WO2020108281A1 - 天线结构及终端设备 - Google Patents

天线结构及终端设备 Download PDF

Info

Publication number
WO2020108281A1
WO2020108281A1 PCT/CN2019/117066 CN2019117066W WO2020108281A1 WO 2020108281 A1 WO2020108281 A1 WO 2020108281A1 CN 2019117066 W CN2019117066 W CN 2019117066W WO 2020108281 A1 WO2020108281 A1 WO 2020108281A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal arm
antenna structure
metal
equal
resonance frequency
Prior art date
Application number
PCT/CN2019/117066
Other languages
English (en)
French (fr)
Inventor
陶延辉
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020108281A1 publication Critical patent/WO2020108281A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2258Supports; Mounting means by structural association with other equipment or articles used with computer equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/28Arrangements for establishing polarisation or beam width over two or more different wavebands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/50Feeding or matching arrangements for broad-band or multi-band operation

Definitions

  • Embodiments of the present disclosure relate to the field of electronic technology, and in particular, to an antenna structure and terminal equipment.
  • 5G NR New Radio
  • 5G mobile phones need to first use 2T4R (2 antenna transmission/4 antenna reception) as the basic solution of the transceiver in the sub-6GHz (below 6GHz frequency band) frequency band.
  • 4 MIMO on the basis of at least 4 more sub-6G antennas (domestic sub-6G includes N78, N79 two frequency bands, a combination of 4 antennas covering two frequency bands or more single-band antennas). Coupled with GPS L5 band antennas that can be used to improve positioning accuracy, it is equivalent to 5 to 9 more antennas than before.
  • some operators also have some inter-band carrier aggregation (CA) requirements, such as requiring B1/B3, B39/B41, N78/B3, N79/B41 coexistence, etc., requiring antennas to cover multiple Frequency band.
  • CA inter-band carrier aggregation
  • the increase of antennas also means the increase of antenna slots, which will have a great impact on the reliability and appearance of the structure. All the above factors will restrict the design of the antenna, which will bring very serious challenges to the antenna workers.
  • Embodiments of the present disclosure provide an antenna structure and a mobile terminal to solve the problem that 5G terminal equipment antennas cover a large number of frequency bands, resulting in a large number of antennas and a difficult layout of the entire antenna.
  • an embodiment of the present disclosure provides an antenna structure, including:
  • a metal arm the metal arm is provided with a gap dividing the metal arm into a first metal arm and a second metal arm, and one end of the first metal arm and the second metal arm away from the gap are grounded;
  • a feeding point is provided at the preset position of the first metal arm;
  • An impedance matching network which is connected to the feed point and the feed source, respectively;
  • the first metal arm is excited by the feed source to generate a first resonance mode with a first resonance frequency and a second resonance mode with a second resonance frequency;
  • the second metal arm generates a third resonance mode with a third resonance frequency through the gap coupling.
  • an embodiment of the present disclosure also provides a mobile terminal, including: the antenna structure described in the foregoing embodiment.
  • a slit is formed on the metal arm to divide the metal arm into a first metal arm and a second metal arm, and a feed point is provided at a preset position of the first metal arm and the An impedance matching network connected to the electrical point and the feed, such an antenna structure can realize that the first metal arm generates a first resonance mode with a first resonance frequency and a second resonance mode with a second resonance frequency through the feed source excitation,
  • the second metal arm generates a third resonant mode with a third resonant frequency through slot coupling, and while meeting the antenna performance requirements, one antenna structure can cover multiple frequency bands, which can reduce the number of antennas, and It is beneficial to reduce the structural space occupied by the overall feed network, reduces the layout difficulty of the whole antenna, and can also reduce the number of slots of the whole antenna, which is helpful to improve the structural strength and meet the appearance requirements of the whole product.
  • FIG. 1 is a schematic diagram of an antenna structure according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the voltage standing wave ratio of the antenna structure according to an embodiment of the present disclosure as a function of frequency;
  • FIG. 3 is one of the schematic diagrams of the impedance adjustment circuit and the impedance matching network connected in series according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of an impedance adjustment circuit and an impedance matching network connected in parallel according to an embodiment of the present disclosure.
  • FIG. 1 it is a schematic structural diagram of an antenna structure provided by an embodiment of the present disclosure.
  • the antenna structure includes: a feed 5; a metal arm provided with a slit 3 that divides the metal arm into a first metal arm 1 and a second metal arm 2, and an end E and a second of the first metal arm 1 One end A of the metal arm 2 away from the gap 3 is grounded; a preset position of the first metal arm 1 is provided with a feeding point D; an impedance matching network 4 is connected to the feeding point D and the feed source 5 respectively.
