WO2020108184A1 - 数据的解调,处理方法及装置 - Google Patents

数据的解调,处理方法及装置 Download PDF

Info

Publication number
WO2020108184A1
WO2020108184A1 PCT/CN2019/113075 CN2019113075W WO2020108184A1 WO 2020108184 A1 WO2020108184 A1 WO 2020108184A1 CN 2019113075 W CN2019113075 W CN 2019113075W WO 2020108184 A1 WO2020108184 A1 WO 2020108184A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
side device
dmrs
srs
demodulation
Prior art date
Application number
PCT/CN2019/113075
Other languages
English (en)
French (fr)
Inventor
费佩燕
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP19891234.7A priority Critical patent/EP3890420A4/en
Publication of WO2020108184A1 publication Critical patent/WO2020108184A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0087Timing of allocation when data requirements change
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a data demodulation, processing method and device.
  • LTE Long-term evolution
  • 3GPP 3rd Generation Partnership Project
  • MIMO Multiple-input multiple-output
  • special subframe 10 which specifies that the uplink pilot time slot physical channel (Uplink Pilot Time Slot, UpPTS) part of special subframe 10 can be transmitted through the physical uplink shared channel ( Physical, Uplink, and Shared Channel (PUSCH) transmit uplink data to alleviate the problems caused by insufficient uplink resources in the future.
  • UpPTS Uplink Pilot Time Slot
  • PUSCH Physical Uplink shared Channel
  • R14 stipulates that users can transmit data in UpPTS of SSF10 to increase upstream data traffic.
  • the higher layer can configure Demodulation Reference Signal (DMRS) to send on UpPTS, or can configure UpPTS to send without DMRS.
  • DMRS Demodulation Reference Signal
  • the base station When the uplink data of the upper layer is sent on the UpPTS of SSF10, without configuring DMRS for data demodulation, it is necessary for the base station to schedule the data on the UPPTS and the data of the next regular uplink subframe U at the same time to ensure that there is no DMRS. UPPTS data can be demodulated correctly. However, if the base station performs data demodulation after receiving the UpPTS and the conventional uplink subframe U, it will cause the problem of excessive memory consumption and long data processing delay, causing the data processing process of the entire system to be paralyzed.
  • the embodiments of the present application provide a data demodulation and processing method and device, to at least solve the performance impact and related performance of data demodulation based on a single DMRS or not configured with DMRS when UpPTS data is sent in the related art The problem of demodulation risk.
  • a data demodulation method which includes: after a system-side device determines a configuration method of a demodulation reference signal DMRS during UpPTS transmission, receiving a user equipment device according to the configuration method of DMRS Sending data; the system-side device performs feature extraction on the sending data, and combines the sending data to determine data demodulation information.
  • the method further includes: the system-side device determines and sends to the UE when the UE is instructed to send data Corresponding channel sounding reference signal (SoundingReferenceSignal, referred to as SRS) on the way of sending instructions.
  • SoundingReferenceSignal referred to as SRS
  • the above SRS delivery method at least includes: a periodic SRS delivery method, or an aperiodic SRS delivery method.
  • the instruction information is determined at least in the following manner: when scheduling the data, the system-side device judges whether the data has a corresponding periodic SRS at the time of transmission and is simultaneously sent; when the judgment result is yes, the above The system-side device sends a periodic SRS delivery instruction to the UE; if the judgment result is negative, the system-side device sends an aperiodic SRS delivery instruction to the UE.
  • the above method further includes: the system-side device configuring SRS transmission resources to the UE.
  • the system-side device performs feature extraction on the uploaded data, including: when the UpPTS is configured with the DMRS, the system-side device extracts the data according to the DMRS information and SRS information in the uploaded data Channel impulse response.
  • the system side device performs feature extraction on the uploaded data, including: when the UpPTS does not configure the DMRS, the system side device extracts the channel impact of the data according to the SRS information in the uploaded data response.
  • a data processing method which includes: the user equipment UE determines and configures the configuration method of the demodulation reference signal DMRS sent by the system-side device in the UpPTS transmission, and sends the data to the system side The device sends corresponding data to be sent, wherein the data to be sent is used by the system-side device to determine data demodulation information.
  • the user equipment UE receives an indication message of a channel sounding reference signal SRS delivery method sent by the system-side device; according to the instruction message and the configuration method of the DMRS, the user equipment UE determines the DMRS in the delivered data And SRS.
  • the above SRS delivery method at least includes: a periodic SRS delivery method, or an acyclic SRS delivery method.
  • a data demodulation device which is located in a system-side device and includes: a receiving module, which is configured to receive a user after determining the configuration mode of the demodulation reference signal DMRS when it is sent by UpPTS The device sends the data according to the configuration of the DMRS; the determination module is configured to extract the feature of the data sent, and combine the data sent to determine the data demodulation information.
  • a data processing apparatus which is located in a user equipment UE, and includes: a processing module that determines a configuration mode of a demodulation reference signal DMRS according to a system side device transmission sent by UpPTS, Determine and send corresponding upload data to the system-side device, where the above-mentioned data is set as the data demodulation information determined by the system-side device.
  • an electronic device including a memory and a processor, the memory stores a computer program, the processor is configured to run the computer program to execute any of the above method embodiments Steps.
  • the system side performs feature extraction on the data determined by the UE for different DMRS configuration modes to determine the data demodulation information, so it can be solved in the related art that data demodulation is based on a single DMRS or not configured with DMRS
  • FIG. 1 is a block diagram of a hardware structure of an electronic device of a data demodulation method according to an embodiment of the present application
  • FIG. 2 is a flowchart of a data demodulation method according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a data processing method according to an embodiment of the present application.
  • FIG. 4 is a structural block diagram of a data demodulation device according to an embodiment of the present application.
  • FIG. 5 is a structural block diagram of a data processing apparatus according to an embodiment of the present application.
