WO2020108169A1 - 多层材料相控阵激光雷达发射芯片、制作方法及激光雷达 - Google Patents

多层材料相控阵激光雷达发射芯片、制作方法及激光雷达 Download PDF

Info

Publication number
WO2020108169A1
WO2020108169A1 PCT/CN2019/112394 CN2019112394W WO2020108169A1 WO 2020108169 A1 WO2020108169 A1 WO 2020108169A1 CN 2019112394 W CN2019112394 W CN 2019112394W WO 2020108169 A1 WO2020108169 A1 WO 2020108169A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
waveguide
silicon
structure layer
soi
Prior art date
Application number
PCT/CN2019/112394
Other languages
English (en)
French (fr)
Inventor
王鹏飞
徐洋
张冶金
于红艳
潘教青
王庆飞
田林岩
Original Assignee
北京万集科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京万集科技股份有限公司 filed Critical 北京万集科技股份有限公司
Priority to EP19890176.1A priority Critical patent/EP3904902A4/en
Publication of WO2020108169A1 publication Critical patent/WO2020108169A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/292Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection by controlled diffraction or phased-array beam steering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/125Bends, branchings or intersections

Definitions

  • the embodiments of the present invention relate to the field of radar technology, and in particular, to a multi-layer material phased array laser radar transmitting chip, a manufacturing method, and a laser radar.
  • phased array lidar has already been proposed, and various design schemes are constantly being developed.
  • the current phased array lidar chips all use SOI material as a substrate, and use the good performance of silicon to make various on-chip structures, so as to realize the basic functions of the lidar.
  • silicon also has its own problems, because silicon is a strongly nonlinear material, especially it has a strong two-photon absorption effect and free carrier absorption effect, and its low-order nonlinear coefficient is also very large, which It makes it difficult for high-power light to transmit low-loss in the silicon waveguide, which greatly limits the optical power input to the phased array lidar transmitter chip, which seriously affects the detection performance of the lidar. It is the back-end signal detection part. Brought a lot of pressure.
  • the embodiment of the invention provides a multi-layer material phased array laser radar transmitting chip, a manufacturing method and a laser radar, which solves the power limit problem of the phased array laser radar chip in the prior art, so that the input to the phased array laser radar
  • the optical power in the transmitter chip is greatly increased, which greatly improves the detection performance of the lidar, and reduces the pressure on the back-end signal detection part.
  • an embodiment of the present invention provides a multi-layer material phased array laser radar emission chip, including: a first material structure layer, an SOI silicon waveguide structure layer and a coupling connection structure, the first material structure layer includes: an input Coupler and beam splitter;
  • the input coupler is optically connected to the beam splitter;
  • the beam splitter is optically connected to the SOI silicon waveguide structure layer through a coupling connection structure;
  • the input coupler is used to couple input light to the chip
  • the beam splitter is used to split the light wave coupled to the chip
  • the coupling connection structure is used to couple each light wave after splitting into a silicon waveguide corresponding to the SOI silicon waveguide structure layer;
  • the nonlinear coefficient of the first material in the first material structure layer is lower than that of silicon, and the first material is a material compatible with the CMOS process.
  • the SOI silicon waveguide structure layer includes: a phase modulator and an optical antenna;
  • phase modulator and the optical antenna are connected through a silicon waveguide
  • the phase modulator is used to change the phase of the light wave of each silicon waveguide coupled to the SOI silicon waveguide structure layer;
  • the optical antenna is used to radiate light waves of different phases in the silicon waveguides into space.
  • the first material structure layer is located above the SOI silicon waveguide structure layer, the first material structure layer and the SOI silicon waveguide structure
  • the second material layer is used to separate the layers
  • the refractive index of the second material layer is lower than that of the first material structure layer and the SOI silicon waveguide structure layer.
  • the coupling connection structure includes: a first material coupling waveguide and a silicon coupling waveguide;
  • the first material coupling waveguide is connected to the rear end of the first material waveguide of the beam splitter, and the silicon coupling waveguide is connected to the front end of the silicon waveguide of the SOI silicon waveguide structure layer;
  • the first material coupling waveguide and the silicon coupling waveguide are respectively wedge-shaped structures, the tips of the first material coupling waveguide and the silicon coupling waveguide are opposite, and the first material coupling waveguide and the silicon coupling waveguide The projection areas overlap each other.
  • the tip width of the first material coupling waveguide and the silicon coupling waveguide is 100-300 nm;
  • the width of the rear end of the first material coupling waveguide is the same as the width of the first material waveguide of the beam splitter, and the width of the rear end of the silicon coupling waveguide is the same as the width of the silicon waveguide of the SOI silicon waveguide structure layer;
  • the length of the overlapping areas is 10-100um.
  • the first material structure layer further includes: a first material backbone waveguide
  • the input coupler is optically connected to the beam splitter through the first material backbone waveguide;
  • an embodiment of the present invention provides a phased array laser radar, including the multi-layer material phased array laser radar transmitting chip according to any one of the above-mentioned first aspects.
  • an embodiment of the present invention provides a method for manufacturing a multi-layer material phased array laser radar transmitting chip as described in any one of the first aspects, including:
  • the first material structure layer includes: an input coupler and a beam splitter; the nonlinear coefficient of the first material in the first material structure layer is lower than that of silicon, and the first material is Materials compatible with CMOS process.
  • the formation of the SOI silicon waveguide structure layer in the first region above the top silicon layer of the SOI substrate specifically includes:
  • the first waveguide pattern is transferred to the top silicon layer of the SOI substrate by electron beam exposure or step-type lithography process, and the SOI silicon waveguide structure layer is carved in the first region in combination with the ICP etching process.
  • the method further includes:
  • a second material layer is grown on the chip using a PECVD process, and the refractive index of the second material layer is lower than the refractive index of the first material structure layer and the SOI silicon waveguide structure layer.
  • forming the first material structure layer in the second region above the top silicon layer of the SOI substrate specifically includes:
  • the second waveguide pattern is transferred to the first material layer by electron beam exposure or step-by-step photolithography process and combined with the ICP etching process to form the first material structure layer in the second region.
  • the method further includes:
  • the ICP etching process is used to carve out the through holes of the hot electrode and the corresponding positions of the electrodes to the SOI silicon waveguide structure layer;
  • a PECVD process is used to grow a protective layer on the chip
  • the electrode window and grating window are carved by ICP etching process.
  • Embodiments of the present invention provide a multilayer material phased array laser radar transmitting chip, a manufacturing method, and a laser radar.
  • the multilayer material phased array laser radar transmitting chip includes: a first material structure layer, an SOI silicon waveguide structure layer and Coupling connection structure, the first material structure layer includes: an input coupler and a beam splitter; the input coupler is optically connected with the beam splitter; the beam splitter is optically connected with the SOI silicon waveguide structure layer through the coupling connection structure; the input coupler , Used to couple the input light to the chip; a beam splitter, used to split the light waves coupled to the chip; a coupling connection structure, used to couple each beam after splitting to the corresponding SOI silicon waveguide structure layer In a silicon waveguide; wherein, the nonlinear coefficient of the first material in the first material structure layer is lower than that of silicon, and the first material is a material compatible with the CMOS process, because the first material structure layer The nonlinear coefficient of the material is lower than that of silicon
  • the beam splitter divides the light waves into several parts, reducing each The optical power in a material waveguide enables the optical power in each first material waveguide to meet the normal transmission in the silicon waveguide, thereby greatly increasing the optical power input into the multilayer material phased array lidar emission chip, thereby Greatly improve the detection performance of Lidar, and reduce a lot of pressure for the back-end signal detection part.
  • Embodiment 1 is a schematic structural diagram of a multi-layer material phased array laser radar transmitting chip provided by Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a multi-layer material phased array laser radar transmitting chip provided by Embodiment 2 of the present invention
  • FIG. 3 is a structural schematic diagram of a coupling connection structure in a multilayer material phased array laser radar transmitting chip provided by Embodiment 3 of the present invention
  • FIG. 4 is a flowchart of a method for manufacturing a multi-layer material phased array laser radar transmitting chip provided by Embodiment 6 of the present invention.
  • FIG. 5 is a flowchart of a method for manufacturing a multi-layer material phased array laser radar transmitting chip provided by Embodiment 7 of the present invention.
  • FIG. 6 is a schematic structural diagram of an SOI substrate in Embodiment 7 of the present invention.
  • step 501 is a schematic structural diagram of step 501 after the manufacturing method of the multilayer material phased array laser radar transmitting chip provided by Embodiment 7 of the present invention.
  • step 503 is a schematic structural diagram of step 503 after the manufacturing method of the multilayer material phased array laser radar transmitting chip provided by Embodiment 7 of the present invention.
  • step 504 is a schematic structural diagram of step 504 after the method for manufacturing the multilayer material phased array laser radar transmitting chip provided in Embodiment 7 of the present invention.
  • FIG. 10 is a schematic structural diagram of step 505 after the manufacturing method of the multilayer material phased array laser radar transmitting chip provided by Embodiment 7 of the present invention.
  • step 507 is a schematic structural view of step 507 after the manufacturing method of the multilayer material phased array laser radar transmitting chip provided by Embodiment 7 of the present invention.
  • FIG. 12 is a schematic structural diagram of step 509 after the manufacturing method of the multilayer material phased array laser radar transmitting chip provided by Embodiment 7 of the present invention.
  • FIG. 13 is a schematic structural diagram of step 511 after the manufacturing method of the multilayer material phased array laser radar transmitting chip provided in Embodiment 7 of the present invention.
  • FIG. 1 is a schematic structural diagram of a multi-layer material phased array laser radar transmitting chip provided by Embodiment 1 of the present invention.
  • the multilayer material phased array laser radar transmitting chip provided in this embodiment includes: a first material structure layer 4, an SOI silicon waveguide structure layer 3, and a coupling connection structure 5.
  • the first material structure layer 4 includes: Input coupler 41 and beam splitter 42.
  • the input coupler 41 is optically connected to the beam splitter 42; the beam splitter 42 is optically connected to the SOI silicon waveguide structure layer 3 through the coupling connection structure 5.
  • the input coupler 41 is used to couple the input light to the chip.
  • the beam splitter 42 is used to split the light wave coupled to the chip.
  • the coupling connection structure 5 is used for coupling each beam after splitting into the silicon waveguide corresponding to the SOI silicon waveguide structure layer 3.
  • the nonlinear coefficient of the first material in the first material structure layer 4 is lower than that of silicon, and the first material is a material compatible with the CMOS process.
  • the nonlinear coefficient is a low-order nonlinear coefficient.
  • the low-order nonlinear coefficient may also be a first-order nonlinear coefficient, a second-order nonlinear coefficient, a third-order nonlinear coefficient, and so on.
  • the multi-layer material phased array lidar emission chip is integrated on an SOI substrate that satisfies the CMOS process.
  • the SOI substrate includes a substrate silicon layer 1, a buried oxide layer 2 and a top silicon layer 21 from bottom to top.
  • the material and thickness of each layer of the SOI substrate are not limited. If you can customize the material and thickness of each layer according to different needs, you can also use conventional standard CMOS process SOI substrate products, such as the substrate silicon layer 1 material is silicon, the thickness is 500 ⁇ 600um, the buried oxide layer 2 The material is silicon dioxide with a thickness of 2um, and the material of the top silicon layer 21 is silicon with a thickness of 220nm or 340nm.
  • the above-mentioned standard CMOS process SOI substrate is used to integrate the multi-layer material phased array laser radar emission chip of the embodiment of the present invention, wherein the thickness of the top silicon layer 21 is 220 nm.
  • the optical power allowed to be transmitted in a silicon waveguide is usually small, usually About 100mw. This makes the conventional pure silicon-based phased array laser emission chip unable to realize the on-chip processing and emission of high-power laser, which seriously affects the detection effect of the lidar.
