporates the logic shown by the truth table 225 of FIG.
  • “1” indicates that the contact of the first sensor S1 is closed.
  • the contact of the first sensor S1 is closed by pressing the detected portion 44 against the actuator portion of the first sensor S1.
  • the first sensor S1 outputs an ON signal as a detection signal, which indicates that the turning position of the second housing 30 is at the first turning position.
  • the output ON signal is input to the FPGA 211.
  • “0” indicates that the contact of the first sensor S1 is opened.
  • the contact of the first sensor S1 is opened by separating the detected portion 44 from the actuator portion of the first sensor S1.
  • the first sensor S1 does not output the ON signal, and outputs the OFF signal as a detection signal indicating that the rotation position of the second housing 30 is not at the first rotation position.
  • the output off signal is input to the FPGA 211.
  • “1” indicates that the contact of the second sensor S2 is closed.
  • the contact of the second sensor S2 is closed by pressing the detected part 44 against the actuator part of the second sensor S2.
  • the second sensor S2 outputs an ON signal as a detection signal, which indicates that the rotation position of the second housing 30 is at the second rotation position.
  • the output ON signal is input to the FPGA 211.
  • “0” indicates that the contact of the second sensor S2 is opened.
  • the contact point of the second sensor S2 is opened by separating the detected part 44 from the actuator part of the second sensor S2.
  • the second sensor S2 does not output the ON signal, and outputs the OFF signal as the detection signal, which indicates that the rotation position of the second housing 30 is not at the second rotation position.
  • the output off signal is input to the FPGA 211.
  • “0 degree” indicates that both sensors S1 and S2 have detected that the rotation position of the second housing 30 is at the first rotation position. Shows. That is, when the fields of “first sensor” and “second sensor” are combinations of “1” and “0”, the ON signal of the first sensor S1 and the OFF signal of the second sensor S2 are input to the FPGA 211. As a result, both sensors S1 and S2 detect that the rotational position of the second housing 30 is the first rotational position. Therefore, “0 degree” is written in the “sensor state” column corresponding to this case. Further, "ON” is written in the column of "24 VDC DC” corresponding to this case.
  • “ON” indicates that the 24V DC/DC power supply unit 217 is turned on. That is, the FPGA 211 in this case outputs a signal for turning on the 24V DC/DC power supply unit 217. The output signal is input to the 24 VDC/DC power supply unit 217. As a result, the 24V DC/DC power supply unit 217 is turned on, and power can be supplied to the laser unit 10.
  • “90 degrees” indicates that both sensors S1 and S2 have detected that the rotation position of the second housing 30 is at the second rotation position. Shows. That is, when the fields of “first sensor” and “second sensor” are combinations of “0” and “1”, the OFF signal of the first sensor S1 and the ON signal of the second sensor S2 are input to the FPGA 211. Therefore, both sensors S1 and S2 detect that the rotation position of the second housing 30 is at the second rotation position. Therefore, “90 degrees” is written in the “sensor state” column corresponding to this case. Further, "ON” is written in the column of "24 VDC DC” corresponding to this case.
  • “ON” indicates that the 24V DC/DC power supply unit 217 is turned on. That is, the FPGA 211 in this case outputs a signal for turning on the 24V DC/DC power supply unit 217. The output signal is input to the 24 VDC/DC power supply unit 217. As a result, the 24V DC/DC power supply unit 217 is turned on, and power can be supplied to the laser unit 10.
  • the rotational position of the second housing 30 detected by both the sensors S1 and S2 matches the rotational position of the second housing 30 designated by the user through the input operation unit 101. It is performed on the condition.
  • the FPGA 211 drives the galvano X-axis motor 17X and the galvano Y-axis motor 17Y.
  • a signal permitting control is output to the galvano driver 213, and a signal permitting lighting of the visible semiconductor laser 19 is output to the semiconductor laser driver 215.
  • the rotation position of the second housing 30 when the rotation position of the second housing 30 is at the first rotation position or the second rotation position, it becomes possible to supply power to the laser unit 10, and in addition, the galvano scanner 16 is provided with each power source.
  • the drive control of the motors 17X and 17Y becomes possible, and the visible semiconductor laser 19 can be turned on.
  • “OFF” is described in the column of “24 VDC DC” corresponding to this case. “OFF” indicates a case where the 24 VDC/DC power supply unit 217 is turned off. That is, the FPGA 211 in this case outputs a signal for turning off the 24 VDC/DC power supply unit 217. The output signal is input to the 24 VDC/DC power supply unit 217. As a result, the 24V DC/DC power supply unit 217 is turned off, and it becomes impossible to supply power to the laser unit 10.
  • “NA” indicates that the detection signals of both sensors S1 and S2 are not valid. That is, when the fields of “first sensor” and “second sensor” are combinations of “1” and “1”, the ON signal of the first sensor S1 and the ON signal of the second sensor S2 are input to the FPGA 211. To be done. However, since it is difficult for the detected part 44 to be pressed against the actuator parts of both sensors S1 and S2 at the same time, it is estimated that the detection signals of both sensors S1 and S2 are not effective. Therefore, “NA” is written in the “sensor state” column corresponding to this case. Further, “NA” is written in the “24 VDC DC” column corresponding to this case.
  • NA indicates a case where the detection signals of both sensors S1 and S2 are not valid.
  • the FPGA 211 turns on the 24VDC/DC power supply unit 217 in the same manner as “OFF” described above. Output the signal to turn off. The output signal is input to the 24 VDC/DC power supply unit 217. As a result, the 24V DC/DC power supply unit 217 is turned off, and it becomes impossible to supply power to the laser unit 10.
  • the laser unit 10 is operated. In addition to the fact that the electric power cannot be supplied, the drive control of the motors 17X and 17Y of the galvano scanner 16 is stopped, and the visible semiconductor laser 19 is turned off. In this case, the power supply to the galvano scanner 16 and the visible semiconductor laser 19 may be cut off.
  • the emission control program represented by the flowchart of FIG. 15 is stored in the ROM 207 of the controller 201 and executed by the CPU 203 of the controller 201. Further, this program is executed by turning on the power of the laser marker 1.
  • S the emission control program represented by the flowchart of FIG. 15
  • step (hereinafter, simply referred to as “S”) 10 designated information acquisition processing is executed.
  • the designation information input to the controller 201 from the print information creation unit 2 is acquired, and the designation result is specified based on the designation information.
  • the designation result is a result that the user designates either the first rotation position or the second rotation position as the rotation position of the second housing 30 via the input operation unit 101.
  • the process of the next step is not executed until the user's designated result is specified.
  • the detection signal acquisition process S12 is executed. In this process, the detection signal of the first sensor S1 and the detection signal of the second sensor S2 are acquired.
  • the detection signals of both sensors S1 and S2 are ON signals or OFF signals.
  • the sensor state determination process S14 is executed. This determination is made based on the detection signals of both sensors S1 and S2.
  • the non-ejecting process S16 is executed. This processing is performed by inputting the detection signals of both sensors S1 and S2 to the FPGA 211.
  • the laser marker 1 of the present embodiment when the rotation position of the second housing 30 is between the first rotation position and the second rotation position, or the detection signals of both sensors S1 and S2 are valid. If not, power cannot be supplied to the laser unit 10, and the laser light Q cannot be emitted to the outside of the second housing 30. Further, in the laser marker 1 of the present embodiment, the drive control of the motors 17X and 17Y of the galvano scanner 16 is stopped, and the visible semiconductor laser 19 is turned off.
  • the notification process S18 is executed.
  • information is input from the controller 201 to the print information creation unit 2, and a message indicating that the rotation position of the second housing 30 is other than the first rotation position and the second rotation position is displayed. It is displayed on the liquid crystal display 115.
  • the user is notified that the rotation position of the second housing 30 is other than the first rotation position and the second rotation position. It should be noted that such notification may be performed by sound of a speaker, light of a rotating lamp, or the like. After that, the above-mentioned specified information acquisition processing S10 is executed again.
  • the detection signal of the first sensor S1 is the ON signal and the detection signal of the second sensor S2 is the OFF signal (S14;1,0), or the detection signal of the first sensor S1 is the OFF signal.
  • the detection signal of the two sensors S2 is an ON signal (S14; 0, 1)
  • a determination process S20 is performed to determine whether the sensor state matches the designated information. This process is performed based on the detection signals of both sensors S1 and S2 acquired in S12 and the designation result specified in S10. That is, the rotation position of the second housing 30 specified by the detection signals of the sensors S1 and S2 is the rotation position of the second housing 30 designated by the user via the input operation unit 101 (first rotation). Position) or the second rotation position).
  • the laser marker 1 of the present embodiment specifies the rotation position of the second housing 30 by the user even when the rotation position of the second housing 30 is the first rotation position or the second rotation position. If the rotated position does not match, the power supply to the laser unit 10 becomes impossible, the drive control of the motors 17X and 17Y of the galvano scanner 16 is stopped, and the visible semiconductor laser 19 Is turned off.
  • a pop-up for prompting the user to specify the rotation position of the second housing 30 by the input operation unit 101 by inputting information from the controller 201 to the print information creation unit 2 The window is displayed on the liquid crystal display 115.
  • the detection signal acquisition processing S22 is executed. This processing is the same as the above-described detection signal acquisition processing S12.
  • the determination processing S24 of whether or not the sensor state is changed is executed. In this process, it is determined whether or not the detection signals of both sensors S1 and S2 acquired in the main detection signal acquisition process S22 and the detection signals of both sensors S1 and S2 acquired in the above-mentioned detection signal acquisition process S12 match. Is determined.
  • the rotational position of the second housing 30 is different at the time of both detection signal acquisition processes S12 and S22. Therefore, it is determined that the sensor state has been changed (S24: YES). In such a case, the extraction impossibility process S16 described above is executed. As a result, in the laser marker 1 of the present embodiment, the rotation position of the second housing 30 is at the first rotation position or the second rotation position, and the rotation position of the second housing 30 and the rotation designated by the user.
  • both of the detection signal acquisition processes S12 and S22 are performed in the second housing 30. Since the turning positions are the same, it is determined that the sensor state has not been changed (S24: NO). In such a case, the extraction enable process S26 is executed. This processing is performed by inputting the detection signals of both sensors S1 and S2 to the FPGA 211.
  • the rotation position of the second housing 30 is at the first rotation position or the second rotation position, and the rotation position of the second housing 30 and the rotation designated by the user.
  • the power supply to the laser unit 10 becomes possible, so that the laser light Q is emitted from the second housing 30. It becomes a state in which it can be emitted to the outside. Further, the laser marker 1 of the present embodiment is in a state in which the drive control of the motors 17X and 17Y of the galvano scanner 16 is possible and the visible semiconductor laser 19 is in a state in which it can be turned on.
  • the laser marker 1 includes the first housing 20 that houses the laser unit 10 that emits the laser light Q and the galvano scanner 16 that scans the laser light Q outward.
  • the second housing 30 is provided, and the second housing 30 is rotatable with respect to the first housing 20 by the connecting member 60.
  • the second housing 30 is fixed by the lock mechanism L at the first rotation position or the second rotation position.
  • the connecting member 60 has a hollow structure 66 through which the laser light Q passes from the first housing 20 toward the second housing 30.
  • the left end of the connecting member 60 is fixed to the second housing 30, and the right end of the connecting member 60 is rotatably inserted in the first housing 20.
  • the lock mechanism L fixes the rotation of the connecting member 60 in the first housing 20.
  • the lock mechanism L fixes the connecting member 60, which serves as the rotation axis of the second housing 30, in the first housing 20, so that the laser marker 1 of the present embodiment moves the second housing 30 to the first position. It is possible to accurately fix the movable position or the second rotation position.
  • the lock mechanism L inserts the pin 50, the housing side hole portion 29 of the first housing 20 through which the pin 50 penetrates, and the pin 50 protruding from the housing side hole portion 29.
  • the connecting member 60 includes a first hole portion 70 and a second hole portion 72.
  • the first hole portion 70 corresponds to the first rotation position of the second housing 30, and the second hole portion 72 corresponds to the second rotation position of the second housing 30. is doing. Furthermore, when the first hole 70 and the second hole 72 are viewed from the direction (left-right direction) in which the right end of the connecting member 60 is inserted into the front first housing 20B, the connecting member 60 is rotated from the first hole 70. The direction toward the movement center 68 and the direction from the second hole 72 toward the rotation center 68 of the connecting member 60 are orthogonal to each other. Therefore, in the laser marker 1 of the present embodiment, the emission direction of the laser light Q when in the first rotation position and the emission direction of the laser light Q when the second housing 30 is in the second rotation position. It is configured so as to be surely in an orthogonal relationship.
  • the male screw 50A is provided on the pin 50
  • the female screw 29A screwed with the male screw 50A is provided on the housing side hole portion 29. Accordingly, the lock mechanism L fixes the rotation of the connecting member 60 while screwing the male screw 50A of the pin 50 and the female screw 29A of the housing side hole 29, so that the laser marker 1 of the present embodiment is It is possible to more reliably fix the second housing 30 to the first rotation position or the second rotation position.
  • the tip 56 of the pin 50 is tapered.
  • the lock mechanism L fixes the rotation of the connecting member 60 while guiding the pin 50 to the first hole portion 70 or the second hole portion 72 of the connecting member 60 by the tapered tip 56.
  • the laser marker 1 of the embodiment can easily fix the second housing 30 at the first rotation position or the second rotation position.
  • the inner diameters of the first hole portion 70 and the second hole portion 72 are formed so as to become smaller toward the inner side.
  • the lock mechanism L fixes the rotation of the connecting member 60 while fitting the tip 56 of the tapered pin 50 into the first hole portion 70 or the second hole portion 72, so that the laser marker 1 according to the present embodiment. It is possible to more easily fix the second housing 30 to the first rotation position or the second rotation position.
  • the pin 50 is biased by the coil spring 80 in the direction (upward direction) of coming out of the first hole 70 or the second hole 72 until it is separated from the connecting member 60. ..
  • the lock mechanism L releases the rotational fixing of the connecting member 60 while utilizing the urging force of the coil spring 80. Therefore, in the laser marker 1 of the present embodiment, the second housing 30 has the first rotational position. Alternatively, the state of being fixed to the second rotation position can be easily released.
  • the protruding portion 42 of the disc 40 fixed to the right end surface of the connecting member 60 is away from the outer peripheral surface of the right end of the connecting member 60 from the rotation center 68 of the connecting member 60. Is protruding.
  • the first housing 20 is provided with a first wall surface portion 27 and a second wall surface portion 28 on the upper side and the lower side of the disc 40.
  • the second housing 30 When the first end surface portion 42A of the protruding portion 42 of the disc 40 hits the first wall surface portion 27, the second housing 30 is in the first rotation position, and the second end surface portion 42B of the protruding portion 42 of the disc 40 is in position.
  • the second housing 30 is in the second rotation position when the second housing 30 hits the second wall surface portion 28.
  • the lock mechanism L can limit the rotation range of the second housing 30 and the connecting member 60 between the first rotation position and the second rotation position. It is possible.
  • the laser unit 10 is an example of a “laser light source”.
  • the galvano scanner 16 is an example of a “scanning unit”.
  • the 1st wall surface part 27 and the 2nd wall surface part 28 are examples of a "stop part.”
  • the connecting member 60 is an example of a “connecting portion”.
  • the left end of the connecting member 60 is an example of “one end of the connecting portion”.
  • the right end of the connecting member 60 is an example of “the other end of the connecting portion”.
  • the rotation center 68 of the connecting member 60 is an example of “the rotation center of the connecting portion”.
  • the coil spring 80 is an example of a “first biasing member”.
  • the 1st hole part 70 and the 2nd hole part 72 are examples of a "connection part side hole part.”
  • the outside of the second housing 30 is an example of “the outside”.
  • the left-right direction is an example of “a direction in which the other end of the connecting portion is inserted into the first housing”.
  • the vertical direction in FIG. 8 is an example of the “first direction”.
  • the front-back direction in FIG. 8 is an example of the “second direction”.
  • the upward direction is an example of "a direction in which the pin comes out of the connecting portion side hole portion".
  • the laser marker 1 of the present embodiment may be configured by the print information creation unit 2 and the laser processing unit 3 as described above, or may be configured by only the laser processing unit 3.
  • the right end of the connecting member 60 may be fixed to the front main body 22B of the front first housing 20B, and the left end of the connecting member 60 may be rotatably inserted into the main body 32 of the second housing 30. ..
  • the lock mechanism L fixes the second housing 30 at the first rotation position or the second rotation position by fixing the rotation of the connecting member 60 in the second housing 30. To do.
  • connecting member 60 may project from the main body 32 of the second housing 30 or the front main body 22B of the front first housing 20B.
  • the second housing 30 may be provided on the front side of the front first housing 20B. In such a case, the second housing 30 is arranged on the optical paths of the laser light Q and the visible laser light R that longitudinally cross the inside of the front first housing 20B. Therefore, the reflection mirror 14 becomes unnecessary.
  • the coil spring 80 may be arranged between the mounting plate 52 and the collar portion 54 of the pin 50.
  • the pin 50 is urged by the coil spring 80 from the housing side hole portion 29 toward the connecting portion 90 (downward). Therefore, when the rotation position of the second housing 30 is not at the first rotation position and the second rotation position, the pin 50 contacts the outer peripheral surface of the connecting member 60.