  • FIG. 1 is a block diagram of a hardware structure of an electronic device of a data demodulation method according to an embodiment of the present invention.
  • the electronic device 10 may include one or more (only one is shown in FIG. 1) processor 102 (the processor 102 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA, etc.
  • the above-mentioned electronic device may further include a transmission device 106 for communication functions and an input-output device 108.
  • a transmission device 106 for communication functions may further include more or fewer components than those shown in FIG. 1, or have a different configuration from that shown in FIG.
  • the memory 104 may be configured to store computer programs, for example, software programs and modules of application software, such as a computer program corresponding to a data demodulation method in an embodiment of the present invention.
  • the processor 102 runs the computer stored in the memory 104 Program to execute various functional applications and data processing, that is, to implement the above method.
  • the memory 104 may include a high-speed random access memory, and may also include a non-volatile memory, such as one or more magnetic storage devices, flash memory, or other non-volatile solid-state memory.
  • the memory 104 may optionally include memories remotely provided with respect to the processor 102, and these remote memories may be connected to the electronic device 10 through a network. Examples of the above network include but are not limited to the Internet, intranet, local area network, mobile communication network, and combinations thereof.
  • the transmission device 106 is configured to receive or transmit data via a network.
  • the above-mentioned specific examples of the network may include a wireless network provided by a communication provider of the electronic device 10.
  • the transmission device 106 includes a network adapter (Network Interface Controller, referred to as NIC for short), which can be connected to other network devices through the base station to communicate with the Internet.
  • the transmission device 106 may be a radio frequency (Radio Frequency, RF for short) module, which is configured to communicate with the Internet in a wireless manner.
  • RF Radio Frequency
  • FIG. 2 is a flowchart of a data demodulation method according to an embodiment of the present invention. As shown in FIG. 2, The process includes the following steps:
  • Step S202 after determining the configuration mode of the demodulation reference signal DMRS during the UpPTS transmission, the system side device receives the data sent by the user equipment according to the DMRS configuration mode;
  • Step S204 the system side device performs feature extraction on the transmitted data, and combines the transmitted data to determine data demodulation information.
  • the UE in this embodiment is a UE that is indicated by the system-side device to indicate that the UE can send data on the UpPTS.
  • the method further includes: the system-side device determines and sends to the UE indication information indicating the corresponding channel sounding reference signal SRS delivery mode when the UE sends the data.
  • the SRS delivery method includes at least a periodic SRS delivery method, or an acyclic SRS delivery method.
  • the indication information is determined at least in the following manner: when scheduling data, the system-side device determines whether the data has a corresponding periodic SRS at the time of uploading; when the judgment result is yes, the system-side device sends a message to the UE Send a periodic SRS delivery instruction; when the judgment result is negative, the system side device sends an aperiodic SRS delivery instruction to the UE.
  • the method further includes: the system-side device configuring the SRS upload resource to the UE.
  • the system-side device instructs the UE to send periodic SRS or aperiodic SRS, and there is no obvious sequential relationship between configuring UE SRS transmission resources. It can be understood that the two can be performed at the same time.
  • the SRS transmission resources can be allocated first, and then the UE can be instructed to send periodic SRS or aperiodic SRS.
  • the SRS sending resource corresponding to the instruction indication may be configured.
  • the system side device performs feature extraction on the transmitted data, including: when the UpPTS is configured with DMRS, the system side device extracts the channel impact response of the data according to the DMRS information and SRS information in the transmitted data.
  • the system side device performs feature extraction on the transmitted data, including: when the UpPTS does not configure the DMRS, the system side device extracts the channel impact response of the data according to the SRS information in the transmitted data.
  • FIG. 3 is a flowchart of a data processing method according to an embodiment of the present application. As shown in FIG. 3, the process includes The following steps:
  • Step S302 The user equipment UE determines and sends the corresponding upload data to the system-side device according to the configuration mode of the demodulation reference signal DMRS sent by the system-side device during the UpPTS transmission, where the data is used for the system side The device determines the data demodulation information.
  • the user equipment UE receives the indication message of the channel sounding reference signal SRS sending mode sent by the system side device; according to the indication message and the configuration mode of the DMRS, the user equipment UE determines the DMRS and SRS in the sent data.
  • the SRS delivery method includes at least a periodic SRS delivery method, or an acyclic SRS delivery method.
  • Step 1 The system instructs the UE to send data on UpPTS, and configures DMRS to send data in UpPTS.
  • Step 2 The system side configures the UE with SRS acyclic delivery resources.
  • the periodic SRS delivery resources can be configured or unconfigured.
  • Step 3 When scheduling uplink data through DCI0 or 4, if the scheduled data is not sent at the same time as the corresponding periodic SRS, the aperiodic SRS delivery instruction is passed to the UE to instruct the UE to send the aperiodic SRS to System side.
  • Step 4 When the UE transmits data, it is determined that UpPTS is equipped with DMRS for transmission. According to the DCI information and the aperiodic resources indicated by the upper layer, the data, DMRS and aperiodic SRS information are simultaneously sent to the system side.
  • Step 5 The system side uses the aperiodic SRS and DMRS sent by the UE to obtain the channel impulse response of the uplink data.
  • Step 6 The system uses the channel impulse response value extracted from aperiodic SRS and DMRS to combine the received data to obtain data demodulation information.
  • Step 1 The system side indicates that the UE can send data on UpPTS
  • Step 2 The system side configures the UE to periodically and acyclically deliver resources.
  • Step 3 When scheduling the uplink data through DCI0 or 4, the system side judges that the scheduled data is sent by the periodic SRS at the time of sending, then when the uplink authorization information DCI information is issued, try to place the data scheduling resources on the periodic SRS Within the frequency band.