  • a first material structure layer 4 with a lower nonlinear coefficient than silicon is used, and the first material structure layer 4 includes multiple forms of first material waveguides to form the input coupler 41 ⁇ beam splitter 42.
  • the first material in the first material structure layer 4 is compatible with the CMOS process.
  • the first material may be silicon-like materials such as silicon nitride and silicon oxynitride.
  • the input coupler 41 in the first material structure layer 4 is used to couple light waves to the chip, which can couple high-power input light into the first material structure layer 4, since the first material structure layer 4 has a comparison
  • the low refractive index makes the input coupler 41 of the first material larger than the silicon input coupler 41 in the prior art, so it can greatly reduce the mismatch between the spot size of the input coupler 41 and the fiber spot size, which can be effective Improve the coupling efficiency.
  • the input coupler 41 of the first material can achieve higher coupling efficiency than the silicon input coupler 41 in the prior art.
  • the first material is not susceptible to the two-photon absorption effect and the carrier absorption effect, and its first-order nonlinear coefficient is nearly 20 times smaller than that of silicon, which makes the waveguide of the first material structure layer 4 can transmit higher than the silicon waveguide Light waves of a lot of power.
  • the beam splitter 42 is used to split the light wave coupled to the chip, so the light wave coupled into the input coupler 41 is divided into several light waves after passing through the beam splitter 42, so that the beam splitter 42 After splitting, the optical power in each first material waveguide drops a lot.
  • the optical power of each part can meet the normal transmission in the silicon waveguide to couple each light wave to the silicon waveguide corresponding to the SOI silicon waveguide structure layer 3 through the coupling connection structure 5.
  • the multilayer material phased array laser radar transmitting chip includes: a first material structure layer 4, an SOI silicon waveguide structure layer 3 and a coupling connection structure 5, and the first material structure layer 4 includes: an input coupler 41 and Beam splitter 42; input coupler 41 is optically connected with beam splitter 42; beam splitter 42 is optically connected with SOI silicon waveguide structure layer 3 through coupling connection structure 5; input coupler 41 is used to couple input light to On the chip; a beam splitter 42 for splitting the light waves coupled to the chip; a coupling connection structure 5 for coupling each beam after splitting into the silicon waveguide corresponding to the SOI silicon waveguide structure layer 3; wherein ,
  • the nonlinear coefficient of the first material in the first material structure layer 4 is lower than that of silicon, and the first material is a material compatible with the CMOS process, due to the non-linearity of the first material of the first material structure layer 4 The linear coefficient is lower than the nonlinear coefficient of silicon, so the input coupler 41 in the first material structure layer 4 can couple
  • the beam splitter 42 divides the light waves into several parts, reducing each The optical power in a material waveguide enables the optical power in each first material waveguide to meet the normal transmission in the silicon waveguide, thereby greatly increasing the optical power input into the multilayer material phased array lidar emission chip, thereby Greatly improve the detection performance of Lidar, and reduce a lot of pressure for the back-end signal detection part.
  • the SOI silicon waveguide structure layer 3 includes: a phase modulator 31 and an optical antenna 32.
  • phase modulator 31 and the optical antenna 32 are connected by a silicon waveguide.
  • phase modulator 31 is used to change the phase of the optical wave of each silicon waveguide coupled to the SOI silicon waveguide structure layer 3.
  • the optical antenna 32 is used to radiate the phase-shifted light wave in each silicon waveguide into the space.
  • the phase modulator 31 and the optical antenna 32 are optically connected through a silicon waveguide.
  • the phase modulator 31 forms electrodes with each silicon waveguide, and adjusts the refractive index of the silicon waveguide by applying current or voltage bias, thereby changing the phase of the light wave in each waveguide.
  • the light waves in each silicon waveguide are phase-adjusted by the phase modulator 31, transmitted through the silicon waveguide to the optical antenna 32, and transmitted to the space.
  • the multilayer material phased array laser radar transmitting chip provided in this embodiment includes a phase modulator 31 and an optical antenna 32 through the SOI silicon waveguide structure layer 3, and the phase modulator 31 and the optical antenna 32 are connected through a silicon waveguide; phase modulation 31 is used to change the phase of the light waves of each silicon waveguide coupled to the SOI silicon waveguide structure layer 3; optical antenna 32 is used to transmit the light waves of different phases in each silicon waveguide into the space and can input to multiple layers
  • the high-power input light in the material phased array laser radar emission chip is emitted into the space, thereby greatly improving the detection performance of the laser radar, and reducing the pressure on the back-end signal detection part.
  • FIG. 2 is a schematic structural diagram of a multi-layer material phased array laser radar transmitting chip provided by Embodiment 2 of the present invention.
  • the controlled array laser radar transmitting chip provided by this embodiment is provided by Embodiment 1 of the present invention
  • the multi-layer material phased array lidar emission chip On the basis of the multi-layer material phased array lidar emission chip, it also includes: a second material layer 6.
  • the first material structure layer 4 is located above the SOI silicon waveguide structure layer 3, and the first material structure layer 4 and the SOI silicon waveguide structure layer 3 are separated by a second material layer 6.
  • the refractive index of the second material layer 6 is lower than that of the first material structure layer 4 and the SOI silicon waveguide structure layer 3.
  • the first material structure layer 4 and the SOI silicon waveguide structure layer 3 are separated by a second material layer 6 that has a lower refractive index than the first material structure layer 4 and the SOI silicon waveguide structure layer 3 open.
  • the second material layer 6 is compatible with CMOS process.
  • the second material layer 6 may be a silicon dioxide layer.
  • the thickness of the second material layer 6 corresponds to the operating wavelength of the phased array laser emitting chip. The thickness is about the quotient of the quarter of the operating wavelength and the refractive index of the second material. If the working wavelength of the phased array laser emitting chip is 1.5-1.6um, the thickness of the second material layer 6 is set to 50-500nm.
  • FIG. 3 is a schematic structural diagram of a coupling connection structure 5 in a multilayer material phased array lidar transmitting chip provided by Embodiment 3 of the present invention, which is a top view of FIG. 2 along the direction A, as shown in FIG. 3, in this embodiment,
  • the first material coupling waveguide 51 is connected to the rear end of the first material waveguide of the beam splitter 42, and the silicon coupling waveguide 52 is connected to the front end of the silicon waveguide of the SOI silicon waveguide structure layer 3.
  • the first material coupling waveguide 51 and the silicon coupling waveguide 52 are respectively wedge-shaped structures, the tips of the first material coupling waveguide 51 and the silicon coupling waveguide 52 are opposite, and the projection areas of the first material coupling waveguide 51 and the silicon coupling waveguide 52 are mutually overlap.
  • the coupling connection structure 5 is a wedge-shaped structure that overlaps with each other.
  • the first material coupling waveguide 51 and the silicon coupling waveguide 52 reduce the confinement of light waves in the waveguide through a wedge structure, thereby coupling the light waves from the first material coupling waveguide 51 to the silicon coupling waveguide 52 through the evanescent wave coupling principle.
  • the width of the tip of the first material coupling waveguide 51 and the silicon coupling waveguide 52 can be determined by the manufacturing process and processing accuracy.
  • the tip width of the first material coupling waveguide 51 and the silicon coupling waveguide 52 is 100-300 nm.
  • the width of the rear end of the first material coupling waveguide 51 is the same as the width of the first material waveguide of the beam splitter 42
  • the width of the rear end of the silicon coupling waveguide 52 is the same as the silicon waveguide of the SOI silicon waveguide structure layer 3 Are the same width. That is, the widths of the rear ends of the first material coupling waveguide 51 and the silicon coupling waveguide 52 are the same as the width of the waveguide connected thereto.
  • the width of the first material waveguide of the beam splitter 42 is 800 nm to 1 um
  • the width of the rear end of the first material coupling waveguide 51 is 800 nm to 1 um
  • the width of the silicon waveguide of the SOI silicon waveguide structure layer 3 is 400 nm to 500 nm
  • the width of the rear end of the silicon coupling waveguide 52 is 400 nm to 500 nm.
  • the length of the overlapping regions is 10-100 um. That is, the length of the overlapping regions in the projection regions of the first material coupling waveguide 51 and the silicon coupling waveguide 52 is 10 to 100 um.
  • the coupling connection structure 5 includes: a first material coupling waveguide 51 and a silicon coupling waveguide 52; the first material coupling waveguide 51 is connected to the first material of the beam splitter 42 At the rear end of the waveguide, the silicon coupling waveguide 52 is connected to the front end of the silicon waveguide of the SOI silicon waveguide structure layer 3; the first material coupling waveguide 51 and the silicon coupling waveguide 52 are respectively a wedge structure, and the first material coupling waveguide 51 and the silicon coupling waveguide 52 The tips of are opposite, and the projection areas of the first material coupling waveguide 51 and the silicon coupling waveguide 52 overlap each other.
  • the width of the tip of the first material coupling waveguide 51 and the silicon coupling waveguide 52, the width of the rear end and the length of the overlapping region are set to the corresponding preset range, which can effectively couple the light wave from the first material waveguide to the silicon waveguide, Can achieve 0-100% optical coupling efficiency.
  • This embodiment further refines the first material structure layer and the SOI silicon waveguide structure layer on the basis of the multilayer material phased array laser radar transmitting chip provided in Embodiment 3 of the present invention. Then, the multilayer material phased array laser radar transmitting chip provided in this embodiment further includes the following solutions.
  • the first material structure layer further includes: a first material backbone waveguide.
  • the input coupler 41 is optically connected to the beam splitter 42 through the first material backbone waveguide.
  • each waveguide in the multilayer material phased array laser radar emission chip is a TE mode single mode waveguide.
  • the waveguide in the first material structure layer, the waveguide in the SOI silicon waveguide structure layer, and the waveguide in the coupling connection structure are all TE mode single-mode waveguides.
  • the input coupler 41 is an end coupler or a grating coupler.
  • the beam splitter 42 is a cascaded multi-mode interference coupler, a star coupler, or a directional coupler.
  • an end coupler or a grating coupler can be selected to couple the light wave to the chip, and the light wave is transmitted to any of the multi-mode interference coupler, star coupler or directional coupler through the TE mode single-mode waveguide
  • the light wave can be transmitted from the first material waveguide through the coupling connection structure 5 Coupling into the silicon waveguide of the SOI silicon waveguide structure layer 3.
  • the phase modulator 31 is an electro-optic phase modulator or a thermo-optic phase modulator.
  • the electro-optical phase modulator or the thermo-optical phase modulator is used in the phase modulator 31 in this embodiment.
  • the electro-optic phase modulation structure is ion implantation on the silicon slabs on both sides of the silicon waveguide in the SOI silicon waveguide structure layer 3 to form a PIN junction or PN junction with the silicon waveguide. When a current passes, the refractive index of silicon can be adjusted, thereby Change the phase of the light wave in each silicon waveguide.
  • the thermo-optic phase modulator can be selected as the top heating type or the two-side heating type, that is, the heating electrode is made on the top or both sides of the silicon waveguide. By applying current or voltage bias, the heat generated by the heating electrode is transferred to the silicon waveguide.
  • the heating electrode Since silicon is a material with a high thermo-optic coefficient, it is easy to change the refractive index in the waveguide and change the phase of the light wave in each waveguide. It should be noted that, in order to avoid that the heating electrode is too close to the waveguide, it will absorb the light in the waveguide, thereby causing large losses, the heating electrode needs to be a certain distance from the waveguide, generally greater than 2um. In this embodiment, the materials of the heating electrode and the metal lead are not limited, but the resistivity of the heating electrode is generally larger than that of the metal lead by an order of magnitude.
  • the input coupler 41 is an end face coupler or a grating coupler.
  • the beam splitter 42 is a cascaded multimode interference coupler, star coupler or directional coupler, and the phase modulator 31 is an electro-optical phase modulator or a thermo-optical phase modulator, which enables the multi-layer material phased array laser radar to emit
  • the phase modulator 31 is an electro-optical phase modulator or a thermo-optical phase modulator, which enables the multi-layer material phased array laser radar to emit
  • the optical antenna 32 is an array grating type optical antenna.
  • the light waves in each silicon waveguide are adjusted in phase by the phase modulator 31 and then transmitted from the silicon waveguide to the optical antenna 32 and emitted into space.
