WO2020110257A1 - タービン動翼及びタービン - Google Patents

タービン動翼及びタービン Download PDF

Info

Publication number
WO2020110257A1
WO2020110257A1 PCT/JP2018/043984 JP2018043984W WO2020110257A1 WO 2020110257 A1 WO2020110257 A1 WO 2020110257A1 JP 2018043984 W JP2018043984 W JP 2018043984W WO 2020110257 A1 WO2020110257 A1 WO 2020110257A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
turbine
rotor blade
turbine rotor
axis
Prior art date
Application number
PCT/JP2018/043984
Other languages
English (en)
French (fr)
Inventor
武 千葉
星 徹
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to CN201880090604.6A priority Critical patent/CN111819347B/zh
Priority to JP2020557479A priority patent/JP7024117B2/ja
Priority to EP18941516.9A priority patent/EP3786425B1/en
Priority to US17/251,034 priority patent/US11365631B2/en
Priority to PCT/JP2018/043984 priority patent/WO2020110257A1/ja
Publication of WO2020110257A1 publication Critical patent/WO2020110257A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/025Fixing blade carrying members on shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/04Blade-carrying members, e.g. rotors for radial-flow machines or engines
    • F01D5/043Blade-carrying members, e.g. rotors for radial-flow machines or engines of the axial inlet- radial outlet, or vice versa, type
    • F01D5/048Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers

Definitions

  • the present disclosure relates to turbine blades and turbines.
  • the loss tends to increase on the tip side (tip side) of the blade. Therefore, if the blade-to-blade distance on the tip side of the throat portion increases, the flow rate of the working fluid (exhaust gas) on the tip side increases and the loss increases.
  • the throat portion includes a position in a certain code direction (hereinafter, also referred to as a first position) in one of the two adjacent moving blades and a position in a certain code direction in the other moving blade (hereinafter, referred to as a first position). , Also referred to as a second position).
  • the blade angle differs depending on the position in the cord direction, if the number of blades is suppressed as described above, the difference in the position in the cord direction between the first position and the second position widens, and There is a tendency that the difference between the blade angle and the blade angle at the second position, that is, the difference between the blade angle of one rotor blade and the blade angle of the other rotor blade in the throat portion tends to widen.
  • At least one embodiment of the present invention aims to suppress the loss in the turbine by suppressing the blade-to-blade distance on the tip side of the throat portion.
  • a turbine rotor blade is A turbine rotor blade connected to a rotating shaft and rotated about an axis, In a cross section along the axis, a hub having a hub surface inclined with respect to the axis, A plurality of moving blades provided on the hub surface, Equipped with A value obtained by dividing the blade-to-blade distance Lt at a certain radial position by the distance r from the axis at the radial position in the throat portion where the blade-to-blade distance between two adjacent rotor blades is the smallest (Lt/r).
  • the value of Lt/r in the throat portion is maximized at the position where the dimensionless span length is in the range of 0.2 or more and 0.65 or less.
  • the flow rate of the working fluid (exhaust gas) on the tip side can be suppressed as compared with the case where the value of Lt/r becomes maximum at the position where the dimension span length exceeds 0.65. Therefore, according to the above configuration (1), the loss in the turbine can be suppressed.
  • l corresponds to the distance between two points on the straight line described below.
  • the straight line is a straight line that passes through the end portion on the tip side of the trailing edge of the moving blade when the moving blade is viewed from the outside in the radial direction, and extends at the same angle as the blade angle at the end portion. is there. Then, one of the two points is the end portion, and the other point is from the end portion on the tip side of the trailing edge of the adjoining rotor blades on the back side (suction surface side) of the rotor blades. It is the intersection of the perpendicular line to the straight line and the straight line.
  • the smaller value represented by 1/L means that the formation position of the throat portion approaches the trailing edge. Therefore, according to the above configuration (2), since the value represented by 1/L is 0.3 or more and 0.65 or less, the formation of the throat portion is greater than that in the case where the value exceeds 0.65. The position can be brought closer to the trailing edge. By the formation position of the throat portion approaching the trailing edge, the difference in the position in the cord direction between the first position of one of the moving blades forming the throat portion and the second position of the other moving blade becomes small.
  • the difference between the blade angle at the first position and the blade angle at the second position that is, the difference between the blade angle of one moving blade and the blade angle of the other moving blade in the throat portion is reduced, so that the throat portion
  • the expansion of the distance between the wings is suppressed. Therefore, according to the configuration of (2) above, the flow rate of the working fluid (exhaust gas) on the tip side can be suppressed, so that the loss in the turbine can be suppressed.
  • the plurality of moving blades are provided on a trailing edge and on the leading edge side from the trailing edge along a cord direction by a predetermined length. Within the range between the traced positions, the blade angle is constant regardless of the position in the cord direction.
  • the throat portion When the throat portion is formed near the trailing edge of the rotor blade, as in the above configuration (3), the trailing edge and the position that is traced back from the trailing edge to the leading edge side along the cord direction by the specified length. If a region in which the blade angle is constant regardless of the position in the cord direction is provided within the range between them, the blade angle of one rotor blade and the rotor blade of the other rotor blade in the throat portion are different from those in the case where the region is not provided. The difference with the wing angle can be reduced. Therefore, according to the above configuration (3), the flow rate of the working fluid (exhaust gas) on the tip side can be suppressed by suppressing the expansion of the blade-to-blade distance at the throat portion, so that the loss in the turbine can be suppressed.
  • the working fluid exhaust gas
  • the number of the moving blades is 12 or less.
  • the turbine has the configuration of any of the above (1) to (3) and has a relatively small number of blades of 12 or less. The effect of suppressing the loss by the configuration of any one of 1) to (3) becomes more prominent.
  • a turbine according to at least one embodiment of the present invention is A turbine rotor blade having any one of the above configurations (1) to (4); A casing that rotatably accommodates the turbine rotor blade, Equipped with.
  • a variable nozzle mechanism for adjusting the flow of the working fluid to the turbine rotor blade is further provided.
  • variable displacement turbine having the variable nozzle mechanism tends to have a wider flow range of the working fluid and a smaller number of blades than a non-variable capacity turbine.
  • the turbine moving blade of any one of (1) to (4) is provided, the effect of suppressing the loss in the turbine is more prominent.
  • the loss in the turbine can be suppressed.
  • FIG. 4 is a circumferential development view of a tip portion of a rotor blade, in which an abscissa represents an angular position with an axis of the turbine rotor blade as a center and a ordinate represents a height position along an axis of the turbine rotor blade. It is a figure which compared the blade distance in the throat part of the conventional turbine rotor blade, and the blade distance in the throat part of the turbine rotor blade concerning some embodiments.
  • FIG. 4 is a circumferential development view of a tip portion of a rotor blade, in which an abscissa represents an angular position with an axis of the turbine rotor blade as a center and a ordinate represents a height position along an axis of the turbine rotor blade. It is a figure which compared the blade distance in the throat part of the conventional turbine rotor blade, and the blade distance in the throat part of the turbine rotor blade concerning some embodiments.
  • FIG. 4 is a circumferential development view of a tip portion of a rotor blade, in which an abscissa represents an angular position with an axis of the turbine rotor blade as a center and a ordinate represents a height position along an axis of the turbine rotor blade. It is the figure which compared the value of Lt/r in the conventional turbine rotor blade, and the value of Lt/r in the turbine rotor blade concerning some embodiments.
  • FIG. 4 is a circumferential development view of a tip portion of a rotor blade, in which an abscissa represents an angular position with an axis of the turbine rotor blade as a center and a ordinate represents a height position along an axis of the turbine rotor blade. It is a schematic sectional drawing which showed the variable capacity turbine which concerns on one Embodiment provided with the variable nozzle mechanism.
  • expressions such as “identical”, “equal”, and “homogeneous” that indicate that they are in the same state are not limited to a state in which they are exactly equal to each other. It also represents the existing state.
  • the representation of a shape such as a quadrangle or a cylinder does not only represent a shape such as a quadrangle or a cylinder in a geometrically strict sense, but also an uneven portion or a chamfer within a range in which the same effect can be obtained.
  • the shape including parts and the like is also shown.
  • the expressions “comprising”, “comprising”, “comprising”, “including”, or “having” one element are not exclusive expressions excluding the existence of other elements.