  • Step 4 When the UE transmits data, it is determined that UpPTS is equipped with DMRS for transmission. Then, according to the DCI information and the SRS periodic resource indicated by the upper layer, the data, DMRS and periodic SRS information are simultaneously sent to the system side.
  • Step 5 The system side uses the periodic SRS and DMRS sent by the UE to obtain uplink wireless channel impulse response information.
  • Step 6 The system uses the uplink wireless channel impulse response information extracted from the periodic SRS and DMRS, combined with the received data, to obtain data demodulation information.
  • Step 1 The system instructs the UE to send data on UpPTS, and configures DMRS to send data in UpPTS.
  • Step 2 The system side configures the UE with SRS acyclic delivery resources.
  • the periodic SRS delivery resources can be configured or unconfigured.
  • Step 3 When scheduling uplink data through DCI0 or 4, if the scheduled data is not sent at the same time as the corresponding periodic SRS, the aperiodic SRS delivery instruction is passed to the UE to instruct the UE to send the aperiodic SRS to System side.
  • Step 4 When the UE sends data, it is determined that UpPTS is not configured to send DMRS. According to the DCI information and the aperiodic resources indicated by the upper layer, the data and the aperiodic SRS information are simultaneously sent to the system side.
  • Step 5 The system side uses the aperiodic SRS sent by the UE to obtain the channel impulse response of the uplink data.
  • Step 6 The system uses the channel impulse response value extracted from the aperiodic SR and combines the received data to obtain data demodulation information.
  • Step 1 The system side instructs the UE to send data on UpPTS.
  • Step 2 The system side configures the UE to periodically and acyclically deliver resources.
  • Step 3 When scheduling the uplink data through DCI0 or 4, the system side judges that the scheduled data is sent by the periodic SRS at the time of sending, then when the uplink authorization information DCI information is issued, try to place the data scheduling resources on the periodic SRS Within the frequency band.
  • Step 4 When the UE sends data, it is determined that UpPTS is not configured to send DMRS. Then, according to the DCI information and the SRS periodic resource indicated by the upper layer, the data and the periodic SRS information are simultaneously sent to the system side.
  • Step 5 The system side uses the periodic SRS sent by the UE to obtain the uplink wireless channel impulse response information.
  • Step 6 The system uses the uplink wireless channel impulse response information extracted from the periodic SRS, combined with the received data, to obtain data demodulation information.
  • a data demodulation device is also provided.
  • the device is configured to implement the above-mentioned embodiments and optional implementations, and descriptions that have already been described will not be repeated.
  • the term "module” may implement a combination of software and/or hardware that performs predetermined functions.
  • the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 4 is a structural block diagram of a data demodulation apparatus according to an embodiment of the present application. As shown in FIG. 4, the apparatus includes a receiving module 42 and a determining module 44.
  • the receiving module 42 is configured to, after determining the configuration mode of the demodulation reference signal DMRS during the UpPTS transmission, receive the data sent by the user equipment according to the configuration mode of the DMRS;
  • the determining module 44 is configured to perform feature extraction on the transmitted data, and combine the transmitted data to determine data demodulation information.
  • a data demodulation device is also provided.
  • the device is configured to implement the above-mentioned embodiments and optional implementations, and descriptions that have already been described will not be repeated.
  • the term "module” may implement a combination of software and/or hardware that performs predetermined functions.
  • the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 5 is a structural block diagram of a data processing apparatus according to an embodiment of the present application. As shown in FIG. 5, the apparatus includes: a processing module 52.
  • the processing module 42 is configured to determine and send the corresponding upload data to the system-side device according to the configuration method of determining the demodulation reference signal DMRS sent by the system-side device in the UpPTS transmission, wherein the upload data is set as the system-side device Determine the data demodulation information.
  • An embodiment of the present application further provides a storage medium in which a computer program is stored, wherein the computer program is configured to execute any of the steps in the above method embodiments during runtime.
  • the above storage medium may be set to store a computer program set to perform the following steps:
  • the system-side device performs feature extraction on the transmitted data, and combines the transmitted data to determine data demodulation information.
  • the above storage medium may include, but is not limited to: a USB flash drive, a read-only memory (Read-Only Memory, ROM for short), a random access memory (Random Access Memory, RAM for short), Various media that can store computer programs, such as removable hard disks, magnetic disks, or optical disks.
  • An embodiment of the present application further provides an electronic device, including a memory and a processor, where the computer program is stored in the memory, and the processor is configured to run the computer program to perform the steps in any one of the foregoing method embodiments.
  • the electronic device may further include a transmission device and an input-output device, wherein the transmission device is connected to the processor, and the input-output device is connected to the processor.
  • the foregoing processor may be configured to perform the following steps through a computer program:
  • the system-side device performs feature extraction on the transmitted data, and combines the transmitted data to determine data demodulation information.
  • modules or steps in the embodiments of the present application described above can be implemented by a general-purpose computing device, and they can be concentrated on a single computing device or distributed among multiple computing devices.
  • they can optionally be implemented with program code executable by the computing device, so that they can be stored in the storage device to be executed by the computing device, and in some cases, can be different from here
  • the steps shown or described are executed in the order of, or they are made into individual integrated circuit modules respectively, or multiple modules or steps among them are made into a single integrated circuit module to achieve. In this way, the embodiments of the present application are not limited to any specific combination of hardware and software.
  • the system side performs feature extraction on the data determined by the UE for different DMRS configuration modes to determine the data demodulation information, so it can be solved in the related art that data demodulation is based on a single DMRS or not configured