  • the optical antenna 32 is a second-order diffraction grating engraved on a silicon array waveguide, that is, an array grating type optical antenna 32.
  • the specific parameters of the grating such as grating period, duty cycle, etching depth, etc., are all related to the operating wavelength. When etching a grating on a silicon waveguide, it is necessary to first calculate the grating period according to the etching depth.
  • the second-order diffraction grating of the optical antenna 32 is designed to have a shallow etching depth of 20-100 nm. Since the optical waveband is 1.5 to 1.6 ⁇ m, the effective refractive index of the silicon waveguide array for this band is about 2.38. According to the second-order diffraction grating formula, the period of the second-order diffraction grating is 600 to 680 nm, that is, the silicon waveguide is uniformly distributed in each The grating is etched over the distance of the grating period.
  • the width of the grating is determined by the duty cycle, which is the ratio of the grating width to the grating period. It can be known from calculations that the outward radiation efficiency is highest when the light wave band is 1.5-1.6 ⁇ m and the duty ratio of the second-order diffraction grating is 0.4-0.6.
  • the silicon waveguide pitch of the optical antenna 32 determines the maximum scanning angle of the final phased array laser emitting chip, in this embodiment, the silicon waveguide pitch of the optical antenna 32 is 500 nm to 2.5 um.
  • the optical antenna 32 does not limit the distribution form of the silicon waveguide, and may be uniformly distributed, or may be other distribution forms such as Gaussian distribution, sinusoidal distribution, and so on.
  • the multi-layer material phased array laser radar transmitting chip further includes a protective layer.
  • the protective layer covers the entire multilayer material phased array laser radar transmitting chip, and the protective layer 12 is a low refractive index protective layer.
  • the material of the low-refractive index protective layer 12 may be silicon dioxide, and the thickness may be 2-5 um.
  • a window is opened above the electrodes and the grating of the optical antenna for power-on and light input and output.
  • the window above the grating of the optical antenna 32 can be opened to about 2um from the grating.
  • Embodiment 5 of the present invention provides a phased array laser radar.
  • the phased array laser radar includes a multi-layer material phased array laser radar transmitting chip according to any one of the first to fourth embodiments of the present invention.
  • the structure and function of the multilayer material phased array laser radar transmitting chip in the phased array laser radar in this embodiment is the same as the multilayer material phased array laser radar transmitting chip in any of the first to fourth embodiments of the present invention.
  • the structure and function are the same, so I won't repeat them one by one here.
  • the light source may be an off-chip laser coupled to a multi-layer material phased array laser radar emission chip, or may be a laser bonded on the chip.
  • the detector of the phased array laser radar may be off-chip.
  • the detector may also be a detector integrated on the chip, which is not limited in this embodiment.
  • FIG. 4 is a flowchart of a method for manufacturing a multi-layer material phased array laser radar transmitting chip provided by Embodiment 6 of the present invention. As shown in FIG. 4, a method for manufacturing a multi-layer material phased array laser radar transmitting chip provided by this embodiment The method includes the following steps.
  • an SOI silicon waveguide structure layer 3 is formed in the first region above the top silicon layer of the SOI substrate.
  • the beam pattern on the SOI silicon waveguide structure layer 3 can be transferred to the top silicon layer of the SOI substrate using electron beam exposure or step-type lithography process and combined with the ICP etching process in the first area
  • the SOI silicon waveguide structure layer 3 is carved, and other processes may also be used to form the SOI silicon waveguide structure layer 3 in the first region above the top silicon layer of the SOI substrate, which is not limited in this embodiment.
  • the first region is a rear end that can be located on the top silicon layer of the SOI substrate.
  • Step 402 forming a first material structure layer 4 in the second region above the top silicon layer of the SOI substrate, so that a coupling connection is formed between the rear end of the first material structure layer 4 and the front end of the SOI silicon waveguide structure layer 3 Structure 5.
  • an electron beam exposure or a step-by-step lithography process may be used to transfer the waveguide pattern of the first material structure layer 4 to the first material structure layer 4 and combine with the ICP etching process to etch in the second region ⁇ 4 ⁇ The first material structure layer 4.
  • Other processes may also be used to form the first material structure layer 4 in the second region above the top silicon layer of the SOI substrate, which is not limited in this embodiment.
  • the second region is a front end that can be located on the top silicon layer of the SOI substrate. And the projection areas of the first area and the second area overlap each other to form the coupling connection structure 5.
  • first region may also be located at the front end of the top silicon layer of the SOI substrate, and accordingly, the second region may be located at the rear end of the top silicon layer of the SOI substrate, and the projection of the first region and the second region The regions overlap each other to form the coupling connection structure 5.
  • the first material structure layer 4 includes: an input coupler 41 and a beam splitter 42.
  • the front-end waveguide pattern in the first material structure layer 4 forms an input coupler 41, and the rear-end waveguide pattern forms a beam splitter 42.
  • the input coupler 41 is used to couple light waves to the chip.
  • the beam splitter 42 is used to split the light wave coupled to the chip.
  • the nonlinear coefficient of the first material in the first material structure layer 4 is lower than that of silicon, and the first material is a material compatible with the CMOS process.
  • the SOI silicon waveguide structure layer 3 and the first material structure layer 4 are no longer on the same horizontal plane, and the SOI silicon waveguide structure layer 3 can Below a material structure layer 4, the SOI silicon waveguide structure layer 3 can also be above the first material structure layer 4, so that the first material structure layer 4 is between the rear end of the beam splitter 42 and the front end of the SOI silicon waveguide structure layer 3
  • the coupling connection structure includes: a first material coupling waveguide and a silicon coupling waveguide.
  • the first material coupling waveguide is connected to the rear end of the first material waveguide of the beam splitter, and the silicon coupling waveguide is connected to the front end of the silicon waveguide of the SOI silicon waveguide structure layer 3.
  • the first material coupling waveguide and the silicon coupling waveguide respectively have a wedge-shaped structure, the tips of the first material coupling waveguide and the silicon coupling waveguide are opposite, and the projection areas of the first material coupling waveguide and the silicon coupling waveguide overlap each other.
  • the manufacturing method of the multi-layer material phased array laser radar transmitting chip provided in this embodiment can produce the multi-layer material phased array laser radar transmitting chip and the multi-layer material phased array laser radar transmitting chip in the first embodiment of the present invention.
  • the structure and function are the same as those in the first embodiment, and no more details are given here.
  • FIG. 5 is a flowchart of a method for manufacturing a multilayer material phased array laser radar transmitting chip provided by Embodiment 7 of the present invention.
  • the fabrication of a multilayer material phased array laser radar transmitting chip provided by this embodiment The method is based on the manufacturing method of the multi-layer material phased array laser radar emission chip provided in the first embodiment, and further refines steps 401 to 402, and further includes other steps, the multilayer provided in this embodiment
  • the manufacturing method of the material phased array laser radar emission chip includes the following steps.
  • an SOI silicon waveguide structure layer 3 is formed in the first region above the top silicon layer of the SOI substrate.
  • FIG. 6 is a schematic structural diagram of an SOI substrate in Embodiment 7 of the present invention
  • FIG. 7 is a step performed by a method for manufacturing a multi-layer material phased array laser radar transmitting chip provided in Embodiment 7 of the present invention.
  • the structure diagram after 501, as shown in FIG. 7, the first waveguide pattern is transferred to the top silicon layer of the SOI substrate by electron beam exposure or step-type lithography process and combined with the ICP etching process in the first region 30 SOIsilicon waveguide structure layer 3.
  • the first region 30 is a rear region located above the top silicon of the SOI substrate.
  • step 502 ion implantation is performed in the phase modulation region of the SOI silicon waveguide structure layer 3 to form a PN junction or a PIN junction to manufacture a phase modulator 31.
  • the first area 30 includes a phase modulation area, and the phase modulation area is located at the front end of the first area 30.
  • step 503 the grating pattern is transferred to the silicon on the top layer of the SOI substrate by electron beam exposure or step-by-step photolithography, and the grating layer 7 is etched in conjunction with the ICP etching process to make the optical antenna 32.
  • FIG. 8 is a schematic structural diagram of step 503 after the manufacturing method of the multilayer material phased array laser radar chip provided by Embodiment 7 of the present invention. As shown in FIG. 8, the grating layer 7 is located at the rear end of the first region 30.
  • the first waveguide pattern constitutes the waveguide pattern on the SOI silicon waveguide structure layer 3.
  • a silicon waveguide connected to the coupling connection structure 5.
  • the silicon waveguide passes through the curved silicon waveguide to increase the spacing of the silicon waveguide in the phase modulation area, thereby achieving thermal or electrical isolation, and finally passes through the curved silicon waveguide When reaching the optical antenna 32 area waveguide, the waveguide spacing is reduced to 500 nm to 2.5 um.
  • a second material layer 6 is grown on the chip using a PECVD process, and the refractive index of the second material layer 6 is lower than that of the first material structure layer 4 and the SOI silicon waveguide structure layer 3.
  • FIG. 9 is a schematic structural diagram of step 504 after the manufacturing method of the multilayer material phased array laser radar chip provided by Embodiment 7 of the present invention.
  • the first material structure layer 4 and the SOI silicon waveguide structure layer 3 They are separated by a second material layer 6, which is compatible with the CMOS process.
  • the second material layer 6 may be a silicon dioxide layer.
  • step 505 a first material layer is grown in the second region above the second material layer 6 using a PECVD process.
  • FIG. 10 is a schematic structural diagram of step 505 after the manufacturing method of the multilayer material phased array laser radar chip provided by Embodiment 7 of the present invention. As shown in FIG. 10, the second region 40 is located above the second material layer 6 Rear area.
  • step 506 the second waveguide pattern is transferred to the first material layer using an electron beam exposure or a step-by-step lithography process, and a first material structure layer 4 is formed in the second region in combination with an ICP etching process.
  • the second waveguide pattern constitutes the waveguide pattern in the first material structure layer.
  • the first material structure layer 4 is located above the SOI silicon waveguide structure layer 3.
  • step 507 the optical isolation layer 8 is grown on the chip using the PECVD process.
  • FIG. 11 is a schematic structural diagram of step 507 after the manufacturing method of the multilayer material phased array laser radar transmitting chip provided by Embodiment 7 of the present invention. As shown in FIG. 11, the optical isolation layer 8 covers the entire chip.
  • the material of the light isolation layer 8 may be a silicon dioxide material.
  • step 508 a thermal electrode and a through hole at corresponding positions of the electrode are carved into the SOI silicon waveguide structure layer 3 by using an ICP etching process.
  • step 509 the metal material and the electrode metal material are heated by a magnetron sputtering or thermal evaporation process, and the thermal electrode 10, the metal lead 11 and the electrode 9 are carved by a photolithography process.
  • FIG. 12 is a schematic structural diagram of step 509 after the manufacturing method of the multilayer material phased array laser radar chip provided by Embodiment 7 of the present invention.
  • the hot electrode 10 and the metal lead 11 The material is not limited, and the resistivity of the hot electrode 10 may be larger than that of the metal lead 11 by an order of magnitude.
  • a protective layer 12 is grown on the chip using a PECVD process.
  • the material of the protective layer 12 may be silicon dioxide.
  • step 511 the electrode window 13 and the grating window 14 are carved using the ICP etching process.
  • step 511 is a schematic structural diagram of step 511 after the manufacturing method of the multilayer material phased array laser radar chip provided by Embodiment 7 of the present invention.
  • the protective layer 12 covers the entire chip, and the electrode window 13 is located Above the electrode, the grating window 14 is located above the grating.
  • the manufacturing method of the multilayer material phased array laser radar transmitting chip provided in this embodiment can produce the multilayer material phased array laser radar transmitting chip in the fourth embodiment of the present invention, wherein the multilayer material phase in this embodiment
  • the structure and function of the arrayed laser radar transmitting chip are the same as the structure and function of the multilayer material phased array laser radar transmitting chip in the fourth embodiment, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