  • FIG. 1 is a cross-sectional view showing an example of a turbocharger 1 according to some embodiments.
  • a turbocharger 1 according to some embodiments is an exhaust turbocharger for supercharging intake air of an engine mounted on a vehicle such as an automobile.
  • the turbocharger 1 includes a turbine wheel (turbine moving blade) 3 and a compressor wheel 4, which are connected with a rotor shaft 2 as a rotation axis, a casing (turbine housing) 5 that rotatably accommodates the turbine moving blade 3, and a compressor wheel 4. And a compressor housing 6 that rotatably accommodates.
  • the turbine housing 5 also has a scroll 7.
  • the compressor housing 6 has a scroll 8.
  • a shroud 9 is formed on the outer peripheral side of the turbine moving blade 3 of the turbine housing 5 so as to cover the turbine moving blade 3.
  • a turbine 30 according to some embodiments includes a turbine rotor blade 3 and a casing 5.
  • FIG. 2 is a perspective view of the outer appearance of the turbine rotor blade 3 according to some embodiments.
  • a turbine rotor blade 3 according to some embodiments is a turbine rotor blade that is connected to a rotor shaft (rotary shaft) 2 and is rotated about an axis AX.
  • a turbine rotor blade 3 according to some embodiments includes a hub 31 having a hub surface 32 inclined with respect to the axis AX in a cross section along the axis AX, and a plurality of rotor blades 33 provided on the hub surface 32.
  • the turbine rotor blade 3 shown in FIG. 2 is a radial turbine, it may be a mixed flow turbine.
  • an arrow R indicates the rotation direction of the turbine rotor blade 3.
  • a plurality of moving blades 33 are provided at intervals in the circumferential direction of the turbine moving blade 3.
  • the exhaust gas that is the working fluid flows from the leading edge 36 of the turbine rotor blade 3 toward the trailing edge 37.
  • an exhaust turbocharger used in an automobile or the like has a relatively small size, a wide operating range, and a high rotational speed. Therefore, in the turbine rotor blade 3, it is necessary to increase the thickness of the rotor blade 33 on the hub 31 side. As a result, the distance between the blades becomes narrower, which makes it difficult to increase the number of blades 33. Further, a turbine of an exhaust turbocharger used in an automobile or the like is required to have good transient response. Therefore, the number of moving blades 33 tends to be suppressed in order to suppress the moment of inertia. When the number of blades 33 is reduced, the blade-to-blade distance between two adjacent blades 33 increases, and the blade-to-blade distance also increases at the throat portion where the blade-to-blade distance is the smallest.
  • the throat portion includes a position in a certain code direction (hereinafter, also referred to as a first position) in one of the two adjacent moving blades and a position in a certain code direction in the other moving blade (hereinafter, referred to as a first position). , Also referred to as a second position).
  • the chord direction is a direction along a line segment connecting the leading edge and the trailing edge of the blade. That is, in the turbine rotor blades 3 according to some embodiments, for example, as shown in FIG. 2, the pressure surface 38 of one rotor blade 33A of the two adjacent rotor blades 33 and the other rotor blade 33B.
  • An inter-blade passage 40 is formed between the suction surface 39 and the suction surface 39.
  • the blade-to-blade passage 40 has a throat portion 41 that minimizes the blade-to-blade distance.
  • the throat portion 41 is an area hatched with a chain double-dashed line.
  • the throat portion 41 includes a trailing edge 37 of one rotor blade 33A of two adjacent rotor blades 33 and a suction surface 39 of the other rotor blade 33B. Is defined between.
  • the first position is on the trailing edge 37 of the one rotor blade 33A, and the second position is on the suction surface 39 of the other rotor blade 33B. ..
  • FIG. 3 is a development view of the tip portion 34 of the rotor blade 33 in the circumferential direction.
  • the horizontal axis indicates the angular position of the turbine rotor blade 3 about the axis AX, and the height position along the axis AX of the turbine rotor blade 3. It is the figure which took the vertical axis.
  • the moving blade 33 is schematically shown as a line along a camber line connecting the midpoints of the pressure surface 38 and the suction surface 39 of the moving blade 33.
  • the blade angle ⁇ differs depending on the position in the code direction, if the number of the moving blades 33 is suppressed as described above, the difference in the position in the code direction between the first position P1 and the second position P2 increases.
  • the difference between the blade angle ⁇ at the first position P1 and the blade angle ⁇ at the second position P2 that is, the difference between the blade angle ⁇ of one of the rotor blades 33A and the blade angle ⁇ of the other rotor blade 33B in the throat portion 41.
  • the blade angle ⁇ is an angle ⁇ formed by the camber line and the axis AX direction when viewed from the outside in the radial direction at a certain position of the moving blade 33.
  • the shape of the rotor blades 33 is set so that the amount of change in the blade angle ⁇ with respect to the amount of change in the position in the cord direction near the trailing edge 37 is sufficiently small. .. That is, in each rotor blade 33 of the turbine rotor blade 3 according to some embodiments, as shown in FIG. 2, for example, a trailing edge 37 and a leading edge 36 from the trailing edge 37 along the cord direction by a prescribed length. A range between the position 51 and the position 51 which is traced back is defined as a range RA. In the turbine rotor blade 3 according to some embodiments, the shape of the range RA is set so as to satisfy the conditions described later.
  • the shape of the range RA is set so as to satisfy the condition described later, and the moving blade 33 is set so that the change amount of the blade angle ⁇ with respect to the change amount of the position in the cord direction near the trailing edge 37 is sufficiently small. Even if the distance between two adjacent moving blades 33 is increased by reducing the number of moving blades 33 by setting the shape of the blades, the blades in the throat portion 41 are wider than the distance between the moving blades 33 is increased. It is possible to suppress the expansion of the distance Lt.
  • FIG. 4 is a diagram comparing the blade-to-blade distance in the throat portion of the conventional turbine rotor blade with the blade-to-blade distance Lt in the throat portion 41 of the turbine rotor blade 3 according to some embodiments.
  • the vertical axis represents the blade-to-blade distance in the throat portion
  • the horizontal axis represents the distance r from the axis line AX.
  • the rectangular plot in FIG. 4 represents the blade-to-blade distance in the throat portion of the conventional turbine rotor blade
  • the triangular plot represents the blade-to-blade distance Lt in the throat portion 41 of the turbine rotor blade 3 according to some embodiments. ing.
  • the conventional turbine rotor blade according to FIG. 4 includes, for example, the turbine rotor blade 3 shown in FIG. 2 having a shape in which the above range RA is cut out.
  • the turbine rotor blade 3 according to FIG. 4 is provided with the rotor blade 33 having a shape in which the portion indicated by the above range RA is added to the trailing edge of the conventional turbine rotor blade.
  • FIG. 5 is a circumferential development view of the tip end portion 34 of the rotor blade 33.
  • the horizontal axis indicates the angular position of the turbine rotor blade 3 about the axis AX, and the height position along the axis AX of the turbine rotor blade 3. It is the figure which took the vertical axis.
  • the moving blade 33 is schematically shown as a line along a camber line that connects an intermediate point between the pressure surface 38 and the suction surface 39 of the moving blade 33.
  • the portion indicated by the broken line in the moving blade 33 represents a portion corresponding to the moving blade in the conventional turbine moving blade, and the portion indicated by the solid line is the portion indicated by the range RA described above. As shown in FIG.
  • the throat portion 41 is longer than the inter-blade distance Lt (Lt2) in the throat portion of the conventional turbine moving blade.
  • the blade-to-blade distance Lt (Lt1) can be reduced.
  • the inter-blade distance Lt in the throat portion 41 at the tip portion 34 is smaller than that in the conventional turbine rotor blades.
  • the flow rate of the working fluid (exhaust gas) at the tip portion 34 can be suppressed, and the loss in the turbine 30 can be suppressed.