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种数据的解调,处理方法及装置。其中,数据的解调方法包括:系统侧设备在UpPTS上发中确定解调参考信号DMRS的配置方式后,接收用户设备根据DMRS的配置方式发送的上发数据;系统侧设备对上发数据进行特征提取,并结合上发数据,确定数据解调信息。通过本申请实施例,解决了相关技术中基于单个DMRS或者不配置DMRS进行数据解调时所带来的解调性能影响和解调风险的问题,从而达到了提升上行数据的解调性以及提升用户体验的有益效果。

Description

数据的解调,处理方法及装置
本申请要求于2018年11月28日提交中国专利局、申请号为201811436016.1、发明名称“数据的解调,处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,具体而言,涉及一种数据的解调,处理方法及装置。
背景技术
长期演进(Long Term Evolution,简称LTE)网络商用已经遍布许多国家,商用用户数迅速增加,用户在商用网络下使用的流量在快速增长。LTE系统的关键技术之一:多天线无线传输技术。多天线无线传输技术是解决吞吐量问题的利器,可提升空间资源利用率,提高频谱效率,达到增强客户体验和提升系统容量的目的。多输入多输出无线传输技术可以充分挖掘空间资源,提高频谱利用率,也是它能成为新一代移动通信标准第三方合作伙伴计划(3rd Generation Partnership Project,简称3GPP)研究的关键所在。多输入多输出系统(Multiple-Input Multiple-Output,简称MIMO)技术通过用户数据在空间复用时频资源,可以充分利用时频资源,获得更好的系统容量。TD LTE(Time Division Long Term,简称TD LTE)系统下,MIMO技术潜力获得充分挖掘,然而,上行吞吐量在未来依然存在不能更好的满足客户需要的风险。在3GPP R14版本,引入了新的技术,就是特殊子帧10,规定在特殊子帧10的上行导频时隙物理通道(Uplink Pilot Time Slot,简称UpPTS)部分,可以传输通过物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)传输上行数据,以缓解未来上行资源不足带来的问题。
R14规定,用户可以在SSF10的UpPTS中传数据,以提升上行数据流量。在SSF10上发数据时,高层可以配置解调参考信号(Demodulation Reference Signa,简称DMRS)在UpPTS上发,也可以配置UpPTS无DMRS上发。
当高层配上行数据发送时,配置DMRS进行数据解调时,由于SSF10上只有一个DMRS上发符号,当终端处于移动状态时,基于单个DMRS符号的PUSCH解调的性能无法保证。
当高层配上行数据在SSF10的UpPTS发送时,不配置DMRS进行数据解调,就需要基站在调度UPPTS上的数据时,同时调度下一个常规上行子帧U的数据,以保证没有DMRS上发的UPPTS数据能正确解调。然而基站如果在接收完UpPTS和常规上行子帧U后,再进行数据解调,会造成内存消耗过大,数据处理时延过长的问题,造成整个系统的数据处理进程瘫痪。
发明内容
本申请实施例提供了一种数据的解调和处理方法及装置,以至少解决相关技术中在UpPTS数据上发时,基于单个DMRS或者不配置DMRS进行数据解调时所带来的性能影响和解调风险的问题。
根据本申请的一个实施例,提供了一种数据的解调方法,包括:系统侧设备在UpPTS上发中确定解调参考信号DMRS的配置方式后,接收用户设备根据上述DMRS的配置方式发送的上发数据;上述系统侧设备对上述上发数据进行特征提取,并结合上述上发数据,确定数据解调信息。
可选地,在上述系统侧设备接收上述用户体验(User Experience,简称UE)发送的上述数据之前,上述方法还包括:上述系统侧设备确定并向上述UE发送用于指示上述UE上发数据时对应的信道探测参考信号(Sounding Reference Signal,简称SRS)上发方式的指示信息。
可选地,,上述SRS上发方式至少包括:周期SRS上发方式,或,非周期SRS上发方式。
可选地,上述指示信息至少通过以下方式确定:在调度上述数据时,上述系统侧设备判断上述数据在上发时刻是否存在对应的周期SRS同时上发;在判断结果为是的情况下,上述系统侧设备向上述UE发送周期SRS上发指示;在判断结果为否的情况下,上述系统侧设备向上述UE发送非周期SRS上发指示。
可选地,上述方法还包括:上述系统侧设备向上述UE配置SRS上发资源。
可选地,上述系统侧设备对上述上发数据进行特征提取,包括:当在上述UpPTS配置了上述DMRS的情况下,上述系统侧设备根据上述上发数据中的DMRS信息和SRS信息提取上述数据的信道冲击响应。
可选地,上述系统侧设备对上述上发数据进行特征提取,包括:当在上述UpPTS没有配置上述DMRS的情况下,上述系统侧设备根据上述上发数据中的SRS信息提取上述数据的信道冲击响应。
根据本申请的另一个实施例,提供了一种数据的处理方法,包括:用户设备UE根据系统侧设备发送的在UpPTS上发中确定解调参考信号DMRS的配置方式,确定并向上述系统侧设备发送相应的上发数据,其中,上述上发数据用于上述系统侧设备确定数据解调信息。
可选地,上述用户设备UE接收上述系统侧设备发送的信道探测参考信号SRS上发方式的指示消息;根据上述指示消息和上述DMRS的配置方式,上述用户设备UE确定上述上发数据中的DMRS和SRS。
可选地,上述SRS上发方式至少包括:周期SRS上发方式,或,非周期SRS上发方式。
根据本申请的另一个实施例,提供了一种数据的解调装置,位于系统侧设备中,包括:接收模块,设置为在UpPTS上发中确定解调参考信号DMRS的配置方式后,接收用户设备根据上述DMRS的配置方式发送的上发数据;确定模块,设置为对上述上发数据进行特征提取,并结合上述上发数据,确定数据解调信息。
根据本申请的另一个实施例,提供了一种数据的处理装置,位于用户设备UE中,包括:处理模块,根据系统侧设备发送的在UpPTS上发中确定解调参考信号DMRS的配置方式,确定并向上述系统侧设备发送相应的上发数据,其中,上述上发数据设置为上述系统侧设备确定数据解调信息。
根据本申请的又一个实施例,还提供了一种存储介质,上述存储介质中存储有计算机程序,其中,上述计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