提供了一种多层材料相控阵激光雷达发射芯片、制作方法及激光雷达。该多层材料相控阵激光雷达发射芯片,包括:第一材料结构层(4)、SOI硅波导结构层(3)和耦合连接结构(5),第一材料结构层(4)包括:输入耦合器(41)和分束器(42);输入耦合器(41)与分束器(42)进行光路连接;分束器(42)通过耦合连接结构(5)与SOI硅波导结构层(3)进行光路连接;输入耦合器(41),用于将输入光耦合到芯片上;分束器(42),用于对耦合到芯片上的光波进行分束;耦合连接结构(5),用于将分束后每束光波耦合到SOI硅波导结构层(3)对应的硅波导中;其中,第一材料结构层(4)中的第一材料的非线性系数低于硅的非线性系数,且第一材料为与CMOS工艺相兼容的材料。这种结构使得发射芯片里的光功率大幅提高。

Description

多层材料相控阵激光雷达发射芯片、制作方法及激光雷达 技术领域
本发明实施例涉及雷达技术领域,尤其涉及一种多层材料相控阵激光雷达发射芯片、制作方法及激光雷达。
背景技术
相控阵激光雷达的概念早已被提出,各种不同的设计方案也在不断开展。目前的相控阵激光雷达芯片均采用SOI材料作为衬底,并利用硅的良好性能制作各种片上结构,从而实现激光雷达的基本功能。
但硅也有其自身的问题,由于硅是一种强非线性的材料,尤其是其具有很强的双光子吸收效应和自由载流子吸收效应,并且其低阶非线性系数也很大,这使得大功率的光很难在硅波导里进行低损耗的传输,导致极大限制了输入到相控阵激光雷达发射芯片的光功率,从而严重影响激光雷达的探测性能,为后端信号探测部分带来了很大压力。
发明内容
本发明实施例提供一种多层材料相控阵激光雷达发射芯片、制作方法及激光雷达,解决了现有技术中的相控阵激光雷达芯片的功率极限问题,使得输入到相控阵激光雷达发射芯片里的光功率大幅提高,从而极大的改善激光雷达的探测性能,且为后端信号探测部分减小了很大压力。
第一方面,本发明实施例提供一种多层材料相控阵激光雷达发射芯片,包括:第一材料结构层、SOI硅波导结构层和耦合连接结构,所述第一材料结构层包括:输入耦合器和分束器;
所述输入耦合器与所述分束器进行光路连接;所述分束器通过耦合连接结构与所述SOI硅波导结构层进行光路连接;
所述输入耦合器,用于将输入光耦合到所述芯片上;
所述分束器,用于对耦合到所述芯片上的光波进行分束;
所述耦合连接结构,用于将分束后每束光波耦合到所述SOI硅波导 结构层对应的硅波导中;
其中,所述第一材料结构层中的第一材料的非线性系数低于硅的非线性系数,且所述第一材料为与CMOS工艺相兼容的材料。
进一步地,如上所述的多层材料相控阵激光雷达发射芯片,所述SOI硅波导结构层包括:相位调制器和光学天线;
所述相位调制器与所述光学天线通过硅波导进行连接;
所述相位调制器,用于改变耦合到所述SOI硅波导结构层的各硅波导的光波的相位;
所述光学天线,用于对所述各硅波导中的改变相位的光波发射至空间中。
进一步地,如上所述的多层材料相控阵激光雷达发射芯片,所述第一材料结构层位于所述SOI硅波导结构层的上方,所述第一材料结构层与所述SOI硅波导结构层之间采用第二材料层隔开;
其中,所述第二材料层的折射率低于所述第一材料结构层和所述SOI硅波导结构层的折射率。
进一步地,如上所述的多层材料相控阵激光雷达发射芯片,所述耦合连接结构包括:第一材料耦合波导和硅耦合波导;
所述第一材料耦合波导连接在所述分束器的第一材料波导的后端,所述硅耦合波导连接在所述SOI硅波导结构层的硅波导的前端;
所述第一材料耦合波导和所述硅耦合波导分别为楔形结构,所述第一材料耦合波导和所述硅耦合波导的尖端相对,且所述第一材料耦合波导和所述硅耦合波导的投影区域相互交叠。
进一步地,如上所述的多层材料相控阵激光雷达发射芯片,所述第一材料耦合波导和硅耦合波导的尖端宽度为100~300nm;
第一材料耦合波导的后端宽度与所述分束器的第一材料波导的宽度相同,硅耦合波导的后端宽度与所述SOI硅波导结构层的硅波导的宽度相同;
相互交叠的区域长度为10~100um。
进一步地,如上所述的多层材料相控阵激光雷达发射芯片,所述第一材料结构层还包括:第一材料主干波导;
所述输入耦合器通过所述第一材料主干波导与所述分束器进行光路连接;
第二方面,本发明实施例提供一种相控阵激光雷达,包括如上述第一方面任一项所述的多层材料相控阵激光雷达发射芯片。
第三方面,本发明实施例提供一种制作如上述第一方面任一项所述的多层材料相控阵激光雷达发射芯片的方法,包括:
在SOI衬底的顶层硅上方的第一区域形成SOI硅波导结构层;
在SOI衬底的顶层硅上方的第二区域形成第一材料结构层,以使第一材料结构层的后端与所述SOI硅波导结构层的前端之间形成耦合连接结构;
其中,所述第一材料结构层包括:输入耦合器和分束器;所述第一材料结构层中的第一材料的非线性系数低于硅的非线性系数,且所述第一材料为与CMOS工艺相兼容的材料。
进一步地,如上所述的方法,所述在SOI衬底的顶层硅上方的第一区域形成SOI硅波导结构层,具体为:
采用电子束曝光或者步近式光刻工艺将第一波导图形转移到SOI衬底的顶层硅上并结合ICP刻蚀工艺在第一区域刻出所述SOI硅波导结构层。
进一步地,如上所述的方法,所述在SOI衬底的顶层硅上方的第一区域形成SOI硅波导结构层之后,还包括:
在所述SOI硅波导结构层的相位调制区域进行离子注入,形成PN结或PIN结,以制作相位调制器;
采用电子束曝光或者步近式光刻工艺将光栅图形转移到SOI衬底的顶层硅上并结合ICP刻蚀工艺刻出光栅层,以制作光学天线;
采用PECVD工艺在所述芯片上生长第二材料层,所述第二材料层的折射率低于所述第一材料结构层和所述SOI硅波导结构层的折射率。
进一步地,如上所述的方法,所述在SOI衬底的顶层硅上方的第二区域形成第一材料结构层,具体包括:
采用PECVD工艺在所述第二材料层上方第二区域生长第一材料层;
采用电子束曝光或者步近式光刻工艺将第二波导图形转移到所述第 一材料层上并结合ICP刻蚀工艺在所述第二区域制作第一材料结构层。
进一步地,如上所述的方法,所述在SOI衬底的顶层硅上方的第二区域形成第一材料结构层之后,还包括:
采用PECVD工艺在所述芯片上生长光隔离层;
采用ICP刻蚀工艺刻出热电极和电极相应位置的通孔通往所述SOI硅波导结构层;
采用磁控溅射或者热蒸发工艺长加热金属材料和电极金属材料并通过光刻工艺刻出热电极、金属引线和电极;
采用PECVD工艺在所述芯片上生长保护层;
采用ICP刻蚀工艺刻出电极窗口和光栅窗口。
本发明实施例提供一种多层材料相控阵激光雷达发射芯片、制作方法及激光雷达,该多层材料相控阵激光雷达发射芯片,包括:第一材料结构层、SOI硅波导结构层和耦合连接结构,第一材料结构层包括:输入耦合器和分束器;输入耦合器与分束器进行光路连接;分束器通过耦合连接结构与SOI硅波导结构层进行光路连接;输入耦合器,用于将输入光耦合到芯片上;分束器,用于对耦合到芯片上的光波进行分束;耦合连接结构,用于将分束后每束光波耦合到SOI硅波导结构层对应的硅波导中;其中,第一材料结构层中的第一材料的非线性系数低于硅的非线性系数,且第一材料为与CMOS工艺相兼容的材料,由于第一材料结构层的第一材料的非线性系数低于硅的非线性系数,所以第一材料结构层中的输入耦合器能够将大功率光波耦合到芯片上,在通过分束器将光波分为若干份,降低每根第一材料波导中的光功率,使每个第一材料波导中的光功率能够满足在硅波导中正常传输,进而使得输入到多层材料相控阵激光雷达发射芯片里的光功率大幅提高,从而极大的改善激光雷达的探测性能,且为后端信号探测部分减小了很大压力。
应当理解,上述发明内容部分中所描述的内容并非旨在限定本发明的实施例的关键或重要特征,亦非用于限制本发明的范围。本发明的其它特征将通过以下的描述变得容易理解。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的多层材料相控阵激光雷达发射芯片的结构示意图;
图2为本发明实施例二提供的多层材料相控阵激光雷达发射芯片的结构示意图;
图3为本发明实施例三提供的多层材料相控阵激光雷达发射芯片中耦合连接结构的结构示意图;
图4为本发明实施例六提供的多层材料相控阵激光雷达发射芯片的制作方法的流程图;
图5为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法的流程图;
图6为本发明实施例七中的SOI衬底的结构示意图;
图7为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤501后的结构示意图;
图8为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤503后的结构示意图;
图9为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤504后的结构示意图;
图10为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤505后的结构示意图;
图11为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤507后的结构示意图;
图12为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤509后的结构示意图;
图13为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤511后的结构示意图。
附图标记
1-衬底硅层  2-埋氧化层  21-顶部硅层  3-SOI硅波导结构层  30-第一区域  31-相位调制器  32-光学天线  4-第一材料结构层  40-第二区域  41-输入耦合器  42-分束器  5-耦合连接结构  51-第一材料耦合波导  52-硅耦合波导  6-第二材料层  7-光栅层  8-光隔离层  9-电极  10-热电极  11-金属引线  12-保护层  13-电极窗口  14-光栅窗口
具体实施方式
下面将参照附图更详细地描述本发明的实施例。虽然附图中显示了本发明的某些实施例,然而应当理解的是,本发明可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本发明。应当理解的是,本发明的附图及实施例仅用于示例性作用,并非用于限制本发明的保护范围。
本发明实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明实施例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