  • the shape of the moving blade 33 in the turbine moving blade 3 is the shape in which the portion indicated by the above-mentioned range RA is added to the trailing edge 37B of the conventional turbine moving blade, whereby the conventional turbine moving blade is formed. It is possible to suppress the loss in the turbine 30 without significantly changing the shape of the moving blade in. As a result, the cost required to design the shape of the moving blade 33 can be reduced.
  • the rotor blades 33 are formed so that the following conditions are satisfied in the throat portion 41 where the inter-blade distance between two adjacent rotor blades 33 is the smallest. There is. That is, as shown in FIG. 2, consider a value (Lt/r) obtained by dividing the inter-blade distance Lt at a certain radial position P by the distance r from the axis AX at the radial position P in the throat portion 41.
  • Lt/r is set such that the position of the base end portion 35 on the hub 31 side is zero in the span direction of the rotor blade 33, and the tip end portion on the opposite side to the hub 31 side.
  • the position of 34 is 1, the dimensionless span length takes a maximum value in a position in the range of 0.2 or more and 0.65 or less.
  • the flow rate of the working fluid (exhaust gas) on the side of the distal end portion 34 can be suppressed as compared with the case where the value of Lt/r becomes maximum at the position where the dimensionless span length exceeds 0.65. Therefore, according to the turbine rotor blade 3 according to some embodiments, the loss in the turbine 30 can be suppressed. That is, in the turbine 30 having the turbine rotor blades 3 according to some embodiments, loss can be suppressed.
  • FIG. 6 is a diagram comparing the value of Lt/r in the conventional turbine rotor blade with the value of Lt/r in the turbine rotor blade 3 according to some embodiments.
  • the vertical axis represents the value of Lt/r
  • the horizontal axis represents the dimensionless span length.
  • the rectangular plot in FIG. 6 represents the value of Lt/r in the conventional turbine rotor blade
  • the triangular plot represents the value of Lt/r in the turbine rotor blade 3 according to some embodiments.
  • the conventional turbine moving blade according to FIG. 6 includes, for example, the moving blade having a shape in which the above-described range RA is cut out of the turbine moving blade 3 shown in FIG. In other words, the turbine rotor blade 3 according to FIG.
  • the conventional turbine moving blade shown in FIG. 6 is the same as the conventional turbine moving blade shown in FIG.
  • the turbine rotor blade 3 according to FIG. 6 is the same as the turbine rotor blade 3 according to FIG.
  • the value of Lt/r becomes maximum when the dimensionless span length takes a value close to 1, but in the turbine rotor blade 3 according to FIG.
  • the value of Lt/r becomes maximum when the dimension span length takes a value near 0.4 to 0.5.
  • a value (l/L) obtained by dividing the following value 1 by the following distance L is 0.3 or more and 0.65 or less.
  • the moving blades 33 are formed as follows.
  • l is a value represented by the following equation (1).
  • ⁇ 1 is the blade angle ⁇ (degree) at the end P3 of the trailing edge 37 of the moving blade 33 on the side of the tip end 34.
  • D is the diameter of the turbine rotor blade 3 at the end P3.
  • n is the number of blades.
  • L is the distance between the end P3 and the end P4 of the front edge 36 of the moving blade 33 on the tip end 34 side. That is, L is the cord length at the tip portion 34 of the rotor blade 33.
  • FIG. 7 is a development view in the circumferential direction of the tip end portion 34 of the moving blade 33, in which the horizontal axis indicates the angular position with the axis line AX of the turbine moving blade 3 as the center, and the height position along the axis line AX of the turbine moving blade 3. It is the figure which took the vertical axis.
  • l corresponds to the distance between two points on the straight line E described below.
  • the straight line E passes through the end P3 on the tip end 34 side of the trailing edge 37 of the moving blade 33, and the blade angle ⁇ at the end P3.
  • 1 is the product (A ⁇ sin ⁇ 1) of the linear distance A and sin ⁇ 1 between the end portions P3 of the trailing edges 37 of two adjacent moving blades 33 on the tip end 34 side.
  • the distance A can be calculated by the following equation (2).
  • A D ⁇ sin ⁇ 360/(n ⁇ 2) ⁇ (2)
  • the decrease in the value represented by 1/L means that the formation position of the throat portion 41 approaches the trailing edge 37. Therefore, in some of the embodiments described above, the value represented by 1/L is 0.3 or more and 0.65 or less, so that the formation of the throat portion 41 is greater than when the value exceeds 0.65. The position can be brought closer to the trailing edge 37. When the formation position of the throat portion 41 approaches the trailing edge 37, the first position P1 of the one moving blade 33A forming the throat portion 41 and the second position P2 of the other moving blade 33B are changed in position in the cord direction. The difference becomes smaller.
  • the expansion of the blade-to-blade distance Lt in the throat portion 41 is suppressed. Therefore, in some of the embodiments described above, the flow rate of the working fluid (exhaust gas) on the tip 34 side can be suppressed, so that the loss in the turbine 30 can be suppressed.
  • the moving blade 33 includes the trailing edge 37 and the leading edge 36 along the cord direction from the trailing edge 37 by a specified length (for example, 20% or less of the cord length).
  • a range in which the blade angle ⁇ is constant may be provided regardless of the position in the cord direction within the range RA between the position 51 and the position 51 that is traced back to the side.
  • the throat portion 41 When the throat portion 41 is formed near the trailing edge 37 of the moving blade 33, as described above, if a region where the blade angle ⁇ is constant is provided within the range RA regardless of the position in the cord direction, The difference between the blade angle ⁇ of one moving blade 33A and the blade angle ⁇ of the other moving blade 33B in the throat portion 41 can be reduced as compared with the case where no region is provided. Therefore, the flow rate of the working fluid (exhaust gas) on the tip 34 side can be suppressed by suppressing the expansion of the blade-to-blade distance Lt in the throat portion 17, and thus the loss in the turbine 30 can be suppressed.
  • the working fluid exhaust gas
  • the number of blades 33 may be 12 or less. As described above, when the number of blades 33 is reduced, the blade-to-blade distance between two adjacent blades 33 increases, and the blade-to-blade distance Lt also increases in the throat portion 41 where the blade-to-blade distance is the smallest. Further, the smaller the number of the moving blades 33 is, the more the load per one moving blade is increased and the flow rate of the working gas is increased. Therefore, the influence of the leakage flow on the tip 34 side becomes relatively large.
  • the turbine 30 may include a variable nozzle mechanism 60 that adjusts the flow of the working fluid to the turbine rotor blade 3.
  • FIG. 8 is a schematic cross-sectional view showing a variable capacity turbine (variable capacity turbine) according to an embodiment including a variable nozzle mechanism.
  • a variable capacity turbine 30A according to one embodiment includes a turbine rotor blade 3 according to some of the above-described embodiments, and a casing (turbine housing) 5A that rotatably accommodates the turbine rotor blade 3.
  • a variable nozzle mechanism 60 for controlling the flow direction of the working fluid flowing toward the turbine rotor blade 3.
  • variable nozzle mechanism 60 includes nozzle vanes 64.
  • a plurality of nozzle vanes 64 are arranged at intervals in the circumferential direction.
  • a nozzle flow path 64a is formed between the adjacent nozzle vanes 64.
  • the nozzle vane 64 is configured such that the blade angle of the nozzle vane 64 changes when the nozzle shaft 65 is rotated about its axis by the drive mechanism 66.
  • variable capacity turbine 30A having the variable nozzle mechanism 60
  • the range of the flow rate of the working fluid tends to be wider and the number of blades tends to be smaller than that of the turbine 30 which is not the variable capacity type.
  • the variable capacity turbine 30A according to the embodiment has the turbine rotor blades 3 according to the above-described several embodiments, the effect of suppressing the loss in the variable capacity turbine 30A is more remarkable.
  • the present invention is not limited to the above-described embodiment, and includes a form in which the above-described embodiment is modified and a form in which these forms are appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