根据本申请的又一个实施例,还提供了一种电子装置,包括存储器和处理器,上述存储器中存储有计算机程序,上述处理器被设置为运行上述计算机程序以执行上述任一项方法实施例中的步骤。
通过本申请实施例,系统侧通过UE针对不同的DMRS的配置方式所确定的数据进行特征提取,以来确定数据解调信息,因此可以解决相关技术中,基于单个DMRS或者不配置DMRS进行数据解调时所带来的性能影响和解调风险的问题,从而达到了提升上行数据的解调性以及提升用户体验效果。
附图说明
此处所说明的附图用来提供对本申请实施例的进一步理解,构成本申请实施例的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例的一种数据的解调方法的电子设备的硬件结构框图;
图2是根据本申请实施例的一种数据的解调方法的流程图;
图3是根据本申请实施例的一种数据的处理方法的流程图;
图4是根据本申请实施例的一种数据的解调装置的结构框图;
图5是根据本申请实施例的一种数据的处理装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例一所提供的方法实施例可以在移动终端、计算机终端或者电子设备等类似的运算装置中执行。以运行在电子设备上为例,图1是本发明实施例的一种数据的解调方法的电子设备的硬件结构框图。如图1所示,电子设备10可以包括一个或多个(图1中仅示出一个)处理器102(处理器102可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)和用于存储数据的存储器104,可选地,上述电子设备还可以包括用于通信功能的传输设备106以及输入输出设备108。本领域普通技术人员可以理解,图1所示的结构仅为示意,其并不对上述电子设备的结构造成限定。例如,电子设备10还可包括比图1中所示更多或者更少的组件,或者具有与图1所示不同的配置。
存储器104可设置为存储计算机程序,例如,应用软件的软件程序以及模块,如本发明实施例中的一种数据的解调方法对应的计算机程序,处理器102通过运行存储在存储器104内的计算机程序,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器104可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器104可可选地包括相对于处理器102远程设置的存储器,这些远程存储器可以通过网络连接至电子设备10。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置106设置为经由一个网络接收或者发送数据。上述的网络具 体实例可包括电子设备10的通信供应商提供的无线网络。在一个实例中,传输装置106包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置106可以为射频(Radio Frequency,简称为RF)模块,其设置为通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述电子设备的一种数据的解调方法,图2是根据本发明实施例的一种数据的解调方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,系统侧设备在UpPTS上发中确定解调参考信号DMRS的配置方式后,接收用户设备根据DMRS的配置方式发送的上发数据;
步骤S204,系统侧设备对上发数据进行特征提取,并结合上发数据,确定数据解调信息。
需要说明的是,本实施例中的UE是系统侧设备指示UE可在UpPTS上进行上发数据的UE。
可选地,在系统侧设备接收UE发送的数据之前,方法还包括:系统侧设备确定并向UE发送用于指示UE上发数据时对应的信道探测参考信号SRS上发方式的指示信息。
可选地,SRS上发方式至少包括:周期SRS上发方式,或,非周期SRS上发方式。
可选地,指示信息至少通过以下方式确定:在调度数据时,系统侧设备判断数据在上发时刻是否存在对应的周期SRS同时上发;在判断结果为是的情况下,系统侧设备向UE发送周期SRS上发指示;在判断结果为否的情况下,系统侧设备向UE发送非周期SRS上发指示。
可选地,方法还包括:系统侧设备向UE配置SRS上发资源。
需要说明的是,系统侧设备指示UE上发周期SRS或者非周期SRS与配置UE SRS上发资源并没有明显的先后关系。能够理解的是,二者可以同时进行,当然也可以是先分配SRS上发资源后,再去指示UE上发周 期SRS或者非周期SRS。也可以是在指示UE上发周期SRS或者非周期SRS之后,配置指示对应的SRS上发资源。
可选地,系统侧设备对上发数据进行特征提取,包括:当在UpPTS配置了DMRS的情况下,系统侧设备根据上发数据中的DMRS信息和SRS信息提取数据的信道冲击响应。
可选地,系统侧设备对上发数据进行特征提取,包括:当在UpPTS没有配置DMRS的情况下,系统侧设备根据上发数据中的SRS信息提取数据的信道冲击响应。
通过上述步骤,解决相关技术中,单个DMRS或者不配置DMRS进行数据解调时所带来的性能影响和解调风险的问题,从而达到了提升上行数据的解调性以及提升用户体验效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例的方法。
实施例2
在本实施例中提供了一种运行于上述电子设备的一种数据的处理方法,图3是根据本申请实施例的一种数据的处理方法的流程图,如图3所示,该流程包括如下步骤:
步骤S302,:用户设备UE根据系统侧设备发送的在UpPTS上发中确定解调参考信号DMRS的配置方式,确定并向系统侧设备发送相应的上发数据,其中,上发数据用于系统侧设备确定数据解调信息。
可选地,用户设备UE接收系统侧设备发送的信道探测参考信号SRS上发方式的指示消息;根据指示消息和DMRS的配置方式,用户设备UE确定上发数据中的DMRS和SRS。
可选地,SRS上发方式至少包括:周期SRS上发方式,或,非周期SRS上发方式。
通过上述步骤,解决相关技术中,单个DMRS或者不配置DMRS进行数据解调时所带来的性能影响和解调风险的问题,从而达到了提升上行数据的解调性以及提升用户体验效果。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例的方法。
具体而言,基于上述的实施例中,还提供了如下4个场景,以便理解本实施例中记载的技术方案。
场景1
步骤1:系统指示UE可在UpPTS上发数据,并配置DMRS在UpPTS中上发。
步骤2:系统侧给UE配置SRS非周期上发资源,周期SRS上发资源可以配置,也可不配置。