图1为本发明实施例一提供的多层材料相控阵激光雷达发射芯片的结构示意图。如图1所示,本实施例提供的多层材料相控阵激光雷达发射芯片包括:第一材料结构层4、SOI硅波导结构层3和耦合连接结构5,第一材料结构层4包括:输入耦合器41和分束器42。
其中,输入耦合器41与分束器42进行光路连接;分束器42通过耦合连接结构5与SOI硅波导结构层3进行光路连接。
具体地,输入耦合器41,用于将输入光耦合到芯片上。分束器42,用于对耦合到芯片上的光波进行分束。耦合连接结构5,用于将分束后每束光波耦合到SOI硅波导结构层3对应的硅波导中。
其中,第一材料结构层4中的第一材料的非线性系数低于硅的非线性 系数,且第一材料为与CMOS工艺相兼容的材料。
其中,非线性系数为低阶非线性系数。低阶非线性系数还可以为第一阶非线性系数,第二阶非线性系数,第三阶非线性系数等。
具体地,本实施例中,多层材料相控阵激光雷达发射芯片集成在一片满足CMOS工艺的SOI衬底上。该SOI衬底由下至上包括:衬底硅层1,埋氧化层2和顶部硅层21。本实施例中对SOI衬底的每一层的材料和厚度不作限制。如可根据不同的需求进行每一层材料和厚度的定制,也可以采用常规标准CMOS工艺的SOI衬底产品,如衬底硅层1材料为硅,厚度为500~600um,埋氧化层2的材料为二氧化硅,厚度为2um,顶部硅层21的材料为硅,厚度为220nm或340nm。
为了表述方便,在下面的实施例中,都以上述标准CMOS工艺的SOI衬底来集成本发明实施例的多层材料相控阵激光雷达发射芯片,其中顶部硅层21的厚度为220nm。
本实施例中,由于硅具有很大的低阶非线性系数,并且硅材料具有很强的双光子吸收效应和自由载流子吸收效应,所以通常硅波导中允许传输的光功率很小,通常约100mw。这使得常规的纯硅基相控阵激光发射芯片无法实现大功率激光的片上处理和发射,严重影响了激光雷达的探测效果。
为了解决以上问题,本实施例中采用一种比硅的非线性系数低的第一材料结构层4,在第一材料结构层4中包括多种形态的第一材料波导,构成输入耦合器41和分束器42。该第一材料结构层4中的第一材料与CMOS工艺相兼容。第一材料可以为氮化硅、氮氧化硅等类硅材料。其中,第一材料结构层4中的输入耦合器41,用于将光波耦合到芯片上,其能够将大功率输入光耦合进第一材料结构层4中,由于第一材料结构层4具有比较低的折射率,使得第一材料的输入耦合器41比现有技术中的硅输入耦合器41的尺寸大,所以可以大大降低输入耦合器41的光斑尺寸和光纤光斑尺寸的失配,可以有效的提高耦合效率。第一材料的输入耦合器41可以实现比现有技术中的硅输入耦合器41更高的耦合效率。并且第一材料不易遭受双光子吸收效应和载流子吸收效应的影响,其1阶非线性系数比硅要小接近20倍,这使得第一材料结构层4的波导中可以传输比硅波导高很多功率的光波。
本实施例中,分束器42用于对耦合到芯片上的光波进行分束,所以耦 合进输入耦合器41的光波经过分束器42后被分为若干份光波,使得经分束器42分束后每根第一材料波导中的光功率下降很多。当光波被分为足够多份后,每一份的光功率能够满足在硅波导中正常传输后通过耦合连接结构5将每束光波耦合到SOI硅波导结构层3对应的硅波导中。
本实施例提供的多层材料相控阵激光雷达发射芯片,包括:第一材料结构层4、SOI硅波导结构层3和耦合连接结构5,第一材料结构层4包括:输入耦合器41和分束器42;输入耦合器41与分束器42进行光路连接;分束器42通过耦合连接结构5与SOI硅波导结构层3进行光路连接;输入耦合器41,用于将输入光耦合到芯片上;分束器42,用于对耦合到芯片上的光波进行分束;耦合连接结构5,用于将分束后每束光波耦合到SOI硅波导结构层3对应的硅波导中;其中,第一材料结构层4中的第一材料的非线性系数低于硅的非线性系数,且第一材料为与CMOS工艺相兼容的材料,由于第一材料结构层4的第一材料的非线性系数低于硅的非线性系数,所以第一材料结构层4中的输入耦合器41能够将大功率光波耦合到芯片上,在通过分束器42将光波分为若干份,降低每根第一材料波导中的光功率,使每个第一材料波导中的光功率能够满足在硅波导中正常传输,进而使得输入到多层材料相控阵激光雷达发射芯片里的光功率大幅提高,从而极大的改善激光雷达的探测性能,且为后端信号探测部分减小了很大压力。
进一步地,如图1所示,本实施例提供的多层材料相控阵激光雷达发射芯片中,SOI硅波导结构层3包括:相位调制器31和光学天线32。
其中,相位调制器31与光学天线32通过硅波导进行连接。
具体地,相位调制器31,用于改变耦合到SOI硅波导结构层3的各硅波导的光波的相位。光学天线32,用于对各硅波导中的改变相位的光波发射至空间中。
本实施例中,相位调制器31与光学天线32通过硅波导进行光路连接。相位调制器31,通过与各硅波导形成电极,通过加电流或电压偏制,调控硅波导的折射率,进而改变各波导中的光波的相位。各硅波导中的光波通过相位调制器31调好相位后通过硅波导传输到光学天线32中发射至空间中。
本实施例提供的多层材料相控阵激光雷达发射芯片,通过SOI硅波导结构层3包括:相位调制器31和光学天线32,相位调制器31与光学天线32通过硅波导进行连接;相位调制器31,用于改变耦合到SOI硅波导结构层3的各硅波导的光波的相位;光学天线32,用于对各硅波导中的改变相位的光波发射至空间中,能够将输入到多层材料相控阵激光雷达发射芯片里的大功率的输入光发射至空间中,从而极大的改善激光雷达的探测性能,且为后端信号探测部分减小了很大压力。
实施例二
图2为本发明实施例二提供的多层材料相控阵激光雷达发射芯片的结构示意图,如图2所示,本实施例提供的控阵激光雷达发射芯片是在本发明实施例一提供的多层材料相控阵激光雷达发射芯片的基础上,还包括:第二材料层6。
进一步地,本实施例中,第一材料结构层4位于SOI硅波导结构层3的上方,第一材料结构层4与SOI硅波导结构层3之间采用第二材料层6隔开。
其中,第二材料层6的折射率低于第一材料结构层4和SOI硅波导结构层3的折射率。
具体地,本实施例中,第一材料结构层4和SOI硅波导结构层3之间采用比第一材料结构层4和SOI硅波导结构层3的折射率都低的第二材料层6隔开。该第二材料层6与CMOS工艺兼容。如该第二材料层6可以为二氧化硅层。本实施例中,第二材料层6的厚度与该相控阵激光发射芯片的工作波长相对应。厚度约为四分之一工作波长与第二材料折射率之商。若相控阵激光发射芯片的工作波长为1.5~1.6um,则第二材料层6厚度设置为50~500nm。
实施例三
图3为本发明实施例三提供的多层材料相控阵激光雷达发射芯片中耦合连接结构5的结构示意图,其为图2沿A方向的俯视图,如图3所示,本实施例中,第一材料耦合波导51连接在分束器42的第一材料波导的后 端,硅耦合波导52连接在SOI硅波导结构层3的硅波导的前端。
具体地,第一材料耦合波导51和硅耦合波导52分别为楔形结构,第一材料耦合波导51和硅耦合波导52的尖端相对,且第一材料耦合波导51和硅耦合波导52的投影区域相互交叠。
实际应用中,该耦合连接结构5是相互交叠的楔形结构,第一材料耦合波导51和硅耦合波导52之间具有第二材料层6,两个楔形结构的尖端相对。第一材料耦合波导51和硅耦合波导52通过楔形结构来减少对波导中光波的限制,从而通过消逝波耦合原理,将光波从第一材料耦合波导51耦合到硅耦合波导52中。
其中,第一材料耦合波导51和硅耦合波导52的尖端宽度可通过制作工艺和加工精度决定。优选地,本实施例中,第一材料耦合波导51和硅耦合波导52的尖端宽度为100~300nm。
优选地,本实施例中,第一材料耦合波导51的后端宽度与分束器42的第一材料波导的宽度相同,硅耦合波导52的后端宽度与SOI硅波导结构层3的硅波导的宽度相同。即第一材料耦合波导51和硅耦合波导52的后端宽度为与其连接的波导的宽度相同。
可选地,本实施例中,分束器42的第一材料波导的宽度为800nm~1um,则第一材料耦合波导51的后端宽度为800nm~1um。SOI硅波导结构层3的硅波导宽度为400nm~500nm,则硅耦合波导52的后端宽度为400nm~500nm。
优选地,本实施例中,相互交叠的区域长度为10~100um。即第一材料耦合波导51和硅耦合波导52的投影区域中相互交叠的区域长度为10~100um。
本实施例提供的多层材料相控阵激光雷达发射芯片,耦合连接结构5包括:第一材料耦合波导51和硅耦合波导52;第一材料耦合波导51连接在分束器42的第一材料波导的后端,硅耦合波导52连接在SOI硅波导结构层3的硅波导的前端;第一材料耦合波导51和硅耦合波导52分别为楔形结构,第一材料耦合波导51和硅耦合波导52的尖端相对,且第一材料耦合波导51和硅耦合波导52的投影区域相互交叠。并且将第一材料耦合波导51和硅耦合波导52的尖端宽度,后端宽度和相互交叠的区域长度设 置成对应的预设范围,能够有效将光波从第一材料波导耦合到硅波导中,能够实现0-100%的光耦合效率。
实施例四
本实施例在本发明实施例三提供的多层材料相控阵激光雷达发射芯片的基础上,对第一材料结构层及SOI硅波导结构层的进一步细化。则本实施例提供的多层材料相控阵激光雷达发射芯片还包括以下方案。
进一步地,本实施例中,第一材料结构层还包括:第一材料主干波导。
其中,输入耦合器41通过第一材料主干波导与分束器42进行光路连接。
优选地,多层材料相控阵激光雷达发射芯片中的各波导为TE模的单模波导。
具体地,本实施例中,第一材料结构层中的波导、SOI硅波导结构层中的波导、及耦合连接结构中的波导均为TE模的单模波导。
进一步地,本实施例中,输入耦合器41为端面耦合器或光栅耦合器。分束器42为级联的多模干涉耦合器、星型耦合器或者定向耦合器。
具体地,本实施例中,可选择端面耦合器或光栅耦合器将光波耦合到芯片后,光波通过TE模的单模波导传输到多模干涉耦合器、星型耦合器或者定向耦合器任一种分束器42对应的第一材料波导中,当光波被分为足够多份后,每一份光功率满足在硅波导中正常传输后,可通过耦合连接结构5将光波从第一材料波导耦合进入SOI硅波导结构层3的硅波导中。
进一步地,本实施例中,相位调制器31为电光相位调制器或热光相位调制器。
具体地,本实施例中相位调制器31中采用电光型相位调制器或者热光型相位调制器。电光型相位调制结构为在SOI硅波导结构层3中硅波导两侧的硅平板上做离子注入,与硅波导形成PIN结或者PN结,当有电流通过时,可以调控硅的折射率,从而改变各硅波导中的光波的相位。热光型相位调制器可选用顶部加热型或者两侧加热型,即把加热电极做在硅波导的顶部或者两侧, 通过加电流或者电压偏制,加热电极产生的热传递到硅波导中,由于硅是一种热光系数很高的材料,所以很容易改变波导中折射率,而改变各波导中的光波的相位。需要注意的是,为了避免加热电极离波导太近,会吸收波导中的光,从而造成较大的损耗,加热电极需要离波导一定距离,一般大于2um。本实施例中对加热电极和金属引线的材料不做限定,但一般加热电极的电阻率要比金属引线大接近一个量级。