  • the pin 50 when the rotation position of the second housing 30 becomes the first rotation position or the second rotation position by the rotation of the second housing 30, the pin 50 is connected by the coil spring 80.
  • the outer peripheral surface of 60 is inserted into the first hole 70 or the second hole 72. Therefore, when the user turns the turning position of the second housing 30 to the first turning position or the second turning position, the pin 50 causes the coil spring 80 to be inserted into the first hole 70 or the second hole 72. It is possible to obtain a click feeling caused by being inserted in.
  • the coil spring 80 shown in FIG. 16 is an example of the “second biasing member”.
  • first housing 20 and the second housing 30 is provided with a pin, and the hole through which the pin is provided is provided in the other housing, whereby the lock mechanism L is configured.
  • the lock mechanism L may be configured by providing holes in both the first housing 20 and the second housing 30 and inserting pins into both holes.
  • the lock mechanism L may be configured by a clamp that tightens and fixes the first housing 20 and the second housing 30.
  • one of the first housing 20 and the second housing 30 is provided with the claw portion, and the groove portion for locking the claw portion is provided in the other housing, whereby the lock mechanism L is provided. It may be configured.
  • the claw portion is locked in the groove portion by the rotation of the second housing 30 when the rotation position of the second housing 30 is at the first rotation position and the second rotation position, When the turning position of the second housing 30 is between the first turning position and the second turning position, the second housing 30 comes off the groove.
  • the claw portion or the groove portion may be provided on the connecting member 60.
  • the tip 56 of the pin 50 does not have to be tapered.
  • the first hole portion 70 and the second hole portion 72 are formed such that their inner diameters become smaller toward the inner side, as in the present embodiment, so that the pin 50 becomes the first hole. It is guided to the hole 70 and the second hole 72.
  • the first hole portion 70 and the second hole portion 72 do not have to be formed so that the inner diameters thereof become smaller toward the inner side.
  • the tip end 56 of the pin 50 is formed in a tapered shape as in the present embodiment, so that the pin 50 is guided to the first hole portion 70 and the second hole portion 72.
  • the rotation position of the second housing 30 may be indicated by a high signal and a low signal, or is indicated by information, unlike the present embodiment shown by the binary signal of the ON signal and the OFF signal. You may.
  • the emission control of the laser marker 1 of this embodiment may be executed only by the FGPA 211 or only by the CPU 203.
  • the laser beam Q or the visible laser beam is maintained while the laser unit 10 is emitting the laser beam Q or the visible semiconductor laser 19 is emitting the visible laser beam R. It may be performed by moving the shielding plate on the optical path of the light R. However, in such a case, the emission enable process S26 is executed by moving the shield plate from the optical path of the laser light Q or the visible laser light R.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Laser Beam Printer (AREA)

Abstract

Provided is a laser marker capable of ensuring safety by restricting rotation of a housing in which a scanning unit for scanning laser light outward is housed. A laser marker 1 is provided with: a first housing 20 in which a laser light source is housed; a second housing 30 in which a galvano scanner 16 is housed; a connecting member 60 allowing the second housing 30 to rotate relative to the first housing 20; and a lock mechanism L which fixes the second housing 30 at a first rotation position or a second rotation position.

Description

レーザマーカLaser marker
 本開示は、レーザマーカに関するものである。 The present disclosure relates to a laser marker.
 従来より、レーザ光を出射するレーザマーカに関し、種々の技術が提案されている。例えば、下記特許文献1に記載の技術は、印刷システムであって、印刷ビーム出口部材がハウジングに対して回転することを可能にする軸受を備えている。 Conventionally, various techniques have been proposed for laser markers that emit laser light. For example, the technique described in US Pat. No. 6,037,088 is a printing system that includes a bearing that allows the printing beam outlet member to rotate relative to the housing.
特表2003-531010号公報Japanese Patent Publication No. 2003-531010
 上記特許文献1に記載の技術では、印刷ビーム出口部材から印刷ビームが外方へ出射されている最中において、印刷ビーム出口部材が軸受けを介して回転させられると、印刷ビームが想定外の方向へ出射される虞があり、危険である。 In the technique described in Patent Document 1, when the printing beam outlet member is rotated through the bearing while the printing beam is being emitted outward from the printing beam outlet member, the printing beam is in an unexpected direction. There is a risk that it will be emitted to, which is dangerous.
 そこで、本開示は、上述した点を鑑みてなされたものであり、レーザ光を外方へ向けて走査する走査部が収められた筐体の回動を抑制することによって、安全を確保することが可能なレーザマーカを提供する。 Therefore, the present disclosure has been made in view of the above points, and secures safety by suppressing rotation of a housing that houses a scanning unit that scans laser light outward. A laser marker that can be used is provided.
 本明細書は、レーザ光を出射するレーザ光源と、レーザ光を外方へ向けて走査する走査部とを有するレーザマーカであって、レーザ光源が収められた第1筐体と、走査部が収められた第2筐体と、第2筐体を第1筐体に対して回動可能にする連結部と、第2筐体を第1回動位置又は第2回動位置で固定するロック機構とを備えることを特徴とするレーザマーカを開示する。 The present specification describes a laser marker having a laser light source that emits laser light and a scanning unit that scans the laser light outward, and a first housing that houses the laser light source and a scanning unit. Second casing, a connecting portion that allows the second casing to rotate with respect to the first casing, and a lock mechanism that fixes the second casing at the first rotation position or the second rotation position. Disclosed is a laser marker including:
 本開示によれば、レーザマーカは、レーザ光を外方へ向けて走査する走査部が収められた第2筐体の回動を抑制することによって、安全を確保することが可能である。 According to the present disclosure, the laser marker can ensure safety by suppressing the rotation of the second housing that houses the scanning unit that scans the laser light outward.
本実施形態のレーザマーカの概略構成を表した図である。It is a figure showing the schematic structure of the laser marker of this embodiment. 同レーザマーカを表した斜視図である。It is a perspective view showing the same laser marker. 第2筐体が第1回動位置に固定された状態にあるときの同レーザマーカの一部を表した斜視図である。It is a perspective view showing a part of the same laser marker when the 2nd housing is being fixed to the 1st rotation position. 第2筐体が第2回動位置に固定された状態にあるときの同レーザマーカの一部を表した斜視図である。It is a perspective view showing a part of the same laser marker when the 2nd case is being fixed to the 2nd rotation position. 図3の同レーザマーカの一部を表した平面図である。FIG. 4 is a plan view showing a part of the laser marker of FIG. 3. 図5の線X1-X1で切断された同レーザマーカを表した断面図である。It is sectional drawing showing the same laser marker cut|disconnected by the line X1-X1 of FIG. 図5の線Y1-Y1で切断された同レーザマーカを表した断面図である。FIG. 6 is a cross-sectional view showing the same laser marker taken along line Y1-Y1 of FIG. 図5の線Y2-Y2で切断された同レーザマーカを表した断面図である。FIG. 6 is a cross-sectional view showing the same laser marker taken along line Y2-Y2 of FIG. 5. 図4の同レーザマーカの一部を表した平面図である。FIG. 5 is a plan view showing a part of the laser marker of FIG. 4. 図9の線X1-X1で切断された同レーザマーカを表した断面図である。It is sectional drawing showing the same laser marker cut|disconnected by the line X1-X1 of FIG. 図9の線Y1-Y1で切断された同レーザマーカを表した断面図である。It is sectional drawing showing the same laser marker cut|disconnected by the line Y1-Y1 of FIG. 図9の線Y2-Y2で切断された同レーザマーカを表した断面図である。It is sectional drawing showing the same laser marker cut|disconnected by the line Y2-Y2 of FIG. 同レーザマーカの電気的構成を表したブロック図である。It is a block diagram showing the electric constitution of the same laser marker. 同レーザマーカの真理値表を表した図である。It is a figure showing the truth table of the same laser marker. 同レーザマーカの電気的動作を表したフローチャートである。It is a flowchart showing the electrical operation of the same laser marker. 同レーザマーカの変更例を表した図である。It is a figure showing the example of a change of the same laser marker.
 以下、本開示のレーザマーカについて、具体化した実施形態に基づき、図面を参照しつつ説明する。以下の説明に用いる図1乃至図12、及び図16では、基本的構成の一部が省略されて描かれており、描かれた各部の寸法比等は必ずしも正確ではない。尚、以下の説明において、上下方向、前後方向、及び左右方向は、図2乃至図12、及び図16に示された通りである。 Hereinafter, the laser marker of the present disclosure will be described based on a specific embodiment with reference to the drawings. In FIGS. 1 to 12 and FIG. 16 used in the following description, a part of the basic configuration is omitted and drawn, and the dimensional ratios of the drawn parts are not necessarily accurate. In the following description, the up-down direction, the front-rear direction, and the left-right direction are as shown in FIGS. 2 to 12 and 16.
 図1に表されたように、本実施形態のレーザマーカ1は、レーザユニット10、ダイクロイックミラー12、反射ミラー14、ガルバノスキャナ16、fθレンズ18、及び可視半導体レーザ19等を備えている。 As shown in FIG. 1, the laser marker 1 of the present embodiment includes a laser unit 10, a dichroic mirror 12, a reflection mirror 14, a galvano scanner 16, an fθ lens 18, and a visible semiconductor laser 19.
 レーザユニット10は、レーザ発振器10A及びビームエキスパンダ10B等を有している。レーザ発振器10Aは、CO2レーザ、YAGレーザ等で構成されており、レーザ光Qを出射する。レーザ光Qの光径は、ビームエキスパンダ10Bで調整(例えば、拡大)される。 The laser unit 10 has a laser oscillator 10A, a beam expander 10B, and the like. The laser oscillator 10A is composed of a CO2 laser, a YAG laser, or the like, and emits a laser beam Q. The optical diameter of the laser light Q is adjusted (for example, expanded) by the beam expander 10B.
 可視半導体レーザ19は、可視可干渉光である可視レーザ光R、例えば、赤色レーザ光を出射する。可視レーザ光Rは、例えば、レーザ光Qでマーキング(印字)加工すべき印字パターンの像を、加工対象物Wに対して投影するために使用される。尚、可視レーザ光Rの波長は、レーザ光Qの波長とは異なる。本実施形態では、例えば、レーザ光Qの波長は1064nmであり、可視レーザ光Rの波長は650nmである。 The visible semiconductor laser 19 emits visible laser light R that is visible coherent light, for example, red laser light. The visible laser light R is used, for example, to project an image of a print pattern to be marked (printed) with the laser light Q onto the object W to be processed. The wavelength of the visible laser light R is different from the wavelength of the laser light Q. In the present embodiment, for example, the wavelength of the laser light Q is 1064 nm and the wavelength of the visible laser light R is 650 nm.
 ダイクロイックミラー12では、入射されたレーザ光Qのほぼ全部が透過する。また、ダイクロイックミラー12では、レーザ光Qが透過する略中央位置にて、可視レーザ光Rが45度の入射角で入射され、45度の反射角でレーザ光Qの光路上に反射される。ダイクロイックミラー12の反射率は、波長依存性を持っている。具体的には、ダイクロイックミラー12は、誘電体層と金属層との多層膜構造の表面処理がなされており、可視レーザ光Rの波長に対して高い反射率を有し、それ以外の波長の光をほとんど(99%)透過するように構成されている。 In the dichroic mirror 12, almost all of the incident laser light Q is transmitted. Further, in the dichroic mirror 12, the visible laser light R is incident at an incident angle of 45 degrees at a substantially central position where the laser light Q is transmitted, and is reflected on the optical path of the laser light Q at a reflection angle of 45 degrees. The reflectance of the dichroic mirror 12 has wavelength dependence. Specifically, the dichroic mirror 12 is subjected to a surface treatment of a multilayer film structure of a dielectric layer and a metal layer, has a high reflectance with respect to the wavelength of the visible laser light R, and has a wavelength of other wavelengths. It is configured to transmit most (99%) of light.
 尚、図1の点線は、可視レーザ光Rの光軸を示している。これに対して、図1の一点鎖線は、レーザ光Qの光軸を示している。更に、図1の一点鎖線のうち、ダイクロイックミラー12と加工対象物Wとの間にある一点鎖線は、可視レーザ光Rの光軸をも示している。 The dotted line in FIG. 1 indicates the optical axis of the visible laser light R. On the other hand, the alternate long and short dash line in FIG. 1 indicates the optical axis of the laser light Q. Further, among the one-dot chain lines in FIG. 1, the one-dot chain line between the dichroic mirror 12 and the processing object W also shows the optical axis of the visible laser light R.
 反射ミラー14では、ダイクロイックミラー12を透過したレーザ光Qと、ダイクロイックミラー12で反射した可視レーザ光Rとが、ガルバノスキャナ16に向けて反射される。 In the reflection mirror 14, the laser light Q that has passed through the dichroic mirror 12 and the visible laser light R that has reflected in the dichroic mirror 12 are reflected toward the galvano scanner 16.
 ガルバノスキャナ16は、反射ミラー14で反射されたレーザ光Qと可視レーザ光Rとを2次元走査するものである。ガルバノスキャナ16では、後述する図13に表されたガルバノX軸モータ17XとガルバノY軸モータ17Yとが、それぞれのモータ軸が互いに直交する状態にされ、更に、各モータ軸の先端部に取り付けられた走査ミラー16X、16Yが内側で互いに対向する状態にされる。そのような状態のガルバノスキャナ16において、各モータ17X、17Yが駆動制御されると、各走査ミラー16X、16Yが回動して、レーザ光Qと可視レーザ光Rとが2次元走査される。この2次元走査方向は、X方向とY方向である。 The galvano scanner 16 two-dimensionally scans the laser light Q reflected by the reflection mirror 14 and the visible laser light R. In the galvano scanner 16, a galvano X-axis motor 17X and a galvano Y-axis motor 17Y shown in FIG. 13, which will be described later, are arranged such that their motor axes are orthogonal to each other, and are further attached to the tip ends of the motor shafts. The scanning mirrors 16X and 16Y are made to face each other inside. In the galvano scanner 16 in such a state, when the motors 17X and 17Y are drive-controlled, the scanning mirrors 16X and 16Y rotate, and the laser light Q and the visible laser light R are two-dimensionally scanned. This two-dimensional scanning direction is the X direction and the Y direction.
 fθレンズ18は、ガルバノスキャナ16によって2次元走査されたレーザ光Qと可視レーザ光Rとを加工対象物W上に集光するものである。従って、レーザ光Qと可視レーザ光Rは、各モータ17X、17Yの駆動制御によって、加工対象物W上で2次元走査される。 The fθ lens 18 collects the laser light Q and the visible laser light R, which are two-dimensionally scanned by the galvano scanner 16, on the object W to be processed. Therefore, the laser light Q and the visible laser light R are two-dimensionally scanned on the workpiece W by the drive control of the motors 17X and 17Y.
 図2に表されたように、本実施形態のレーザマーカ1は、第1筐体20及び第2筐体30等を備えている。第1筐体20は、後側第1筐体20A及び前側第1筐体20Bで構成されている。後側第1筐体20A、前側第1筐体20B、及び第2筐体30は、略直方体形状である。 As shown in FIG. 2, the laser marker 1 of the present embodiment includes a first housing 20 and a second housing 30. The first housing 20 includes a rear first housing 20A and a front first housing 20B. The first rear housing 20A, the first front housing 20B, and the second housing 30 have a substantially rectangular parallelepiped shape.
 後側第1筐体20Aは、レーザユニット10等を内蔵するものであって、後側本体22A及び後側カバー24Aを有している。後側本体22Aには、レーザユニット10等が取り付けられ、後側カバー24Aが複数のねじ26Aで固定されている。これにより、第1筐体20には、レーザユニット10が収められている。 The first rear housing 20A contains the laser unit 10 and the like, and has a rear main body 22A and a rear cover 24A. The laser unit 10 and the like are attached to the rear body 22A, and the rear cover 24A is fixed with a plurality of screws 26A. As a result, the laser unit 10 is housed in the first housing 20.
 前側第1筐体20Bは、後側第1筐体20Aの後側本体22Aに対して、前方向側から取り付けられている。前側第1筐体20Bは、ダイクロイックミラー12、反射ミラー14、及び可視半導体レーザ19等を内蔵するものであって、前側本体22B及び前側カバー24Bを有している。前側本体22Bには、ダイクロイックミラー12、反射ミラー14、及び可視半導体レーザ19等が取り付けられ、前側カバー24Bが複数のねじ26Bで固定されている。これにより、第1筐体20には、ダイクロイックミラー12、反射ミラー14、及び可視半導体レーザ19が収められている。 The front first housing 20B is attached to the rear main body 22A of the rear first housing 20A from the front side. The first front housing 20B contains the dichroic mirror 12, the reflection mirror 14, the visible semiconductor laser 19, and the like, and has a front main body 22B and a front cover 24B. The dichroic mirror 12, the reflection mirror 14, the visible semiconductor laser 19, and the like are attached to the front body 22B, and the front cover 24B is fixed with a plurality of screws 26B. As a result, the first housing 20 houses the dichroic mirror 12, the reflection mirror 14, and the visible semiconductor laser 19.