步骤3:通过DCI0 or 4调度上行数据时,如果调度的数据在上发时刻没有相应的周期SRS同时上发,则将非周期SRS上发指示传递给UE,以指示UE上发非周期SRS给系统侧。
步骤4:UE上发数据时,确定UpPTS配有DMRS上发。根据DCI 信息,以及高层指示的非周期资源,将数据、DMRS和非周期SRS信息同时上发给系统侧。
步骤5:系统侧利用UE上发的非周期SRS以及DMRS,获得上行数据的信道冲击响应。
步骤6:系统利用从非周期SRS及DMRS中提取的信道冲击响应值,结合接收到的数据,获得数据解调信息。
场景2:
步骤1:系统侧指示UE可在UpPTS上发数据
步骤2:系统侧给UE配置周期和非周期上发资源。
步骤3:通过DCI0 or 4调度上行数据时,系统侧判断调度的数据在上发时刻有周期SRS上发,则进行上行授权信息DCI信息下发时,尽量将数据调度资源落在周期SRS上发频段内。
步骤4:UE上发数据时,确定UpPTS配有DMRS上发。然后根据DCI信息,以及高层指示的SRS周期资源,将数据、DMRS和周期SRS信息同时上发给系统侧。
步骤5:系统侧利用UE上发的周期SRS以及DMRS获取上行无线信道冲击响应信息。
步骤6:系统利用从周期SRS及DMRS中提取的上行无线信道冲击响应信息,结合接收到的数据,获得数据解调信息。
场景3:
步骤1:系统指示UE可在UpPTS上发数据,并配置DMRS在UpPTS中上发。
步骤2:系统侧给UE配置SRS非周期上发资源,周期SRS上发资源可以配置,也可不配置。
步骤3:通过DCI0 or 4调度上行数据时,如果调度的数据在上发时刻没有相应的周期SRS同时上发,则将非周期SRS上发指示传递给UE,以指示UE上发非周期SRS给系统侧。
步骤4:UE上发数据时,确定UpPTS没有配置DMRS上发。根据DCI信息,以及高层指示的非周期资源,将数据和非周期SRS信息同时上发给系统侧。
步骤5:系统侧利用UE上发的非周期SRS,获得上行数据的信道冲击响应。
步骤6:系统利用从非周期SR中提取的信道冲击响应值,结合接收到的数据,获得数据解调信息。
场景4:
步骤1:系统侧指示UE可在UpPTS上发数据。
步骤2:系统侧给UE配置周期和非周期上发资源。
步骤3:通过DCI0 or 4调度上行数据时,系统侧判断调度的数据在上发时刻有周期SRS上发,则进行上行授权信息DCI信息下发时,尽量将数据调度资源落在周期SRS上发频段内。
步骤4:UE上发数据时,确定UpPTS没有配置DMRS上发。然后根据DCI信息,以及高层指示的SRS周期资源,将数据和周期SRS信息同时上发给系统侧。
步骤5:系统侧利用UE上发的周期SRS获取上行无线信道冲击响应信息。
步骤6:系统利用从周期SRS中提取的上行无线信道冲击响应信息,结合接收到的数据,获得数据解调信息。
实施例3
在本实施例中还提供了一种数据的解调装置,该装置设置为实现上述实施例及可选地实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图4是根据本申请实施例的一种数据的解调装置的结构框图,如图4所示,该装置包括:接收模块42以及确定模块44。
接收模块42,设置为在UpPTS上发中确定解调参考信号DMRS的配置方式后,接收用户设备根据DMRS的配置方式发送的上发数据;
确定模块44,设置为对上发数据进行特征提取,并结合上发数据,确定数据解调信息。
实施例4
在本实施例中还提供了一种数据的解调装置,该装置设置为实现上述实施例及可选地实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图5是根据本申请实施例的一种数据的处理装置的结构框图,如图5所示,该装置包括:处理模块52。
处理模块42,设置为根据系统侧设备发送的在UpPTS上发中确定解调参考信号DMRS的配置方式,确定并向系统侧设备发送相应的上发数据,其中,上发数据设置为系统侧设备确定数据解调信息。
实施例5:
本申请的实施例还提供了一种存储介质,该存储介质中存储有计算机程序,其中,该计算机程序被设置为运行时执行上述任一项方法实施例中的步骤。
可选地,在本实施例中,上述存储介质可以被设置为存储设置为执行以下步骤的计算机程序:
S1,在UpPTS上发中确定解调参考信号DMRS的配置方式后,接收用户设备根据DMRS的配置方式发送的上发数据;
S2,系统侧设备对上发数据进行特征提取,并结合上发数据,确定数据解调信息。
或,
S3,根据系统侧设备发送的在UpPTS上发中确定解调参考信号DMRS的配置方式,确定并向系统侧设备发送相应的上发数据,其中,上发数据设置为系统侧设备确定数据解调信息。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,简称为ROM)、随机存取存储器(Random Access Memory,简称为RAM)、移动硬盘、磁碟或者光盘等各种可以存储计算机程序的介质。
本申请的实施例还提供了一种电子装置,包括存储器和处理器,该存储器中存储有计算机程序,该处理器被设置为运行计算机程序以执行上述任一项方法实施例中的步骤。
可选地,上述电子装置还可以包括传输设备以及输入输出设备,其中,该传输设备和上述处理器连接,该输入输出设备和上述处理器连接。
可选地,在本实施例中,上述处理器可以被设置为通过计算机程序执行以下步骤:
S1,在UpPTS上发中确定解调参考信号DMRS的配置方式后,接收用户设备根据DMRS的配置方式发送的上发数据;
S2,系统侧设备对上发数据进行特征提取,并结合上发数据,确定数据解调信息。
或,
S3,根据系统侧设备发送的在UpPTS上发中确定解调参考信号DMRS的配置方式,确定并向系统侧设备发送相应的上发数据,其中,上发数据设置为系统侧设备确定数据解调信息。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本申请实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本申请实施例不限制于任何特定的硬件和软件结合。
以上仅为本申请的可选地实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
工业实用性
通过本申请实施例,系统侧通过UE针对不同的DMRS的配置方式所确定的数据进行特征提取,以来确定数据解调信息,因此可以解决相关技术中,基于单个DMRS或者不配置DMRS进行数据解调时所带来的性能影响和解调风险的问题,从而达到了提升上行数据的解调性以及提升用户体验效果。