本实施例提供的多层材料相控阵激光雷达发射芯片,输入耦合器41为端面耦合器或光栅耦合器。分束器42为级联的多模干涉耦合器、星型耦合器或者定向耦合器,相位调制器31为电光相位调制器或热光相位调制器,能够使多层材料相控阵激光雷达发射芯片根据器件的不同有多种类型,满足多种需求。
进一步地,本实施例中,光学天线32为阵列光栅型光学天线。
具体地,本实施例中,各硅波导中的光波通过相位调制器31调好相位后由硅波导传输到光学天线32发射至空间中。本实施例中光学天线32为在硅阵列波导上刻二级衍射光栅,即阵列光栅型光学天线32。其中光栅的具体参数,如光栅周期、占空比、刻蚀深度等,都与工作波长相关。在硅波导上进行光栅刻蚀时,需要先根据刻蚀深度计算光栅周期。为了获得小的沿硅波导方向的远场发散角,及高的纵向雷达扫描分辨率,设计光学天线32的二级衍射光栅刻蚀深度较浅,为20~100nm。由于光波波段为1.5~1.6μm,硅波导阵列对于此波段的有效折射率约为2.38,根据二级衍射光栅公式得到二级衍射光栅周期为600~680nm,即在硅波导上均匀地在每个光栅周期的距离上进行光栅刻蚀。而光栅的宽度则由占空比来决定,也就是光栅宽度与光栅周期的比值。通过计算可知,在光波波段1.5~1.6μm,二级衍射光栅占空比为0.4~0.6时,向外辐射效率最高。
由于光学天线32的波导间距决定着最终相控阵激光发射芯片的最大扫描角,所以本实施例中,光学天线32的硅波导间距为500nm~2.5um。光学天线32对硅波导分布形式不做限定,可以为均匀分布,也可以为高斯分布、正弦分布等其他分布形式。
进一步地,本实施例中,多层材料相控阵激光雷达发射芯片还包括:保护层。
具体地,保护层覆盖在整个多层材料相控阵激光雷达发射芯片上,该保护层12为低折射率保护层。该低折射率保护层12的材料可选为二氧化硅,厚度可为2~5um。
进一步地,本实施例中,在设置多层材料相控阵激光雷达发射芯片的电极后,在电极和光学天线的光栅上方开窗口,以进行加电和光的输入与输出。光学天线32的光栅上方的窗口可开到距离光栅约2um处。
实施例五
本发明实施例五提供一种相控阵激光雷达,该相控阵激光雷达包括本发明实施例一至实施例四中任一个实施例的多层材料相控阵激光雷达发射芯片。
本实施例中的相控阵激光雷达中多层材料相控阵激光雷达发射芯片的结构和功能与本发明实施例一至实施例四中任一个实施例的多层材料相控阵激光雷达发射芯片的结构和功能相同,在此不再一一赘述。
本实施例中,光源可以是芯片外的激光器耦合封装至多层材料相控阵激光雷达发射芯片上,也可以是键合在芯片上的激光器,相控阵激光雷达的探测器可以为芯片外的探测器,也可以为集成在芯片上的探测器,本实施例对此均不作限定。
实施例六
图4为本发明实施例六提供的多层材料相控阵激光雷达发射芯片的制作方法的流程图,如图4所示,本实施例提供的多层材料相控阵激光雷达发射芯片的制作方法包括以下步骤。
步骤401,在SOI衬底的顶层硅上方的第一区域形成SOI硅波导结构层3。
具体地,本实施例中,可采用电子束曝光或者步近式光刻工艺将SOI硅波导结构层3上的波导图形转移到SOI衬底的顶层硅上并结合ICP刻蚀工艺在第一区域刻出SOI硅波导结构层3,也可采用其他工艺在SOI衬底的顶层硅上方的第一区域形成SOI硅波导结构层3,本实施例中对此不作限定。
其中,第一区域为可以为位于SOI衬底的顶层硅上的后端。
步骤402,在SOI衬底的顶层硅上方的第二区域形成第一材料结构层4,以使第一材料结构层4的后端与所述SOI硅波导结构层3的前端之间形成耦合连接结构5。
具体地,本实施例中,可采用电子束曝光或者步近式光刻工艺将第一材料结构层4的波导图形转移到第一材料结构层4上并结合ICP刻蚀工艺在第二区域刻出第一材料结构层4。也可采用其他工艺在SOI衬底的顶层硅上方的第二区域形成第一材料结构层4,本实施例中不作限定。
其中,第二区域为可以为位于SOI衬底的顶层硅上的前端。且第一区域与第二区域的投影区域相互交叠,以形成耦合连接结构5。
可以理解的是,第一区域也可以位于SOI衬底的顶层硅上的前端,相应地,第二区域可以位于SOI衬底的顶层硅上的后端,且第一区域与第二区域的投影区域相互交叠,以形成耦合连接结构5。
本实施例中,第一材料结构层4包括:输入耦合器41和分束器42。第一材料结构层4中的前端波导图形形成输入耦合器41,后端波导图形形成分束器42。输入耦合器41,用于将光波耦合到芯片上。分束器42,用于对耦合到芯片上的光波进行分束。
其中,第一材料结构层4中的第一材料的非线性系数低于硅的非线性系数,且第一材料为与CMOS工艺相兼容的材料。
本实施例中,在形成SOI硅波导结构层3和第一材料结构层4后,SOI硅波导结构层3和第一材料结构层4不再同一水平面上,SOI硅波导结构层3可在第一材料结构层4的下方,SOI硅波导结构层3也可在第一材料结构层4的上方,以使第一材料结构层4得分束器42后端与SOI硅波导结构层3的前端之间形成耦合连接结构5。
其中,耦合连接结构包括:第一材料耦合波导和硅耦合波导。第一材料耦合波导连接在分束器的第一材料波导的后端,硅耦合波导连接在SOI硅波导结构层3的硅波导的前端。第一材料耦合波导和硅耦合波导分别为楔形结构,第一材料耦合波导和硅耦合波导的尖端相对,且第一材料耦合波导和硅耦合波导的投影区域相互交叠。
本实施例提供的多层材料相控阵激光雷达发射芯片的制作方法,能 够制作本发明实施例一中的多层材料相控阵激光雷达发射芯片,多层材料相控阵激光雷达发射芯片的结构和功能与实施例一相同,在此不再一一赘述。
实施例七
图5为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法的流程图,如图5所示,本实施例提供的多层材料相控阵激光雷达发射芯片的制作方法在实施例一提供的多层材料相控阵激光雷达发射芯片的制作方法的基础上,对步骤401-步骤402的进一步细化,并且还包括了其他步骤,则本实施例提供的多层材料相控阵激光雷达发射芯片的制作方法包括以下步骤。
步骤501,在SOI衬底的顶层硅上方的第一区域形成SOI硅波导结构层3。
进一步地,本实施例中,图6为本发明实施例七中的SOI衬底的结构示意图,图7为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤501后的结构示意图,如图7所示,采用电子束曝光或者步近式光刻工艺将第一波导图形转移到SOI衬底的顶层硅上并结合ICP刻蚀工艺在第一区域30刻出SOI硅波导结构层3。
其中,第一区域30为位于SOI衬底的顶层硅上方的后端区域。
步骤502,在SOI硅波导结构层3的相位调制区域进行离子注入,形成PN结或PIN结,以制作相位调制器31。
其中,第一区域30包括相位调制区域,相位调制区域位于第一区域30的前端。
步骤503,采用电子束曝光或者步近式光刻工艺将光栅图形转移到SOI衬底的顶层硅上并结合ICP刻蚀工艺刻出光栅层7,以制作光学天线32。
图8为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤503后的结构示意图,如图8所示,光栅层7位于第一区域30的后端。
其中,第一波导图形构成了在SOI硅波导结构层3的波导图形。在 SOI硅波导结构层3的前端为与耦合连接结构5连接的硅波导,硅波导经过弯曲硅波导在相位调制区域增大硅波导间隔,从而实现热隔离或电隔离,最后再经过弯曲硅波导到达光学天线32区域波导,波导间隔减小至500nm~2.5um。
步骤504,采用PECVD工艺在芯片上生长第二材料层6,第二材料层6的折射率低于第一材料结构层4和SOI硅波导结构层3的折射率。
图9为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤504后的结构示意图,如图9所示,第一材料结构层4与SOI硅波导结构层3之间采用第二材料层6隔开,该第二材料层6与CMOS工艺兼容。如该第二材料层6可以为二氧化硅层。
步骤505,采用PECVD工艺在第二材料层6上方第二区域生长第一材料层。
图10为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤505后的结构示意图,如图10所示,第二区域40为位于第二材料层6上方的后端区域。
步骤506,采用电子束曝光或者步近式光刻工艺将第二波导图形转移到第一材料层上并结合ICP刻蚀工艺在第二区域制作第一材料结构层4。
其中,第二波导图形构成了在第一材料结构层中的波导图形。
进一步地,本实施例中,在第一材料结构层4位于SOI硅波导结构层3的上方。
步骤507,采用PECVD工艺在芯片上生长光隔离层8。
图11为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤507后的结构示意图,如图11所示,光隔离层8覆盖整个芯片上。
其中,光隔离层8的材料可以为二氧化硅材料。
步骤508,采用ICP刻蚀工艺刻出热电极和电极相应位置的通孔通往SOI硅波导结构层3。
步骤509,采用磁控溅射或者热蒸发工艺长加热金属材料和电极金属材料并通过光刻工艺刻出热电极10、金属引线11和电极9。
图12为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的 制作方法执行步骤509后的结构示意图,如图12所示,本实施例中,热电极10和金属引线11的材料不作限定,热电极10的电阻率可以比金属引线11的电阻率大一个量级。
步骤510,采用PECVD工艺在芯片上生长保护层12。
其中,保护层12的材料可以为二氧化硅。
步骤511,采用ICP刻蚀工艺刻出电极窗口13和光栅窗口14。
图13为本发明实施例七提供的多层材料相控阵激光雷达发射芯片的制作方法执行步骤511后的结构示意图,如图13所示,保护层12覆盖在整个芯片上,电极窗口13位于电极上方,光栅窗口14位于光栅上方。
本实施例提供的多层材料相控阵激光雷达发射芯片的制作方法,可以制作本发明实施例四中的多层材料相控阵激光雷达发射芯片,其中,本实施例中的多层材料相控阵激光雷达发射芯片的结构和功能与实施例四中的多层材料相控阵激光雷达发射芯片的结构和功能相同,在此不再一一赘述。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (12)