  • the first metal arm 1 is excited by the feed 5 to generate a first resonance mode with a first resonance frequency and a second resonance mode with a second resonance frequency; the second metal arm 2 is coupled with a gap 3 to generate a third resonance The third resonant mode of frequency.
  • first metal arm 1 and the second metal arm 2 may generally be referred to as antenna resonant arms.
  • first metal arm 1 and the second metal arm 2 are metal conductive materials, which may be common flexible printed circuit (Flexible Printed Circuit, FPC), printing direct molding (PDS), laser direct molding (Laser Direct Structuring (LDS) material may also be a metal conductor such as a metal middle frame or a part of a metal back cover.
  • FPC Flexible printed circuit
  • PDS printing direct molding
  • LDS Laser Direct Structuring
  • G1 and G2 are the reference grounds for the antenna.
  • CE which is the first metal arm 1
  • AB which is the second metal arm 2
  • G2 is connected to G2 to form the second antenna unit.
  • the gap 3 is filled with non-metal dielectric materials, and common media such as plastics are used.
  • the capacitance value of the coupling capacitor is related to the area of the end surface where points B and C are located, the distance between B and C, and the medium filled in the gap 3.
  • the radio frequency energy reaches the feeding point D of the first metal arm 1 through the feed source 5 and the impedance matching network 4, and thereby excites to generate the first resonance mode having the first resonance frequency and the second resonance frequency.
  • Two resonance modes Two resonance modes.
  • the radio frequency energy passes through the feed point D of the first antenna unit (the first metal arm 1 and G1 form the first antenna unit) through the feed source 5 and the impedance matching network 4 to the first metal arm 1 and the second metal arm 2
  • the metal part at one end of the slot 3 is formed.
  • the metal arm in the DC section in the figure reaches point C, and the RF energy is transferred to the second antenna unit through the coupling capacitor of the slot 3 (the second metal arm 2 is connected to G2 to form the first Two antenna elements), and thereby excite a third resonance mode with a third resonance frequency.
  • the size of the third resonance frequency is related to the length of the second metal arm 2.
  • the length of the second metal arm 2 is related to the gap 3, for example, to the area of the end surface where points B and C are located, the distance between B and C, and the medium filled in the gap 3.
  • a slit is formed on the metal arm to divide the metal arm into a first metal arm and a second metal arm, and a feeding point and a separate point are provided at a predetermined position of the first metal arm
  • An impedance matching network connected to the feed point and the feed source can realize that the first metal arm generates the first resonance mode with the first resonance frequency and the second resonance with the second resonance frequency through the feed source excitation Mode, the second metal arm generates a third resonant mode with a third resonant frequency through the gap coupling, and while meeting the antenna performance requirements, one antenna structure can cover multiple frequency bands, which can reduce the number of antennas , Which in turn helps to reduce the structural space occupied by the overall feed network, reduces the layout difficulty of the whole antenna, and can also reduce the number of slots in the whole antenna, which is conducive to improving the structural strength of the whole machine and satisfying the whole product Appearance requirements.
  • the length from the feeding point D to the other end C of the first metal arm 1 is greater than or Equal to 2mm and less than or equal to 8mm.
  • the length from the feeding point D to the other end C of the first metal arm 1 is 5 mm.
  • the resonant mode based on the GPS L5 band and the resonant mode based on the 5G N79 band are optional.
  • the length of the first metal arm 1 is greater than or equal to 22 mm and less than or equal to 30 mm.
  • GPS L5 frequency band is specifically: 1176.45 ⁇ 50MHz.
  • the 5G N79 frequency band is specifically: 4400MHz ⁇ 5000MHz.
  • the length of the first metal arm 1 is 26 mm.
  • the coupling capacitance of the second metal arm 2 through the gap 3 The resonance mode based on the 5G N78 frequency band is excited.
  • the length of the second metal arm 2 is greater than or equal to 5 mm and less than or equal to 11 mm.
  • the 5G N78 frequency band is specifically: 3300MHz ⁇ 3800MHz.
  • the first resonance frequency f1 is less than the third resonance frequency f3, and the third resonance frequency f3 is less than the second resonance frequency f2.
  • the resonance mode based on the WIFI 2.4 frequency band and the resonance mode based on the 5G N79 frequency band optionally, the first metal
  • the length of the arm 1 is greater than or equal to 8 mm and less than or equal to 18 mm.
  • the WIFI 2.4 frequency band is specifically: 2400M MHz ⁇ 2500MHz.
  • the length of the first metal arm is 10 mm.
  • the resonance mode based on the WIFI 2.4 frequency band and the resonance mode based on the 5G N79 frequency band the coupling capacitance of the second metal arm 2 through the gap 3
  • the resonance mode based on the 5G N78 frequency band is excited.
  • the length of the second metal arm 2 is greater than or equal to 5 mm and less than or equal to 11 mm.
  • the first resonance frequency f1 is less than the third resonance frequency f3, and the third resonance frequency f3 is less than the second resonance frequency f2.
  • the antenna structure can finally generate three resonance modes of the first resonance frequency f1, the second resonance frequency f2, and the third resonance frequency f3 at the same time.
  • FIG. 2 it is a schematic diagram of the voltage standing wave ratio of the antenna structure changing with frequency at the same time.
  • the horizontal axis is used to represent the frequency f
  • the vertical axis is used to represent the voltage standing wave ratio VWSR.
  • curve H represents the first resonance mode excited by the first metal arm 1 (the metal portion of the CE segment in FIG.
  • the corresponding first resonance frequency f1 is the frequency in the GPS L5 frequency band; if the length of the first metal arm 1 is greater than or equal to 8mm and less than or equal to 18mm, the corresponding first resonance frequency f1 is the frequency in the WIFI 2.4 frequency band.
  • the impedance matching network 4 includes but is not limited to one of the following combinations:
  • a third inductance and a third capacitance, the third inductance is in parallel with the third capacitance.
  • any series-parallel combination can also be performed between the above combinations.
  • the role of the impedance matching network 4 is to achieve matching between the antenna and the feeder to obtain maximum power transmission.
  • the antenna structure of the present disclosure may further include:
  • An impedance adjustment circuit connected in series or in parallel with the impedance matching network 4.
  • the impedance adjustment circuit is used to optimize the antenna bandwidth and widen the antenna bandwidth, and also to correct the resonance frequency of the antenna so that the antenna impedance circle becomes more convergent on the Smith chart, thereby widening the bandwidth and improving the performance of the antenna.
  • FIG. 3 it is one of the schematic diagrams of the impedance adjustment circuit and the impedance matching network connected in series.
  • the antenna structure includes multiple impedance matching networks, such as M1 and Mn, and the impedance adjustment circuit includes: a fourth inductor and a fourth capacitor connected in series with the fourth inductor.
  • the fourth inductor and the fourth capacitor are connected in series first, and then connected in series between the impedance matching network M1 and Mn.
  • the capacitance value of the fourth capacitor is greater than or equal to 0.1 pf and less than or equal to 1.5 pf.
  • the inductance value of the fourth inductor is greater than or equal to 1 nH and less than or equal to 8 nH.
  • the capacitance value of the fourth capacitor is 0.5 pf.
  • the inductance value of the fourth inductor is 3nH.
  • fourth inductance and fourth capacitor in series may be a group connected in series in the impedance matching network, or multiple groups connected in series in the impedance matching network.
  • FIG. 4 it is the second schematic diagram of the parallel connection of the impedance adjustment circuit and the impedance matching network.
  • the impedance adjustment circuit in the antenna structure includes: a fourth inductor and a fourth capacitor connected in series with the fourth inductor.
  • the fourth inductor and the fourth capacitor are connected in series first, and then connected in parallel on the impedance matching network M.
  • the fourth inductor and the fourth capacitor connected in series are two groups. The specific connection relationship in each group is that the first end of the fourth inductor is connected to the impedance matching network M, the second end of the fourth inductor is connected to the first end of the fourth capacitor; the second end of the fourth capacitor is grounded .
  • the capacitance value of the fourth capacitor is greater than or equal to 0.1 pf and less than or equal to 1.5 pf.
  • the inductance value of the fourth inductor is greater than or equal to 1 nH and less than or equal to 5 nH.
  • the capacitance value of the fourth capacitor is 0.3 pf.
  • the inductance value of the fourth inductor is 2.2nH.
  • the above-mentioned fourth inductance and fourth capacitor in series may be a group connected in parallel in the impedance matching network, or multiple groups connected in parallel in the impedance matching network.
  • a slit is formed on the metal arm to divide the metal arm into the first metal arm and the second metal arm.
  • An impedance matching network connected to the feed point and the feed source, such an antenna structure can realize that the first metal arm generates the first resonance mode with the first resonance frequency and the second resonance with the second resonance frequency through the feed source excitation Mode, the second metal arm generates a third resonant mode with a third resonant frequency through the gap coupling, and while meeting the antenna performance requirements, one antenna structure can cover multiple frequency bands, which can reduce the number of antennas , Which in turn helps to reduce the structural space occupied by the total feed network (including RF feed, test base, matching network, and feed dome structure, etc.), reducing the difficulty of the layout of the whole antenna, and also reducing the whole antenna The number of gaps is conducive to improving the structural strength of the machine and meeting the appearance requirements of the machine products.
  • An embodiment of the present disclosure also provides a terminal device, including: the antenna structure described in the foregoing embodiment.
  • the terminal device may further include: a metal middle frame, wherein the first metal arm 1 and the second metal arm 2 are components of the metal middle frame.
  • the terminal device described in the above embodiments may be a mobile phone, navigation, tablet computer, personal digital assistant (PDA), or notebook computer.
  • PDA personal digital assistant

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Abstract

本公开提供一种天线结构及终端设备。该天线结构包括:馈源;金属臂,所述金属臂上开设有将所述金属臂划分为第一金属臂和第二金属臂的缝隙,且所述第一金属臂的一端和第二金属臂远离缝隙的一端分别接地;所述第一金属臂的预设位置上设置有馈电点;阻抗匹配网络,所述阻抗匹配网络分别与所述馈电点和所述馈源连接。

Description

天线结构及终端设备
相关申请的交叉引用
本申请主张在2018年11月30日在中国提交的中国专利申请号No.201811455526.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及电子技术领域,尤其涉及一种天线结构及终端设备。
背景技术
随着第五代通信技术(5G)新空口(New Radio,NR)的成熟和发展,5G NR移动终端产品正离我们越来越近。
在5G时代,同一运营商拥有多种不同制式网络(包括4G、5G以及WLAN)的状况仍将长期存在。5G手机在sub-6GHz(低于6GHz频段)频段需要首先采用2T4R(2天线发送/4天线接收)作为收发信机的基本方案,对于终端天线意味着需要在原来多天线(如支持LTE 4*4MIMO)的基础上至少多4支sub-6G天线(国内sub-6G包括N78,N79两个频段,需同时覆盖两个频段的4支天线或者更多的单一频段天线的组合)。加上可以用来提高定位精度的GPS L5频段天线,相当于比以往多了5~9支天线。另外,部分运营商还有一些带间载波聚合(Carrier Aggregation,CA)的需求,比如要求B1/B3、B39/B41、N78/B3、N79/B41同时共存等等,要求天线能同时覆盖多个频段。
与此同时,随着手机屏占比的持续提升,使得天线的有效净空也正变的越来越恶劣,天线的有效辐射空间也变得越来越差。天线工作者需要解决在更加恶劣的净空环境下实现更多支的天线并且使之有效地辐射,以及同时还要解决更加复杂的天线隔离度、共存及效率问题。
对于目前主流的全金属背盖、金属中框外观手机,天线增多也意味着天线槽缝的增多,对结构的可靠性、外观都会带来很大影响。以上种种因素都会制约天线的设计,给天线工作者带来非常严峻的挑战。
发明内容
本公开实施例提供一种天线结构及移动终端,以解决5G终端设备天线覆盖的频段多,导致天线个数多,整机天线的布局难的问题。
为了解决上述技术问题,本公开是这样实现的:
第一方面,本公开的实施例提供了一种天线结构,包括:
馈源;
金属臂,所述金属臂上开设有将所述金属臂划分为第一金属臂和第二金属臂的缝隙,且所述第一金属臂的一端和第二金属臂远离缝隙的一端分别接地;所述第一金属臂的预设位置上设置有馈电点;
阻抗匹配网络,所述阻抗匹配网络分别与所述馈电点和所述馈源连接;
其中,第一金属臂通过所述馈源激励产生具有第一谐振频率的第一谐振模态和第二谐振频率的第二谐振模态;
所述第二金属臂通过缝隙耦合产生具有第三谐振频率的第三谐振模态。
第二方面,本公开的实施例还提供了一种移动终端,包括:如上述实施例所述的天线结构。
本公开实施例中,通过在金属臂上开设将该金属臂划分为第一金属臂和第二金属臂的缝隙,且在第一金属臂的预设位置上设置馈电点以及分别与该馈电点和馈源连接的阻抗匹配网络,这样的天线结构能够实现第一金属臂通过馈源激励产生出具有第一谐振频率的第一谐振模态和第二谐振频率的第二谐振模态,第二金属臂通过缝隙耦合产生出具有第三谐振频率的第三谐振模态,而且在满足天线性能要求的同时,利用一个天线结构便能覆盖多个频段,能够减少天线的个数,进而有利于减少总的馈电网络所占用的结构空间,降低了整机天线的布局难度,另外还能够减少整机天线的缝隙的数目,有利于改善结构强度以及满足整机产品的外观需求。
附图说明
图1为本公开实施例的天线结构的示意图;
图2为本公开实施例的天线结构的电压驻波比随频率的变化示意图;
图3为本公开实施例的为阻抗调整电路与阻抗匹配网络串联连接的示意 图之一;
图4为本公开实施例的为阻抗调整电路与阻抗匹配网络并联连接的示意图之一。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,为本公开实施例提供的天线结构的结构示意图。该天线结构包括:馈源5;金属臂,金属臂上开设有将该金属臂划分为第一金属臂1和第二金属臂2的缝隙3,且第一金属臂1的一端E和第二金属臂2远离缝隙3的一端A分别接地;第一金属臂1的预设位置设置有馈电点D;阻抗匹配网络4,该阻抗匹配网络4分别与馈电点D和馈源5连接。
其中,第一金属臂1通过馈源5激励产生具有第一谐振频率的第一谐振模态和第二谐振频率的第二谐振模态;第二金属臂2通过缝隙3耦合产生具有第三谐振频率的第三谐振模态。
需要说明的是,第一金属臂1和第二金属臂2通常可称为天线谐振臂。
这里,第一金属臂1和第二金属臂2为金属导电材质,可以是常见的柔性电路板(Flexible Printed Circuit,FPC)、印刷直接成型(Printing Direct Structuring,PDS)、激光直接成型(Laser Direct Structuring,LDS)材质,也可以是金属中框或金属后盖的一部分等金属导电体。
图1中,G1、G2为天线的参考地。CE,即第一金属臂1,与G1连接构成第一天线单元;AB,即第二金属臂2,与G2连接构成第二天线单元。
这里,可选的,缝隙3内填充有非金属介电材质,常见的有塑料等介质。
另外,需要说明的是,如图1所示,第一金属臂1和第二金属臂2在缝隙3的B、C点之间存在一耦合电容,相当于B、C、缝隙3以及缝隙3内填充的非金属介电材质共同构成平行板电容器。
这里,该耦合电容的电容值与B、C点所在端面的面积、B、C之间的间 距以及缝隙3内填充的介质相关。
还有,射频能量通过馈源5、阻抗匹配网络4到达第一金属臂1的馈电点D,并由此激励产生出具有第一谐振频率的第一谐振模态和第二谐振频率的第二谐振模态。
再有,射频能量通过馈源5、阻抗匹配网络4经由第一天线单元(第一金属臂1与G1连接构成第一天线单元)的馈电点D至第一金属臂1与第二金属臂2形成缝隙3的一端的金属部分,图中具体为DC段的金属臂,到达C点,通过缝隙3的耦合电容将射频能量传递至第二天线单元(第二金属臂2与G2连接构成第二天线单元),并由此激励出具有第三谐振频率的第三谐振模态。
需要说明的是,第三谐振频率的大小与第二金属臂2的长度相关。第二金属臂2的长度与缝隙3相关,比如,与B、C点所在端面的面积,B、C之间的间距以及缝隙3内填充的介质等相关。
本公开实施例提供的天线结构,通过在金属臂上开设将该金属臂划分为第一金属臂和第二金属臂的缝隙,且在第一金属臂的预设位置上设置馈电点以及分别与该馈电点和馈源连接的阻抗匹配网络,这样的天线结构能够实现第一金属臂通过馈源激励产生出具有第一谐振频率的第一谐振模态和第二谐振频率的第二谐振模态,第二金属臂通过缝隙耦合产生出具有第三谐振频率的第三谐振模态,而且在满足天线性能要求的同时,利用一个天线结构便能覆盖多个频段,能够减少天线的个数,进而有利于减少总的馈电网络所占用的结构空间,降低了整机天线的布局难度,另外还能够减少整机天线的缝隙的数目,有利于改善整机的结构强度以及满足整机产品的外观需求。
作为一可选的实现方式,馈电点D至第一金属臂1的另一端C(即馈电点D至第一金属臂1与第二金属臂2形成缝隙3的一端)的长度大于或者等于2mm且小于或者等于8mm。
这里,可选的,馈电点D至第一金属臂1的另一端C的长度为5mm。
基于上述实现方式,在一可选的实施例中,为了能够使第一金属臂1被馈源5同时激励出基于GPS L5频段的谐振模态以及基于5G N79频段的谐振模态,可选的,第一金属臂1的长度大于或者等于22mm且小于或者等于 30mm。
需要说明的是,GPS L5频段具体为:1176.45±50MHz。
5G N79频段具体为:4400MHz~5000MHz。
这里,可选的,第一金属臂1的长度为26mm。
而为了能够使第一金属臂1被馈源5同时激励出基于GPS L5频段的谐振模态以及基于5G N79频段的谐振模态的同时,也能够使第二金属臂2通过缝隙3的耦合电容激励出基于5G N78频段的谐振模态,可选的,第二金属臂2的长度大于或等于5mm且小于或者等于11mm。
需要说明的是,5G N78频段具体为:3300MHz~3800MHz。
基于上述各金属臂的尺寸特征,所述第一谐振频率f1小于所述第三谐振频率f3,所述第三谐振频率f3小于所述第二谐振频率f2。
在另一可选的实施例中,为了能够使第一金属臂1被馈源5同时激励出基于WIFI 2.4频段的谐振模态以及基于5G N79频段的谐振模态,可选的,第一金属臂1的长度大于或者等于8mm且小于或者等于18mm。
需要说明的是,WIFI 2.4频段具体为:2400M MHz~2500MHz。
这里,可选的,第一金属臂的长度为10mm。
而为了能够使第一金属臂1被馈源5同时激励出基于WIFI 2.4频段的谐振模态以及基于5G N79频段的谐振模态的同时,也能够使第二金属臂2通过缝隙3的耦合电容激励出基于5G N78频段的谐振模态,可选的,第二金属臂2的长度大于或等于5mm且小于或者等于11mm。
基于上述各金属臂的尺寸特征,所述第一谐振频率f1小于所述第三谐振频率f3,所述第三谐振频率f3小于所述第二谐振频率f2。
基于具有上述各金属臂的尺寸特征的两个实施例,天线结构最终能够同时产生第一谐振频率f1、第二谐振频率f2以及第三谐振频率f3的三个谐振模态。如图2所示,为同一时刻,该天线结构的电压驻波比随频率的变化示意图。横轴用于表示频率f,纵轴用于表示电压驻波比VWSR。其中,曲线H表示第一金属臂1(图1中的CE段金属部分)通过馈源5激励出的第一谐振模态,f1表示第一谐振频率;曲线J表示第二金属臂2(图1中AB段金属部分)通过缝隙3的耦合,从而激励出的第三谐振模态,f3表示第三谐振频率; 曲线K表示第一金属臂1(图1中的CE段金属部分)通过馈源5激励出的第二谐振模态,f2表示第二谐振频率。这三个谐振模态是同时存在的,能够实现天线的多频段覆盖。
需要说明的是,若第一金属臂1的长度大于或者等于22mm且小于或者等于30mm,则对应的第一谐振频率f1为GPS L5频段内的频率;若第一金属臂1的长度大于或者等于8mm且小于或者等于18mm,则对应的第一谐振频率f1为WIFI 2.4频段内的频率。
可选的,阻抗匹配网络4包括但不限于以下组合中的一种:
第一电感;
第一电容;
第二电感和第二电容,所述第二电感与所述第二电容串联;
第三电感和第三电容,所述第三电感与所述第三电容并联。
这里,根据实际需要,上述组合之间还可以进行任意的串并联组合。
需要说明的是,阻抗匹配网络4的作用是为了实现天线和馈线间的匹配,以获得最大的功率传输。
基于图1所示的实施例,在将上述天线结构应用到终端设备的实际整机布局设计中,馈电点D的位置往往因元器件堆叠等其他因素限制,使得馈电点D到缝隙3的距离(即如图1所示CD的长度)同可选尺寸5mm相差较大;或者,缝隙3处的耦合电容因实际B、C之间的间距以及截面尺寸或者填充的介质的不同会发生变化,耦合量的不同会影响天线的初始阻抗,导致天线谐振频率的偏移,影响天线性能,因此,为了能够满足天线的性能要求,并在减少缝隙的在整机设计时的个数的同时,保证激励出三个谐振模态,在本公开又一可选的实施例中,本公开的天线结构还可包括:
与阻抗匹配网络4串联或者并联的阻抗调整电路。
这里,阻抗调整电路用于优化天线带宽,使天线带宽变宽,还用于修正天线的谐振频率,使得天线阻抗圈在史密斯圆图上变得更收敛,从而拓宽带宽提高天线的性能。
在一示例中,如图3所示,为阻抗调整电路与阻抗匹配网络串联连接的示意图之一。天线结构包括多个阻抗匹配网络,如M1、Mn,阻抗调整电路 包括:第四电感以及与该第四电感串联的第四电容。
图3中,第四电感与第四电容先串联,再串联在阻抗匹配网络M1与Mn之间。
这里,可选地,第四电容的电容值大于或者等于0.1pf,且小于或者等于1.5pf。第四电感的电感值大于或者等于1nH,且小于或者等于8nH。
可选的,第四电容的电容值为0.5pf。第四电感的电感值为3nH。
需要说明的是,上述串联的第四电感与第四电容可以是一组串联在阻抗匹配网络中,也可以是多组分别串联在阻抗匹配网络中。
在另一示例中,如图4所示,为阻抗调整电路与阻抗匹配网络并联连接的示意图之二。天线结构中阻抗调整电路包括:第四电感以及与该第四电感串联的第四电容。
图4中,第四电感与第四电容先串联,再并联在阻抗匹配网络M上。这里,如图4所示,串联的第四电感与第四电容为两组。在每一组中具体的连接关系为,第四电感的第一端与阻抗匹配网络M连接,第四电感的第二端与第四电容的第一端连接;第四电容的第二端接地。
这里,可选地,第四电容的电容值大于或者等于0.1pf,且小于或者等于1.5pf。第四电感的电感值大于或者等于1nH,且小于或者等于5nH。
可选的,第四电容的电容值为0.3pf。第四电感的电感值为2.2nH。
需要说明的是,上述串联的第四电感与第四电容可以是一组并联在阻抗匹配网络中,也可以是多组分别并联在阻抗匹配网络中。
本公开实施例提供的天线结构,通过在金属臂上开设将该金属臂划分为第一金属臂和第二金属臂的缝隙,且在第一金属臂的预设位置上设置馈电点以及分别与该馈电点和馈源连接的阻抗匹配网络,这样的天线结构能够实现第一金属臂通过馈源激励产生出具有第一谐振频率的第一谐振模态和第二谐振频率的第二谐振模态,第二金属臂通过缝隙耦合产生出具有第三谐振频率的第三谐振模态,而且在满足天线性能要求的同时,利用一个天线结构便能覆盖多个频段,能够减少天线的个数,进而有利于减少总的馈电网络(包括射频馈电、测试座、匹配网络以及馈电弹片结构等)所占用的结构空间,降低了整机天线的布局难度,另外还能够减少整机天线的缝隙的数目,有利于改 善整机的结构强度以及满足整机产品的外观需求。
本公开实施例还提供一种终端设备,包括:如上述实施例所述的天线结构。
在一可选的实施例中,终端设备还可包括:金属中框,其中,第一金属臂1和第二金属臂2为该金属中框的组成部分。
上述实施例中所述的终端设备可以是手机、导航、平板电脑、个人数字助理(PDA)、或笔记本电脑等设备。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (11)

  1. 一种天线结构,包括:
    馈源(5);
    金属臂,所述金属臂上开设有将所述金属臂划分为第一金属臂(1)和第二金属臂(2)的缝隙(3),且所述第一金属臂(1)的一端(E)和第二金属臂(2)远离缝隙(3)的一端(A)分别接地;所述第一金属臂(1)的预设位置上设置有馈电点(D);
    阻抗匹配网络(4),所述阻抗匹配网络(4)分别与所述馈电点(D)和所述馈源(5)连接;
    其中,第一金属臂(1)通过所述馈源(5)激励产生具有第一谐振频率的第一谐振模态和第二谐振频率的第二谐振模态;
    所述第二金属臂(2)通过缝隙(3)耦合产生具有第三谐振频率的第三谐振模态。
  2. 根据权利要求1所述的天线结构,其中,所述馈电点(D)至所述第一金属臂(1)的另一端(C)的长度大于或者等于2mm且小于或者等于8mm。
  3. 根据权利要求2所述的天线结构,其中,所述第一金属臂(1)的长度大于或者等于22mm且小于或者等于30mm;
    或者,所述第一金属臂(1)的长度大于或者等于8mm且小于或者等于18mm。
  4. 根据权利要求3所述的天线结构,其中,所述第二金属臂(2)的长度大于或者等于5mm且小于或者等于11mm。
  5. 根据权利要求4所述的天线结构,其中,所述第一谐振频率小于所述第三谐振频率,所述第三谐振频率小于所述第二谐振频率。
  6. 根据权利要求1所述的天线结构,其中,所述阻抗匹配网络(4)包括以下组合中的一种:
    第一电感;
    第一电容;
    第二电感和第二电容,所述第二电感与所述第二电容串联;
    第三电感和第三电容,所述第三电感与所述第三电容并联。
  7. 根据权利要求1所述的天线结构,还包括:
    与所述阻抗匹配网络串联或者并联的阻抗调整电路。
  8. 根据权利要求7所述的天线结构,其中,所述阻抗调整电路包括:
    第四电感;
    与所述第四电感串联的第四电容。
  9. 根据权利要求1所述的天线结构,其中,所述缝隙(3)内填充有非金属介电材质。
  10. 一种终端设备,包括:如权利要求1~9任一项所述的天线结构。
  11. 根据权利要求10所述的终端设备,还包括:金属中框;
    其中,第一金属臂(1)和第二金属臂(2)为所述金属中框的组成部分。
PCT/CN2019/117066 2018-11-30 2019-11-11 天线结构及终端设备 WO2020108281A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811455526.3 2018-11-30
CN201811455526.3A CN109449575B (zh) 2018-11-30 2018-11-30 一种天线结构及终端设备

Publications (1)

Publication Number Publication Date
WO2020108281A1 true WO2020108281A1 (zh) 2020-06-04

Family

ID=65555231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117066 WO2020108281A1 (zh) 2018-11-30 2019-11-11 天线结构及终端设备

Country Status (2)

Country Link
CN (1) CN109449575B (zh)
WO (1) WO2020108281A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449575B (zh) * 2018-11-30 2021-03-16 维沃移动通信有限公司 一种天线结构及终端设备
CN110518342A (zh) * 2019-09-25 2019-11-29 南昌黑鲨科技有限公司 多频多模天线
CN111370855B (zh) * 2020-03-20 2021-07-20 维沃移动通信有限公司 一种天线结构及电子设备
CN113451741B (zh) * 2020-03-26 2023-01-06 华为技术有限公司 一种天线及终端设备
CN112002994B (zh) * 2020-08-27 2023-12-01 维沃移动通信有限公司 天线结构及电子设备
CN114243265B (zh) * 2020-09-09 2024-05-07 北京小米移动软件有限公司 一种天线结构及通信设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928753A (zh) * 2014-04-11 2014-07-16 广东欧珀移动通信有限公司 一种手机及其天线
CN203774453U (zh) * 2014-04-11 2014-08-13 广东欧珀移动通信有限公司 一种手机及其天线
CN105789882A (zh) * 2014-12-26 2016-07-20 比亚迪股份有限公司 移动终端和移动终端的天线
CN106532268A (zh) * 2016-10-31 2017-03-22 维沃移动通信有限公司 一种天线结构及移动终端
US20180090822A1 (en) * 2016-05-23 2018-03-29 Acer Incorporated Communication device with metal-frame half-loop antenna element
CN108767500A (zh) * 2018-05-31 2018-11-06 维沃移动通信有限公司 一种天线装置及移动终端
CN108808221A (zh) * 2018-06-19 2018-11-13 深圳市万普拉斯科技有限公司 天线系统及移动终端
CN109449575A (zh) * 2018-11-30 2019-03-08 维沃移动通信有限公司 一种天线结构及终端设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105789836B (zh) * 2014-12-24 2019-06-25 联想(北京)有限公司 天线系统和移动终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928753A (zh) * 2014-04-11 2014-07-16 广东欧珀移动通信有限公司 一种手机及其天线
CN203774453U (zh) * 2014-04-11 2014-08-13 广东欧珀移动通信有限公司 一种手机及其天线
CN105789882A (zh) * 2014-12-26 2016-07-20 比亚迪股份有限公司 移动终端和移动终端的天线
US20180090822A1 (en) * 2016-05-23 2018-03-29 Acer Incorporated Communication device with metal-frame half-loop antenna element
CN106532268A (zh) * 2016-10-31 2017-03-22 维沃移动通信有限公司 一种天线结构及移动终端
CN108767500A (zh) * 2018-05-31 2018-11-06 维沃移动通信有限公司 一种天线装置及移动终端
CN108808221A (zh) * 2018-06-19 2018-11-13 深圳市万普拉斯科技有限公司 天线系统及移动终端
CN109449575A (zh) * 2018-11-30 2019-03-08 维沃移动通信有限公司 一种天线结构及终端设备

Also Published As

Publication number Publication date
CN109449575B (zh) 2021-03-16
CN109449575A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020108281A1 (zh) 天线结构及终端设备
CN103606736B (zh) 一种全金属边框的新型lte天线
TWI487198B (zh) 多頻天線
US9401543B2 (en) Broadband antenna
US9825352B2 (en) Wireless electronic devices including a feed structure connected to a plurality of antennas
US9825366B2 (en) Printed circuit board antenna and printed circuit board
US20110102272A1 (en) Mobile Communication Device and Antenna Thereof
US9531084B2 (en) Multiple input multiple output (MIMO) antennas having polarization and angle diversity and related wireless communications devices
KR102060331B1 (ko) 평면형 안테나 장치 및 방법
TW201409829A (zh) 行動裝置
WO2017035730A1 (zh) 一种缝隙天线和终端设备
US20150180115A1 (en) Radio-Frequency Device and Wireless Communication Device for Enhancing Antenna Isolation
US9692118B2 (en) Antenna and portable device having the same
WO2018157661A1 (zh) 天线和终端
WO2022166444A1 (zh) 一种天线及终端设备
US20240014556A1 (en) Antenna assembly and electronic device
US8570234B2 (en) Assembly of chip antenna and circuit board
Yang et al. A CPW-fed triple-band planar monopole antenna for internet of things applications
WO2022183892A1 (zh) 天线组件及电子设备
Lin et al. Simple monopole slot antenna for WWAN/LTE handset application
Al Ka'bi PIFA antenna design for 4G wireless communications
CN209896263U (zh) 一种基于复合左右手传输线的多频段天线
CN107039746A (zh) 一种小型化十一频段手机天线
Saluja et al. Design analysis and fabrication of novel coplanar waveguide-fed hybrid fractal-based Broadband antenna
CN110165395B (zh) 一种小型化紧凑型三频带天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19888974

Country of ref document: EP

Kind code of ref document: A1