 第2筐体30は、ガルバノスキャナ16等を内蔵するものであって、本体32及びカバー34を有している。本体32には、ガルバノスキャナ16等が取り付けられ(後述する図6及び図10参照)、カバー34が複数のねじ36で固定されている。これにより、第2筐体30には、ガルバノスキャナ16が収められている。更に、第2筐体30の本体32には、fθレンズ18が嵌められた状態で設けられている(後述する図4及び図6参照)。これにより、ガルバノスキャナ16は、各走査ミラー16X、16Yで反射したレーザ光Qと可視レーザ光Rを、fθレンズ18を経由して、本実施形態のレーザマーカ1の外方で2次元走査することが可能である。 The second housing 30 incorporates the galvano scanner 16 and the like, and has a main body 32 and a cover 34. The galvano scanner 16 and the like are attached to the main body 32 (see FIGS. 6 and 10 described later), and the cover 34 is fixed with a plurality of screws 36. As a result, the galvano scanner 16 is housed in the second housing 30. Further, the body 32 of the second housing 30 is provided with the fθ lens 18 fitted therein (see FIGS. 4 and 6 described later). As a result, the galvano scanner 16 two-dimensionally scans the laser light Q and the visible laser light R reflected by the scanning mirrors 16X and 16Y, outside the laser marker 1 of the present embodiment, via the fθ lens 18. Is possible.
 第2筐体30と後側第1筐体20Aとの間には、ガルバノスキャナ16のケーブルCが架け渡されている。ケーブルCは、ケーブルグランド200を介して、第2筐体30と後側第1筐体20Aとに引き込まれている。 The cable C of the galvano scanner 16 is bridged between the second housing 30 and the rear first housing 20A. The cable C is drawn into the second housing 30 and the rear first housing 20A via the cable gland 200.
 図3及び図4は、本実施形態のレーザマーカ1の前方部分を、前側カバー24Bが前側本体22Bから外された状態で表した斜視図である。本実施形態のレーザマーカ1は、第2筐体30の向きを、図3に表された向きや、図4に表された向きに変更することが可能である。そのため、第2筐体30は、後述する図5等に表された連結部材60によって、前側第1筐体20Bに対して回動可能に設けられている。尚、連結部材60の詳細については、後述する。 3 and 4 are perspective views showing the front portion of the laser marker 1 of the present embodiment with the front cover 24B removed from the front main body 22B. The laser marker 1 of this embodiment can change the orientation of the second housing 30 to the orientation shown in FIG. 3 or the orientation shown in FIG. 4. Therefore, the second housing 30 is rotatably provided with respect to the front first housing 20B by a connecting member 60 shown in FIG. The details of the connecting member 60 will be described later.
 本実施形態では、第2筐体30の向きが図3に表された向きである場合を「第2筐体30(の回動位置)が第1回動位置にある」といい、この場合には、fθレンズ18が下方向へ向いた状態にある。これに対して、第2筐体30の向きが図4に表された向きである場合を「第2筐体30(の回動位置)が第2回動位置にある」といい、この場合には、fθレンズ18が前方向へ向いた状態にある。本実施形態のレーザマーカ1は、第1筐体20に対して第2筐体30を0度から90度の間で回動させることができる。 In the present embodiment, the case where the orientation of the second housing 30 is the orientation shown in FIG. 3 is referred to as “the (the rotational position of) the second housing 30 is at the first rotational position”. In this case Is in a state in which the fθ lens 18 faces downward. On the other hand, the case where the orientation of the second housing 30 is the orientation shown in FIG. 4 is referred to as “the (the rotational position of) the second housing 30 is in the second rotational position”. Is in a state in which the fθ lens 18 faces forward. The laser marker 1 of this embodiment can rotate the second housing 30 with respect to the first housing 20 between 0 degrees and 90 degrees.
 更に、本実施形態のレーザマーカ1は、後述する図6等に表されたロック機構Lによって、第2筐体30の回動位置を、図3に表された第1回動位置や、図4に表された第2回動位置に固定することが可能である。尚、ロック機構Lは、前側第1筐体20Bの前側本体22Bに設けられたピン50及び取付板52等を備えているが、それらの詳細については、後述する。 Further, in the laser marker 1 of the present embodiment, the rotation position of the second housing 30 is changed to the first rotation position shown in FIG. 3 and the lock mechanism L shown in FIG. It is possible to fix it in the second rotation position shown in FIG. The lock mechanism L includes the pin 50 and the mounting plate 52 provided on the front main body 22B of the front first housing 20B, and the details thereof will be described later.
 前側第1筐体20Bが後側第1筐体20Aに取り付けられた箇所には、伝送窓11が、前側本体22Bと後側本体22Aとに亘って設けられている。伝送窓11では、レーザユニット10から出射されたレーザ光Qが、後側第1筐体20Aから前側第1筐体20Bへ向かって通過する。 A transmission window 11 is provided at a position where the front first housing 20B is attached to the rear first housing 20A, extending between the front main body 22B and the rear main body 22A. In the transmission window 11, the laser light Q emitted from the laser unit 10 passes from the rear first housing 20A toward the front first housing 20B.
 前側第1筐体20Bの前側本体22Bには、ホルダー13、円板40、第1センサS1、第2センサS2、反射ミラー14等が設けられている。ホルダー13は、前側本体22Bに取り付けられている。ホルダー13には、可視半導体レーザ19が、不図示の基板に組み込まれた状態で取り付けられている。また、ホルダー13には、ダイクロイックミラー12等が取り付けられている。更に、ホルダー13の前側壁面には、第1センサS1及び第2センサS2が取り付けられている。第1センサS1及び第2センサS2は、マイクロスイッチである。 The holder 13, the disc 40, the first sensor S1, the second sensor S2, the reflection mirror 14 and the like are provided on the front main body 22B of the front first housing 20B. The holder 13 is attached to the front main body 22B. A visible semiconductor laser 19 is attached to the holder 13 in a state of being incorporated in a substrate (not shown). In addition, the dichroic mirror 12 and the like are attached to the holder 13. Further, a first sensor S1 and a second sensor S2 are attached to the front side wall surface of the holder 13. The first sensor S1 and the second sensor S2 are micro switches.
 円板40は、その中央に開口部が設けられると共に、第2筐体30と共に回動するように設けられている。その詳細については、後述する。円板40には、その外周の所定領域において、突出部42が、後側第1筐体20Aの方面へ突き出した状態で形成されている。更に、突出部42には、被検出部44が、後側第1筐体20Aの方面へ突き出した状態で形成されている。 The disc 40 is provided with an opening in the center thereof and is rotatable with the second housing 30. The details will be described later. In the disc 40, a protrusion 42 is formed in a predetermined region on the outer periphery of the disc 40 so as to protrude toward the rear first housing 20A. Further, the detected portion 44 is formed on the protruding portion 42 in a state of protruding toward the rear first housing 20A.
 被検出部44は、図3に表されたように、第2筐体30の回動位置が第1回動位置にある場合には、第1センサS1のアクチュエータ部に押し付けられる。これにより、第1センサS1は、第2筐体30の回動位置が第1回動位置にあることを検出する。これに対して、被検出部44は、図4に表されたように、第2筐体30の回動位置が第2回動位置にある場合には、第2センサS2のアクチュエータ部に押し付けられる。これにより、第2センサS2は、第2筐体30の回動位置が第2回動位置にあることを検出する。 As shown in FIG. 3, the detected portion 44 is pressed against the actuator portion of the first sensor S1 when the rotation position of the second housing 30 is at the first rotation position. Accordingly, the first sensor S1 detects that the rotation position of the second housing 30 is at the first rotation position. On the other hand, as shown in FIG. 4, when the rotation position of the second housing 30 is at the second rotation position, the detected portion 44 is pressed against the actuator portion of the second sensor S2. Be done. As a result, the second sensor S2 detects that the rotation position of the second housing 30 is at the second rotation position.
 尚、第1センサS1は、第2筐体30の回動位置が第1回動位置にあることを検出するものであれば、いずれの種類のセンサであってもよい。同様にして、第2センサS2は、第2筐体30の回動位置が第2回動位置にあることを検出するものであれば、いずれの種類のセンサであってもよい。 The first sensor S1 may be any type of sensor as long as it detects that the rotation position of the second housing 30 is at the first rotation position. Similarly, the second sensor S2 may be any type of sensor as long as it detects that the rotation position of the second housing 30 is at the second rotation position.
 反射ミラー14は、前側第1筐体20Bの前側本体22Bにおいて、前後方向及び上下方向で円板40の開口部に対向する位置に取り付けられている。但し、図3及び図4では、反射ミラー14が省略されている。この点は、後述する図5、図7、図9、及び図11においても、同様である。 The reflection mirror 14 is attached to the front main body 22B of the front first housing 20B at a position facing the opening of the disc 40 in the front-rear direction and the vertical direction. However, the reflection mirror 14 is omitted in FIGS. 3 and 4. This point is the same in FIGS. 5, 7, 9, and 11 described later.
 図5乃至図8は、第2筐体30の回動位置が第1回動位置にある場合の、本実施形態のレーザマーカ1の前方部分を表した図である。図5乃至図7では、前側カバー24Bが前側本体22Bから外された状態で表されている。 5 to 8 are diagrams showing the front portion of the laser marker 1 of the present embodiment when the turning position of the second housing 30 is at the first turning position. 5 to 7, the front cover 24B is shown in a state of being removed from the front main body 22B.
 図5乃至図7に表されたように、連結部材60は、両端面が左右方向で向き合った略円筒形状をなしており、前側第1筐体20Bと第2筐体30とに亘って配設されている。連結部材60の左端は、Oリング62(図6参照)を介して、第2筐体30の本体32にねじ74(図5参照)で固定されている。これに対して、連結部材60の右端は、Xリング64(図6参照)を介して、前側第1筐体20Bの前側本体22Bに差し込まれた状態で取り付けられている。これにより、連結部材60は、第2筐体30を前側第1筐体20Bに対して回動可能にしている。更に、連結部材60の右側端面が、前側第1筐体20B内に配置される。 As shown in FIGS. 5 to 7, the connecting member 60 has a substantially cylindrical shape with both end surfaces facing each other in the left-right direction, and is arranged over the front first housing 20B and the second housing 30. It is set up. The left end of the connecting member 60 is fixed to the main body 32 of the second housing 30 with a screw 74 (see FIG. 5) via an O-ring 62 (see FIG. 6). On the other hand, the right end of the connecting member 60 is attached to the front main body 22B of the front first housing 20B via the X ring 64 (see FIG. 6). Accordingly, the connecting member 60 allows the second housing 30 to rotate with respect to the front first housing 20B. Further, the right end surface of the connecting member 60 is arranged in the front first housing 20B.
 連結部材60の右側端面には、円板40がねじ46(図7参照)で固定されている。これにより、円板40は、連結部材60を介して、第2筐体30と共に回動する。また、突出部42及び被検出部44が、連結部材60の右端の外周面から、連結部材60の回動中心68(図8参照)から離れる方向へ突出した状態になる。更に、前側第1筐体20B内では、円板40の外周面や、円板40から突出した突出部42及び被検出部44が、連結部材60の右端の外周面よりも連結部材60の外方へ突出した状態になる。これにより、連結部材60は、第2筐体30が前側第1筐体20Bに対して回動したときに、前側第1筐体20Bから抜けないように設けられている。尚、突出部42及び被検出部44は、連結部材60の右端付近において、連結部材60の外周面から、連結部材60の回動中心68から離れる方向へ突出した状態にあればよい。 The disc 40 is fixed to the right end surface of the connecting member 60 with a screw 46 (see FIG. 7). As a result, the disc 40 rotates together with the second housing 30 via the connecting member 60. Further, the protruding portion 42 and the detected portion 44 are in a state of protruding from the outer peripheral surface of the right end of the connecting member 60 in the direction away from the rotation center 68 (see FIG. 8) of the connecting member 60. Furthermore, in the front first housing 20</b>B, the outer peripheral surface of the disc 40 and the protruding portion 42 and the detected portion 44 protruding from the disc 40 are outside the connecting member 60 more than the outer peripheral surface at the right end of the connecting member 60. It will be in a state of protruding toward. Accordingly, the connecting member 60 is provided so as not to come off from the front first housing 20B when the second housing 30 rotates with respect to the front first housing 20B. It should be noted that the protruding portion 42 and the detected portion 44 may be in a state of protruding from the outer peripheral surface of the connecting member 60 in the direction away from the rotation center 68 of the connecting member 60 near the right end of the connecting member 60.
 それに加えて、円板40、突出部42、及び被検出部44は、前側第1筐体20Bに対して内接した状態になる。更に、連結部材60の左端は、連結部材60の円筒部分から外方へ張り出しており、前側第1筐体20Bの前側本体22Bと第2筐体30の本体32とに挟まれた状態で固定されている。これにより、第2筐体30は、左右方向へ変位することなく、前側第1筐体20Bに対して回動することが可能である。 In addition to that, the disk 40, the protruding portion 42, and the detected portion 44 are inscribed in the front first housing 20B. Furthermore, the left end of the connecting member 60 projects outward from the cylindrical portion of the connecting member 60 and is fixed in a state of being sandwiched between the front main body 22B of the front first housing 20B and the main body 32 of the second housing 30. Has been done. As a result, the second housing 30 can rotate with respect to the front first housing 20B without being displaced in the left-right direction.
 図6及び図7に表されたように、連結部材60は、その両端面で空洞が貫通した中空構造66を有している。中空構造66の空洞左側は、第2筐体30の本体32に設けられた貫通穴38と連通している。これに対して、中空構造66の空洞右側は、前側第1筐体20B内において、円板40の開口部に連通している。これにより、レーザ光Q及び可視レーザ光Rは、前側第1筐体20B内の反射ミラー14で反射した後、連結部材60の中空構造66を通過して、第2筐体30内のガルバノスキャナ16に入射される。 As shown in FIGS. 6 and 7, the connecting member 60 has a hollow structure 66 in which cavities pass through at both end surfaces thereof. The cavity left side of the hollow structure 66 communicates with a through hole 38 provided in the main body 32 of the second housing 30. On the other hand, the right side of the hollow structure 66 communicates with the opening of the disc 40 in the front first housing 20B. As a result, the laser light Q and the visible laser light R are reflected by the reflection mirror 14 in the front first housing 20B, then pass through the hollow structure 66 of the connecting member 60, and the galvano scanner in the second housing 30. It is incident on 16.
 もっとも、中空構造66は、レーザ光Q及び可視レーザ光Rが前側第1筐体20Bから第2筐体30へ向けて通過する構造であればよく、筒状の構造に限定されるものでない。従って、例えば、中空構造66は、その空洞が連結部材60の側面で露出する構造であってもよい。但し、そのような場合、中空構造66の空洞が露出した箇所は、前側第1筐体20Bの前側本体22B又は第2筐体30の本体32で遮蔽される。 However, the hollow structure 66 may be any structure as long as the laser light Q and the visible laser light R pass through from the front first housing 20B toward the second housing 30, and is not limited to the cylindrical structure. Therefore, for example, the hollow structure 66 may be a structure in which the cavity is exposed on the side surface of the connecting member 60. However, in such a case, the exposed portion of the cavity of the hollow structure 66 is shielded by the front main body 22B of the front first housing 20B or the main body 32 of the second housing 30.
 図8に表されたように、ロック機構Lは、上述したピン50及び取付板52に加えて、筐体側孔部29、第1孔部70、及び第2孔部72等を備えている。ピン50は、その軸の外周面から外方へ張り出した鍔部54を有している。ピン50の先端56は、テーパ状に形成されている。ピン50の軸には、鍔部54とテーパ状の先端56との間において、雄ネジ50Aが螺刻されている。 As shown in FIG. 8, the lock mechanism L includes a housing side hole 29, a first hole 70, a second hole 72, and the like in addition to the pin 50 and the mounting plate 52 described above. The pin 50 has a collar portion 54 that projects outward from the outer peripheral surface of the shaft. The tip 56 of the pin 50 is formed in a tapered shape. A male screw 50A is threaded on the shaft of the pin 50 between the flange 54 and the tapered tip 56.
 筐体側孔部29は、前側第1筐体20Bの前側本体22Bにおいて、連結部材60の右端が差し込まれた穴まで貫いた状態で設けられており、上下方向で段差状に形成されている。筐体側孔部29では、上段側の内径よりも下段側内径が小さい。更に、筐体側孔部29では、下段側内周面において、ピン50の雄ネジ50Aと嵌め合わされる雌ネジ29Aが螺刻されている。 The housing-side hole 29 is provided in the front main body 22B of the front first housing 20B in a state of penetrating to the hole into which the right end of the connecting member 60 is inserted, and is formed in a step shape in the vertical direction. In the housing side hole portion 29, the inner diameter on the lower side is smaller than the inner diameter on the upper side. Further, in the housing side hole portion 29, a female screw 29A to be fitted with the male screw 50A of the pin 50 is threaded on the inner peripheral surface of the lower stage.