  1. 一种多层材料相控阵激光雷达发射芯片,其特征在于,包括:第一材料结构层、SOI硅波导结构层和耦合连接结构,所述第一材料结构层包括:输入耦合器和分束器;
    所述输入耦合器与所述分束器进行光路连接;所述分束器通过耦合连接结构与所述SOI硅波导结构层进行光路连接;
    所述输入耦合器,用于将输入光耦合到所述芯片上;
    所述分束器,用于对耦合到所述芯片上的光波进行分束;
    所述耦合连接结构,用于将分束后每束光波耦合到所述SOI硅波导结构层对应的硅波导中;
    其中,所述第一材料结构层中的第一材料的非线性系数低于硅的非线性系数,且所述第一材料为与CMOS工艺相兼容的材料。
  2. 根据权利要求1所述的多层材料相控阵激光雷达发射芯片,其特征在于,所述SOI硅波导结构层包括:相位调制器和光学天线;
    所述相位调制器与所述光学天线通过硅波导进行连接;
    所述相位调制器,用于改变耦合到所述SOI硅波导结构层的各硅波导的光波的相位;
    所述光学天线,用于对所述各硅波导中的改变相位的光波发射至空间中。
  3. 根据权利要求1所述的多层材料相控阵激光雷达发射芯片,其特征在于,所述第一材料结构层位于所述SOI硅波导结构层的上方,所述第一材料结构层与所述SOI硅波导结构层之间采用第二材料层隔开;
    其中,所述第二材料层的折射率低于所述第一材料结构层和所述SOI硅波导结构层的折射率。
  4. 根据权利要求1所述的多层材料相控阵激光雷达发射芯片,其特征在于,所述耦合连接结构包括:第一材料耦合波导和硅耦合波导;
    所述第一材料耦合波导连接在所述分束器的第一材料波导的后端,所述硅耦合波导连接在所述SOI硅波导结构层的硅波导的前端;
    所述第一材料耦合波导和所述硅耦合波导分别为楔形结构,所述第一材料耦合波导和所述硅耦合波导的尖端相对,且所述第一材料耦合波 导和所述硅耦合波导的投影区域相互交叠。
  5. 根据权利要求4所述的多层材料相控阵激光雷达发射芯片,其特征在于,所述第一材料耦合波导和硅耦合波导的尖端宽度为100~300nm;
    第一材料耦合波导的后端宽度与所述分束器的第一材料波导的宽度相同,硅耦合波导的后端宽度与所述SOI硅波导结构层的硅波导的宽度相同;
    相互交叠的区域长度为10~100um。
  6. 根据权利要求1所述的多层材料相控阵激光雷达发射芯片,其特征在于,所述第一材料结构层还包括:第一材料主干波导;
    所述输入耦合器通过所述第一材料主干波导与所述分束器进行光路连接。
  7. 一种相控阵激光雷达,其特征在于,包括权利要求1-6任一项所述的多层材料相控阵激光雷达发射芯片。
  8. 一种制作如权利要求1-6任一项所述的多层材料相控阵激光雷达发射芯片的方法,其特征在于,包括:
    在SOI衬底的顶层硅上方的第一区域形成SOI硅波导结构层;
    在SOI衬底的顶层硅上方的第二区域形成第一材料结构层,以使第一材料结构层的后端与所述SOI硅波导结构层的前端之间形成耦合连接结构;
    其中,所述第一材料结构层包括:输入耦合器和分束器;所述第一材料结构层中的第一材料的非线性系数低于硅的非线性系数,且所述第一材料为与CMOS工艺相兼容的材料。
  9. 根据权利要求8所述的方法,其特征在于,所述在SOI衬底的顶层硅上方的第一区域形成SOI硅波导结构层,具体为:
    采用电子束曝光或者步近式光刻工艺将第一波导图形转移到SOI衬底的顶层硅上并结合ICP刻蚀工艺在第一区域刻出所述SOI硅波导结构层。
  10. 根据权利要求9所述的方法,其特征在于,所述在SOI衬底的顶层硅上方的第一区域形成SOI硅波导结构层之后,还包括:
    在所述SOI硅波导结构层的相位调制区域进行离子注入,形成PN结或PIN结,以制作相位调制器;
    采用电子束曝光或者步近式光刻工艺将光栅图形转移到SOI衬底的顶层硅上并结合ICP刻蚀工艺刻出光栅层,以制作光学天线;
    采用PECVD工艺在所述芯片上生长第二材料层,所述第二材料层的折射率低于所述第一材料结构层和所述SOI硅波导结构层的折射率。
  11. 根据权利要求10所述的方法,其特征在于,所述在SOI衬底的顶层硅上方的第二区域形成第一材料结构层,具体包括:
    采用PECVD工艺在所述第二材料层上方第二区域生长第一材料层;
    采用电子束曝光或者步近式光刻工艺将第二波导图形转移到所述第一材料层上并结合ICP刻蚀工艺在所述第二区域制作第一材料结构层。
  12. 根据权利要求8所述的方法,其特征在于,所述在SOI衬底的顶层硅上方的第二区域形成第一材料结构层之后,还包括:
    采用PECVD工艺在所述芯片上生长光隔离层;
    采用ICP刻蚀工艺刻出热电极和电极相应位置的通孔通往所述SOI硅波导结构层;
    采用磁控溅射或者热蒸发工艺长加热金属材料和电极金属材料并通过光刻工艺刻出热电极、金属引线和电极;
    采用PECVD工艺在所述芯片上生长保护层;
    采用ICP刻蚀工艺刻出电极窗口和光栅窗口。
PCT/CN2019/112394 2018-11-27 2019-10-22 多层材料相控阵激光雷达发射芯片、制作方法及激光雷达 WO2020108169A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19890176.1A EP3904902A4 (en) 2018-11-27 2019-10-22 MULTI-LAYER PHASE-DRIVEN LIDAR COMMUNICATION CHIP, MANUFACTURING METHOD AND LIDAR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811422332.3 2018-11-27
CN201811422332.3A CN111220963A (zh) 2018-11-27 2018-11-27 多层材料相控阵激光雷达发射芯片、制作方法及激光雷达