Claims (14)

  1. 一种数据的解调方法,包括:
    系统侧设备在UpPTS上发中确定解调参考信号DMRS的配置方式后,接收用户设备根据所述DMRS的配置方式发送的上发数据;
    所述系统侧设备对所述上发数据进行特征提取,并结合所述上发数据,确定数据解调信息。
  2. 根据权利要求1所述的方法,其中,在所述系统侧设备接收所述UE发送的所述数据之前,所述方法还包括:
    所述系统侧设备确定并向所述UE发送用于指示所述UE上发数据时对应的信道探测参考信号SRS上发方式的指示信息。
  3. 根据权利要求2所述的方法,其中,所述SRS上发方式至少包括:
    周期SRS上发方式,或,非周期SRS上发方式。
  4. 根据权利要求3所述的方法,其中,所述指示信息至少通过以下方式确定:
    在调度所述数据时,所述系统侧设备判断所述数据在上发时刻是否存在对应的周期SRS同时上发;
    在判断结果为是的情况下,所述系统侧设备向所述UE发送周期SRS上发指示;
    在判断结果为否的情况下,所述系统侧设备向所述UE发送非周期SRS上发指示。
  5. 根据权利要求2-4任一项所述的方法,其中,所述方法还包括:
    所述系统侧设备向所述UE配置SRS上发资源。
  6. 根据权利要求2所述的方法,其中,所述系统侧设备对所述上发数据进行特征提取,包括:
    当在所述UpPTS配置了所述DMRS的情况下,所述系统侧设备根据所述上发数据中的DMRS信息和SRS信息提取所述数据的信道冲击响应。
  7. 根据权利要求2所述的方法,其中,所述系统侧设备对所述上发数据进行特征提取,包括:
    当在所述UpPTS没有配置所述DMRS的情况下,所述系统侧设备根据所述上发数据中的SRS信息提取所述数据的信道冲击响应。
  8. 一种数据的处理方法,包括:
    用户设备UE根据系统侧设备发送的在UpPTS上发中确定解调参考信号DMRS的配置方式,确定并向所述系统侧设备发送相应的上发数据,其中,所述上发数据用于所述系统侧设备确定数据解调信息。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    接收所述系统侧设备发送的信道探测参考信号SRS上发方式的指示消息;
    根据所述指示消息和所述DMRS的配置方式,所述用户设备UE确定所述上发数据中的DMRS和SRS。
  10. 根据权利要求9所述的方法,其中,所述SRS上发方式至少包括:
    周期SRS上发方式,或,非周期SRS上发方式。
  11. 一种数据的解调装置,位于系统侧设备中,包括一个或多个 处理器,以及一个或多个存储程序单元的存储器,其中,程序单元由处理器执行,该程序单元包括:
    接收模块,设置为在UpPTS上发中确定解调参考信号DMRS的配置方式后,接收用户设备根据所述DMRS的配置方式发送的上发数据;
    确定模块,设置为对所述上发数据进行特征提取,并结合所述上发数据,确定数据解调信息。
  12. 一种数据的处理装置,位于用户设备UE中,包括一个或多个处理器,以及一个或多个存储程序单元的存储器,其中,程序单元由处理器执行,该程序单元包括:
    处理模块,根据系统侧设备发送的在UpPTS上发中确定解调参考信号DMRS的配置方式,确定并向所述系统侧设备发送相应的上发数据,其中,所述上发数据设置为所述系统侧设备确定数据解调信息。
  13. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1-7,8-10任一项中所述的方法。
  14. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1-7,8-10任一项中所述的方法。
PCT/CN2019/113075 2018-11-28 2019-10-24 数据的解调,处理方法及装置 WO2020108184A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19891234.7A EP3890420A4 (en) 2018-11-28 2019-10-24 DATA DEMODULATION AND PROCESSING METHOD AND APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811436016.1A CN111246572B (zh) 2018-11-28 2018-11-28 数据的解调,处理方法及装置
CN201811436016.1 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020108184A1 true WO2020108184A1 (zh) 2020-06-04