 取付板52は、前側第1筐体20Bの前側本体22Bの上面において、凸状に曲折された状態で取り付けられている。ピン50は、取付板52を貫通した状態で、筐体側孔部29に差し入れられている。これにより、ピン50の鍔部54は、筐体側孔部29の上段側と取付板52との間に配設されている。更に、ピン50の鍔部54と筐体側孔部29の段差面との間には、コイルバネ80がピン50の軸を挿通した状態で配設されている。コイルバネ80の上端はピン50の鍔部54に押止され、コイルバネ80の下端は筐体側孔部29の段差面に押止されている。そのため、ピン50は、上方向へ付勢される。但し、ピン50は、上方向へ移動すると、鍔部54が取付板52に突き当たる。これにより、ピン50は、取付板52から抜けないように設けられている。 The mounting plate 52 is mounted on the upper surface of the front main body 22B of the front first housing 20B while being bent in a convex shape. The pin 50 is inserted into the housing side hole 29 while penetrating the mounting plate 52. As a result, the flange portion 54 of the pin 50 is arranged between the upper side of the housing side hole portion 29 and the mounting plate 52. Further, a coil spring 80 is arranged between the flange portion 54 of the pin 50 and the step surface of the housing side hole portion 29 with the shaft of the pin 50 being inserted therethrough. The upper end of the coil spring 80 is pressed against the collar portion 54 of the pin 50, and the lower end of the coil spring 80 is pressed against the step surface of the housing side hole 29. Therefore, the pin 50 is biased upward. However, when the pin 50 moves upward, the flange 54 abuts the mounting plate 52. As a result, the pin 50 is provided so as not to come off from the mounting plate 52.
 第1孔部70及び第2孔部72は、連結部材60に設けられている。第1孔部70及び第2孔部72は、それらの内径が奥へ向かうに連れて小さくなるように形成されることで、テーパ状のピン50の先端56を案内しながら嵌め入れることを可能にしている。従って、第1孔部70及び第2孔部72の内径は、少なくとも、第1孔部70及び第2孔部72がピン50の先端56を案内しながら嵌め入れることが可能な所定深さ域において、奥へ向かうに連れて小さくなっていればよい。 The first hole portion 70 and the second hole portion 72 are provided in the connecting member 60. The first hole portion 70 and the second hole portion 72 are formed such that their inner diameters become smaller toward the inner side, so that the tip end 56 of the tapered pin 50 can be fitted while being guided. I have to. Therefore, the inner diameters of the first hole portion 70 and the second hole portion 72 are at least a predetermined depth range in which the first hole portion 70 and the second hole portion 72 can be fitted while guiding the tip 56 of the pin 50. In, it should just become small as it goes to the back.
 第1孔部70及び第2孔部72は、連結部材60の右端が前側第1筐体20Bに差し込まれる方向(左右方向)から視ると、連結部材60の外周面から連結部材60の回動中心68へ向かって形成されている。更に、第1孔部70から連結部材60の回動中心68へ向かう方向(図8では上下方向)と、第2孔部72から連結部材60の回動中心68へ向かう方向(図8では左右方向)とが、90度で交わっている。 The first hole portion 70 and the second hole portion 72 are arranged such that when the right end of the connecting member 60 is viewed from the direction (left-right direction) in which the right end of the connecting member 60 is inserted into the front first casing 20B, the connecting member 60 is rotated from the outer peripheral surface of the connecting member 60. It is formed toward the moving center 68. Further, a direction from the first hole 70 toward the rotation center 68 of the connecting member 60 (vertical direction in FIG. 8) and a direction from the second hole 72 toward the rotation center 68 of the connecting member 60 (left and right in FIG. 8). Direction) intersects at 90 degrees.
 尚、第1センサS1と第2センサS2とを、前側第1筐体20Bと第2筐体30とが並べられた方向(左右方向)から視ると、第1センサS1のアクチュエータ部から第2筐体30の回動中心68へ向かう方向と、第2センサS2のアクチュエータ部から第2筐体30の回動中心68へ向かう方向とが、90度で交わっている。 When the first sensor S1 and the second sensor S2 are viewed from the direction in which the front first housing 20B and the second housing 30 are arranged (the left-right direction), the first sensor S1 and the second sensor S2 are separated from the actuator section of the first sensor S1. The direction toward the rotation center 68 of the second housing 30 and the direction toward the rotation center 68 of the second housing 30 from the actuator portion of the second sensor S2 intersect at 90 degrees.
 第2筐体30の回動位置が第1回動位置にある場合には、前側第1筐体20Bの筐体側孔部29と連結部材60の第1孔部70とが連通する。この場合において、ピン50が、コイルバネ80の付勢力に抗して下方に押し下げられ、所定方向へ回されると、ピン50の先端56が、筐体側孔部29から下方向へ突き出して、第1孔部70に嵌め入れられる。これにより、第2筐体30は、第1回動位置に固定された状態になる。その際、ピン50がコイルバネ80によって上方向へ付勢されているが、ピン50の雄ネジ50Aと筐体側孔部29の雌ネジ29Aとが嵌め合わされることによって、ピン50の先端56が第1孔部70から抜け出ないような状態にされている。 When the rotation position of the second housing 30 is at the first rotation position, the housing-side hole portion 29 of the front first housing 20B and the first hole portion 70 of the connecting member 60 communicate with each other. In this case, when the pin 50 is pushed down against the biasing force of the coil spring 80 and rotated in a predetermined direction, the tip 56 of the pin 50 projects downward from the housing side hole 29, and It is fitted into one hole 70. As a result, the second housing 30 is fixed in the first rotation position. At that time, although the pin 50 is biased upward by the coil spring 80, the male screw 50A of the pin 50 and the female screw 29A of the housing side hole portion 29 are fitted to each other so that the tip 56 of the pin 50 moves to the first position. It is in a state where it does not come out of the one hole 70.
 これに対して、ピン50が所定方向とは反対方向へ回されると、ピン50の雄ネジ50Aが筐体側孔部29の雌ネジ29Aから外れると共に、ピン50の先端56が第1孔部70から抜け出す。その際、ピン50は、コイルバネ80の付勢力によって、上方向へ移動して、連結部材60から離間すると共に、ピン50の先端56が、第1孔部70から抜け出る位置まで移動する。これにより、第2筐体30が第1回動位置に固定された状態は解除される。 On the other hand, when the pin 50 is rotated in the direction opposite to the predetermined direction, the male screw 50A of the pin 50 is disengaged from the female screw 29A of the housing side hole 29, and the tip 56 of the pin 50 is moved to the first hole. Get out of 70. At that time, the pin 50 moves upward due to the urging force of the coil spring 80 to be separated from the connecting member 60, and the tip end 56 of the pin 50 moves to a position where it comes out of the first hole 70. As a result, the state in which the second housing 30 is fixed at the first rotation position is released.
 図7に表されたように、前側第1筐体20Bの前側本体22B内には、円板40よりも上方向側において第1壁面部27が設けられ、円板40よりも下方向側において第2壁面部28が設けられている。これに対して、円板40には、円板40の外周面と突出部42の外周面との間にある段差によって、突出部42の第1端面部42A及び第2端面部42Bが形成されている。 As shown in FIG. 7, in the front main body 22B of the front first housing 20B, the first wall surface portion 27 is provided on the upper side of the disc 40 and on the lower side of the disc 40. The second wall surface portion 28 is provided. On the other hand, the disc 40 has the first end surface portion 42A and the second end surface portion 42B of the protrusion 42 formed by the step between the outer peripheral surface of the disc 40 and the outer peripheral surface of the protrusion 42. ing.
 そのため、連結部材60の右側端面に固定されている円板40が第2筐体30と共に回動すると、円板40の第1端面部42Aが前側第1筐体20Bの第1壁面部27に突き当たり、あるいは、円板40の第2端面部42Bが前側第1筐体20Bの第2壁面部28に突き当たる。これにより、第2筐体30の回動範囲が制限される。図7では、円板40の第1端面部42Aが前側第1筐体20Bの第1壁面部27に突き当たった状態にあり、そのような状態では、第2筐体30の回動位置が第1回動位置にある。 Therefore, when the disk 40 fixed to the right end surface of the connecting member 60 rotates together with the second housing 30, the first end surface portion 42A of the disk 40 comes to the first wall surface portion 27 of the front first housing 20B. It abuts, or the second end surface portion 42B of the disc 40 abuts on the second wall surface portion 28 of the front first housing 20B. This limits the rotation range of the second housing 30. In FIG. 7, the first end surface portion 42A of the disc 40 is in a state of abutting against the first wall surface portion 27 of the front first housing 20B, and in such a state, the rotation position of the second housing 30 is the first position. 1 turn position.
 図9乃至図12は、第2筐体30の回動位置が第2回動位置にある場合の、本実施形態のレーザマーカ1の前方部分を表した図である。図9乃至図11では、前側カバー24Bが前側本体22Bから外された状態で表されている。尚、図9乃至図12は、第2筐体30の回動位置が第1回動位置にある場合の、上記図5乃至図8に相当する。そのため、以下の説明では、第2筐体30の回動位置が第1回動位置にある場合と共通する点は省略する。 9 to 12 are diagrams showing the front portion of the laser marker 1 of the present embodiment when the turning position of the second housing 30 is at the second turning position. 9 to 11, the front cover 24B is shown in a state of being removed from the front main body 22B. Note that FIGS. 9 to 12 correspond to FIGS. 5 to 8 when the rotation position of the second housing 30 is at the first rotation position. Therefore, in the following description, points common to the case where the rotation position of the second housing 30 is at the first rotation position will be omitted.
 図11に表されたように、円板40の第2端面部42Bが前側第1筐体20Bの第2壁面部28に突き当たった状態になると、第2筐体30の回動位置が第2回動位置にある。 As shown in FIG. 11, when the second end surface portion 42B of the disc 40 comes into contact with the second wall surface portion 28 of the front first housing 20B, the turning position of the second housing 30 moves to the second position. It is in the rotating position.
 第2筐体30の回動位置が第2回動位置にある場合には、図12に表されたように、前側第1筐体20Bの筐体側孔部29と連結部材60の第2孔部72とが連通する。この場合には、ピン50が、コイルバネ80の付勢力に抗して下方に押し下げられ、所定方向へ回されると、ピン50の先端56が、筐体側孔部29から下方向へ突き出して、第2孔部72に嵌め入れられる。これにより、第2筐体30は、第2回動位置に固定された状態になる。その際、ピン50がコイルバネ80によって上方向へ付勢されているが、ピン50の雄ネジ50Aと筐体側孔部29の雌ネジ29Aとが嵌め合わされることによって、ピン50の先端56が第2孔部72から抜け出ないような状態にされている。 When the turning position of the second housing 30 is at the second turning position, as shown in FIG. 12, the housing-side hole portion 29 of the front first housing 20B and the second hole of the connecting member 60 are formed. The part 72 communicates. In this case, when the pin 50 is pushed down against the biasing force of the coil spring 80 and rotated in a predetermined direction, the tip 56 of the pin 50 projects downward from the housing side hole 29, It is fitted into the second hole 72. As a result, the second housing 30 is fixed in the second rotation position. At that time, although the pin 50 is biased upward by the coil spring 80, the male screw 50A of the pin 50 and the female screw 29A of the housing side hole portion 29 are fitted to each other so that the tip 56 of the pin 50 moves to the first position. The two holes 72 are configured so as not to come out.
 これに対して、ピン50が所定方向とは反対方向へ回されると、ピン50の雄ネジ50Aが筐体側孔部29の雌ネジ29Aから外れると共に、ピン50の先端56が第2孔部72から抜け出す。その際、ピン50は、コイルバネ80の付勢力によって、上方向へ移動して、連結部材60から離間すると共に、ピン50の先端56が、第2孔部72から抜け出る位置まで移動する。これにより、第2筐体30が第2回動位置に固定された状態は解除される。 On the other hand, when the pin 50 is rotated in the direction opposite to the predetermined direction, the male screw 50A of the pin 50 is disengaged from the female screw 29A of the housing side hole 29, and the tip 56 of the pin 50 is moved to the second hole. Get out of 72. At that time, the pin 50 moves upward due to the urging force of the coil spring 80 and is separated from the connecting member 60, and the tip end 56 of the pin 50 moves to a position where it comes out of the second hole 72. As a result, the state in which the second housing 30 is fixed at the second rotation position is released.
 以上より、前側第1筐体20Bの前側本体22Bに設けられた第1壁面部27及び第2壁面部28は、第2筐体30と共に連結部材60が回動して、突出部42の第1端面部42A又は第2端面部42Bが突き当たることによって、第2筐体30の回動範囲を第1回動位置と第2回動位置の間に制限するものである。また、連結部材60の第1孔部70は第1回動位置に対応し、連結部材60の第2孔部72は第2回動位置に対応するものである。 As described above, with respect to the first wall surface portion 27 and the second wall surface portion 28 provided on the front main body 22B of the front first housing 20B, the connecting member 60 rotates together with the second housing 30, and the first wall surface portion 27 and the second wall surface portion 28 of the protruding portion 42. The rotation range of the second housing 30 is limited between the first rotation position and the second rotation position by the abutment of the first end surface portion 42A or the second end surface portion 42B. Further, the first hole portion 70 of the connecting member 60 corresponds to the first rotating position, and the second hole portion 72 of the connecting member 60 corresponds to the second rotating position.
 このようにして、ロック機構Lは、前側第1筐体20Bにおいて、連結部材60の回動を固定することによって、第2筐体30を第1回動位置又は第2回動位置で固定する。 In this way, the locking mechanism L fixes the second housing 30 at the first rotation position or the second rotation position by fixing the rotation of the connecting member 60 in the front first housing 20B. ..
 次に、本実施形態のレーザマーカ1の電気的構成について説明する。図13に表されたように、本実施形態のレーザマーカ1は、印字情報作成部2及びレーザ加工部3で構成されている。先ず、印字情報作成部2の電気的構成について説明する。印字情報作成部2は、入力操作部101、制御部103、CD-R/W113、及び液晶ディスプレイ(LCD)115等を備えている。制御部103には、不図示の入出力インターフェースを介して、入力操作部101、CD-R/W113、及び液晶ディスプレイ115等が接続されている。 Next, the electrical configuration of the laser marker 1 of this embodiment will be described. As shown in FIG. 13, the laser marker 1 of the present embodiment is composed of a print information creation unit 2 and a laser processing unit 3. First, the electrical configuration of the print information creation unit 2 will be described. The print information creation unit 2 includes an input operation unit 101, a control unit 103, a CD-R/W 113, a liquid crystal display (LCD) 115, and the like. An input operation unit 101, a CD-R/W 113, a liquid crystal display 115, etc. are connected to the control unit 103 via an input/output interface (not shown).
 入力操作部101は、不図示のマウス及びキーボード等から構成されており、例えば、ユーザが第2筐体30の回動位置を第1回動位置及び第2回動位置の中からいずれかを指定する際に使用される。 The input operation unit 101 is composed of a mouse, a keyboard, and the like (not shown). For example, the user selects the rotation position of the second housing 30 from the first rotation position and the second rotation position. Used when specifying.
 CD-R/W113は、各種データ及び各種アプリケーションソフトウェア等をCD-ROM117から読み込む、又は、CD-ROM117に対して書き込むものである。 The CD-R/W 113 reads various data and various application software from the CD-ROM 117 or writes them in the CD-ROM 117.
 制御部103は、印字情報作成部2の全体を制御するものであって、CPU105、RAM107、ROM109、及びハードディスクドライブ(以下、「HDD」という。)111等を備えている。CPU105は、印字情報作成部2の全体の制御を行う演算装置及び制御装置である。CPU105、RAM107、及びROM109は、不図示のバス線により相互に接続されており、相互にデータのやり取りが行われる。更に、CPU105とHDD111は、不図示の入出力インターフェースを介して接続されており、相互にデータのやり取りが行われる。 The control unit 103 controls the entire print information creation unit 2, and includes a CPU 105, a RAM 107, a ROM 109, a hard disk drive (hereinafter referred to as “HDD”) 111, and the like. The CPU 105 is an arithmetic unit and a control unit that controls the entire print information creation unit 2. The CPU 105, RAM 107, and ROM 109 are connected to each other by a bus line (not shown), and data is exchanged with each other. Further, the CPU 105 and the HDD 111 are connected via an input/output interface (not shown), and data is exchanged with each other.
 RAM107は、CPU105により演算された各種の演算結果等を一時的に記憶させておくためのものである。ROM109は、各種のプログラム等を記憶させておくものである。HDD111には、各種アプリケーションソフトウェアのプログラム、及び各種データファイル等が記憶される。 The RAM 107 is for temporarily storing various calculation results calculated by the CPU 105. The ROM 109 stores various programs and the like. The HDD 111 stores various application software programs, various data files, and the like.
 次に、レーザ加工部3の電気的構成について説明する。レーザ加工部3は、コントローラ201、ガルバノドライバ213、半導体レーザドライバ215、第1センサS1、第2センサS2、及び24VDC/DC用電源ユニット(24VDCDC)217等から構成されている。 Next, the electrical configuration of the laser processing unit 3 will be described. The laser processing unit 3 includes a controller 201, a galvano driver 213, a semiconductor laser driver 215, a first sensor S1, a second sensor S2, a 24VDC/DC power supply unit (24VDCDC) 217, and the like.