Publications (1)

Publication Number Publication Date
WO2020108169A1 true WO2020108169A1 (zh) 2020-06-04

Family

ID=70806308

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112394 WO2020108169A1 (zh) 2018-11-27 2019-10-22 多层材料相控阵激光雷达发射芯片、制作方法及激光雷达

Country Status (3)

Country Link
EP (1) EP3904902A4 (zh)
CN (1) CN111220963A (zh)
WO (1) WO2020108169A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113568105A (zh) * 2021-06-17 2021-10-29 中国科学院微电子研究所 一种波导层间耦合结构及其制备方法
CN113917711A (zh) * 2021-10-18 2022-01-11 哈尔滨工程大学 一种可调谐纤内集成光功率分束器
CN114945836A (zh) * 2021-08-10 2022-08-26 深圳市速腾聚创科技有限公司 光学相控阵芯片以及激光雷达
US12032232B2 (en) * 2018-12-10 2024-07-09 Samsung Electronics Co., Ltd. Optical element array, optical system and method of manufacturing optical element array

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534098B (zh) * 2020-04-17 2023-11-14 北京万集科技股份有限公司 相控阵激光雷达及相控阵激光雷达的扫描方法
CN112882309A (zh) * 2021-01-19 2021-06-01 中山大学 一种基于光波导的共形光学相控阵系统及其制备方法
CN113552668A (zh) * 2021-07-14 2021-10-26 Nano科技(北京)有限公司 一种耐高输入光功率的硅光芯片端面耦合结构
CN113608305B (zh) * 2021-07-15 2022-06-21 苏州旭创科技有限公司 波束控制器及波束控制方法
CN113985679A (zh) * 2021-11-16 2022-01-28 吉林大学 光学相控阵系统及其制备方法
CN116794769A (zh) * 2022-03-16 2023-09-22 华为技术有限公司 一种光学芯片及其制备方法
CN217879917U (zh) * 2022-07-14 2022-11-22 苏州湃矽科技有限公司 半导体光学相控阵
CN116106862B (zh) * 2023-04-10 2023-08-04 深圳市速腾聚创科技有限公司 光芯片、激光雷达、自动驾驶系统及可移动设备
CN116755189B (zh) * 2023-08-16 2024-04-26 深圳市速腾聚创科技有限公司 硅光芯片、激光雷达及可移动设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026526A1 (en) * 1999-02-02 2000-08-09 Corning Incorporated Athermalized polymer overclad integrated planar optical waveguide device and its manufacturing method
CN106597413A (zh) * 2017-03-01 2017-04-26 吉林省长光瑞思激光技术有限公司 一种激光光束扫描器
CN106908776A (zh) * 2017-04-26 2017-06-30 上海交通大学 基于非等宽硅波导的激光雷达芯片发射端
CN107966691A (zh) * 2018-01-18 2018-04-27 北京径科技有限公司 一种光学相控阵发射装置
CN207937598U (zh) * 2018-01-18 2018-10-02 北京一径科技有限公司 一种光学相控阵发射装置
CN108693505A (zh) * 2017-06-09 2018-10-23 深圳市涵光半导体有限公司 激光雷达及其相控阵激光发射单元
CN108828712A (zh) * 2018-06-11 2018-11-16 上海交通大学 基于光学相控阵的大规模集成光开关芯片
CN209373098U (zh) * 2018-11-27 2019-09-10 北京万集科技股份有限公司 多层材料相控阵激光雷达发射芯片及激光雷达

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7423802B2 (en) * 2005-06-01 2008-09-09 Collinear Corporation Illumination module
DE102014219663A1 (de) * 2014-09-29 2016-03-31 Ihp Gmbh - Innovations For High Performance Microelectronics / Leibniz-Institut Für Innovative Mikroelektronik Photonisch integrierter Chip, optisches Bauelement mit photonisch integriertem Chip und Verfahren zu deren Herstellung
CN105353461B (zh) * 2015-12-14 2018-12-07 中国科学院半导体研究所 大容差耦合波导
CN105527772A (zh) * 2015-12-29 2016-04-27 北京大学 一种光学相控阵
US9766404B1 (en) * 2016-06-16 2017-09-19 Oracle International Corporation Polarization-insensitive optical transceiver
CN108646430A (zh) * 2018-03-22 2018-10-12 浙江大学 一种基于热光开关和硅光相控阵的单波长多线扫描系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1026526A1 (en) * 1999-02-02 2000-08-09 Corning Incorporated Athermalized polymer overclad integrated planar optical waveguide device and its manufacturing method
CN106597413A (zh) * 2017-03-01 2017-04-26 吉林省长光瑞思激光技术有限公司 一种激光光束扫描器
CN106908776A (zh) * 2017-04-26 2017-06-30 上海交通大学 基于非等宽硅波导的激光雷达芯片发射端
CN108693505A (zh) * 2017-06-09 2018-10-23 深圳市涵光半导体有限公司 激光雷达及其相控阵激光发射单元
CN107966691A (zh) * 2018-01-18 2018-04-27 北京径科技有限公司 一种光学相控阵发射装置
CN207937598U (zh) * 2018-01-18 2018-10-02 北京一径科技有限公司 一种光学相控阵发射装置
CN108828712A (zh) * 2018-06-11 2018-11-16 上海交通大学 基于光学相控阵的大规模集成光开关芯片
CN209373098U (zh) * 2018-11-27 2019-09-10 北京万集科技股份有限公司 多层材料相控阵激光雷达发射芯片及激光雷达

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904902A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12032232B2 (en) * 2018-12-10 2024-07-09 Samsung Electronics Co., Ltd. Optical element array, optical system and method of manufacturing optical element array
CN113568105A (zh) * 2021-06-17 2021-10-29 中国科学院微电子研究所 一种波导层间耦合结构及其制备方法
CN113568105B (zh) * 2021-06-17 2024-02-13 中国科学院微电子研究所 一种波导层间耦合结构及其制备方法
CN114945836A (zh) * 2021-08-10 2022-08-26 深圳市速腾聚创科技有限公司 光学相控阵芯片以及激光雷达
CN114945836B (zh) * 2021-08-10 2023-03-10 深圳市速腾聚创科技有限公司 光学相控阵芯片以及激光雷达
CN113917711A (zh) * 2021-10-18 2022-01-11 哈尔滨工程大学 一种可调谐纤内集成光功率分束器
CN113917711B (zh) * 2021-10-18 2024-03-26 哈尔滨工程大学 一种可调谐纤内集成光功率分束器

Also Published As

Publication number Publication date
EP3904902A4 (en) 2022-07-06
CN111220963A (zh) 2020-06-02
EP3904902A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
WO2020108169A1 (zh) 多层材料相控阵激光雷达发射芯片、制作方法及激光雷达
US9746743B1 (en) Electro-optic optical modulator devices and method of fabrication
WO2020108171A1 (zh) 混合材料相控阵激光雷达发射芯片、制作方法及激光雷达
US9939577B2 (en) Diffraction structure, diffraction grating, diffraction grating array, optical phased array, optical modulator, optical filter, laser source
CN209373098U (zh) 多层材料相控阵激光雷达发射芯片及激光雷达
US20140293402A1 (en) Laser light source
USRE41644E1 (en) Method for optical modulation at periodic optical structure band edges
CN113777708A (zh) 模变换器
US20210141063A1 (en) Phased array lidar transmitting chip of multi-layer materials, manufacturing method thereof, and lidar device
Prost et al. Solid-state MWIR beam steering using optical phased array on germanium-silicon photonic platform
CN115792954A (zh) 一种光学相控阵、激光雷达发射模块以及激光雷达
JP6232751B2 (ja) 光変調器
CN217767101U (zh) 热光相移器、马曾干涉仪及光计算网络
Li et al. Modeling of thin-film lithium niobate modulator for visible light
JP2001337302A (ja) 光導波路素子およびその製造方法ならびに光ポーリング方法
JPH0373905A (ja) 光機能素子
CN118311539A (zh) 多层材料相控阵雷达发射芯片、雷达装置及制作方法
US11467468B2 (en) Dispersion engineered phased array
US20230062337A1 (en) Electronic module and optical device
CN217767100U (zh) 热光相移器、马曾干涉仪及光计算网络
JP2004020588A (ja) 波長変換装置
Fu et al. Inverse-Designed Non-Uniform Silicon Nitride Gratings With High Beam Steering Performance
Nagase et al. Ultrafast all-optical gating operation using Michelson interferometer for hybrid integration of intersubband transition switch on Si platform
US9971225B2 (en) Spot size converter, semiconductor optical device
JP2856353B2 (ja) 光−ポラリトン変換素子およびそれを用いた装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890176

Country of ref document: EP

Effective date: 20210628

ENP Entry into the national phase

Ref document number: 2019890176

Country of ref document: EP

Effective date: 20210628