少なくとも一実施形態に係るタービン動翼は、回転軸に連結されて軸線の周りに回転されるタービン動翼であって、前記軸線に沿った断面において、前記軸線に対して傾斜するハブ面を有するハブと、前記ハブ面に設けられた複数の動翼と、備え、隣り合う2つの前記動翼の翼間距離が最も小さくなるスロート部において、ある径方向位置における前記翼間距離Ltを当該径方向位置における前記軸線からの距離rで除した値(Lt/r)は、前記動翼のスパン方向において、ハブ側の基端部の位置をゼロとし、前記ハブ側とは反対側の先端部の位置を1としたときの無次元スパン長さが0.2以上0.65以下の範囲の位置において最大値をとる。

Description

タービン動翼及びタービン
 本開示は、タービン動翼及びタービンに関する。
 自動車等に用いられるエンジンにおいて、エンジンの出力を向上させるために、エンジンの排気ガスのエネルギでタービンを回転させ、回転軸を介してタービンと直結させた遠心圧縮機で吸入空気を圧縮してエンジンに供給する排気ターボ過給機が広く知られている。
 このような排気ターボ過給機に用いられるタービンとしては、例えば特許文献1に開示されたものが知られている。
特開2003-201802号公報
 この種のタービンは、例えば、特許文献1に示されるように、ハブの外周に放射状に複数の翼が配置されている。
 自動車等に用いられる排気ターボ過給機は、比較的小型のものであり、作動範囲が広く、回転数が高い。そのため、このような排気ターボ過給機に用いられるタービンでは、翼の厚さをハブ側で厚くする必要がある。その結果、翼間の距離が狭くなるので、翼の枚数を増やすことが難しい。また、自動車等に用いられる排気ターボ過給機のタービンは、過渡応答性が良好であることが求められる。そのため、慣性モーメントを抑制するために翼の枚数を抑制する傾向にある。
 翼の枚数を減らすと、隣り合う2つの翼の翼間距離が広がり、翼間距離が最も小さくなるスロート部においても翼間距離も広がる。
 半径流入式タービンでは、翼の先端側(チップ側)で損失が大きくなる傾向にある。そのため、スロート部のチップ側における翼間距離が広がると、チップ側における作動流体(排気ガス)の流量が増え、損失が大きくなってしまう。
 ここで、スロート部は、隣り合う2つの動翼のうち一方の動翼における、あるコード方向の位置(以下、第1位置とも呼ぶ)と、他方の動翼における、あるコード方向の位置(以下、第2位置とも呼ぶ)との間に形成される。
 上述したように翼の枚数を抑制すると、スロート部を形成する一方の動翼の第1位置と、他方の動翼の第2位置とで、コード方向の位置の差が広がる傾向がある。一般的には、コード方向の位置によって翼角が異なるため、上述したように翼の枚数を抑制すると、第1位置と第2位置とのコード方向の位置の差が広がって、第1位置における翼角と第2位置における翼角との差、すなわち、スロート部における一方の動翼の翼角と他方の動翼の翼角との差が広がる傾向がある。
 このように、スロート部における一方の動翼の翼角と他方の動翼の翼角との差が広がると、翼の枚数が減って隣り合う2つの動翼の翼間距離が広がること以上にスロート部における翼間距離が広がることとなる。
 そのため、翼の枚数を減らすと、チップ側における作動流体(排気ガス)の流量がより増えることとなり、損失がより大きくなってしまうこととなる。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、スロート部のチップ側における翼間距離を抑制することでタービンにおける損失を抑制することを目的とする。
(1)本発明の少なくとも一実施形態に係るタービン動翼は、
 回転軸に連結されて軸線の周りに回転されるタービン動翼であって、
 前記軸線に沿った断面において、前記軸線に対して傾斜するハブ面を有するハブと、
 前記ハブ面に設けられた複数の動翼と、
を備え、
 隣り合う2つの前記動翼の翼間距離が最も小さくなるスロート部において、ある径方向位置における前記翼間距離Ltを当該径方向位置における前記軸線からの距離rで除した値(Lt/r)は、前記動翼のスパン方向において、ハブ側の基端部の位置をゼロとし、前記ハブ側とは反対側の先端部の位置を1としたときの無次元スパン長さが0.2以上0.65以下の範囲の位置において最大値をとる。
 上記(1)の構成によれば、無次元スパン長さが0.2以上0.65以下の範囲の位置においてスロート部における上述したLt/rの値が最大となるようにすることで、無次元スパン長さが0.65を超える位置においてLt/rの値が最大となる場合と比べて、チップ側における作動流体(排気ガス)の流量を抑制できる。したがって、上記(1)の構成によれば、タービンにおける損失を抑制できる。
(2)本発明の少なくとも一実施形態に係るタービン動翼は、
 回転軸に連結されて軸線の周りに回転されるタービン動翼であって、
 前記軸線に沿った断面において、前記軸線に対して傾斜するハブ面を有するハブと、
 前記ハブ面に設けられた複数の動翼と、
を備え、
 前記動翼の後縁の先端側の端部における翼角β(度)と、該端部における前記タービン動翼の直径Dと、前記動翼の枚数n(枚)とによって、lを次の(1)式で表す値とし、
  l=D×sin{360/(n×2)}×sinβ   ・・・(1)
 前記lを前記端部と前記動翼の前縁における前記先端側の端部との距離Lで除した値(l/L)は、0.3以上0.65以下である。
 上記(2)の構成において、lは、次に述べる直線上の2点間の距離に該当する。ここで、該直線は、動翼を径方向外側から見たときに、動翼の後縁の先端側の端部を通り、且つ、該端部における翼角と同じ角度で延在する直線である。そして、該2点のうちの一方の点は、該端部であり、他方の点は、該動翼の背側(負圧面側)で隣り合う動翼の後縁の先端側の端部から該直線に向かう垂線と該直線との交点である。
 上記(2)の構成において、l/Lで表される値が小さくなることは、スロート部の形成位置が後縁に近づくことを意味している。
 したがって、上記(2)の構成によれば、l/Lで表される値が0.3以上0.65以下であるので、該値が0.65を超える場合と比べて、スロート部の形成位置を後縁に近づけることができる。スロート部の形成位置が後縁に近づくことで、スロート部を形成する一方の動翼の第1位置と、他方の動翼の第2位置とのコード方向の位置の差が小さくなる。そのため、第1位置における翼角と第2位置における翼角との差、すなわち、スロート部における一方の動翼の翼角と他方の動翼の翼角との差が縮まることで、スロート部における翼間距離の拡大が抑制される。
 したがって、上記(2)の構成によれば、チップ側における作動流体(排気ガス)の流量を抑制できるので、タービンにおける損失を抑制できる。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、前記複数の動翼は、後縁と、前記後縁からコード方向に沿って規定の長さだけ前縁側に遡った位置との間の範囲内で、前記コード方向の位置によらず翼角が一定となる領域を有する。
 スロート部が動翼の後縁の近くに形成される場合、上記構成(3)のように、後縁と、後縁からコード方向に沿って規定の長さだけ前縁側に遡った位置との間の範囲内で、コード方向の位置によらず翼角が一定となる領域を設けると、該領域を設けなかった場合と比べて、スロート部における一方の動翼の翼角と他方の動翼の翼角との差を縮めることができる。したがって、上記(3)の構成によれば、スロート部における翼間距離の拡大を抑制してチップ側における作動流体(排気ガス)の流量を抑制できるので、タービンにおける損失を抑制できる。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、前記動翼の枚数は、12枚以下である。
 上述したように、翼の枚数を減らすと、隣り合う2つの翼の翼間距離が広がり、翼間距離が最も小さくなるスロート部においても翼間距離が広がる。また、翼枚数が少ないほど、動翼1枚当たりの負荷が増え、作動ガスの流量も増えるので、チップ側での漏れの流れの影響が相対的に大きくなる。
 その点、上記(4)の構成によれば、上記(1)乃至(3)の何れかの構成を有するとともに、12枚以下という比較的少ない枚数の動翼を有するタービンであるので、上記(1)乃至(3)の何れかの構成による損失の抑制効果が一層際立つ。
(5)本発明の少なくとも一実施形態に係るタービンは、
 上記構成(1)乃至(4)の何れかのタービン動翼と、
 前記タービン動翼を回転自在に収容するケーシングと、
を備える。
 上記(5)の構成によれば、上記(1)乃至(4)の何れかのタービン動翼を有するので、タービンにおける損失を抑制できる。
(6)幾つかの実施形態では、上記(5)の構成において、
 前記タービン動翼への作動流体の流れを調整する可変ノズル機構
をさらに備える。
 上記可変ノズル機構を有する可変容量型のタービンでは、可変容量型ではないタービンと比べて、作動流体の流量の範囲が広く、翼の枚数が少ない傾向にある。
 その点、上記(6)の構成によれば、上記(1)乃至(4)の何れかのタービン動翼を有するので、タービンにおける損失の抑制効果が一層際立つ。
 本発明の少なくとも一実施形態によれば、タービンにおける損失を抑制できる。