 コントローラ201は、レーザ加工部3の全体を制御する。コントローラ201には、ガルバノドライバ213、半導体レーザドライバ215、第1センサS1、第2センサS2、及び24VDC/DC用電源ユニット217等が電気的に接続されている。コントローラ201には、印字情報作成部2が双方向通信可能に接続されており、印字情報作成部2から送信された各情報(例えば、印字情報、レーザ加工部3に対する制御パラメータ、ユーザからの各種指示情報等)を受信可能に構成されている。 The controller 201 controls the entire laser processing unit 3. A galvano driver 213, a semiconductor laser driver 215, a first sensor S1, a second sensor S2, a 24V DC/DC power supply unit 217, and the like are electrically connected to the controller 201. The print information creation unit 2 is connected to the controller 201 so as to be able to perform two-way communication, and each information transmitted from the print information creation unit 2 (for example, print information, control parameters for the laser processing unit 3, various information from the user). (Instruction information, etc.).
 尚、ユーザからの各種指示情報には、第1回動位置及び第2回動位置の中からユーザが第2筐体30の回動位置として指定した結果を示す指定情報が含まれる。 Note that various instruction information from the user includes designation information indicating a result designated by the user as the rotation position of the second housing 30 from the first rotation position and the second rotation position.
 コントローラ201は、CPU203、RAM205、ROM207、及びFPGA(Field-Programmable Gate Array)211等を備えている。CPU203は、レーザ加工部3の全体の制御を行う演算装置及び制御装置である。CPU203、RAM205、ROM207、及びFPGA211は、不図示のバス線により相互に接続されて、相互にデータのやり取りが行われる。RAM205は、CPU203により演算された各種の演算結果や印字パターンのXY座標データ等を一時的に記憶させておくためのものである。 The controller 201 includes a CPU 203, a RAM 205, a ROM 207, an FPGA (Field-Programmable Gate Array) 211, and the like. The CPU 203 is an arithmetic unit and a control unit that controls the entire laser processing unit 3. The CPU 203, the RAM 205, the ROM 207, and the FPGA 211 are connected to each other by a bus line (not shown) to exchange data with each other. The RAM 205 is for temporarily storing various calculation results calculated by the CPU 203, XY coordinate data of print patterns, and the like.
 ROM207は、各種のプログラムを記憶させておくものであり、例えば、印字情報作成部2から送信された印字情報に基づいて印字パターンのXY座標データを算出してRAM205に記憶するプログラムが記憶されている。尚、各種プログラムには、上述したプログラムに加えて、例えば、印字情報作成部2から入力された印字情報に対応する印字パターンの太さ、深さ及び本数、ガルバノスキャナ16によるレーザ光Qを走査する速度等を示す各種制御パラメータをRAM205に記憶するプログラム等がある。更に、ROM207には、フォントの種類別に、直線と楕円弧とで構成された各文字のフォントの始点、終点、焦点、曲率等のデータが記憶されている。 The ROM 207 stores various programs. For example, the ROM 207 stores a program for calculating the XY coordinate data of the print pattern based on the print information transmitted from the print information creating unit 2 and storing the XY coordinate data in the RAM 205. There is. In addition to the programs described above, the various programs include, for example, the thickness, depth and number of the print pattern corresponding to the print information input from the print information creating unit 2, and the laser beam Q scanned by the galvano scanner 16. There is a program or the like for storing various control parameters indicating the speed to be controlled in the RAM 205. Further, the ROM 207 stores data such as font start point, end point, focus, curvature, etc. of each character constituted by a straight line and an elliptic arc for each font type.
 CPU203は、ROM207に記憶されている各種のプログラムに基づいて各種の演算及び制御を行う。 The CPU 203 performs various calculations and controls based on various programs stored in the ROM 207.
 CPU203は、印字情報作成部2から入力された印字情報に基づいて、印字パターンのXY座標データ、及びガルバノスキャナ16によるレーザ光Qを走査する速度等を示すガルバノ走査速度情報等を算出する。更に、CPU203は、それらの各情報(例えば、印字パターンのXY座標データ、ガルバノ走査速度情報等)に基づいて、ガルバノX軸モータ17XとガルバノY軸モータ17Yの駆動角度、回転速度等を算出して、駆動角度及び回転速度を示すモータ駆動情報をガルバノドライバ213に出力する。 The CPU 203 calculates XY coordinate data of the print pattern, galvano scanning speed information indicating the speed at which the galvano scanner 16 scans the laser beam Q, and the like, based on the print information input from the print information creating unit 2. Further, the CPU 203 calculates a drive angle, a rotation speed, etc. of the galvano X-axis motor 17X and the galvano Y-axis motor 17Y based on the respective information (for example, XY coordinate data of print pattern, galvano scanning speed information, etc.). The motor drive information indicating the drive angle and the rotation speed is output to the galvanometer driver 213.
 ガルバノドライバ213は、コントローラ201から入力されたモータ駆動情報に基づいて、ガルバノX軸モータ17XとガルバノY軸モータ17Yを駆動制御して、レーザ光Qと可視レーザ光Rを2次元走査する。 The galvano driver 213 drives and controls the galvano X-axis motor 17X and the galvano Y-axis motor 17Y based on the motor drive information input from the controller 201, and two-dimensionally scans the laser light Q and the visible laser light R.
 CPU203は、可視半導体レーザ19の点灯開始を指示するオン信号又は消灯を指示するオフ信号を半導体レーザドライバ215に出力する。半導体レーザドライバ215は、コントローラ201から入力されたオン信号又はオフ信号に基づいて、可視半導体レーザ19を点灯駆動又は消灯させる。 The CPU 203 outputs to the semiconductor laser driver 215 an ON signal for instructing to start lighting the visible semiconductor laser 19 or an OFF signal for instructing to turn off the visible semiconductor laser 19. The semiconductor laser driver 215 turns on or off the visible semiconductor laser 19 based on an on signal or an off signal input from the controller 201.
 FPGA211は、コントローラ201に内蔵されており、ガルバノドライバ213、半導体レーザドライバ215、第1センサS1、第2センサS2、及び24VDC/DC用電源ユニット217等が電気的に接続されている。24VDC/DC用電源ユニット217には、マニュアルリセットモード付の安全リレーユニット(以下、「SRU」という。)219が電気的に接続されている。これにより、SRU219は、24VDC/DC用電源ユニット217から電力の供給を受けることができる。SRU219には、DCパワーリレー(DCPR)221が電気的に接続されている。DCパワーリレー221は、レーザ供給電源223とレーザユニット10との間に配線されている。レーザ供給電源223は、レーザユニット10に対して電力を供給するものである。 The FPGA 211 is built in the controller 201, and the galvano driver 213, the semiconductor laser driver 215, the first sensor S1, the second sensor S2, the 24V DC/DC power supply unit 217, etc. are electrically connected. A safety relay unit (hereinafter, referred to as “SRU”) 219 with a manual reset mode is electrically connected to the 24 VDC/DC power supply unit 217. As a result, the SRU 219 can be supplied with power from the 24V DC/DC power supply unit 217. A DC power relay (DCPR) 221 is electrically connected to the SRU 219. The DC power relay 221 is wired between the laser power supply 223 and the laser unit 10. The laser power supply 223 supplies electric power to the laser unit 10.
 FPGA211が24VDC/DC用電源ユニット217をオフ状態にすることによって、SRU219への電源供給が遮断されると、SRU219は、DCパワーリレー221の接点を開く。そのため、レーザ供給電源223によるレーザユニット10への電力供給が不可能となる。その際、SRU219のマニュアルリセットモードが設定されていれば、SRU219が自己復帰することはない。 When the power supply to the SRU 219 is cut off by turning off the 24VDC/DC power supply unit 217 by the FPGA 211, the SRU 219 opens the contact of the DC power relay 221. Therefore, it becomes impossible to supply power to the laser unit 10 by the laser power supply 223. At that time, if the manual reset mode of the SRU 219 is set, the SRU 219 does not recover itself.
 これに対して、FPGA211が24VDC/DC用電源ユニット217をオン状態にすることによって、SRU219への電源供給が実行されると、SRU219は、マニュアルリセットを実行し、DCパワーリレー221の接点を閉じる。そのため、レーザ供給電源223によるレーザユニット10への電力供給が可能となる。 On the other hand, when the FPGA 211 turns on the 24VDC/DC power supply unit 217 to supply power to the SRU 219, the SRU 219 executes a manual reset and closes the contact of the DC power relay 221. .. Therefore, power can be supplied to the laser unit 10 by the laser power supply 223.
 レーザ加工部3の各構成要素は、上述した第1筐体20又は第2筐体30に納めされている。具体的には、ガルバノドライバ213は後側第1筐体20Aに納められ、ガルバノX軸モータ17X及びガルバノY軸モータ17Yは第2筐体30に収められている。尚、ガルバノドライバ213と各モータ17X、17Yとは、上述したケーブルCによって電気的に接続されている。 Each component of the laser processing unit 3 is housed in the above-described first housing 20 or second housing 30. Specifically, the galvano driver 213 is housed in the rear first housing 20A, and the galvano X-axis motor 17X and the galvano Y-axis motor 17Y are housed in the second housing 30. The galvano driver 213 and the motors 17X and 17Y are electrically connected by the cable C described above.
 FPGA211には、図14の真理値表225によって示されたロジックが組み込まれている。 The FPGA 211 incorporates the logic shown by the truth table 225 of FIG.
 真理値表225の「第1センサ」の欄において、「1」は、第1センサS1の接点が閉じられた場合を示している。第1センサS1の接点は、第1センサS1のアクチュエータ部に被検出部44が押し付けられることによって閉じられる。この場合、第1センサS1では、第2筐体30の回動位置が第1回動位置にあることを示す、オン信号が検出信号として出力される。その出力されたオン信号は、FPGA211に入力される。これに対して、「0」は、第1センサS1の接点が開かれた場合を示している。第1センサS1の接点は、第1センサS1のアクチュエータ部から被検出部44が離間させられることによって開かれる。この場合、第1センサS1では、上記オン信号は出力されず、第2筐体30の回動位置が第1回動位置にないことを示す、オフ信号が検出信号として出力される。その出力されたオフ信号は、FPGA211に入力される。 In the “First sensor” column of the truth table 225, “1” indicates that the contact of the first sensor S1 is closed. The contact of the first sensor S1 is closed by pressing the detected portion 44 against the actuator portion of the first sensor S1. In this case, the first sensor S1 outputs an ON signal as a detection signal, which indicates that the turning position of the second housing 30 is at the first turning position. The output ON signal is input to the FPGA 211. On the other hand, “0” indicates that the contact of the first sensor S1 is opened. The contact of the first sensor S1 is opened by separating the detected portion 44 from the actuator portion of the first sensor S1. In this case, the first sensor S1 does not output the ON signal, and outputs the OFF signal as a detection signal indicating that the rotation position of the second housing 30 is not at the first rotation position. The output off signal is input to the FPGA 211.
 真理値表225の「第2センサ」の欄において、「1」は、第2センサS2の接点が閉じられた場合を示している。第2センサS2の接点は、第2センサS2のアクチュエータ部に被検出部44が押し付けられることによって閉じられる。この場合、第2センサS2では、第2筐体30の回動位置が第2回動位置にあることを示す、オン信号が検出信号として出力される。その出力されたオン信号は、FPGA211に入力される。これに対して、「0」は、第2センサS2の接点が開かれた場合を示している。第2センサS2の接点は、第2センサS2のアクチュエータ部から被検出部44が離間させられることによって開かれる。この場合、第2センサS2では、上記オン信号は出力されず、第2筐体30の回動位置が第2回動位置にないことを示す、オフ信号が検出信号として出力される。その出力されたオフ信号は、FPGA211に入力される。 In the “Second sensor” column of the truth table 225, “1” indicates that the contact of the second sensor S2 is closed. The contact of the second sensor S2 is closed by pressing the detected part 44 against the actuator part of the second sensor S2. In this case, the second sensor S2 outputs an ON signal as a detection signal, which indicates that the rotation position of the second housing 30 is at the second rotation position. The output ON signal is input to the FPGA 211. On the other hand, “0” indicates that the contact of the second sensor S2 is opened. The contact point of the second sensor S2 is opened by separating the detected part 44 from the actuator part of the second sensor S2. In this case, the second sensor S2 does not output the ON signal, and outputs the OFF signal as the detection signal, which indicates that the rotation position of the second housing 30 is not at the second rotation position. The output off signal is input to the FPGA 211.
 真理値表225の「センサ状態」の欄において、「0度」は、第2筐体30の回動位置が第1回動位置にあることを両センサS1,S2で検出している場合を示している。つまり、「第1センサ」「第2センサ」の各欄が「1」「0」の組み合わせである場合には、第1センサS1のオン信号と第2センサS2のオフ信号とがFPGA211に入力されるので、両センサS1,S2によって、第2筐体30の回動位置が第1回動位置にあることが検出される。そのため、この場合に対応する「センサ状態」の欄には、「0度」が表記されている。更に、この場合に対応する「24VDCDC」の欄には、「ON」が表記されている。「ON」は、24VDC/DC用電源ユニット217がオン状態にされる場合を示している。つまり、この場合のFPGA211は、24VDC/DC用電源ユニット217をオン状態にする信号を出力する。その出力された信号は、24VDC/DC用電源ユニット217に入力される。これにより、24VDC/DC用電源ユニット217がオン状態にされるので、レーザユニット10への電力供給が可能になる。 In the “sensor state” column of the truth table 225, “0 degree” indicates that both sensors S1 and S2 have detected that the rotation position of the second housing 30 is at the first rotation position. Shows. That is, when the fields of “first sensor” and “second sensor” are combinations of “1” and “0”, the ON signal of the first sensor S1 and the OFF signal of the second sensor S2 are input to the FPGA 211. As a result, both sensors S1 and S2 detect that the rotational position of the second housing 30 is the first rotational position. Therefore, "0 degree" is written in the "sensor state" column corresponding to this case. Further, "ON" is written in the column of "24 VDC DC" corresponding to this case. "ON" indicates that the 24V DC/DC power supply unit 217 is turned on. That is, the FPGA 211 in this case outputs a signal for turning on the 24V DC/DC power supply unit 217. The output signal is input to the 24 VDC/DC power supply unit 217. As a result, the 24V DC/DC power supply unit 217 is turned on, and power can be supplied to the laser unit 10.
 真理値表225の「センサ状態」の欄において、「90度」は、第2筐体30の回動位置が第2回動位置にあることを両センサS1,S2で検出している場合を示している。つまり、「第1センサ」「第2センサ」の各欄が「0」「1」の組み合わせである場合には、第1センサS1のオフ信号と第2センサS2のオン信号とがFPGA211に入力されるので、両センサS1,S2によって、第2筐体30の回動位置が第2回動位置にあることが検出される。そのため、この場合に対応する「センサ状態」の欄には、「90度」が表記されている。更に、この場合に対応する「24VDCDC」の欄には、「ON」が表記されている。「ON」は、24VDC/DC用電源ユニット217がオン状態にされる場合を示している。つまり、この場合のFPGA211は、24VDC/DC用電源ユニット217をオン状態にする信号を出力する。その出力された信号は、24VDC/DC用電源ユニット217に入力される。これにより、24VDC/DC用電源ユニット217がオン状態にされるので、レーザユニット10への電力供給が可能になる。 In the “sensor state” column of the truth table 225, “90 degrees” indicates that both sensors S1 and S2 have detected that the rotation position of the second housing 30 is at the second rotation position. Shows. That is, when the fields of “first sensor” and “second sensor” are combinations of “0” and “1”, the OFF signal of the first sensor S1 and the ON signal of the second sensor S2 are input to the FPGA 211. Therefore, both sensors S1 and S2 detect that the rotation position of the second housing 30 is at the second rotation position. Therefore, “90 degrees” is written in the “sensor state” column corresponding to this case. Further, "ON" is written in the column of "24 VDC DC" corresponding to this case. "ON" indicates that the 24V DC/DC power supply unit 217 is turned on. That is, the FPGA 211 in this case outputs a signal for turning on the 24V DC/DC power supply unit 217. The output signal is input to the 24 VDC/DC power supply unit 217. As a result, the 24V DC/DC power supply unit 217 is turned on, and power can be supplied to the laser unit 10.
 但し、上述したFPGA211の出力は、両センサS1,S2によって検出された第2筐体30の回動位置が、ユーザが入力操作部101で指定した第2筐体30の回動位置と一致することを条件として行われる。 However, in the output of the FPGA 211 described above, the rotational position of the second housing 30 detected by both the sensors S1 and S2 matches the rotational position of the second housing 30 designated by the user through the input operation unit 101. It is performed on the condition.
 尚、24VDC/DC用電源ユニット217をオン状態にする信号が出力される場合、つまり、真理値表225において、「第1センサ」「第2センサ」の各欄が「1」「0」の組み合わせである場合、又は「第1センサ」「第2センサ」の各欄が「0」「1」の組み合わせである場合には、FPGA211は、ガルバノX軸モータ17X及びガルバノY軸モータ17Yの駆動制御を許可する信号をガルバノドライバ213に出力すると共に、可視半導体レーザ19の点灯を許可する信号を半導体レーザドライバ215に出力する。 In addition, when a signal for turning on the 24 VDC/DC power supply unit 217 is output, that is, in the truth table 225, the columns of “first sensor” and “second sensor” are “1” and “0”, respectively. When it is a combination or when the fields of “first sensor” and “second sensor” are “0” and “1”, the FPGA 211 drives the galvano X-axis motor 17X and the galvano Y-axis motor 17Y. A signal permitting control is output to the galvano driver 213, and a signal permitting lighting of the visible semiconductor laser 19 is output to the semiconductor laser driver 215.