Family

ID=70851920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113075 WO2020108184A1 (zh) 2018-11-28 2019-10-24 数据的解调,处理方法及装置

Country Status (3)

Country Link
EP (1) EP3890420A4 (zh)
CN (1) CN111246572B (zh)
WO (1) WO2020108184A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733613A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 上行解调参考信号dmrs的发送方法及装置
WO2018151565A1 (ko) * 2017-02-15 2018-08-23 엘지전자 주식회사 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102170330B (zh) * 2011-04-29 2017-08-08 中兴通讯股份有限公司 测量参考信号的发送方法及系统
WO2013117231A1 (en) * 2012-02-10 2013-08-15 Nokia Siemens Networks Oy Method and apparatus for transmitting a reference signal in a communication system
CN106455094B (zh) * 2015-08-13 2020-01-07 中国移动通信集团公司 探测参考信号的传输方法及网络侧设备、用户设备
WO2017026857A1 (en) * 2015-08-13 2017-02-16 Samsung Electronics Co., Ltd. Method and apparatus for communication in wireless communication system
US10404423B2 (en) * 2016-03-18 2019-09-03 Qualcomm Incorporated Techniques for communicating in an expanded uplink pilot time slot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733613A (zh) * 2016-08-12 2018-02-23 中兴通讯股份有限公司 上行解调参考信号dmrs的发送方法及装置
WO2018151565A1 (ko) * 2017-02-15 2018-08-23 엘지전자 주식회사 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on test case for uplink capability enhancement", 3GPP DRAFT; R4-1700963, 17 February 2017 (2017-02-17), Athens, Greece, pages 1 - 3, XP051224879 *
NOKIA ET AL: "Remaining issues for PUSCH transmission in special subframe", 3GPP DRAFT; R1-1702705, 17 February 2017 (2017-02-17), Athens, Greece, pages 1 - 4, XP051220184 *
QUALCOMM INCORPORATED: "PUSCH in UpPTS", 3GPP DRAFT; R1-1611619, 18 November 2016 (2016-11-18), Reno, Nevada, USA, pages 1 - 5, XP051190026 *
See also references of EP3890420A4

Also Published As

Publication number Publication date
CN111246572B (zh) 2023-03-24
CN111246572A (zh) 2020-06-05
EP3890420A1 (en) 2021-10-06
EP3890420A4 (en) 2022-06-15

Similar Documents

Publication Publication Date Title
US20190373550A1 (en) Method for reducing power consumption of terminal in mobile communication system using multi-carrier structure
CN105991263B (zh) 下行控制信息dci的配置、下行数据的接收方法及装置
CN105846981B (zh) 一种wtru及用于建立时间提前量的方法
US20220006602A1 (en) Discontinuous Reception for Carrier Aggregation
US20210084650A1 (en) Communication method and communications apparatus
WO2020143745A1 (zh) V2x的通信方法及装置、存储介质和电子装置
CN110139376B (zh) 载波集合的确定方法、装置、存储介质及电子装置
CN104904305A (zh) 用于设备到设备通信的方法
MX2014010061A (es) Control, dependiente del tiempo de procesamiento, de transmision de bloques de datos.
JP7047055B2 (ja) データを伝送する方法及び端末装置
CN109565404A (zh) 用于交通工具到交通工具通信的自主资源选择
CN104935416A (zh) 处理装置对装置运作的方法
CN104519483B (zh) 在时分双工系统中处理上行/下行链路配置的方法及装置
CN109769289A (zh) 信息传输的方法、基站和用户设备
JP2022501859A (ja) 上り信号の送信方法及びデバイス
JP2022538211A (ja) Bwpの管理方法および装置、端末
CN103916932A (zh) 处理细胞选择的方法及其通信装置
CN108848483A (zh) 处理装置对装置通讯的装置及方法
CN105163264A (zh) 处理用于机器型态通信的资源配置的方法及其通信装置
US20230361971A1 (en) Methods for transmitting or receiving data, terminal, and storage medium
CN107852295A (zh) 用于使能和执行上行链路控制信道传输的无线装置、网络节点以及其中的方法
CN106060967B (zh) 根据小区选择处理卸载参数的装置
CN108418661A (zh) 数据传输方法及装置
CN108540998A (zh) 处理用户端配置的装置及方法
TW201332326A (zh) 變更參考細胞的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891234

Country of ref document: EP

Effective date: 20210628