幾つかの実施形態に係るターボチャージャの一例を示す断面図である。 幾つかの実施形態に係るタービン動翼の外観の斜視図である。 動翼の先端部の周方向展開図であり、タービン動翼の軸線を中心とする角度位置を横軸にとり、タービン動翼の軸線に沿った高さ位置を縦軸にとった図である。 従来のタービン動翼のスロート部における翼間距離と、幾つかの実施形態に係るタービン動翼のスロート部における翼間距離とを比較した図である。 動翼の先端部の周方向展開図であり、タービン動翼の軸線を中心とする角度位置を横軸にとり、タービン動翼の軸線に沿った高さ位置を縦軸にとった図である。 従来のタービン動翼におけるLt/rの値と、幾つかの実施形態に係るタービン動翼におけるLt/rの値とを比較した図である。 動翼の先端部の周方向展開図であり、タービン動翼の軸線を中心とする角度位置を横軸にとり、タービン動翼の軸線に沿った高さ位置を縦軸にとった図である。 可変ノズル機構を備えた一実施形態に係る可変容量タービンを示した概略断面図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、幾つかの実施形態に係るターボチャージャ1の一例を示す断面図である。
 幾つかの実施形態に係るターボチャージャ1は、例えば自動車などの車両に搭載されるエンジンの吸気を過給するための排気ターボ過給機である。
 ターボチャージャ1は、ロータシャフト2を回転軸として連結されたタービンホイール(タービン動翼)3及びコンプレッサホイール4と、タービン動翼3を回転自在に収容するケーシング(タービンハウジング)5と、コンプレッサホイール4を回転自在に収容するコンプレッサハウジング6とを有する。また、タービンハウジング5は、スクロール7を有する。コンプレッサハウジング6は、スクロール8を有する。
 また、タービンハウジング5のタービン動翼3の外周側には、タービン動翼3を覆うようにシュラウド9が形成されている。幾つかの実施形態に係るタービン30は、タービン動翼3と、ケーシング5とを備える。
 図2は、幾つかの実施形態に係るタービン動翼3の外観の斜視図である。
 幾つかの実施形態に係るタービン動翼3は、ロータシャフト(回転軸)2に連結されて軸線AXの周りに回転されるタービン動翼である。幾つかの実施形態に係るタービン動翼3は、軸線AXに沿った断面において、軸線AXに対して傾斜するハブ面32を有するハブ31と、ハブ面32に設けられた複数の動翼33とを有する。なお、図2に示したタービン動翼3はラジアルタービンであるが、斜流タービンであってもよい。図2において、矢印Rはタービン動翼3の回転方向を示す。動翼33は、タービン動翼3の周方向に間隔をあけて複数設けられる。
 このように構成されるターボチャージャ1では、作動流体である排気ガスは、タービン動翼3の前縁36から後縁37に向かって流れる。
 ターボチャージャ1のように、自動車等に用いられる排気ターボ過給機は、比較的小型のものであり、作動範囲が広く、回転数が高い。そのため、タービン動翼3において、動翼33の厚さをハブ31側で厚くする必要がある。その結果、翼間の距離が狭くなるので、動翼33の枚数を増やすことが難しい。また、自動車等に用いられる排気ターボ過給機のタービンは、過渡応答性が良好であることが求められる。そのため、慣性モーメントを抑制するために動翼33の枚数を抑制する傾向にある。
 動翼33の枚数を減らすと、隣り合う2つの動翼33の翼間距離が広がり、翼間距離が最も小さくなるスロート部においても翼間距離も広がる。
 タービン動翼3のような半径流入式タービンでは、タービン動翼3の先端部(チップ)34側で損失が大きくなる傾向にある。そのため、スロート部のチップ34側における翼間距離が広がると、チップ34側における作動流体(排気ガス)の流量が増え、損失が大きくなってしまう。
 ここで、スロート部は、隣り合う2つの動翼のうち一方の動翼における、あるコード方向の位置(以下、第1位置とも呼ぶ)と、他方の動翼における、あるコード方向の位置(以下、第2位置とも呼ぶ)との間に形成される。なお、コード方向とは、翼における前縁と後縁とを結ぶ線分に沿った方向のことである。
 すなわち、幾つかの実施形態に係るタービン動翼3では、例えば図2に示すように、隣接する2つの動翼33のうちの一方の動翼33Aの圧力面38と、他方の動翼33Bの負圧面39との間には、翼間流路40が形成される。そして、翼間流路40は、翼間距離が最も小さくなるスロート部41を有している。図2において、スロート部41は、二点鎖線のハッチングを施した領域である。幾つかの実施形態に係るタービン動翼3では、スロート部41は、隣接する2つの動翼33のうちの一方の動翼33Aの後縁37と、他方の動翼33Bの負圧面39との間に画定される。幾つかの実施形態に係るタービン動翼3では、上記第1位置が一方の動翼33Aの後縁37上に存在し、上記第2位置が他方の動翼33Bの負圧面39上に存在する。
 図3は、動翼33の先端部34の周方向展開図であり、タービン動翼3の軸線AXを中心とする角度位置を横軸にとり、タービン動翼3の軸線AXに沿った高さ位置を縦軸にとった図である。なお、図3において、動翼33は、動翼33の圧力面38と負圧面39の中間点を結ぶキャンバラインに沿った線として模式的に示している。
 動翼33の枚数を抑制すると、図3に示すように、スロート部41(図2参照)を形成する一方の動翼33Aの第1位置P1と、他方の動翼33Bの第2位置P2とで、コード方向の位置の差が広がる傾向がある。
 例えば、図3に示すように、一方の動翼33Aを破線で示した角度位置から矢印aで示すように実線で示した角度位置まで、他方の動翼33Bから遠ざかる方向に移動させると、上記第1位置P1は、一方の動翼33Aの後縁37上に存在することとなるが、上記第2位置P2は、他方の動翼33Bの負圧面39において、矢印bで示すように前縁36側へ移動する。
 一般的には、コード方向の位置によって翼角βが異なるため、上述したように動翼33の枚数を抑制すると、第1位置P1と第2位置P2とのコード方向の位置の差が広がって、第1位置P1における翼角βと第2位置P2における翼角βとの差、すなわち、スロート部41における一方の動翼33Aの翼角βと他方の動翼33Bの翼角βとの差が広がる傾向がある。
 なお、翼角βとは、動翼33のある位置において、径方向外側から見たときの軸線AX方向とキャンバラインとがなす角度βである。
 このように、スロート部41における一方の動翼33Aの翼角βと他方の動翼33Bの翼角βとの差が広がると、動翼33の枚数が減って隣り合う2つの動翼33の翼間距離が広がること以上にスロート部41における翼間距離Ltが広がることとなる。
 そのため、動翼33の枚数を減らすと、先端(チップ)34側における作動流体(排気ガス)の流量がより増えることとなり、損失がより大きくなってしまうこととなる。
 そこで、幾つかの実施形態に係るタービン動翼3では、後縁37の近傍においてコード方向の位置の変化量に対する翼角βの変化量が十分に小さくなるように動翼33の形状を設定した。
 すなわち、幾つかの実施形態に係るタービン動翼3の各動翼33において、例えば図2に示すように、後縁37と、後縁37からコード方向に沿って規定の長さだけ前縁36側に遡った位置51との間の範囲を範囲RAとする。幾つかの実施形態に係るタービン動翼3では、後述する条件を満たすように範囲RAの形状を設定した。
 このように、後述する条件を満たすように範囲RAの形状を設定して、後縁37の近傍においてコード方向の位置の変化量に対する翼角βの変化量が十分に小さくなるように動翼33の形状を設定することで、動翼33の枚数を減らすことで隣り合う2つの動翼33の翼間距離が広がっても、動翼33の翼間距離が広がること以上にスロート部41における翼間距離Ltが広がることを抑制できる。
 図4は、従来のタービン動翼のスロート部における翼間距離と、幾つかの実施形態に係るタービン動翼3のスロート部41における翼間距離Ltとを比較した図である。図4において、縦軸は、スロート部における翼間距離を示し、横軸は、軸線AXからの距離rを示している。図4における矩形のプロットは、従来のタービン動翼のスロート部における翼間距離を表し、三角のプロットは、幾つかの実施形態に係るタービン動翼3のスロート部41における翼間距離Ltを表している。
 なお、図4に係る従来のタービン動翼は、例えば図2に示したタービン動翼3のうち、上述した範囲RAが切り欠かれた形状を有する動翼を備えている。換言すると、図4に係るタービン動翼3は、従来のタービン動翼の後縁に上述した範囲RAで示す部分を付加した形状を有する動翼33を備えている。
 図5は、動翼33の先端部34の周方向展開図であり、タービン動翼3の軸線AXを中心とする角度位置を横軸にとり、タービン動翼3の軸線AXに沿った高さ位置を縦軸にとった図である。なお、図5において、動翼33は、動翼33の圧力面38と負圧面39の中間点を結ぶキャンバラインに沿った線として模式的に示している。図5において、動翼33のうち、破線で示した部分は、従来のタービン動翼における動翼に相当する部分を表し、実線で示した部分は、上述した範囲RAで示す部分である。