 すなわち、第2筐体30の回動位置が第1回動位置又は第2回動位置にある場合には、レーザユニット10への電力供給が可能になることに加えて、ガルバノスキャナ16の各モータ17X、17Yの駆動制御が可能となり、可視半導体レーザ19の点灯が可能となる。 That is, when the rotation position of the second housing 30 is at the first rotation position or the second rotation position, it becomes possible to supply power to the laser unit 10, and in addition, the galvano scanner 16 is provided with each power source. The drive control of the motors 17X and 17Y becomes possible, and the visible semiconductor laser 19 can be turned on.
 これに対して、真理値表225の「センサ状態」の欄において、「回動中」は、第2筐体30の回動位置が第1回動位置と第2回動位置との間にあることを両センサS1,S2で検出している場合を示している。つまり、「第1センサ」「第2センサ」の各欄が「0」「0」の組み合わせである場合には、第1センサS1のオフ信号と第2センサS2のオフ信号とがFPGA211に入力されるので、両センサS1,S2によって、第2筐体30の回動位置が第1回動位置と第2回動位置との間にあることが検出される。そのため、この場合に対応する「センサ状態」の欄には、「回動中」が表記されている。更に、この場合に対応する「24VDCDC」の欄には、「OFF」が表記されている。「OFF」は、24VDC/DC用電源ユニット217がオフ状態にされる場合を示している。つまり、この場合のFPGA211は、24VDC/DC用電源ユニット217をオフ状態にする信号を出力する。その出力された信号は、24VDC/DC用電源ユニット217に入力される。これにより、24VDC/DC用電源ユニット217がオフ状態にされるので、レーザユニット10への電力供給が不可能になる。 On the other hand, in the column of “sensor state” in the truth table 225, “in rotation” indicates that the rotation position of the second housing 30 is between the first rotation position and the second rotation position. A case is shown in which both sensors S1 and S2 detect that there is an occurrence. That is, when the fields of “first sensor” and “second sensor” are combinations of “0” and “0”, the off signal of the first sensor S1 and the off signal of the second sensor S2 are input to the FPGA 211. Therefore, the sensors S1 and S2 detect that the rotation position of the second housing 30 is between the first rotation position and the second rotation position. Therefore, "rotating" is described in the "sensor state" column corresponding to this case. Further, “OFF” is described in the column of “24 VDC DC” corresponding to this case. “OFF” indicates a case where the 24 VDC/DC power supply unit 217 is turned off. That is, the FPGA 211 in this case outputs a signal for turning off the 24 VDC/DC power supply unit 217. The output signal is input to the 24 VDC/DC power supply unit 217. As a result, the 24V DC/DC power supply unit 217 is turned off, and it becomes impossible to supply power to the laser unit 10.
 真理値表225の「センサ状態」の欄において、「NA」は、両センサS1,S2の検出信号が有効でない場合を示している。つまり、「第1センサ」「第2センサ」の各欄が「1」「1」の組み合わせである場合には、第1センサS1のオン信号と第2センサS2のオン信号とがFPGA211に入力される。しかしながら、両センサS1,S2の各アクチュエータ部に被検出部44が同時に押し付けられることは困難なため、両センサS1,S2の検出信号は、有効でないことが推定される。そのため、この場合に対応する「センサ状態」の欄には、「NA」が表記されている。更に、この場合に対応する「24VDCDC」の欄には、「NA」が表記されている。「NA」は、上述したように、両センサS1,S2の検出信号が有効でない場合を示すが、この場合のFPGA211は、上記の「OFF」と同様にして、24VDC/DC用電源ユニット217をオフ状態にする信号を出力する。その出力された信号は、24VDC/DC用電源ユニット217に入力される。これにより、24VDC/DC用電源ユニット217がオフ状態にされるので、レーザユニット10への電力供給が不可能になる。 In the “sensor state” column of the truth table 225, “NA” indicates that the detection signals of both sensors S1 and S2 are not valid. That is, when the fields of “first sensor” and “second sensor” are combinations of “1” and “1”, the ON signal of the first sensor S1 and the ON signal of the second sensor S2 are input to the FPGA 211. To be done. However, since it is difficult for the detected part 44 to be pressed against the actuator parts of both sensors S1 and S2 at the same time, it is estimated that the detection signals of both sensors S1 and S2 are not effective. Therefore, “NA” is written in the “sensor state” column corresponding to this case. Further, “NA” is written in the “24 VDC DC” column corresponding to this case. As described above, “NA” indicates a case where the detection signals of both sensors S1 and S2 are not valid. In this case, the FPGA 211 turns on the 24VDC/DC power supply unit 217 in the same manner as “OFF” described above. Output the signal to turn off. The output signal is input to the 24 VDC/DC power supply unit 217. As a result, the 24V DC/DC power supply unit 217 is turned off, and it becomes impossible to supply power to the laser unit 10.
 尚、24VDC/DC用電源ユニット217をオフ状態にする信号が出力される場合、つまり、真理値表225において、「第1センサ」「第2センサ」の各欄が「0」「0」の組み合わせである場合、又は「第1センサ」「第2センサ」の各欄が「1」「1」の組み合わせである場合には、FPGA211は、ガルバノX軸モータ17X及びガルバノY軸モータ17Yの駆動制御を中止する信号をガルバノドライバ213に出力すると共に、可視半導体レーザ19の消灯を指示するオフ信号を半導体レーザドライバ215に出力する。 When a signal for turning off the 24VDC/DC power supply unit 217 is output, that is, in the truth table 225, “0” and “0” are displayed in the columns of “first sensor” and “second sensor”, respectively. When it is a combination or when the fields of “first sensor” and “second sensor” are a combination of “1” and “1”, the FPGA 211 drives the galvano X-axis motor 17X and the galvano Y-axis motor 17Y. A signal for stopping the control is output to the galvano driver 213, and an off signal for instructing to turn off the visible semiconductor laser 19 is output to the semiconductor laser driver 215.
 すなわち、第2筐体30の回動位置が第1回動位置と第2回動位置との間にある場合、又は両センサS1,S2の検出信号が有効でない場合には、レーザユニット10への電力供給が不可能になることに加えて、ガルバノスキャナ16の各モータ17X、17Yの駆動制御が中止され、可視半導体レーザ19が消灯される。尚、この場合には、ガルバノスキャナ16及び可視半導体レーザ19の電源供給が遮断されるようにしてもよい。 That is, when the rotation position of the second housing 30 is between the first rotation position and the second rotation position, or when the detection signals of both sensors S1 and S2 are not valid, the laser unit 10 is operated. In addition to the fact that the electric power cannot be supplied, the drive control of the motors 17X and 17Y of the galvano scanner 16 is stopped, and the visible semiconductor laser 19 is turned off. In this case, the power supply to the galvano scanner 16 and the visible semiconductor laser 19 may be cut off.
  次に、本実施形態のレーザマーカ1の出射制御について説明する。図15のフローチャートで表された出射制御のプログラムは、コントローラ201のROM207に記憶されており、コントローラ201のCPU203により実行される。更に、このプログラムは、レーザマーカ1の電源がオンされることにより実行される。図15のフローチャートで表された出射制御のプログラムでは、先ず、ステップ(以下、単に「S」と表記する。)10において、指定情報取得処理が実行される。 Next, the emission control of the laser marker 1 of this embodiment will be described. The emission control program represented by the flowchart of FIG. 15 is stored in the ROM 207 of the controller 201 and executed by the CPU 203 of the controller 201. Further, this program is executed by turning on the power of the laser marker 1. In the emission control program represented by the flowchart of FIG. 15, first, in step (hereinafter, simply referred to as “S”) 10, designated information acquisition processing is executed.
 この処理では、印字情報作成部2からコントローラ201に入力された指定情報が取得され、その指定情報に基づいて、指定結果が特定される。指定結果とは、ユーザが入力操作部101を介して第1回動位置又は第2回動位置のいずれかを第2筐体30の回動位置として指定した結果である。尚、ユーザの指定結果が特定されるまでは、次のステップの処理は実行されない。 In this process, the designation information input to the controller 201 from the print information creation unit 2 is acquired, and the designation result is specified based on the designation information. The designation result is a result that the user designates either the first rotation position or the second rotation position as the rotation position of the second housing 30 via the input operation unit 101. The process of the next step is not executed until the user's designated result is specified.
 ユーザの指定結果が特定されると、検出信号取得処理S12が実行される。この処理では、第1センサS1の検出信号と第2センサS2の検出信号とが取得される。両センサS1,S2の検出信号は、オン信号又はオフ信号である。 When the result designated by the user is specified, the detection signal acquisition process S12 is executed. In this process, the detection signal of the first sensor S1 and the detection signal of the second sensor S2 are acquired. The detection signals of both sensors S1 and S2 are ON signals or OFF signals.
 両センサS1,S2の検出信号が取得されると、センサ状態の判定処理S14が実行される。この判定は、両センサS1,S2の検出信号に基づいて行われる。 When the detection signals of both sensors S1 and S2 are acquired, the sensor state determination process S14 is executed. This determination is made based on the detection signals of both sensors S1 and S2.
 両センサS1,S2の検出信号の双方がオフ信号である場合(S14;0,0)、又は両センサS1,S2の検出信号の双方がオン信号である場合(S14;1,1)は、出射不可能処理S16が実行される。この処理は、両センサS1,S2の検出信号がFPGA211に入力されることによって行われる。これにより、本実施形態のレーザマーカ1は、第2筐体30の回動位置が第1回動位置と第2回動位置との間にある場合、又は両センサS1,S2の検出信号が有効でない場合に、レーザユニット10への電力供給が不可能な状態になるので、レーザ光Qが第2筐体30の外方へ出射することが不可能な状態になる。更に、本実施形態のレーザマーカ1は、ガルバノスキャナ16の各モータ17X、17Yの駆動制御が中止された状態になり、可視半導体レーザ19が消灯された状態になる。 When both the detection signals of both sensors S1 and S2 are OFF signals (S14;0,0), or when both detection signals of both sensors S1 and S2 are ON signals (S14;1,1), The non-ejecting process S16 is executed. This processing is performed by inputting the detection signals of both sensors S1 and S2 to the FPGA 211. Thereby, in the laser marker 1 of the present embodiment, when the rotation position of the second housing 30 is between the first rotation position and the second rotation position, or the detection signals of both sensors S1 and S2 are valid. If not, power cannot be supplied to the laser unit 10, and the laser light Q cannot be emitted to the outside of the second housing 30. Further, in the laser marker 1 of the present embodiment, the drive control of the motors 17X and 17Y of the galvano scanner 16 is stopped, and the visible semiconductor laser 19 is turned off.
 出射不可能処理S16が実行されると、報知処理S18が実行される。この処理では、コントローラ201から印字情報作成部2に情報が入力されることによって、第2筐体30の回動位置が第1回動位置及び第2回動位置以外にある旨のメッセージが、液晶ディスプレイ115に表示される。これにより、ユーザに対して、第2筐体30の回動位置が第1回動位置及び第2回動位置以外にあることが報知される。尚、そのような報知は、スピーカの音又は回転灯の光等で行われてもよい。その後は、上述した指定情報取得処理S10が再び実行される。 When the extraction impossibility process S16 is executed, the notification process S18 is executed. In this processing, information is input from the controller 201 to the print information creation unit 2, and a message indicating that the rotation position of the second housing 30 is other than the first rotation position and the second rotation position is displayed. It is displayed on the liquid crystal display 115. As a result, the user is notified that the rotation position of the second housing 30 is other than the first rotation position and the second rotation position. It should be noted that such notification may be performed by sound of a speaker, light of a rotating lamp, or the like. After that, the above-mentioned specified information acquisition processing S10 is executed again.
 これに対して、第1センサS1の検出信号がオン信号で第2センサS2の検出信号がオフ信号である場合(S14;1,0)、又は第1センサS1の検出信号がオフ信号で第2センサS2の検出信号がオン信号である場合(S14;0,1)には、センサ状態が指定情報と一致するか否かの判定処理S20が実行される。この処理は、上記S12で取得された両センサS1,S2の検出信号と、上記S10で特定された指定結果とに基づいて行われる。つまり、両センサS1,S2の検出信号で特定された第2筐体30の回動位置が、ユーザが入力操作部101を介して指定した第2筐体30の回動位置(第1回動位置又は第2回動位置のいずれか)と一致するか否かが判定される。 On the other hand, when the detection signal of the first sensor S1 is the ON signal and the detection signal of the second sensor S2 is the OFF signal (S14;1,0), or the detection signal of the first sensor S1 is the OFF signal. When the detection signal of the two sensors S2 is an ON signal (S14; 0, 1), a determination process S20 is performed to determine whether the sensor state matches the designated information. This process is performed based on the detection signals of both sensors S1 and S2 acquired in S12 and the designation result specified in S10. That is, the rotation position of the second housing 30 specified by the detection signals of the sensors S1 and S2 is the rotation position of the second housing 30 designated by the user via the input operation unit 101 (first rotation). Position) or the second rotation position).
 センサ状態が指定情報と一致しない場合(S20:NO)、つまり、両センサS1,S2の検出信号で特定された第2筐体30の回動位置が、ユーザが入力操作部101を介して指定した第2筐体30の回動位置と一致しない場合には、上述した出射不可能処理S16が実行される。これにより、本実施形態のレーザマーカ1は、第2筐体30の回動位置が第1回動位置又は第2回動位置にある場合でも、第2筐体30の回動位置とユーザが指定した回動位置とが一致しなければ、レーザユニット10への電力供給が不可能な状態になり、ガルバノスキャナ16の各モータ17X、17Yの駆動制御が中止された状態になり、可視半導体レーザ19が消灯された状態になる。 When the sensor state does not match the designation information (S20: NO), that is, the turning position of the second housing 30 identified by the detection signals of both sensors S1 and S2 is designated by the user via the input operation unit 101. When the rotation position of the second housing 30 does not match, the extraction impossibility process S16 described above is executed. As a result, the laser marker 1 of the present embodiment specifies the rotation position of the second housing 30 by the user even when the rotation position of the second housing 30 is the first rotation position or the second rotation position. If the rotated position does not match, the power supply to the laser unit 10 becomes impossible, the drive control of the motors 17X and 17Y of the galvano scanner 16 is stopped, and the visible semiconductor laser 19 Is turned off.
 尚、この場合には、コントローラ201から印字情報作成部2に情報が入力されることによって、ユーザが入力操作部101で第2筐体30の回動位置を指定することを促すための、ポップアップウインドウが液晶ディスプレイ115に表示される。 In this case, a pop-up for prompting the user to specify the rotation position of the second housing 30 by the input operation unit 101 by inputting information from the controller 201 to the print information creation unit 2 The window is displayed on the liquid crystal display 115.
 これに対して、センサ状態が指定情報と一致する場合(S20:YES)、つまり、両センサS1,S2の検出信号で特定された第2筐体30の回動位置が、ユーザが入力操作部101を介して指定した第2筐体30の回動位置と一致する場合には、検出信号取得処理S22が実行される。この処理は、上述した検出信号取得処理S12と同様である。 On the other hand, when the sensor state matches the designated information (S20: YES), that is, the turning position of the second housing 30 specified by the detection signals of both the sensors S1 and S2 is input by the user. When the rotation position of the second housing 30 designated via 101 coincides, the detection signal acquisition processing S22 is executed. This processing is the same as the above-described detection signal acquisition processing S12.
 検出信号取得処理S22が実行されると、センサ状態が変更されたか否かの判定処理S24が実行される。この処理では、本検出信号取得処理S22で取得された両センサS1,S2の検出信号と、上述した検出信号取得処理S12で取得された両センサS1,S2の検出信号とが一致するか否かが判定される。 When the detection signal acquisition processing S22 is executed, the determination processing S24 of whether or not the sensor state is changed is executed. In this process, it is determined whether or not the detection signals of both sensors S1 and S2 acquired in the main detection signal acquisition process S22 and the detection signals of both sensors S1 and S2 acquired in the above-mentioned detection signal acquisition process S12 match. Is determined.
 双方の検出信号取得処理S12,S22で取得された両センサS1,S2の検出信号が一致しない場合は、双方の検出信号取得処理S12,S22の時点で第2筐体30の回動位置が異なるので、センサ状態が変更されたと判定される(S24:YES)。そのような場合には、上述した出射不可能処理S16が実行される。これにより、本実施形態のレーザマーカ1は、第2筐体30の回動位置が第1回動位置又は第2回動位置にあり、第2筐体30の回動位置とユーザが指定した回動位置とが一致する場合でも、第2筐体30の回動位置が変更されてしまうと、レーザユニット10への電力供給が不可能な状態になり、ガルバノスキャナ16の各モータ17X、17Yの駆動制御が中止された状態になり、可視半導体レーザ19が消灯されて状態になる。 When the detection signals of both sensors S1 and S2 acquired in both detection signal acquisition processes S12 and S22 do not match, the rotational position of the second housing 30 is different at the time of both detection signal acquisition processes S12 and S22. Therefore, it is determined that the sensor state has been changed (S24: YES). In such a case, the extraction impossibility process S16 described above is executed. As a result, in the laser marker 1 of the present embodiment, the rotation position of the second housing 30 is at the first rotation position or the second rotation position, and the rotation position of the second housing 30 and the rotation designated by the user. Even if the moving position matches, if the turning position of the second housing 30 is changed, the power supply to the laser unit 10 becomes impossible, and the motors 17X and 17Y of the galvano scanner 16 cannot be supplied. The drive control is stopped, and the visible semiconductor laser 19 is turned off.
 これに対して、双方の検出信号取得処理S12,S22で取得された両センサS1,S2の検出信号が一致する場合は、双方の検出信号取得処理S12,S22の時点で第2筐体30の回動位置が同じであるので、センサ状態が変更されていないと判定される(S24:NO)。そのような場合には、出射可能処理S26が実行される。この処理は、両センサS1,S2の検出信号がFPGA211に入力されることによって行われる。これにより、本実施形態のレーザマーカ1は、第2筐体30の回動位置が第1回動位置又は第2回動位置にあり、第2筐体30の回動位置とユーザが指定した回動位置とが一致し、第2筐体30の回動位置が変更されていない場合には、レーザユニット10への電力供給が可能な状態になるので、レーザ光Qが第2筐体30の外方へ出射することが可能な状態になる。更に、本実施形態のレーザマーカ1は、ガルバノスキャナ16の各モータ17X、17Yの駆動制御が可能な状態になり、可視半導体レーザ19の点灯が可能な状態になる。 On the other hand, when the detection signals of both sensors S1 and S2 acquired in both detection signal acquisition processes S12 and S22 are the same, both of the detection signal acquisition processes S12 and S22 are performed in the second housing 30. Since the turning positions are the same, it is determined that the sensor state has not been changed (S24: NO). In such a case, the extraction enable process S26 is executed. This processing is performed by inputting the detection signals of both sensors S1 and S2 to the FPGA 211. As a result, in the laser marker 1 of the present embodiment, the rotation position of the second housing 30 is at the first rotation position or the second rotation position, and the rotation position of the second housing 30 and the rotation designated by the user. When the moving position matches the rotation position of the second housing 30, the power supply to the laser unit 10 becomes possible, so that the laser light Q is emitted from the second housing 30. It becomes a state in which it can be emitted to the outside. Further, the laser marker 1 of the present embodiment is in a state in which the drive control of the motors 17X and 17Y of the galvano scanner 16 is possible and the visible semiconductor laser 19 is in a state in which it can be turned on.
 以上詳細に説明したように、本実施形態のレーザマーカ1は、レーザ光Qを出射するレーザユニット10が収められた第1筐体20と、レーザ光Qを外方へ走査するガルバノスキャナ16が収められた第2筐体30とを備え、連結部材60によって、第2筐体30を第1筐体20に対して回動可能にている。しかしながら、第2筐体30は、ロック機構Lによって、第1回動位置又は第2回動位置で固定される。これにより、本実施形態のレーザマーカ1は、レーザ光Qを第2筐体30の外方へ向けて走査するガルバノスキャナ16が収められた第2筐体30に対し、その回動を抑制しているので、安全を確保することが可能である。 As described in detail above, the laser marker 1 according to the present embodiment includes the first housing 20 that houses the laser unit 10 that emits the laser light Q and the galvano scanner 16 that scans the laser light Q outward. The second housing 30 is provided, and the second housing 30 is rotatable with respect to the first housing 20 by the connecting member 60. However, the second housing 30 is fixed by the lock mechanism L at the first rotation position or the second rotation position. As a result, the laser marker 1 of the present embodiment suppresses the rotation of the second housing 30 in which the galvano scanner 16 that scans the laser light Q toward the outside of the second housing 30 is housed. Therefore, it is possible to ensure safety.
 また、本実施形態のレーザマーカ1において、連結部材60は、レーザ光Qが第1筐体20から第2筐体30へ向けて通過する中空構造66を有する。連結部材60の左端は、第2筐体30に固定されると共に、連結部材60の右端は、第1筐体20に回動可能に差し込まれている。更に、ロック機構Lは、第1筐体20において、連結部材60の回動を固定する。これにより、ロック機構Lが、第2筐体30の回動軸となる連結部材60を第1筐体20において固定するので、本実施形態のレーザマーカ1は、第2筐体30を第1回動位置又は第2回動位置に精度良く固定することが可能である。 In addition, in the laser marker 1 of the present embodiment, the connecting member 60 has a hollow structure 66 through which the laser light Q passes from the first housing 20 toward the second housing 30. The left end of the connecting member 60 is fixed to the second housing 30, and the right end of the connecting member 60 is rotatably inserted in the first housing 20. Further, the lock mechanism L fixes the rotation of the connecting member 60 in the first housing 20. As a result, the lock mechanism L fixes the connecting member 60, which serves as the rotation axis of the second housing 30, in the first housing 20, so that the laser marker 1 of the present embodiment moves the second housing 30 to the first position. It is possible to accurately fix the movable position or the second rotation position.
 また、本実施形態のレーザマーカ1において、ロック機構Lは、ピン50と、ピン50が貫通する第1筐体20の筐体側孔部29と、筐体側孔部29から突き出したピン50が挿通する連結部材60の第1孔部70及び第2孔部72とを備えている。これにより、ロック機構Lが、ピン及び孔部を使用した位置決めのようにして、連結部材60の回動を固定するので、本実施形態のレーザマーカ1は、第2筐体30を第1回動位置又は第2回動位置に確実に固定することが可能である。 Further, in the laser marker 1 of the present embodiment, the lock mechanism L inserts the pin 50, the housing side hole portion 29 of the first housing 20 through which the pin 50 penetrates, and the pin 50 protruding from the housing side hole portion 29. The connecting member 60 includes a first hole portion 70 and a second hole portion 72. As a result, the lock mechanism L fixes the rotation of the connecting member 60 like the positioning using the pin and the hole, so that the laser marker 1 of the present embodiment causes the second housing 30 to rotate by the first rotation. It is possible to securely fix the position or the second rotation position.
 また、本実施形態のレーザマーカ1では、第1孔部70が第2筐体30の第1回動位置に対応し、第2孔部72が第2筐体30の第2回動位置に対応している。更に、連結部材60の右端が前側第1筐体20Bに差し込まれる方向(左右方向)から第1孔部70及び第2孔部72を視ると、第1孔部70から連結部材60の回動中心68へ向かう方向と、第2孔部72から連結部材60の回動中心68へ向かう方向とが直交している。そのため、本実施形態のレーザマーカ1では、第1回動位置にあるときのレーザ光Qの出射方向と、第2筐体30が第2回動位置にあるときのレーザ光Qの出射方向とが確実に直交関係になるように構成されている。 Further, in the laser marker 1 of the present embodiment, the first hole portion 70 corresponds to the first rotation position of the second housing 30, and the second hole portion 72 corresponds to the second rotation position of the second housing 30. is doing. Furthermore, when the first hole 70 and the second hole 72 are viewed from the direction (left-right direction) in which the right end of the connecting member 60 is inserted into the front first housing 20B, the connecting member 60 is rotated from the first hole 70. The direction toward the movement center 68 and the direction from the second hole 72 toward the rotation center 68 of the connecting member 60 are orthogonal to each other. Therefore, in the laser marker 1 of the present embodiment, the emission direction of the laser light Q when in the first rotation position and the emission direction of the laser light Q when the second housing 30 is in the second rotation position. It is configured so as to be surely in an orthogonal relationship.
 また、本実施形態のレーザマーカ1では、雄ネジ50Aがピン50に設けられると共に、雄ネジ50Aと螺合する雌ネジ29Aが筐体側孔部29に設けられている。これにより、ロック機構Lが、ピン50の雄ネジ50Aと筐体側孔部29の雌ネジ29Aとを螺合させながら、連結部材60の回動を固定するので、本実施形態のレーザマーカ1は、第2筐体30を第1回動位置又は第2回動位置に一層確実に固定することが可能である。 Further, in the laser marker 1 of the present embodiment, the male screw 50A is provided on the pin 50, and the female screw 29A screwed with the male screw 50A is provided on the housing side hole portion 29. Accordingly, the lock mechanism L fixes the rotation of the connecting member 60 while screwing the male screw 50A of the pin 50 and the female screw 29A of the housing side hole 29, so that the laser marker 1 of the present embodiment is It is possible to more reliably fix the second housing 30 to the first rotation position or the second rotation position.
 また、本実施形態のレーザマーカ1では、ピン50の先端56がテーパ状である。これにより、ロック機構Lが、テーパ状の先端56でピン50を連結部材60の第1孔部70又は第2孔部72へ案内させながら、連結部材60の回動を固定するので、本実施形態のレーザマーカ1は、第2筐体30を第1回動位置又は第2回動位置に容易に固定することが可能である。 Further, in the laser marker 1 of the present embodiment, the tip 56 of the pin 50 is tapered. As a result, the lock mechanism L fixes the rotation of the connecting member 60 while guiding the pin 50 to the first hole portion 70 or the second hole portion 72 of the connecting member 60 by the tapered tip 56. The laser marker 1 of the embodiment can easily fix the second housing 30 at the first rotation position or the second rotation position.
 また、本実施形態のレーザマーカ1では、第1孔部70及び第2孔部72の内径が奥へ向かうに連れて小さくなるように形成されている。これにより、ロック機構Lが、テーパ状のピン50の先端56を第1孔部70又は第2孔部72の嵌め入れながら、連結部材60の回動を固定するので、本実施形態のレーザマーカ1は、第2筐体30を第1回動位置又は第2回動位置に一層容易に固定することが可能である。 Further, in the laser marker 1 of the present embodiment, the inner diameters of the first hole portion 70 and the second hole portion 72 are formed so as to become smaller toward the inner side. As a result, the lock mechanism L fixes the rotation of the connecting member 60 while fitting the tip 56 of the tapered pin 50 into the first hole portion 70 or the second hole portion 72, so that the laser marker 1 according to the present embodiment. It is possible to more easily fix the second housing 30 to the first rotation position or the second rotation position.
 また、本実施形態のレーザマーカ1では、ピン50が、連結部材60から離間するまで、第1孔部70又は第2孔部72から抜け出る方向(上方向)へ、コイルバネ80で付勢されている。これにより、ロック機構Lが、コイルバネ80の付勢力を利用しながら、連結部材60の回動の固定を解除するので、本実施形態のレーザマーカ1は、第2筐体30が第1回動位置又は第2回動位置に固定されている状態を容易に解除することが可能である。 In addition, in the laser marker 1 of the present embodiment, the pin 50 is biased by the coil spring 80 in the direction (upward direction) of coming out of the first hole 70 or the second hole 72 until it is separated from the connecting member 60. .. As a result, the lock mechanism L releases the rotational fixing of the connecting member 60 while utilizing the urging force of the coil spring 80. Therefore, in the laser marker 1 of the present embodiment, the second housing 30 has the first rotational position. Alternatively, the state of being fixed to the second rotation position can be easily released.
 また、本実施形態のレーザマーカ1では、連結部材60の右側端面に固定された円板40の突出部42が、連結部材60の右端の外周面から、連結部材60の回動中心68から離れる方向へ突出した状態にある。第1筐体20には、円板40よりも上方向側及び下方向側において、第1壁面部27及び第2壁面部28が設けられている。第2筐体30と共に連結部材60が回動すると、円板40の突出部42の第1端面部42A又は第2端面部42Bが第1壁面部27又は第2壁面部28に突き当たる。円板40の突出部42の第1端面部42Aが第1壁面部27に突き当たると、第2筐体30が第1回動位置にあり、円板40の突出部42の第2端面部42Bが第2壁面部28に突き当たると、第2筐体30が第2回動位置にある。これにより、本実施形態のレーザマーカ1は、ロック機構Lによって、第2筐体30及び連結部材60が回動範囲を、第1回動位置と第2回動位置との間に制限することが可能である。 Further, in the laser marker 1 of the present embodiment, the protruding portion 42 of the disc 40 fixed to the right end surface of the connecting member 60 is away from the outer peripheral surface of the right end of the connecting member 60 from the rotation center 68 of the connecting member 60. Is protruding. The first housing 20 is provided with a first wall surface portion 27 and a second wall surface portion 28 on the upper side and the lower side of the disc 40. When the connecting member 60 rotates together with the second housing 30, the first end surface portion 42A or the second end surface portion 42B of the protruding portion 42 of the disc 40 abuts the first wall surface portion 27 or the second wall surface portion 28. When the first end surface portion 42A of the protruding portion 42 of the disc 40 hits the first wall surface portion 27, the second housing 30 is in the first rotation position, and the second end surface portion 42B of the protruding portion 42 of the disc 40 is in position. The second housing 30 is in the second rotation position when the second housing 30 hits the second wall surface portion 28. As a result, in the laser marker 1 according to the present embodiment, the lock mechanism L can limit the rotation range of the second housing 30 and the connecting member 60 between the first rotation position and the second rotation position. It is possible.
 ちなみに、本実施形態において、レーザユニット10は、「レーザ光源」の一例である。ガルバノスキャナ16は、「走査部」の一例である。第1壁面部27及び第2壁面部28は、「衝止部」の一例である。連結部材60は、「連結部」の一例である。連結部材60の左端は、「連結部の一端」の一例である。連結部材60の右端は、「連結部の他端」の一例である。連結部材60の回動中心68は、「連結部の回動中心」の一例である。コイルバネ80は、「第1付勢部材」の一例である。第1孔部70及び第2孔部72は、「連結部側孔部」の一例である。第2筐体30の外方は、「外方」の一例である。左右方向は、「連結部の他端が第1筐体に差し込まれる方向」の一例である。図8の上下方向は、「第1方向」の一例である。図8の前後方向は、「第2方向」の一例である。上方向は、「ピンが連結部側孔部から抜け出る方向」の一例である。 Incidentally, in the present embodiment, the laser unit 10 is an example of a “laser light source”. The galvano scanner 16 is an example of a “scanning unit”. The 1st wall surface part 27 and the 2nd wall surface part 28 are examples of a "stop part." The connecting member 60 is an example of a “connecting portion”. The left end of the connecting member 60 is an example of “one end of the connecting portion”. The right end of the connecting member 60 is an example of “the other end of the connecting portion”. The rotation center 68 of the connecting member 60 is an example of “the rotation center of the connecting portion”. The coil spring 80 is an example of a “first biasing member”. The 1st hole part 70 and the 2nd hole part 72 are examples of a "connection part side hole part." The outside of the second housing 30 is an example of “the outside”. The left-right direction is an example of “a direction in which the other end of the connecting portion is inserted into the first housing”. The vertical direction in FIG. 8 is an example of the “first direction”. The front-back direction in FIG. 8 is an example of the “second direction”. The upward direction is an example of "a direction in which the pin comes out of the connecting portion side hole portion".
 尚、本開示は、本実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。例えば、本実施形態のレーザマーカ1は、上述したように、印字情報作成部2及びレーザ加工部3で構成されてもよし、レーザ加工部3のみで構成されてもよい。 Note that the present disclosure is not limited to the present embodiment, and various modifications can be made without departing from the spirit of the present disclosure. For example, the laser marker 1 of the present embodiment may be configured by the print information creation unit 2 and the laser processing unit 3 as described above, or may be configured by only the laser processing unit 3.
 また、連結部材60の右端が前側第1筐体20Bの前側本体22Bに固定されると共に、連結部材60の左端が第2筐体30の本体32に回動可能な状態で差し込まれてもよい。但し、そのような場合、ロック機構Lは、第2筐体30において、連結部材60の回動を固定することによって、第2筐体30を第1回動位置又は第2回動位置で固定する。 Further, the right end of the connecting member 60 may be fixed to the front main body 22B of the front first housing 20B, and the left end of the connecting member 60 may be rotatably inserted into the main body 32 of the second housing 30. .. However, in such a case, the lock mechanism L fixes the second housing 30 at the first rotation position or the second rotation position by fixing the rotation of the connecting member 60 in the second housing 30. To do.
 そのような変更例においても、ロック機構Lが、第2筐体30の回動軸となる連結部材60を第2筐体30において固定するので、第2筐体30を第1回動位置又は第2回動位置に精度良く固定することが可能である。 Even in such a modified example, since the lock mechanism L fixes the connecting member 60, which serves as the rotation axis of the second housing 30, in the second housing 30, the second housing 30 is moved to the first rotation position or It is possible to accurately fix the second rotation position.
 また、連結部材60は、第2筐体30の本体32又は前側第1筐体20Bの前側本体22Bから突出したものであってもよい。 Further, the connecting member 60 may project from the main body 32 of the second housing 30 or the front main body 22B of the front first housing 20B.
 また、第2筐体30は、前側第1筐体20Bの前方向側に設けられてもよい。そのような場合、第2筐体30は、前側第1筐体20B内を縦断するレーザ光Q及び可視レーザ光Rの光路上に配置される。そのため、反射ミラー14が不要となる。 The second housing 30 may be provided on the front side of the front first housing 20B. In such a case, the second housing 30 is arranged on the optical paths of the laser light Q and the visible laser light R that longitudinally cross the inside of the front first housing 20B. Therefore, the reflection mirror 14 becomes unnecessary.
 また、図16に表されたように、コイルバネ80は、取付板52とピン50の鍔部54との間に配設されてもよい。そのような場合、ピン50は、コイルバネ80によって、筐体側孔部29から連結部90へ向けて(下方向へ)付勢される。そのため、第2筐体30の回動位置が第1回動位置及び第2回動位置にない場合には、ピン50は、連結部材60の外周面に当接する。 Further, as shown in FIG. 16, the coil spring 80 may be arranged between the mounting plate 52 and the collar portion 54 of the pin 50. In such a case, the pin 50 is urged by the coil spring 80 from the housing side hole portion 29 toward the connecting portion 90 (downward). Therefore, when the rotation position of the second housing 30 is not at the first rotation position and the second rotation position, the pin 50 contacts the outer peripheral surface of the connecting member 60.
 そのような変更例では、第2筐体30の回動によって第2筐体30の回動位置が第1回動位置又は第2回動位置になると、ピン50は、コイルバネ80によって、連結部材60の外周面から第1孔部70又は第2孔部72に差し入れられる。そのため、ユーザは、第2筐体30の回動位置が第1回動位置又は第2回動位置に固定された際に、ピン50が第1孔部70又は第2孔部72にコイルバネ80で差し入れられたことによって生じるクリック感を得ることが可能である。 In such a modified example, when the rotation position of the second housing 30 becomes the first rotation position or the second rotation position by the rotation of the second housing 30, the pin 50 is connected by the coil spring 80. The outer peripheral surface of 60 is inserted into the first hole 70 or the second hole 72. Therefore, when the user turns the turning position of the second housing 30 to the first turning position or the second turning position, the pin 50 causes the coil spring 80 to be inserted into the first hole 70 or the second hole 72. It is possible to obtain a click feeling caused by being inserted in.
 ちなみに、本変更例において、図16に表されたコイルバネ80は、「第2付勢部材」の一例である。 Incidentally, in this modification, the coil spring 80 shown in FIG. 16 is an example of the “second biasing member”.
 また、第1筐体20及び第2筐体30のうち、一方の筐体にピンが設けられ、そのピンを通す孔部が他方の筐体に設けられることによって、ロック機構Lが構成されてもよい。あるいは、第1筐体20及び第2筐体30の双方に孔部が設けられ、双方の孔部にピンが通されることによって、ロック機構Lが構成されてもよい。 Further, one of the first housing 20 and the second housing 30 is provided with a pin, and the hole through which the pin is provided is provided in the other housing, whereby the lock mechanism L is configured. Good. Alternatively, the lock mechanism L may be configured by providing holes in both the first housing 20 and the second housing 30 and inserting pins into both holes.
 そのような変更例でも、ロック機構Lが、ピン及び孔部を使用した位置決めのようにして、連結部材60の回動を固定するので、第2筐体30を第1回動位置又は第2回動位置に確実に固定することが可能である。 Even in such a modified example, since the lock mechanism L fixes the rotation of the connecting member 60 like the positioning using the pin and the hole, the second housing 30 is moved to the first rotation position or the second rotation position. It is possible to securely fix it in the rotating position.
 また、第1筐体20及び第2筐体30を締め付けて固定するクランプによって、ロック機構Lが構成されてもよい。 The lock mechanism L may be configured by a clamp that tightens and fixes the first housing 20 and the second housing 30.
 あるいは、第1筐体20及び第2筐体30のうち、一方の筐体に爪部が設けられ、その爪部を係止する溝部が他方の筐体に設けられることによって、ロック機構Lが構成されてもよい。そのような場合、爪部は、第2筐体30の回動によって、第2筐体30の回動位置が第1回動位置及び第2回動位置にあるときに溝部に係止され、第2筐体30の回動位置が第1回動位置と第2回動位置との間にあるときに溝部から外れる。尚、爪部又は溝部は、連結部材60に設けられてもよい。 Alternatively, one of the first housing 20 and the second housing 30 is provided with the claw portion, and the groove portion for locking the claw portion is provided in the other housing, whereby the lock mechanism L is provided. It may be configured. In such a case, the claw portion is locked in the groove portion by the rotation of the second housing 30 when the rotation position of the second housing 30 is at the first rotation position and the second rotation position, When the turning position of the second housing 30 is between the first turning position and the second turning position, the second housing 30 comes off the groove. The claw portion or the groove portion may be provided on the connecting member 60.
 また、ピン50の先端56は、テーパ状でなくてもよい。そのような場合、第1孔部70及び第2孔部72が、本実施形態のように、それらの内径が奥へ向かうに連れて小さくなるように形成されることで、ピン50が第1孔部70及び第2孔部72へ案内される。また、第1孔部70及び第2孔部72は、それらの内径が奥へ向かうに連れて小さくなるように形成されていなくてもよい。そのような場合、ピン50の先端56が、本実施形態のように、テーパ状で形成されることで、ピン50が第1孔部70及び第2孔部72へ案内される。 The tip 56 of the pin 50 does not have to be tapered. In such a case, the first hole portion 70 and the second hole portion 72 are formed such that their inner diameters become smaller toward the inner side, as in the present embodiment, so that the pin 50 becomes the first hole. It is guided to the hole 70 and the second hole 72. In addition, the first hole portion 70 and the second hole portion 72 do not have to be formed so that the inner diameters thereof become smaller toward the inner side. In such a case, the tip end 56 of the pin 50 is formed in a tapered shape as in the present embodiment, so that the pin 50 is guided to the first hole portion 70 and the second hole portion 72.
 また、第2筐体30の回動位置は、オン信号及びオフ信号の2値信号で示された本実施形態とは異なり、ハイ信号及びロー信号で示されてもよいし、情報で示されてもよい。 Further, the rotation position of the second housing 30 may be indicated by a high signal and a low signal, or is indicated by information, unlike the present embodiment shown by the binary signal of the ON signal and the OFF signal. You may.
 また、本実施形態のレーザマーカ1の出射制御は、FGPA211のみで実行されるようにしてもよいし、CPU203のみで実行されるようにしてもよい。 The emission control of the laser marker 1 of this embodiment may be executed only by the FGPA 211 or only by the CPU 203.
 また、出射不可能処理S16では、レーザユニット10がレーザ光Qを出射している状態又は可視半導体レーザ19が可視レーザ光Rを出射している状態を維持したままで、レーザ光Q又は可視レーザ光Rの光路上に遮蔽板を移動させることによって実行されてもよい。但し、そのような場合には、出射可能処理S26は、レーザ光Q又は可視レーザ光Rの光路上から遮蔽板を移動させることによって実行される。 Further, in the non-emission process S16, the laser beam Q or the visible laser beam is maintained while the laser unit 10 is emitting the laser beam Q or the visible semiconductor laser 19 is emitting the visible laser beam R. It may be performed by moving the shielding plate on the optical path of the light R. However, in such a case, the emission enable process S26 is executed by moving the shield plate from the optical path of the laser light Q or the visible laser light R.
1:レーザマーカ、10:レーザユニット、16:ガルバノスキャナ、20:第1筐体、27:第1壁面部、28:第2壁面部、29:筐体側孔部、29A:雌ネジ、30:第2筐体、42:突出部、50:ピン、56:ピンの先端、50A:雄ネジ、60:連結部材、66:中空構造、68:連結部材の回動中心、70:第1孔部、72:第2孔部、80:コイルバネ、L:ロック機構、Q:レーザ光 1: Laser marker, 10: Laser unit, 16: Galvano scanner, 20: First housing, 27: First wall surface portion, 28: Second wall surface portion, 29: Housing side hole portion, 29A: Female screw, 30: First 2 housings, 42: protruding portion, 50: pin, 56: tip of pin, 50A: male screw, 60: connecting member, 66: hollow structure, 68: rotation center of connecting member, 70: first hole portion, 72: Second hole, 80: Coil spring, L: Lock mechanism, Q: Laser light

Claims (12)

  1.  レーザ光を出射するレーザ光源と、前記レーザ光を外方へ向けて走査する走査部とを有するレーザマーカであって、
     前記レーザ光源が収められた第1筐体と、
     前記走査部が収められた第2筐体と、
     前記第2筐体を前記第1筐体に対して回動可能にする連結部と、
     前記第2筐体を第1回動位置又は第2回動位置で固定するロック機構とを備えることを特徴とするレーザマーカ。
    A laser marker having a laser light source that emits laser light and a scanning unit that scans the laser light toward the outside,
    A first housing containing the laser light source;
    A second housing containing the scanning unit;
    A connecting portion that allows the second housing to rotate with respect to the first housing;
    A laser marker, comprising: a lock mechanism that fixes the second housing at a first rotation position or a second rotation position.
  2.  前記連結部は、前記レーザ光が前記第1筐体から前記第2筐体へ向けて通過する中空構造であり、
     前記第1筐体及び前記第2筐体のうち、一方の筐体に前記連結部の一端が固定されると共に、他方の筐体に前記連結部の他端が回動可能に差し込まれ、
     前記ロック機構は、前記他方の筐体において、前記連結部の回動を固定することを特徴とする請求項1に記載のレーザマーカ。
    The connecting portion is a hollow structure through which the laser light passes from the first housing toward the second housing,
    One end of the connecting portion is fixed to one of the first housing and the second housing, and the other end of the connecting portion is rotatably inserted into the other housing.
    The laser marker according to claim 1, wherein the lock mechanism fixes rotation of the connecting portion in the other casing.
  3.  前記一方の筐体が前記第2筐体であると共に、前記他方の筐体が前記第1筐体であることを特徴とする請求項2に記載のレーザマーカ。 The laser marker according to claim 2, wherein the one housing is the second housing and the other housing is the first housing.
  4.  前記ロック機構は、
     ピンと、
     前記ピンが挿通する孔部とを備えることを特徴とする請求項1乃至請求項3のいずれか一つに記載のレーザマーカ。
    The locking mechanism is
    idea,
    The laser marker according to claim 1, further comprising a hole through which the pin is inserted.
  5.  前記ロック機構は、
     ピンと、
     前記第1筐体に設けられ、前記ピンが貫通する筐体側孔部と、
     前記連結部に設けられ、前記筐体側孔部から突き出した前記ピンが挿通する連結部側孔部とを備えることを特徴とする請求項3に記載のレーザマーカ。
    The locking mechanism is
    idea,
    A housing side hole provided in the first housing and through which the pin penetrates,
    The laser marker according to claim 3, further comprising: a connecting portion side hole portion provided in the connecting portion and through which the pin protruding from the housing side hole portion is inserted.
  6.  前記連結部側孔部は、
     前記第1回動位置に対応する第1孔部と、
     前記第2回動位置に対応する第2孔部とを備え、
     前記連結部の他端が前記第1筐体に差し込まれる方向から視て、前記第1孔部から前記連結部の回動中心へ向かう第1方向と、前記第2孔部から前記連結部の回動中心へ向かう第2方向とが直交することを特徴とする請求項5に記載のレーザマーカ。
    The connecting portion side hole portion,
    A first hole corresponding to the first rotation position;
    A second hole corresponding to the second rotation position,
    When viewed from the direction in which the other end of the connecting portion is inserted into the first housing, the first direction from the first hole portion toward the rotation center of the connecting portion and the second hole portion from the connecting portion The laser marker according to claim 5, wherein the second direction toward the center of rotation is orthogonal to the second direction.
  7.  前記ピンに設けられた雄ネジと、
     前記筐体側孔部に設けられ、前記雄ネジと螺合する雌ネジとを備えることを特徴とする請求項5又は請求項6に記載のレーザマーカ。
    A male screw provided on the pin,
    The laser marker according to claim 5 or 6, further comprising a female screw provided in the housing side hole portion and screwed into the male screw.
  8.  前記ピンの先端がテーパ状であることを特徴とする請求項5乃至請求項7のいずれか一つに記載のレーザマーカ。 The laser marker according to any one of claims 5 to 7, wherein the tip of the pin is tapered.
  9.  前記連結部側孔部の内径は、少なくとも所定深さまで、奥へ向かうに連れて小さくなることを特徴とする請求項5乃至請求項8のいずれか一つに記載のレーザマーカ。 The laser marker according to any one of claims 5 to 8, wherein the inner diameter of the connecting portion side hole portion becomes smaller as it goes deeper, at least up to a predetermined depth.
  10.  前記ロック機構は、
     前記ピンが前記連結部から離間するまで、前記ピンが前記連結部側孔部から抜け出る方向へ前記ピンを付勢する第1付勢部材を備えることを特徴とする請求項5乃至請求項9のいずれか一つに記載のレーザマーカ。
    The locking mechanism is
    10. The first urging member for urging the pin in the direction in which the pin comes out of the connecting portion side hole until the pin is separated from the connecting portion, according to any one of claims 5 to 9. The laser marker described in any one.
  11.  前記ロック機構は、
     前記ピンが前記連結部に当接するまで、前記ピンを前記筐体側孔部から前記連結部へ向けて付勢する第2付勢部材を備えることを特徴とする請求項5乃至請求項9のいずれか一つに記載のレーザマーカ。
    The locking mechanism is
    10. A second urging member for urging the pin from the housing side hole toward the connecting portion until the pin abuts on the connecting portion, according to any one of claims 5 to 9. The laser marker described in one.
  12.  前記ロック機構は、
     前記連結部の他端の外周面から、前記連結部の回動中心から離れる方向へ突出した突出部と、
     前記第1筐体に設けられ、前記第2筐体と共に前記連結部が回動して前記突出部が突き当たることによって、前記第2筐体の回動範囲を前記第1回動位置と前記第2回動位置の間に制限する衝止部とを備えることを特徴とする請求項5乃至請求項11のいずれか一つに記載のレーザマーカ。
    The locking mechanism is
    From the outer peripheral surface of the other end of the connecting portion, a protruding portion protruding in a direction away from the center of rotation of the connecting portion,
    The rotation range of the second housing is provided on the first housing, and the connecting portion rotates together with the second housing to abut the projecting portion. The laser marker according to any one of claims 5 to 11, further comprising: a stop portion that restricts between two rotation positions.
PCT/JP2019/043219 2018-11-30 2019-11-05 Laser marker WO2020110621A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018224322A JP2020082171A (en) 2018-11-30 2018-11-30 Laser marker
JP2018-224322 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020110621A1 true WO2020110621A1 (en) 2020-06-04

Family

ID=70853761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043219 WO2020110621A1 (en) 2018-11-30 2019-11-05 Laser marker

Country Status (2)

Country Link
JP (1) JP2020082171A (en)
WO (1) WO2020110621A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174983U (en) * 1987-04-30 1988-11-14
JP2000042778A (en) * 1998-07-22 2000-02-15 Amada Co Ltd Laser machining method and its device
US6064033A (en) * 1997-12-31 2000-05-16 Prima Industrie Spa Operative head for a laser machine
JP2003531010A (en) * 2000-04-18 2003-10-21 レーザーインク Printing codes on products
JP2007519526A (en) * 2003-12-19 2007-07-19 マーケム コーポレーション Striping and clipping correction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174983U (en) * 1987-04-30 1988-11-14
US6064033A (en) * 1997-12-31 2000-05-16 Prima Industrie Spa Operative head for a laser machine
JP2000042778A (en) * 1998-07-22 2000-02-15 Amada Co Ltd Laser machining method and its device
JP2003531010A (en) * 2000-04-18 2003-10-21 レーザーインク Printing codes on products
JP2007519526A (en) * 2003-12-19 2007-07-19 マーケム コーポレーション Striping and clipping correction

Also Published As

Publication number Publication date
JP2020082171A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US20210396914A1 (en) Projector including meta-lens
JP5707079B2 (en) Laser processing equipment
US20170203390A1 (en) Laser machining device provided with laser emitter emitting laser beam and machining chamber
WO2018155366A1 (en) Electronics device
JP4184288B2 (en) Laser processing machine
WO2020110621A1 (en) Laser marker
WO2020110622A1 (en) Laser marker
JP6002391B2 (en) Laser processing equipment
JP2008030109A (en) Laser beam machining apparatus
JP6583099B2 (en) Laser processing equipment
JP7003903B2 (en) Laser marker
JP5817773B2 (en) Laser processing equipment
KR102672099B1 (en) Apparatus for manufacturing workpieces with a laser beam coupled to a fluid jet using automatic laser-nozzle-alignment and method for aligning such beam
JP2013013905A (en) Laser beam machining device
WO2014157313A1 (en) Laser processing machine, and program
WO2019003470A1 (en) Laser machining device
JP6822385B2 (en) Laser processing equipment
JP2007118049A (en) Laser beam machining apparatus
TWI790898B (en) Laser machining device
JP2021157512A (en) Processing apparatus and processing method
WO2023053348A1 (en) Teaching device and teaching method for teaching operation of laser machining device, and device and method for generating interference confirmation program
JP5962284B2 (en) Light source device, scanning optical device, and image forming apparatus
JP2021041429A (en) Laser processing device and power meter
JP2021137840A (en) Laser machining system, control device, and control program
JP2006112802A (en) Image recognition device and image recognition method using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888437

Country of ref document: EP

Kind code of ref document: A1