 図5に示すように、従来の動翼の後縁37Bに上述した範囲RAで示す部分を付加することで、従来のタービン動翼のスロート部における翼間距離Lt(Lt2)よりもスロート部41における翼間距離Lt(Lt1)を小さくすることができる。
 図4に示すように、幾つかの実施形態に係るタービン動翼3では、先端部34において、従来のタービン動翼よりもスロート部41における翼間距離Ltが小さい。これにより、先端部34における作動流体(排気ガス)の流量を抑制でき、タービン30における損失を抑制できる。
 また、上述したように、タービン動翼3における動翼33の形状を、従来のタービン動翼の後縁37Bに上述した範囲RAで示す部分を付加した形状とすることにより、従来のタービン動翼における動翼の形状を大きく変えることなく、タービン30における損失を抑制できる。これにより、動翼33の形状の設計に要するコストを低減できる。
 以下、幾つかの実施形態に係るタービン動翼3について、より具体的に説明する。
 例えば、幾つかの実施形態に係るタービン動翼3では、隣り合う2つの動翼33の翼間距離が最も小さくなるスロート部41において、次の条件を満たすように、動翼33を形成している。すなわち、図2に示すように、スロート部41において、ある径方向位置Pにおける翼間距離Ltを当該径方向位置Pにおける軸線AXからの距離rで除した値(Lt/r)を考える。幾つかの実施形態に係るタービン動翼3では、Lt/rは、動翼33のスパン方向において、ハブ31側の基端部35の位置をゼロとし、ハブ31側とは反対側の先端部34の位置を1としたときの無次元スパン長さが0.2以上0.65以下の範囲の位置において最大値をとる。
 これにより、無次元スパン長さが0.65を超える位置においてLt/rの値が最大となる場合と比べて、先端部34側における作動流体(排気ガス)の流量を抑制できる。したがって、幾つかの実施形態に係るタービン動翼3によれば、タービン30における損失を抑制できる。
 すなわち、幾つかの実施形態に係るタービン動翼3を有するタービン30では、損失を抑制できる。
 図6は、従来のタービン動翼におけるLt/rの値と、幾つかの実施形態に係るタービン動翼3におけるLt/rの値とを比較した図である。図6において、縦軸は、Lt/rの値を示し、横軸は、無次元スパン長さを示している。図6における矩形のプロットは、従来のタービン動翼におけるLt/rの値を表し、三角のプロットは、幾つかの実施形態に係るタービン動翼3におけるLt/rの値を表している。
 なお、図6に係る従来のタービン動翼は、例えば図2に示したタービン動翼3のうち、上述した範囲RAが切り欠かれた形状を有する動翼を備えている。換言すると、図6に係るタービン動翼3は、従来のタービン動翼の後縁に上述した範囲RAで示す部分を付加した形状を有する動翼33を備えている。すなわち、図6に係る従来のタービン動翼は、図4に係る従来のタービン動翼と同一である。また、図6に係るタービン動翼3は、図4に係るタービン動翼3と同一である。
 図6に示すように、従来のタービン動翼では、無次元スパン長さが1に近い値をとるときにLt/rの値が最大となるが、図6に係るタービン動翼3では、無次元スパン長さが0.4から0.5付近の値をとるときにLt/rの値が最大となる。
 また、例えば、幾つかの実施形態に係るタービン動翼3では、次に述べるように、下記の値lを下記の距離Lで除した値(l/L)が、0.3以上0.65以下となるように動翼33を形成している。
 なお、lは、次の(1)式で表される値である。
  l=D×sin{360/(n×2)}×sinβ1   ・・・(1)
 ここで、β1は、動翼33の後縁37の先端部34側の端部P3における翼角β(度)である。Dは、該端部P3におけるタービン動翼3の直径である。nは、動翼の枚数である。
 Lは、端部P3と動翼33の前縁36における先端部34側の端部P4との距離である。すなわち、Lは、動翼33の先端部34におけるコード長である。
 図7を参照して、上記lについて説明する。図7は、動翼33の先端部34の周方向展開図であり、タービン動翼3の軸線AXを中心とする角度位置を横軸にとり、タービン動翼3の軸線AXに沿った高さ位置を縦軸にとった図である。
 図7に示すように、lは、次に述べる直線E上の2点間の距離に該当する。ここで、該直線Eは、動翼33を径方向外側から見たときに、動翼33の後縁37の先端部34側の端部P3を通り、且つ、該端部P3における翼角βであるβ1(度)と同じ角度で延在する直線である。そして、該2点のうちの一方の点は、該端部P3であり、他方の点は、該動翼33の背側(負圧面39側)で隣り合う動翼33の後縁37の先端部34側の端部P3から該直線Eに向かう垂線Fと該直線Eとの交点P5である。
 図7より明らかなように、lは、隣り合う2つの動翼33の後縁37の先端部34側の端部P3同士の直線距離Aとsinβ1との積(A×sinβ1)である。
 なお、距離Aは、次の(2)式で求めることができる。
  A=D×sin{360/(n×2)}   ・・・(2)
 上記l/Lで表される値が小さくなることは、スロート部41の形成位置が後縁37に近づくことを意味している。
 したがって、上述した幾つかの実施形態では、l/Lで表される値が0.3以上0.65以下であるので、該値が0.65を超える場合と比べて、スロート部41の形成位置を後縁37に近づけることができる。スロート部41の形成位置が後縁37に近づくことで、スロート部41を形成する一方の動翼33Aの第1位置P1と、他方の動翼33Bの第2位置P2とのコード方向の位置の差が小さくなる。そのため、第1位置P1における翼角βと第2位置P2における翼角βとの差、すなわち、スロート部41における一方の動翼33Aの翼角βと他方の動翼33Bの翼角βとの差が縮まることで、スロート部41における翼間距離Ltの拡大が抑制される。
 したがって、上述した幾つかの実施形態では、チップ34側における作動流体(排気ガス)の流量を抑制できるので、タービン30における損失を抑制できる。
 なお、上述した幾つかの実施形態において、動翼33は、後縁37と、後縁37からコード方向に沿って規定の長さ(例えばコード長の20%以下の長さ)だけ前縁36側に遡った位置51との間の範囲RA内で、コード方向の位置によらず翼角βが一定となる領域を有するようにしてもよい。
 スロート部41が動翼33の後縁37の近くに形成される場合、上述したように、上記範囲RA内で、コード方向の位置によらず翼角βが一定となる領域を設けると、該領域を設けなかった場合と比べて、スロート部41における一方の動翼33Aの翼角βと他方の動翼33Bの翼角βとの差を縮めることができる。したがって、スロート部17における翼間距離Ltの拡大を抑制してチップ34側における作動流体(排気ガス)の流量を抑制できるので、タービン30における損失を抑制できる。
 上述した幾つかの実施形態において、動翼33の枚数は、12枚以下であるとよい。
 上述したように、動翼33の枚数を減らすと、隣り合う2つの動翼33の翼間距離が広がり、翼間距離が最も小さくなるスロート部41においても翼間距離Ltが広がる。また、動翼33の枚数が少ないほど、動翼1枚当たりの負荷が増え、作動ガスの流量も増えるので、チップ34側での漏れの流れの影響が相対的に大きくなる。
 その点、上述した幾つかの実施形態に係るタービン動翼3の特徴を12枚以下という比較的少ない枚数の動翼33を有するタービン動翼3に適用することで、タービン30における損失の抑制効果が一層際立つ。
 なお、幾つかの実施形態に係るタービン30は、タービン動翼3への作動流体の流れを調整する可変ノズル機構60を備えていてもよい。
 図8は、可変ノズル機構を備えた一実施形態に係る可変容量型のタービン(可変容量タービン)を示した概略断面図である。
 図8に示すように、一実施形態に係る可変容量タービン30Aは、上述した幾つかの実施形態に係るタービン動翼3と、タービン動翼3を回転自在に収容するケーシング(タービンハウジング)5Aと、タービン動翼3に向かって流れる作動流体の流れ方向を制御するための可変ノズル機構60とを備える。
 図8に示した実施形態では、可変ノズル機構60は、ノズルベーン64を含んでいる。図8に示した実施形態では、複数のノズルベーン64が周方向に間隔を置いて配置されている。隣接するノズルベーン64の間にはノズル流路64aが形成される。ノズルベーン64は、駆動機構66によってノズル軸65がその軸線周りに回動されることで、その翼角が変化するように構成されている。
 上記可変ノズル機構60を有する可変容量タービン30Aでは、可変容量型ではないタービン30と比べて、作動流体の流量の範囲が広く、翼の枚数が少ない傾向にある。
 その点、一実施形態に係る可変容量タービン30Aでは、上述した幾つかの実施形態に係るタービン動翼3を有するので、可変容量タービン30Aにおける損失の抑制効果が一層際立つ。
 本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
1 ターボチャージャ
3 タービンホイール(タービン動翼)
5 ケーシング(タービンハウジング)
30 タービン
30A 可変容量タービン
31 ハブ
32 ハブ面
33 動翼
34 先端部(チップ)
35 基端部
36 前縁
37 後縁
41 スロート部
60 可変ノズル機構

Claims (6)

  1.  回転軸に連結されて軸線の周りに回転されるタービン動翼であって、
     前記軸線に沿った断面において、前記軸線に対して傾斜するハブ面を有するハブと、
     前記ハブ面に設けられた複数の動翼と、
    を備え、
     隣り合う2つの前記動翼の翼間距離が最も小さくなるスロート部において、ある径方向位置における前記翼間距離Ltを当該径方向位置における前記軸線からの距離rで除した値(Lt/r)は、前記動翼のスパン方向において、ハブ側の基端部の位置をゼロとし、前記ハブ側とは反対側の先端部の位置を1としたときの無次元スパン長さが0.2以上0.65以下の範囲の位置において最大値をとる
    タービン動翼。
  2.  回転軸に連結されて軸線の周りに回転されるタービン動翼であって、
     前記軸線に沿った断面において、前記軸線に対して傾斜するハブ面を有するハブと、
     前記ハブ面に設けられた複数の動翼と、
    を備え、
     前記動翼の後縁の先端側の端部における翼角β(度)と、該端部における前記タービン動翼の直径Dと、前記動翼の枚数n(枚)とによって、lを次の(1)式で表す値とし、
      l=D×sin{360/(n×2)}×sinβ   ・・・(1)
     前記lを前記端部と前記動翼の前縁における前記先端側の端部との距離Lで除した値(l/L)は、0.3以上0.65以下である
    タービン動翼。
  3.  前記複数の動翼は、後縁と、前記後縁からコード方向に沿って規定の長さだけ前縁側に遡った位置との間の範囲内で、前記コード方向の位置によらず翼角が一定となる領域を有する
    請求項1又は2に記載のタービン動翼。
  4.  前記動翼の枚数は、12枚以下である
    請求項1乃至3の何れか一項に記載のタービン動翼。
  5.  請求項1乃至4の何れか一項に記載のタービン動翼と、
     前記タービン動翼を回転自在に収容するケーシングと、
    を備えるタービン。
  6.  前記タービン動翼への作動流体の流れを調整する可変ノズル機構
    をさらに備える
    請求項5に記載のタービン。
PCT/JP2018/043984 2018-11-29 2018-11-29 タービン動翼及びタービン WO2020110257A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880090604.6A CN111819347B (zh) 2018-11-29 2018-11-29 涡轮机动叶片及涡轮机
JP2020557479A JP7024117B2 (ja) 2018-11-29 2018-11-29 タービン動翼及びタービン
EP18941516.9A EP3786425B1 (en) 2018-11-29 2018-11-29 Turbine rotor blade and turbine
US17/251,034 US11365631B2 (en) 2018-11-29 2018-11-29 Turbine rotor blade and turbine
PCT/JP2018/043984 WO2020110257A1 (ja) 2018-11-29 2018-11-29 タービン動翼及びタービン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/043984 WO2020110257A1 (ja) 2018-11-29 2018-11-29 タービン動翼及びタービン

Publications (1)

Publication Number Publication Date
WO2020110257A1 true WO2020110257A1 (ja) 2020-06-04

Family

ID=70854188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043984 WO2020110257A1 (ja) 2018-11-29 2018-11-29 タービン動翼及びタービン

Country Status (5)

Country Link
US (1) US11365631B2 (ja)
EP (1) EP3786425B1 (ja)
JP (1) JP7024117B2 (ja)
CN (1) CN111819347B (ja)
WO (1) WO2020110257A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054561A1 (ja) * 2020-09-10 2022-03-17 三菱重工エンジン&ターボチャージャ株式会社 タービンホイール、タービン及びターボチャージャ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100701A (ja) * 1995-10-05 1997-04-15 Mitsubishi Heavy Ind Ltd ラジアルタービンの動翼
JP2003201802A (ja) 2002-01-04 2003-07-18 Mitsubishi Heavy Ind Ltd ラジアルタービン用羽根車
JP2008133765A (ja) * 2006-11-28 2008-06-12 Ihi Corp タービンインペラ
JP2011117344A (ja) * 2009-12-02 2011-06-16 Ihi Corp ラジアルタービンおよび過給機
JP2016098757A (ja) * 2014-11-25 2016-05-30 三菱重工業株式会社 インペラ、及び回転機械
WO2018131167A1 (ja) * 2017-01-16 2018-07-19 三菱重工エンジン&ターボチャージャ株式会社 タービンホイール、タービン及びターボチャージャ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101178011B (zh) * 2007-11-23 2012-07-25 西安交通大学 一种提高向心涡轮性能的叶轮叶片顶部结构
JP5398515B2 (ja) * 2009-12-22 2014-01-29 三菱重工業株式会社 ラジアルタービンの動翼
CN202431307U (zh) * 2012-02-01 2012-09-12 大同北方天力增压技术有限公司 一种混流涡轮增压器的涡轮
CN104854325B (zh) * 2012-12-27 2017-05-31 三菱重工业株式会社 辐流式涡轮动叶片
JP6413980B2 (ja) * 2014-09-04 2018-10-31 株式会社デンソー ターボチャージャの排気タービン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09100701A (ja) * 1995-10-05 1997-04-15 Mitsubishi Heavy Ind Ltd ラジアルタービンの動翼
JP2003201802A (ja) 2002-01-04 2003-07-18 Mitsubishi Heavy Ind Ltd ラジアルタービン用羽根車
JP2008133765A (ja) * 2006-11-28 2008-06-12 Ihi Corp タービンインペラ
JP2011117344A (ja) * 2009-12-02 2011-06-16 Ihi Corp ラジアルタービンおよび過給機
JP2016098757A (ja) * 2014-11-25 2016-05-30 三菱重工業株式会社 インペラ、及び回転機械
WO2018131167A1 (ja) * 2017-01-16 2018-07-19 三菱重工エンジン&ターボチャージャ株式会社 タービンホイール、タービン及びターボチャージャ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3786425A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022054561A1 (ja) * 2020-09-10 2022-03-17 三菱重工エンジン&ターボチャージャ株式会社 タービンホイール、タービン及びターボチャージャ
JP7503461B2 (ja) 2020-09-10 2024-06-20 三菱重工エンジン&ターボチャージャ株式会社 タービンホイール、タービン及びターボチャージャ
US12025024B2 (en) 2020-09-10 2024-07-02 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Turbine wheel, turbine, and turbocharger

Also Published As

Publication number Publication date
JP7024117B2 (ja) 2022-02-22
EP3786425A4 (en) 2021-06-23
JPWO2020110257A1 (ja) 2021-09-02
US11365631B2 (en) 2022-06-21
EP3786425A1 (en) 2021-03-03
EP3786425B1 (en) 2022-08-17
CN111819347B (zh) 2022-06-07
CN111819347A (zh) 2020-10-23
US20210172320A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
CN103906895B (zh) 斜流式涡轮
US9745859B2 (en) Radial-inflow type axial flow turbine and turbocharger
WO2017168766A1 (ja) 回転機械翼、過給機、および、これらの流れ場の形成方法
CN109844263B (zh) 涡轮机叶轮、涡轮机及涡轮增压器
JP5398515B2 (ja) ラジアルタービンの動翼
US20170342997A1 (en) Compressor and turbocharger
WO2020110257A1 (ja) タービン動翼及びタービン
CN109477417B (zh) 涡轮增压器、涡轮增压器的喷嘴叶片以及涡轮机
WO2022054561A1 (ja) タービンホイール、タービン及びターボチャージャ
JP2020186649A (ja) 遠心圧縮機のインペラ、遠心圧縮機及びターボチャージャ
CN112154260B (zh) 喷嘴叶片
JP6605147B2 (ja) ターボチャージャ及びターボチャージャのノズルベーン並びにタービン
WO2020129234A1 (ja) ターボ機械
WO2020100420A1 (ja) ノズルベーン
JP7395002B2 (ja) タービン及びターボチャージャ
US11835057B2 (en) Impeller of centrifugal compressor, centrifugal compressor, and turbocharger
US11753960B2 (en) Nozzle vane
JPWO2019167181A1 (ja) 半径流入式タービン及びターボチャージャー
JP2011252431A (ja) タービンインペラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018941516

Country of ref document: EP

Effective date: 20201126

ENP Entry into the national phase

Ref document number: 2020557479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE