WO2020108006A1 - 滑动组件的滑动校正方法和装置 - Google Patents

滑动组件的滑动校正方法和装置 Download PDF

Info

Publication number
WO2020108006A1
WO2020108006A1 PCT/CN2019/105423 CN2019105423W WO2020108006A1 WO 2020108006 A1 WO2020108006 A1 WO 2020108006A1 CN 2019105423 W CN2019105423 W CN 2019105423W WO 2020108006 A1 WO2020108006 A1 WO 2020108006A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal value
sliding
detection signal
hall element
calibration
Prior art date
Application number
PCT/CN2019/105423
Other languages
English (en)
French (fr)
Inventor
钟朋
郑剑荣
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2021530972A priority Critical patent/JP7254929B2/ja
Priority to EP19891640.5A priority patent/EP3876072A4/en
Priority to KR1020217019123A priority patent/KR102457991B1/ko
Publication of WO2020108006A1 publication Critical patent/WO2020108006A1/zh
Priority to US17/331,568 priority patent/US11789470B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • G05D3/20Control of position or direction using feedback using a digital comparing device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1624Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with sliding enclosures, e.g. sliding keyboard or display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1686Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being an integrated camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/16Error detection or correction of the data by redundancy in hardware
    • G06F11/1658Data re-synchronization of a redundant component, or initial sync of replacement, additional or spare unit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0235Slidable or telescopic telephones, i.e. with a relative translation movement of the body parts; Telephones using a combination of translation and other relative motions of the body parts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0235Slidable or telescopic telephones, i.e. with a relative translation movement of the body parts; Telephones using a combination of translation and other relative motions of the body parts
    • H04M1/0237Sliding mechanism with one degree of freedom

Definitions

  • the invention relates to the technical field of electronics, and in particular to a sliding correction method and device of a sliding assembly.
  • devices such as camera modules are installed in the front panel of the electronic device to provide users with front camera services. Therefore, the contradiction between the occupation of the installation space of the camera module on the front panel and the increase of the screen ratio needs to be resolved .
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • the present invention provides a method and device for correcting sliding of a sliding assembly.
  • an embodiment of the first aspect of the present invention provides a sliding correction method for a sliding assembly.
  • the sliding assembly is used in an electronic device.
  • the electronic device includes a body, a detection assembly, and a driving assembly.
  • the driving assembly uses To control the sliding assembly to slide between a first position accommodated in the body and a second position exposed from the body, the detection assembly includes a magnetic field generating element, a first Hall element, and a second Hall element , The magnetic field generating element, the first Hall element and the second Hall element are respectively fixed on the sliding assembly and the body, wherein the sliding assembly slides from the first position to the In the process of the second position, the magnetic field generating element is far from the first Hall element and close to the second Hall element, and the sliding correction method includes the following steps: During the sliding process of the sliding assembly, Obtain the first detection signal value sent by the first Hall element corresponding to the one or more first calibration positions reached, and the second detection signal value sent by the second Hall element; Comparing the first detection signal value of the first calibration position with
  • an embodiment of the second aspect of the present invention provides a sliding correction device for a sliding assembly.
  • the sliding assembly is used in an electronic device.
  • the electronic device includes a body, a detection assembly, and a driving assembly.
  • the detection assembly includes a magnetic field generating element, a first Hall element, and a second Hall element ,
  • the magnetic field generating element, the first Hall element and the second Hall element are respectively fixed on the sliding assembly and the body, wherein the sliding assembly slides from the first position to the During the second position, the magnetic field generating element is away from the first Hall element and close to the second Hall element
  • the slip correction device includes: an acquisition module for sliding on the sliding assembly During the process, the first detection signal value sent by the first Hall element corresponding to the one or more first calibration positions reached and the second detection signal value sent by the second Hall element are obtained; the comparison module For comparing the first detection signal value of each first calibration position with a preset
  • an embodiment of the third aspect of the present invention provides an electronic device, the electronic device includes a body, a sliding component, a detection component and a driving component, the driving component is used to control the sliding component is contained in the Sliding between a first position of the body and a second position exposed from the body, the detection assembly includes a magnetic field generating element, a first Hall element and a second Hall element, the magnetic field generating element, the first A Hall element and the second Hall element are respectively fixed on the sliding assembly and the body, and the electronic device further includes: a memory, a processor electrically connected to the sliding assembly, and stored on the memory A computer program that can be run on a processor. When the processor executes the computer program, the sliding correction method of the sliding component described in the above embodiment is implemented.
  • an embodiment of the fourth aspect of the present invention provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the sliding component as described in the above embodiment is implemented Slip correction method.
  • the sliding component reduces the influence of related components on the screen ratio, and corrects the reference signal value of the relevant position in the sliding component, where the reference signal value is corrected based on the detection signal values detected by the two Hall elements, which improves the sliding component's Sliding position detection reliability.
  • FIG. 1 is a schematic diagram of a state when an electronic device according to an embodiment of the present invention is in a second position;
  • FIG. 2 is a schematic diagram of the state of the electronic device according to the embodiment of the present invention when it is in the first position;
  • FIG. 3 is a schematic view of the electronic device according to an embodiment of the present invention when it is in a third position;
  • FIG. 4 is a schematic structural diagram of a detection assembly according to an embodiment of the present invention.
  • FIG. 5 is a usage scene diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 6 is a usage scene diagram of an electronic device according to another embodiment of the invention.
  • FIG. 7 is another usage scene diagram of the electronic device according to the embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a sliding component sliding correction method according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the first calibration position of the sliding assembly according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a sliding correction method of a sliding assembly according to a specific embodiment of the present invention.
  • FIG. 12 is a schematic structural view of a sliding correction device of a sliding assembly according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a sliding correction device of a sliding assembly according to another embodiment of the present invention.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable Connected, or integrally connected; may be mechanical, electrical, or may communicate with each other; may be directly connected, or may be indirectly connected through an intermediary, may be the connection between two elements or the interaction of two elements relationship.
  • the first feature “above” or “below” the second feature may include the direct contact of the first and second features, or may include the first and second features Contact not directly but through another feature between them.
  • the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
  • the present invention proposes a sliding component, which controls the front camera and the like through sliding of the sliding component when needed Slide it out and store it in the body of the electronic device when it is not needed, so that it does not occupy the front panel of the electronic device when the functional service of the front camera and other components is not performed.
  • the electronic device 100 includes a body 10, a sliding component 20, a detection component 30, and a driving component 50.
  • the slide assembly 20 is used to slide between a first position A housed in the body 10 and a second position B exposed from the body 10.
  • the driving assembly 50 is used to drive the sliding assembly 20 to slide between a first position accommodated in the body 10 and a second position exposed from the body.
  • the electronic device in order for the driving component 50 to know that the sliding component 20 is slid to a corresponding position, the electronic device must also include a detecting component 30 that detects the current position of the sliding component 20.
  • the detecting component 30 is used to detect sliding
  • the detection assembly 30 includes a magnetic field generating element 31, a first Hall element 32, a second Hall element 33, the magnetic field generating element 31, the first Hall element 32 and the second Hall element 33 are respectively fixed on the slide
  • the electronic device may further include a processor 60 electrically connected to the detection assembly 30 for receiving the detection signal values output by the first Hall element 32 and the second Hall element 33, and for The current relative position of the sliding assembly 20 relative to the body 10 is determined according to the detection signal value.
  • the magnetic field generating element 31 when the sliding assembly 20 slides from the first position to the second position, as shown in FIG. 5, the magnetic field generating element 31 is far from the first Hall element 32 and close to the second
  • the magnetic field generating element 31 and the Hall element may be placed relatively in the vertical direction or may be placed relatively in the horizontal direction. That is to say, as long as the magnetic field generating element 31 and the Hall element can generate relative motion, the specific positions of the magnetic field generating element and the Hall element are not limited.
  • the body 10 is formed with a slide slot 16, and the slide assembly 20 is received in the slide slot 16 in the first position A. In this way, the sliding assembly 20 can slide between the first position A and the second position B through the sliding groove 16.
  • the body 10 includes a housing 12 and a display assembly 14, and the housing 12 and the display assembly 14 are combined together to form a closed structure.
  • the sliding groove 16 is opened in the casing 12, so that the sliding assembly 20 can slide back and out.
  • the chute 16 may be opened on any side of the housing 12.
  • the chute 16 is opened on the top edge of the housing 12. This can meet the user's usage habits.
  • the display assembly 14 includes a touch panel (not shown) and a cover 142.
  • the touch panel includes a display module (not shown) and a touch layer (not shown) provided on the display module.
  • the display module is, for example, a liquid crystal display module (LCD module, LCM). Of course, the display module may also be a flexible display module.
  • the touch layer is used to receive a user's touch input to generate a signal for controlling the content displayed by the display module and a signal for controlling the sliding of the sliding component 20.
  • the material of the cover plate 142 may be made of light-transmitting materials such as glass, ceramics, or sapphire. Since the cover plate 142 serves as an input component of the electronic device 100, the cover plate 142 is often exposed to collision, scratches, or the like. For example, when a user puts the electronic device 100 in a pocket, the cover 142 may be scratched by the key in the user's pocket and damaged. Therefore, the material of the cover plate 142 may be a material with a relatively high hardness, such as the above sapphire material. Or a hardened layer is formed on the surface of the cover plate 142 to improve the scratch resistance of the cover plate 142.
  • the touch panel and the cover 142 are fixed together by optical adhesive (Optically Clear, Adhesive, OCA), for example.
  • optical adhesive Optically Clear, Adhesive, OCA
  • the optical adhesive not only adheres and fixes the touch panel and the cover 142, but also transmits light emitted from the touch panel.
  • the electronic device 100 includes a front camera 42
  • the sliding assembly 20 includes a carrier 22, and the front camera 42 is provided On the carrier 22.
  • the front camera 42 can slide with the sliding assembly 20.
  • the user can open the front camera 42 and close the front camera 42 as trigger signals, that is, when the user opens the front camera 42, the sliding component 20 is triggered to slide out, and when the user closes the front camera 42, Trigger the slide assembly 20 to slide back.
  • the user only needs to open or close the front camera according to the existing habit, without performing additional operations on the sliding assembly 20, which can facilitate the user's use.
  • the carrier 22 may also carry other functional devices 40, such as a light sensor, a proximity sensor, an earpiece 44, etc., as shown in FIG. 1.
  • These functional devices 40 may be exposed from the body 10 as the slide assembly 20 slides out according to user input to operate normally, or may be housed in the body 10 as the slide assembly 20 slides back according to user input.
  • the display assembly 14 can be provided with as few through holes as possible, which is beneficial to meet the design requirements of the full screen of the electronic device 100.
  • the light sensor when a light sensor is carried on the carrier 22, the light sensor may be disposed on the top of the carrier 22, that is, when the sliding assembly 20 is completely accommodated in the slide slot 16, the light sensor may still be The top of the piece 22 is exposed to sense light in real time.
  • the user can answer the phone and hang up the phone as a trigger signal, that is, when the user answers the phone, the sliding component 20 is triggered to slide out, When the user hangs up the phone, the sliding component 20 is triggered to slide back. In this way, the user only needs to answer or hang up the phone according to the existing habit, without performing additional operations on the sliding assembly 20, which can facilitate the user's use.
  • multiple functional devices 40 may be carried on the same carrier 22 or on multiple carriers.
  • the multiple functional devices 40 can be arranged longitudinally, and the processor 60 can control whether the functional device 40 disposed under the carrier 22 can be controlled by controlling the sliding distance of the sliding assembly 20 Exposed.
  • the processor 60 can select the functional devices 40 that need to be exposed by controlling the sliding of a certain carrier 22.
  • the sliding assembly 20 includes a threaded hole 24 provided in the middle of the carrier 22 and a rotating screw 26 cooperating with the threaded hole 24.
  • the chute 16 includes a groove 162 opposite to the screw hole 24 and located at the bottom of the chute 16.
  • the electronic device 100 includes a driving assembly 50 disposed in the groove 162.
  • the driving assembly 50 includes a driving motor 52 connected to the processor 60 and an output shaft (not shown) connected to the bottom of the rotating screw 26.
  • the processor 60 can control the sliding of the sliding assembly 20 by controlling the driving motor 52.
  • the processor 60 controls the drive motor 52 to rotate forward, so that the output shaft drives the rotating screw 26 to rotate in the threaded hole 24, thereby causing the sliding assembly 20 Slide from the first position A to the second position B.
  • the processor 60 controls the drive motor 52 to reverse, so that the output shaft drives the rotating screw 26 to rotate in the threaded hole 24, thereby causing the sliding assembly 20 Slide from the second position B to the first position A.
  • "from the first position A to the second position B" and "from the second position B to the first position A” here refer to the direction of sliding, rather than the starting point and end point of sliding.
  • the electronic device 100 uses the Hall element 34 and the magnetic field generating element 31 to determine the current relative position of the sliding assembly 20.
  • a functional device 40 such as a front camera is carried on the sliding assembly 20
  • the sliding assembly 20 can be detected in real time To determine the position of the functional device 40.
  • the electronic device 100 carries the functional device 40 on the sliding assembly, so that the functional device 40 is accommodated in the body 10 when no work is required, and is exposed from the body 10 with the sliding assembly 20 when the work is required. In this way, there is no need to create a through hole in the display assembly 14 to expose the functional device 40 such as the front camera 42, thereby increasing the screen ratio, thereby improving the user experience.
  • the current position of the current sliding assembly 20 is known through the magnetic field signal strength between the Hall elements of the magnetic field generating element 31, for example, the correspondence between the magnetic field signal strength and the current sliding position of the sliding assembly 20 is calibrated in advance based on a large amount of test data Relationship, so as to match the corresponding slide-out position according to the currently detected magnetic field signal strength.
  • the present invention provides two Hall elements in the electronic device. As the sliding assembly 20 moves, the magnetic field is generated The element is far away from the first Hall element and close to the second Hall element. During operation, the current position of the sliding component is detected based on whether the electromagnetic detection signals output from the two Hall elements are consistent with the calibration signal, so The accuracy of the pre-calibrated detection signal value is particularly important, and a more reliable correction of the pre-calibrated detection signal value is required.
  • FIG. 9 is a flowchart of a sliding correction method of a sliding assembly according to an embodiment of the present invention. As shown in FIG. 9, the method includes the following steps:
  • Step 101 During the sliding process of the sliding assembly, obtain the first detection signal value sent by the first Hall element corresponding to the one or more first calibration positions reached, and the second detection signal sent by the second Hall element value.
  • the first calibration position may be any position of the sliding component, and the user may calibrate as required, or the system may set the default.
  • the driving component controls the sliding component to start from the starting speed, and then switches to the limit speed after a certain position, thereby not only ensuring the smooth starting of the driving component, but also The time for the sliding component to reach the target position is shortened.
  • it performs brake deceleration control according to the relevant detection signal value before the sliding assembly slides to the second position or the first position. Therefore, when the sliding component slides in and out, it has a limit speed switching position and a deceleration position.
  • some users may manually control the operation of the sliding component, for example, manually pulling out the sliding component or Manually push in the sliding assembly.
  • an interruption position for sliding in and out is set, that is, when the user manually operates the sliding assembly At the time of reaching the sliding interruption position or the sliding out interruption position, it is converted to the control operation of the sliding component in accordance with the user's manual operation direction. Therefore, if the reference signal value of the Hall element calibration at the above position is reliable, the sliding component Smooth work is of great significance.
  • the first calibration position includes one of the slide-out deceleration position, the slide-out acceleration position, the slide-out interruption position, the slide-in deceleration position into the acceleration position, and the slide-in interruption position One or more.
  • the slide-out interruption position when sliding out is 7cm
  • the slide-out deceleration position is 8.3cm
  • the slide-in interruption position when sliding-in is 1.5cm
  • slide-in deceleration The position is 0.2cm.
  • the distance sensor can be detected according to the distance sensor whether the current sliding component slides to the first calibration position during the sliding process, and when sliding to the first position, the first detection signal value sent by the first Hall element and the first The second detection signal value sent by the two Hall elements.
  • Step 102 Compare the first detection signal value of each first calibration position with a preset first reference signal value, and compare the second detection signal value with a preset second reference signal value.
  • the magnetic field generating element is far away from the first Hall element and close to the second Hall element, thus, the first The value of the first detection signal detected by the Hall element gradually decreases, and the value of the second detection signal detected by the second Hall element gradually increases.
  • a magnetic field is generated The element is far away from the second Hall element and close to the first Hall element, whereby the value of the first detection signal detected by the second Hall element gradually decreases, and the value of the second detection signal detected by the first Hall element gradually Increase, therefore, the detection signal value has a corresponding relationship with the sliding position of the sliding component.
  • the first detection signal value sent by the first Hall element corresponding to the one or more calibration positions reached and the second detection signal value sent by the second Hall element are obtained To determine the signal value actually detected when the sliding component slides to the corresponding position in the current environment.
  • Step 103 Compare the first detection signal value of each first calibration position with a preset first reference signal value, and compare the second detection signal value with a preset second reference signal value.
  • Step 104 If the number of times that the comparison result belongs to the preset abnormal range reaches a preset threshold, correct the first reference signal value according to the first detection signal value, and correct the second reference signal value according to the second detection signal value.
  • the first detection signal value of each first calibration position is compared with a preset first reference signal value
  • the second detection signal value is compared with a preset second reference signal value to detect Whether the calibrated first reference signal value and the second reference signal value are accurate, if it is known that the number of times the comparison result falls within a preset abnormal range reaches a preset threshold, for example, the difference between the first reference signal value and the first detected signal value is detected
  • the number of times the value is greater than the preset value, and the sum of the number of times the difference between the second reference signal value and the second detection signal value is greater than the preset threshold is greater than the preset threshold, such as greater than 5 times, then the corresponding first calibration position calibration is determined
  • the reference signal value of is inaccurate, therefore, the reference signal value of the corresponding position needs to be corrected.
  • the first reference signal value is corrected according to the first detection signal value
  • the second reference signal value is corrected according to the second detection signal value, wherein, when the difference between the first detection signal values detected multiple times is less than a preset threshold , Select the first detection signal value obtained by any measurement as the first reference signal value corresponding to the first calibration position, and when the difference between the second detection signal values detected multiple times is less than the preset threshold, select any measurement
  • the obtained second detection signal value is used as the second reference signal value corresponding to the second calibration position.
  • the average value of the first detection signal values detected multiple times is used as the new first reference signal value, when the second detection signal values detected multiple times are not equal to each other, If there is a second detection signal value whose gap between each other is greater than a preset threshold value (the preset threshold value is smaller), the average value of the second detection signal values detected multiple times is used as the new second reference signal value.
  • the sliding component does not slide in place, which may cause that the detection signal value of the Hall element of the second calibration position in some first calibration positions cannot be collected, therefore, control is required
  • the sliding component slides to the corresponding second calibration position to correct the detection signal value of the second calibration position. It should be noted that, when the detection signal value at the second calibration position is collected, because it cannot be reached, the detection signal value at the second calibration position cannot be collected. At this time, obviously the detection signal at the second calibration position
  • the comparison between the value and the pre-calibrated reference signal value belongs to the abnormal range.
  • the sliding component is controlled to slide to a preset one or more second calibration positions that have not been reached before, to obtain the third detection signal value sent by the first Hall element corresponding to each second calibration position, and the first The fourth detection signal value sent by the two Hall elements to correct the third reference signal value at the second calibration position according to the third detection signal value, and to correct the fourth reference signal value at the second calibration position according to the fourth detection signal value.
  • the method for correcting the reference signal value at the second calibration position can refer to the method for correcting the reference signal value at the first calibration position, which will not be repeated here.
  • the method for determining the second calibration position varies according to different application scenarios.
  • the third calibration position corresponding to the first detection signal value and the second detection signal value is counted, and the third calibration position is compared with The first calibration position is matched, and the second calibration position that does not match the third calibration position is determined in the first calibration position. That is, when it is found that the first calibration position that is not covered by the calibration position corresponding to the detected detection signal value is determined as the second calibration position, there is a case where the detection signal of the A calibration position is detected within one cycle Value, and the A calibration position is not detected in another cycle. At this time, the A position is also determined as the second calibration position.
  • the user can send a correction confirmation command after manually removing the obstacle, or the electronic device detects the cause of the obstacle based on the relevant sensor , The cause of the obstacle is displayed in the correction notification, and the user can send a correction confirmation instruction after determining to remove the obstacle.
  • the first calibration position is one or more of the slide-out deceleration position, the slide-out acceleration position, the slide-out interruption position, the slide-in deceleration position into the acceleration position, and the slide-in interruption position
  • the slide speed of the slide assembly is different, and the slide speed of the slide assembly is different.
  • the difference in the slide speed leads to different degrees of interference of the signal generated by the magnetic field generating element. Therefore, in the embodiment of the present invention, in order to improve the correction Accuracy, when sliding from the first position to the second position, the reference signal values of the sliding component deceleration position, the acceleration position, and the interruption position of the sliding component are corrected.
  • the first calibration position is four positions as shown in FIG.
  • the preset threshold of is N, where N is a positive integer.
  • the signal reference value of the first calibration position is set, the signal reference value is corrected, and the acquired signal detection value and signal reference value of the first calibration position are detected Whether the range of difference between them is reasonable. If it is not reasonable, the number of accumulations is reasonable. When the range of difference is reasonable and the number of accumulations is less than N, a loop test is performed until it is found that the number of accumulations is not less than N.
  • the signal reference value is corrected to control the sliding component to slide to the first position and the second position. If it can be slid to the first position and the second position, when sliding from the first position to the second position, Record the detection signal value at 7cm and 8.3cm, and correct the reference signal value at 7cm and 8cm based on the detection signal value. When sliding from the second position to the first position, record the detection signal at 1.5cm and 0.2cm Value, the reference signal values at 1.5 cm and 0.2 cm are corrected based on the detection signal value. Thus, the reference signal value is rewritten.
  • the sliding correction method of the sliding component reduces the influence of related components on the screen ratio through the sliding component, and corrects the reference signal value of the relevant position in the sliding component, where the reference signal value is based on two Halls
  • the detection signal value detected by the component is corrected to improve the reliability of the sliding position detection of the sliding assembly.
  • FIG. 12 is a schematic structural diagram of a sliding correction device for a sliding assembly according to an embodiment of the present invention.
  • the sliding assembly is used in an electronic device.
  • the electronic device includes A main body, a detection component and a driving component, the driving component is used to control the sliding component to slide between a first position accommodated in the main body and a second position exposed from the main body, the detection component includes a magnetic field generating element, a first Hall element and a second The Hall element, the magnetic field generating element, the first Hall element and the second Hall element are respectively fixed on the sliding assembly and the body, wherein the magnetic field generating element moves away from the first position when the sliding assembly slides from the first position to the second position A Hall element, close to the second Hall element:
  • the slide correction device includes: an acquisition module 10, a comparison module 20, and a correction module 30.
  • the acquiring module 10 is configured to acquire the first detection signal value sent by the first Hall element corresponding to the reached one or more first calibration positions and the second Hall element during the sliding process of the sliding assembly Value of the second detection signal.
  • the first calibration position includes one of the sliding-out deceleration position, the sliding-out acceleration position, the sliding-out interruption position, the sliding-in deceleration position into the acceleration position, and the sliding-in interruption position Multiple.
  • the comparison module 20 is configured to compare the first detection signal value of each first calibration position with a preset first reference signal value, and compare the second detection signal value with a preset second reference signal value.
  • the correction module 30 is configured to correct the first reference signal value according to the first detection signal value and correct the second reference signal value according to the first detection signal value when the number of times that the comparison result belongs to the preset abnormal range reaches a preset threshold value .
  • the device further includes a control module 40, wherein the control module 40 is used to control the sliding component to slide to a preset One or more second calibration positions that have not been reached.
  • the acquisition module 10 is also used to acquire the third detection signal value sent by the first Hall element corresponding to each second calibration position, and the fourth detection signal value sent by the second Hall element.
  • the correction module 30 is further configured to correct the third reference signal value of the second calibration position according to the third detection signal value, and to correct the fourth reference signal value of the second calibration position according to the fourth detection signal value.
  • the sliding correction device of the sliding component reduces the influence of related components on the screen ratio through the sliding component, and corrects the reference signal value of the relevant position in the sliding component, where the reference signal value is based on two
  • the detection signal value detected by the component is corrected to improve the reliability of the sliding position detection of the sliding assembly.
  • the present invention also proposes an electronic device, wherein, referring to FIGS. 1-4, the electronic device includes a body 10, a detection component 30, and a driving component 50.
  • the driving component 50 is used to control the sliding component Sliding between the first position of the body and the second position exposed from the body
  • the detection assembly includes the magnetic field generating element 31, the first Hall element 32 and the second Hall element 33, the magnetic field generating element 31, the first Hall element 32 And the second Hall element 33 are fixed on the sliding assembly 20 and the body 10, respectively, in the process of sliding the assembly 20 from the first position to the second position, the magnetic field generating element 31 is away from the first Hall element 32, close to the first Two Hall elements 33
  • the electronic device further includes: a memory 70, a processor electrically connected to the sliding component, and a computer program stored on the memory 70 and executable on the processor 60. When the processor executes the program, the implementation is as described above The embodiment describes the sliding correction method of the sliding assembly.
  • an embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, which when executed by a processor implements the sliding correction method of the sliding component as described in the foregoing method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本发明提出一种滑动组件的滑动校正方法和装置,其中,方法包括:在滑动组件的滑动过程中,获取与到达的一个或多个第一标定位置对应的第一霍尔元件发送的第一检测信号值,以及第二霍尔元件发送的第二检测信号值;将每个第一标定位置的第一检测信号值与预设的第一参考信号值进行比较,以及将第二检测信号值与预设的第二参考信号值进行比较;若获知比较结果属于预设的异常范围的次数达到预设阈值,则根据第一检测信号值校正第一参考信号值,以及根据第二检测信号值校正第二参考信号值。由此,通过滑动组件降低相关组件对屏幕占比的影响,且提高了滑动组件的稳定性以及滑动服务质量。

Description

滑动组件的滑动校正方法和装置
相关申请的交叉引用
本申请要求OPPO广东移动通信有限公司于2018年11月30日提交的、申请名称为“滑动组件的滑动校正方法和装置”的、中国专利申请号“201811457561.9”的优先权。
技术领域
本发明涉及电子技术领域,尤其涉及一种滑动组件的滑动校正方法和装置。
背景技术
随着智能手机等便携式电子装置的普及,电子装置的美观性和功能性的优化也成为大趋势,比如,电子装置的屏幕占比的提高就是其中一种流行趋势。
相关技术中,电子装置的前面板中安装有摄像模组等设备以为用户提供前置摄像服务,因而,摄像模组的在前面板上的安装空间的占用与屏幕占比的提高的矛盾亟待解决。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明提出一种滑动组件的滑动校正方法和装置。
为达上述目的,本发明第一方面实施例提出了一种滑动组件的滑动校正方法,所述滑动组件用于电子装置,所述电子装置包括本体、检测组件和驱动组件,所述驱动组件用于控制所述滑动组件在收容于所述本体的第一位置和自所述本体露出的第二位置之间滑动,所述检测组件包括磁场产生元件、第一霍尔元件和第二霍尔元件,所述磁场产生元件、所述第一霍尔元件和所述第二霍尔元件分别固定在所述滑动组件和所述本体上,其中,所述滑动组件从所述第一位置滑向所述第二位置的过程中,所述磁场产生元件远离所述第一霍尔元件,靠近所述第二霍尔元件,所述滑动校正方法包括以下步骤:在所述滑动组件的滑动过程中,获取与到达的一个或多个第一标定位置对应的所述第一霍尔元件发送的第一检测信号值,以及所述第二霍尔元件发送的第二检测信号值;将每个所述第一标定位置的所述第一检测信号值与预设的第一参考信号值进行比较,以及将所述第二检测信号值与预设的第二参考信号值进行比较;若获知比较结果属于预设的异常范围的次数达到预设阈值,则根据所述第一检测信号值校正所述第一参考信号值,以及根据所述第二检测信号值校正所述第二参考信号值。
为达上述目的,本发明第二方面实施例提出了一种滑动组件的滑动校正装置,所述滑 动组件用于电子装置,所述电子装置包括本体、检测组件和驱动组件,所述驱动组件用于控制所述滑动组件在收容于所述本体的第一位置和自所述本体露出的第二位置之间滑动,所述检测组件包括磁场产生元件、第一霍尔元件和第二霍尔元件,所述磁场产生元件、所述第一霍尔元件和所述第二霍尔元件分别固定在所述滑动组件和所述本体上,其中,所述滑动组件从所述第一位置滑向所述第二位置的过程中,所述磁场产生元件远离所述第一霍尔元件,靠近所述第二霍尔元件,所述滑动校正装置包括:获取模块,用于在所述滑动组件的滑动过程中,获取与到达的一个或多个第一标定位置对应的所述第一霍尔元件发送的第一检测信号值,以及所述第二霍尔元件发送的第二检测信号值;比较模块,用于将每个所述第一标定位置的所述第一检测信号值与预设的第一参考信号值进行比较,以及将所述第二检测信号值与预设的第二参考信号值进行比较;校正模块,用于在获知比较结果属于预设的异常范围的次数达到预设阈值时,根据所述第一检测信号值校正所述第一参考信号值,以及根据所述第二检测信号值校正所述第二参考信号值。
为达上述目的,本发明第三方面实施例提出了一种电子装置,所述电子装置包括本体、滑动组件、检测组件和驱动组件,所述驱动组件用于控制所述滑动组件在收容于所述本体的第一位置和自所述本体露出的第二位置之间滑动,所述检测组件包括磁场产生元件、第一霍尔元件和第二霍尔元件,所述磁场产生元件、所述第一霍尔元件和所述第二霍尔元件分别固定在所述滑动组件和所述本体上,所述电子装置还包括:存储器、与所述滑动组件电性连接的处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如上述实施例所述的滑动组件的滑动校正方法。
为达上述目的,本发明第四方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时,实现如上述实施例所述的滑动组件的滑动校正方法。
本发明提供的技术方案,至少包括如下有益效果:
通过滑动组件降低相关组件对屏幕占比的影响,且校正了滑动组件中有关位置的参考信号值,其中参考信号值基于两个霍尔元件检测到的检测信号值来校正,提高了滑动组件的滑动位置检测可靠性。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施方式的电子装置在第二位置时的状态示意图;
图2是本发明实施方式的电子装置在第一位置时的状态示意图;
图3是本发明实施方式的电子装置在第三位置时的状态示意图;
图4是本发明实施方式的检测组件的结构示意图;
图5是本发明一个实施方式的电子装置的使用场景图;
图6是本发明另一个实施方式的电子装置的使用场景图;
图7是本发明实施方式的电子装置的另一使用场景图;
图8是本发明实施方式的电子装置的结构示意图;
图9是根据本发明一个实施例的滑动组件的滑动校正方法的流程图;
图10是根据本发明一个实施例的滑动组件的第一标定位置的位置示意图;
图11是根据本发明一个具体实施例的滑动组件的滑动校正方法的流程图;
图12是根据本发明一个实施例的滑动组件的滑动校正装置的结构示意图;以及
图13是根据本发明另一个实施例的滑动组件的滑动校正装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技 术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
下面参考附图描述本发明实施例的滑动组件的滑动校正方法和装置。
为了更加清楚的描述本发明实施例的滑动组件的滑动校正方法和装置,下面首先对本发明的电子装置进行结构上的描述。
具体地,为了降低前置相机等安装在电子装置前置面板上的硬件设备对屏幕占比的影响,本发明提出了一种滑动组件,通过滑动组件的滑动控制前置相机等在需要的时候滑出,在不需要的时候收容于电子装置本体内,由此,在不进行前置相机等组件的功能服务时,使其不占用电子装置前置面板。
具体而言,如图1-图4所示,本发明实施例的电子装置100包括本体10、滑动组件20、检测组件30和驱动组件50。滑动组件20用于在收容于本体10的第一位置A和自本体10露出的第二位置B之间滑动。驱动组件50用于驱动滑动组件20在收容于本体10的第一位置和自本体露出的第二位置之间滑动。
当然,为了使得驱动组件50获知驱动滑动组件20滑动至相应位置,该电子装置中还必然包括检测滑动组件20当前位置的检测组件30,在本发明的实施例中,检测组件30用于检测滑动组件20的位置,检测组件30包括磁场产生元件31、第一霍尔元件32、第二霍尔元件33,磁场产生元件31、第一霍尔元件32和第二霍尔元33分别固定在滑动组件20和本体10上,其中,电子装置中还可包括与检测组件30电连接的处理器60用于接收第一霍尔元件32和第二霍尔元件33输出的检测信号值,以及用于根据检测信号值确定滑动组件20相对于本体10的当前相对位置。
需要强调的是,在本发明的实施例中,滑动组件20从第一位置滑向第二位置的过程中, 如图5所示,磁场产生元件31远离第一霍尔元件32,靠近第二霍尔元件33,此外,磁场产生元件31和霍尔元件可以在竖直方向上相对放置,也可以在水平方向上相对放置。也即是说,只要磁场产生元件31和霍尔元件可以产生相对运动,不对磁场产生元件和霍尔元件的具体位置做限制。
在某些实施方式中,本体10形成有滑槽16,滑动组件20在第一位置A时收容于滑槽16内。如此,可以使得滑动组件20通过滑槽16在第一位置A和第二位置B之间滑动。
具体地,本体10包括壳体12和显示组件14,壳体12和显示组件14组合在一起构成封闭式结构。滑槽16开设在壳体12,从而实现滑动组件20的滑回与滑出。可以理解,滑槽16可以开设在壳体12的任意一条侧边。优选地,滑槽16开设在壳体12的顶边。如此可以符合用户的使用习惯。
显示组件14包括触控面板(图未示)和盖板142。触控面板包括显示模组(图未示)和设置在显示模组上的触控层(图未示)。显示模组例如为液晶显示模组(LCD Module,LCM),当然,显示模组也可以为柔性的显示模组。触控层用于接收用户的触控输入,以产生用于控制显示模组显示的内容的信号和控制滑动组件20滑动的信号。
盖板142的材料可以由玻璃、陶瓷或蓝宝石等透光材料制成。由于盖板142由于作为电子装置100的输入零件,盖板142经常受到碰撞或刮划等接触。例如,用户将电子装置100放入口袋时,盖板142可能被用户口袋中的钥匙刮划而损伤。因此,盖板142的材料可以采用硬度较大的材料,例如以上的蓝宝石材料。或者在盖板142的表面形成硬化层以提高盖板142的抗刮能力。
触控面板与盖板142例如通过光学胶(Optically Clear Adhesive,OCA)粘接固定在一起,光学胶不仅粘接固定触控面板及盖板142,还可以透过触控面板发出的光线。
为了更加清楚的说明本发明实施例的滑动组件20的功能,参照图6,当在某些实施方式中,电子装置100包括前置相机42,滑动组件20包括承载件22,前置相机42设置在承载件22上。如此,前置相机42可以随着滑动组件20滑动。当然,可以将用户打开前置相机42和关闭前置相机42作为触发信号,也即是说,当用户打开前置相机42时,触发滑动组件20滑出,当用户关闭前置相机42时,触发滑动组件20滑回。如此用户只需依照现有的习惯打开或关闭前置相机,而无需针对滑动组件20进行另外的操作,可以方便用户的使用。
除前置相机42之外,承载件22上也可以承载其他的功能器件40,功能器件40比如为光线传感器、接近传感器和听筒44等,如图1所示。这些功能器件40可以根据用户的输入随着滑动组件20的滑出而从本体10露出从而正常工作,也可以根据用户的输入随着滑动组件20的滑回而收容在本体10内。如此,可以尽量少地在显示组件14上设置通孔, 有利于满足电子装置100全面屏的设计需求。
具体地,当承载件22上承载有光线传感器时,可以将光线传感器设置在承载件22的顶部,也即是说,当滑动组件20完全收容于滑槽16内时,光线传感器依旧可以从承载件22的顶部露出,从而实时感应光线。
请参阅图7,当承载件22上承载有接近传感器和听筒44时,可以将用户接听电话和挂断电话作为触发信号,也即是说,当用户接听电话时,触发滑动组件20滑出,当用户挂断电话时,触发滑动组件20滑回。如此用户只需依照现有的习惯接听或挂断电话,而无需针对滑动组件20进行另外的操作,可以方便用户的使用。
可以理解,多个功能器件40可以承载在同一个承载件22上,也可以承载在多个承载件上。当多个功能器件40承载在同一个承载件22上时,多个功能器件40可以纵向排列,处理器60可以通过控制滑动组件20滑出的距离控制设置在承载件22下部的功能器件40是否露出。当多个功能器件40承载在同多个承载件22上时,处理器60可以通过控制某个承载件22的滑动从而选择需要露出的功能器件40。
请参阅图8,在某些实施方式中,滑动组件20包括设置在承载件22中部的螺纹孔24和与螺纹孔24配合的转动丝杆26。滑槽16包括与螺纹孔24相对设置且位于滑槽16底部的凹槽162。电子装置100包括设置在凹槽162的驱动组件50。驱动组件50包括与处理器60连接的驱动电机52和与转动丝杆26的底部连接的输出轴(图未示)。
可以理解,处理器60可以通过控制驱动电机52来控制滑动组件20的滑动。当用户命令滑动组件20从第一位置A向第二位置B滑动时,处理器60控制驱动电机52正转,从而使得输出轴带动转动丝杆26在螺纹孔24内转动,进而使得滑动组件20从第一位置A向第二位置B滑动。当用户命令滑动组件20从第二位置B向第一位置A滑动时,处理器60控制驱动电机52反转,从而使得输出轴带动转动丝杆26在螺纹孔24内转动,进而使得滑动组件20从第二位置B向第一位置A滑动。值得注意的是,此处的“从第一位置A向第二位置B”和“从第二位置B向第一位置A”是指滑动的方向,而不是指滑动的起点和终点。
本发明实施方式的电子装置100利用霍尔元件34和磁场产生元件31确定滑动组件20的当前相对位置,在前置相机等功能器件40承载在滑动组件20上时,可以实时地检测滑动组件20的状态,从而确定功能器件40的位置。
可以理解,前置相机42等功能器件40需要自本体10露出,否则无法正常工作。本发明实施方式的电子装置100通过在滑动组件上承载功能器件40,使得功能器件40在不需要工作时收容在本体10内,在需要工作时随着滑动组件20从本体10露出。如此,无需在显示组件14上开设用以露出前置相机42等功能器件40的通孔,从而增大屏占比,进而提高用户的体验。
相关技术中,通过磁场产生元件31霍尔元件之间的磁场信号强度来获知当前滑动组件20的当前位置,比如,预先根据大量试验数据标定磁场信号强度与滑动组件20的当前滑出位置的对应关系,从而根据当前检测出的磁场信号强度匹配出对应的滑出位置。
为了解决由于受到外界电磁干扰,导致变速控制不准确的技术问题,如图1和图5所示,本发明在电子装置中设置了两个霍尔元件,随着滑动组件20的移动,磁场产生元件远离第一霍尔元件,靠近第二霍尔元件,在工作时,基于与两个霍尔元件输出的电磁的检测信号,与标定信号之间是否一致的来检测滑动组件当前所在位置,因而,预先标定的检测信号值的准确性尤为重要,需要对预先标定的检测信号值进行较为可靠的校正。
下面具体描述该滑动组件的滑动校正方法。
图9是根据本发明一个实施例的滑动组件的滑动校正方法的流程图,如图9所示,该方法包括以下步骤:
步骤101,在滑动组件的滑动过程中,获取与到达的一个或多个第一标定位置对应的第一霍尔元件发送的第一检测信号值,以及第二霍尔元件发送的第二检测信号值。
其中,第一标定位置可以为滑动组件的任意位置,用户可以根据需要标定,也可由系统默认设置。
在本发明的一个实施例中,根据滑动组件的运作机理,驱动组件控制滑动组件由启动速度启动后,在一定位置后,切换为极限速度,由此,不但保证了驱动组件的平稳启动,还缩短了滑动组件到达目标位置的时间。并且为了保护滑动组件等设备,减小其工作损耗,根据相关检测信号值在滑动组件是否滑动到第二位置或者第一位置之前对其进行刹车减速控制。因此,在滑动组件的滑入滑出时,均具有一个极限速度切换位置和一个减速位置,另外,在实际执行中,有些用户可能会手动控制滑动组件的操作,比如,手动拉出滑动组件或者手动推入滑动组件,在这种情况下,为了避免手动操作对滑动组建的硬件损耗,在本发明的实施例中,设置滑入和滑出的中断位置,即在检测到用户手动操作滑动组件时,在达到该滑入中断位置或者该滑出中断位置时,转换为顺应用户手动操作方向的滑动组件的控制操作,因而,若上述位置的霍尔元件标定的参考信号值可靠,对滑动组件的平稳工作具有重要意义。由此,在本发明的实施例中,第一标定位置包括滑动组件的滑出减速位置、滑出加速位置、滑出中断位置、滑入减速位置滑入加速位置和滑入中断位置中的一种或多种。
举例而言,如图10所示的示例中,滑出时的滑出中断位置为7cm处,滑出减速位置为8.3cm处,滑入时的滑入中断位置为1.5cm处,滑入减速位置为0.2cm处。
具体而言,可以根据距离传感器检测当前滑动组件在滑动过程中,是否滑动到第一标定位置处,在滑动到第一位置时,获取第一霍尔元件发送的第一检测信号值,以及第二霍 尔元件发送的第二检测信号值。
步骤102,将每个第一标定位置的第一检测信号值与预设的第一参考信号值进行比较,以及将第二检测信号值与预设的第二参考信号值进行比较。
需要说明的是,参照图5可清楚的获知,滑动组件从第一位置滑向第二位置的过程中,磁场产生元件远离第一霍尔元件,靠近第二霍尔元件,由此,第一霍尔元件检测到的第一检测信号值逐渐减小,而第二霍尔元件检测到的第二检测信号值逐渐增大,滑动组件从第二位置滑向第一位置的过程中,磁场产生元件远离第二霍尔元件,靠近第一霍尔元件,由此,第二霍尔元件检测到的第一检测信号值逐渐减小,而第一霍尔元件检测到的第二检测信号值逐渐增大,因此,检测信号值与滑动组件的滑动位置具有对应关系,在实际执行过程中,根据霍尔元件的检测信号值确定滑动位置是常用的手段,因而,能够准确的标定对应位置的信号值尤为重要。
具体而言,在滑动组件的滑动过程中,获取与达到的一个或多个标定位置对应的第一霍尔元件发送的第一检测信号值,和第二霍尔元件发送的第二检测信号值,以确定滑动组件在当前环境下,滑动到对应位置实际检测到的信号值。
步骤103,将每个第一标定位置的第一检测信号值与预设的第一参考信号值进行比较,以及将第二检测信号值与预设的第二参考信号值进行比较。
步骤104,若获知比较结果属于预设的异常范围的次数达到预设阈值,则根据第一检测信号值校正第一参考信号值,以及根据第二检测信号值校正第二参考信号值。
具体地,将每个第一标定位置的第一检测信号值与预设的第一参考信号值进行比较,以及将第二检测信号值与预设的第二参考信号值进行比较,以检测预先标定的第一参考信号值和第二参考信号值是否准确,若获知比较结果属于预设的异常范围的次数达到预设阈值,比如,检测到第一参考信号值与第一检测信号值的差值大于预设值的次数,以及第二参考信号值与第二检测信号值的差值大于预设阈值的次数之和大于预设阈值,比如大于5次,则确定对应的第一标定位置标定的参考信号值不准确,从而,需要对对应位置的参考信号值进行校正。
具体地,根据第一检测信号值校正第一参考信号值,以及根据第二检测信号值校正第二参考信号值,其中,当多次检测到的第一检测信号值差距均小于预设阈值时,则选择任意一次测量得到的第一检测信号值作为对应第一标定位置的第一参考信号值,当多次检测到的第二检测信号值差距均小于预设阈值时,则选择任意一次测量得到的第二检测信号值作为对应第二标定位置的第二参考信号值,当多次检测到的第一检测信号值互相不相等,且存在互相之间的差距大于预设阈值(该预设阈值较小)的第一检测信号值,则将多次检测到的第一检测信号值的平均值作为新的第一参考信号值,当多次检测到的第二检测信号 值互相不相等,且存在互相之间的差距大于预设阈值(该预设阈值较小)的第二检测信号值,则将多次检测到的第二检测信号值的平均值作为新的第二参考信号值。
当然,在实际执行过程中,由于滑动组件滑动故障导致滑动组件滑动不到位,可能会导致有些第一标定位置中的第二标定位置的霍尔元件的检测信号值采集不到,从而,需要控制滑动组件滑动到对应的第二标定位置,针对第二的标定位置的检测信号值进行校正。需要说明的是,在采集第二标定位置时的检测信号值时,由于其无法达到,因此,导致第二标定位置的检测信号值采集不到,此时,显然第二标定位置处的检测信号值与预先标定的参考信号值的比较结果属于异常范围。
具体而言,控制滑动组件滑动到预设的之前未到达的一个或者多个第二标定位置,获取与每个第二标定位置对应的第一霍尔元件发送的第三检测信号值,以及第二霍尔元件发送的第四检测信号值,以根据第三检测信号值校正第二标定位置的第三参考信号值,以及根据第四检测信号值校正第二标定位置的第四参考信号值。其中,对第二标定位置的参考信号值的校正方法,可参照对第一标定位置的参考信号值的校正方法,在此不再赘述。
其中,确定第二标定位置的方法根据应用场景的不同而不同,作为一种可能的实现方式,统计第一检测信号值和第二检测信号值对应的第三标定位置,将第三标定位置与第一标定位置进行匹配,在第一标定位置中确定没有匹配到第三标定位置的第二标定位置。也就是说,当发现检测到的检测信号值对应的标定位置没有覆盖到的第一标定位置确定为第二标定位置,其中,存在一种情况,在一个周期内检测到了A标定位置的检测信号值,而在另一个周期内没有检测到A标定位置,此时,也确定该A位置为第二标定位置。
在本实施例中,为了排除滑动组件无法到达第二标定位置的障碍,还可以在对第二标定位置的参考信号值进行校正之前,以弹窗等相识发送校正通知,该校正通知可以优先于其他操作,只有当获取到用户根据该校正通知发送的确认校正指令后,比如,接收到用户对弹窗中的确定控件的触发操作后,控制驱动组件以驱动组件可以实现的最高驱动力驱动滑动组件在第一位置和第二位置滑动,获取滑动组件滑动到第二标定位置时,第一霍尔元件和第二霍尔元件检测到的第三检测信号值和第四检测信号值。
其中,当滑动组件无法达到第二标定位置的原因是由于滑动组件的滑动轨迹中有异物时,则用户可以在手动排除障碍后,发送校正确认指令,或者,由电子装置根据有关传感器检测障碍原因,将障碍原因显示在校正通知中,用户可以在确定排除障碍后,发送校正确认指令。
正如以上分析的,当第一标定位置为滑动组件的滑出减速位置、滑出加速位置、滑出中断位置、滑入减速位置滑入加速位置和滑入中断位置中的一种或多种时,滑动组件的滑动速度显示是不同的,而滑动组件的滑动速度的不同,滑动速度的不同导致磁场产生元件 产生的信号被干扰的程度不同,因而,在本发明的实施例中,为了提高校正的准确度,在由第一位置滑到第二位置时,校正滑动组件的滑出减速位置、滑出加速位置、滑出中断位置的参考信号值,在由第二位置滑入第一位置时,校正滑入减速位置滑入加速位置和滑入中断位置中的参考信号值。基于此,也可以对不属于第二标定位置的第一标定位置进行同样的校正方法,以保证校正后的信号参考值的准确度,即不使用检测过程中检测到的信号参考值进行校正,以避免在检测过程中,由于滑动组件滑动故障导致滑动速度受到影响,从而,检测信号值与正常工作状态下检测信号值差距较大。
为了使得本领域的人员对本发明实施例的滑动组件的滑动校正方法更加清楚,下面结合具体地示例进行说明,在本示例中,第一标定位置为如图10所示的四个位置,次数对应的预设阈值为N,其中,N为正整数。
具体而言,如图11所示,在电子装置出厂时,设置第一标定位置的信号参考值,对该信号参考值进行校正,检测获取到的第一标定位置的信号检测值和信号参考值之间的差异范围是否合理,如果不合理,则累加次数,差异范围合理以及累加次数小于N时,进行循环检测,直至发现累加次数不小于N。
进而,对该信号参考值进行校正,控制滑动组件滑动可以滑动到第一位置和第二位置,如果可以滑动到第一位置和第二位置,则在由第一位置滑动到第二位置时,记录达到7cm和8.3cm处的检测信号值,基于该检测信号值校正7cm和8cm处的参考信号值,由第二位置滑入到第一位置时,记录达到1.5cm和0.2cm处的检测信号值,基于该检测信号值校正1.5cm和0.2cm处的参考信号值。由此,重新写入了参考信号值。
综上,本发明实施例的滑动组件的滑动校正方法,通过滑动组件降低相关组件对屏幕占比的影响,且校正了滑动组件中有关位置的参考信号值,其中参考信号值基于两个霍尔元件检测到的检测信号值来校正,提高了滑动组件的滑动位置检测可靠性。
为了实现上述实施例,本发明还提出了一种滑动组件的滑动校正装置,图12是根据本发明一个实施例的滑动组件的滑动校正装置的结构示意图,滑动组件用于电子装置,电子装置包括本体、检测组件和驱动组件,驱动组件用于控制滑动组件在收容于本体的第一位置和自本体露出的第二位置之间滑动,检测组件包括磁场产生元件、第一霍尔元件和第二霍尔元件,磁场产生元件、第一霍尔元件和第二霍尔元件分别固定在滑动组件和本体上,其中,滑动组件从第一位置滑向第二位置的过程中,磁场产生元件远离第一霍尔元件,靠近第二霍尔元件,:如图12所示,滑动校正装置包括:获取模块10、比较模块20和校正模块30。
其中,获取模块10,用于在滑动组件的滑动过程中,获取与到达的一个或多个第一标 定位置对应的第一霍尔元件发送的第一检测信号值,以及第二霍尔元件发送的第二检测信号值。
在本发明的一个实施例中,第一标定位置包括滑动组件的滑出减速位置、滑出加速位置、滑出中断位置、滑入减速位置滑入加速位置和滑入中断位置中的一种或多种。
比较模块20,用于将每个第一标定位置的第一检测信号值与预设的第一参考信号值进行比较,以及将第二检测信号值与预设的第二参考信号值进行比较。
校正模块30,用于在获知比较结果属于预设的异常范围的次数达到预设阈值时,根据第一检测信号值校正第一参考信号值,以及根据第二检测信号值校正第二参考信号值。
在本发明的一个实施例中,如图13所示,在如图12所示的基础上,该装置还包括控制模块40,其中,控制模块40,用于控制滑动组件滑动到预设的之前未到达的一个或者多个第二标定位置。
在本实施例中,获取模块10,还用于获取与每个第二标定位置对应的第一霍尔元件发送的第三检测信号值,以及第二霍尔元件发送的第四检测信号值。
校正模块30,还用于根据第三检测信号值校正第二标定位置的第三参考信号值,以及根据第四检测信号值校正第二标定位置的第四参考信号值。
需要说明的是,前述对滑动组件的滑动校正方法实施例的解释说明,也适用于本发明实施例的滑动组件的滑动校正装置,其实现原理类似,在此不再赘述。
综上,本发明实施例的滑动组件的滑动校正装置,通过滑动组件降低相关组件对屏幕占比的影响,且校正了滑动组件中有关位置的参考信号值,其中参考信号值基于两个霍尔元件检测到的检测信号值来校正,提高了滑动组件的滑动位置检测可靠性。
为了实现上述实施例,本发明还提出了一种电子装置,其中,参照图1-图4,电子装置包括本体10、检测组件30和驱动组件50,驱动组件50用于控制滑动组件在收容于本体的第一位置和自本体露出的第二位置之间滑动,检测组件包括磁场产生元件31、第一霍尔元件32和第二霍尔元件33,磁场产生元件31、第一霍尔元件32和第二霍尔元件33分别固定在滑动组件20和本体10上,其中,滑动组件20从第一位置滑向第二位置的过程中,磁场产生元件31远离第一霍尔元件32,靠近第二霍尔元件33,电子装置还包括:存储器70、与滑动组件电性连接的处理器及存储在存储器70上并可在处理器60上运行的计算机程序,处理器执行程序时,实现如前述实施例描述的滑动组件的滑动校正方法。
为了实现上述实施例,本发明实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如前述方法实施例所述的滑动组件的滑动校正方法。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施方式,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施方式进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种滑动组件的滑动校正方法,其特征在于,滑动组件用于电子装置,所述电子装置包括本体、检测组件和驱动组件,所述驱动组件用于控制所述滑动组件在收容于所述本体的第一位置和自所述本体露出的第二位置之间滑动,所述检测组件包括磁场产生元件、第一霍尔元件和第二霍尔元件,所述磁场产生元件、所述第一霍尔元件和所述第二霍尔元件分别固定在所述滑动组件和所述本体上,其中,所述滑动组件从所述第一位置滑向所述第二位置的过程中,所述磁场产生元件远离所述第一霍尔元件,靠近所述第二霍尔元件,所述滑动校正方法包括以下步骤:
    在所述滑动组件的滑动过程中,获取与到达的一个或多个第一标定位置对应的所述第一霍尔元件发送的第一检测信号值,以及所述第二霍尔元件发送的第二检测信号值;
    将每个所述第一标定位置的所述第一检测信号值与预设的第一参考信号值进行比较,以及将所述第二检测信号值与预设的第二参考信号值进行比较;
    若获知比较结果属于预设的异常范围的次数达到预设阈值,则根据所述第一检测信号值校正所述第一参考信号值,以及根据所述第二检测信号值校正所述第二参考信号值。
  2. 如权利要求1所述的方法,其特征在于,在所述若获知比较结果属于预设的异常范围的次数达到预设阈值之后,还包括:
    控制所述滑动组件滑动到预设的之前未到达的一个或者多个第二标定位置,获取与每个所述第二标定位置对应的所述第一霍尔元件发送的第三检测信号值,以及所述第二霍尔元件发送的第四检测信号值;
    根据所述第三检测信号值校正所述第二标定位置的第三参考信号值,以及根据所述第四检测信号值校正所述第二标定位置的第四参考信号值。
  3. 如权利要求1所述的方法,其特征在于,所述第一标定位置包括所述滑动组件的滑出减速位置、滑出加速位置、滑出中断位置、滑入减速位置滑入加速位置和滑入中断位置中的一种或多种。
  4. 如权利要求2所述的方法,其特征在于,所述控制所述滑动组件滑动到预设的之前未到达的一个或者多个第二标定位置,获取与每个所述第二标定位置对应的所述第一霍尔元件发送的第三检测信号值,以及所述第二霍尔元件发送的第四检测信号,包括:
    以弹窗形式发送校正通知;
    当获取到用户发送的确认校正指令后,控制所述驱动组件以最高驱动力驱动所述滑动组件在所述第一位置和所述第二位置之间来回滑动,并获取所述滑动组件滑动到所述第二标定位置时,所述第一霍尔元件和所述第二霍尔元件检测到的所述第三检测信号值和所述 第四检测信号值。
  5. 如权利要求4所述的方法,其特征在于,所述校正通知中包括确定控件,则当接收到用户对所述确定控件的触发操作后,则获取到所述确认校正指令。
  6. 如权利要求4所述的方法,其特征在于,所述校正通知中包括检测到的障碍原因信息。
  7. 如权利要求2所述的方法,其特征在于,在所述控制所述滑动组件滑动到预设的之前未到达的一个或者多个第二标定位置之前,还包括:
    统计所述第一检测信号值和所述第二检测信号值对应的第三标定位置;
    将所述第三标定位置与所述第一标定位置进行匹配,在所述第一标定位置中确定没有匹配到所述第三标定位置的所述第二标定位置。
  8. 一种滑动组件的滑动校正装置,其特征在于,滑动组件用于电子装置,所述电子装置包括本体、检测组件和驱动组件,所述驱动组件用于控制所述滑动组件在收容于所述本体的第一位置和自所述本体露出的第二位置之间滑动,所述检测组件包括磁场产生元件、第一霍尔元件和第二霍尔元件,所述磁场产生元件、所述第一霍尔元件和所述第二霍尔元件分别固定在所述滑动组件和所述本体上,其中,所述滑动组件从所述第一位置滑向所述第二位置的过程中,所述磁场产生元件远离所述第一霍尔元件,靠近所述第二霍尔元件,所述滑动校正装置包括:
    获取模块,用于在所述滑动组件的滑动过程中,获取与到达的一个或多个第一标定位置对应的所述第一霍尔元件发送的第一检测信号值,以及所述第二霍尔元件发送的第二检测信号值;
    比较模块,用于将每个所述第一标定位置的所述第一检测信号值与预设的第一参考信号值进行比较,以及将所述第二检测信号值与预设的第二参考信号值进行比较;
    校正模块,用于在获知比较结果属于预设的异常范围的次数达到预设阈值时,根据所述第一检测信号值校正所述第一参考信号值,以及根据所述第二检测信号值校正所述第二参考信号值。
  9. 如权利要求8所述的装置,其特征在于,还包括:
    控制模块,用于控制所述滑动组件滑动到预设的之前未到达的一个或者多个第二标定位置;
    所述获取模块,还用于获取与每个所述第二标定位置对应的所述第一霍尔元件发送的第三检测信号值,以及所述第二霍尔元件发送的第四检测信号值;
    所述校正模块,还用于根据所述第三检测信号值校正所述第二标定位置的第三参考信号值,以及根据所述第四检测信号值校正所述第二标定位置的第四参考信号值。
  10. 如权利要求8所述的装置,其特征在于,所述第一标定位置包括所述滑动组件的滑出减速位置、滑出加速位置、滑出中断位置、滑入减速位置滑入加速位置和滑入中断位置中的一种或多种。
  11. 如权利要求8所述的装置,其特征在于,所述获取模块,用于以弹窗形式发送校正通知;
    当获取到用户发送的确认校正指令后,控制所述驱动组件以最高驱动力驱动所述滑动组件在所述第一位置和所述第二位置之间来回滑动,并获取所述滑动组件滑动到所述第二标定位置时,所述第一霍尔元件和所述第二霍尔元件检测到的所述第三检测信号值和所述第四检测信号值。
  12. 如权利要求11所述的装置,其特征在于,所述校正通知中包括确定控件,则所述获取模块,用于在接收到用户对所述确定控件的触发操作后,获取到所述确认校正指令。
  13. 如权利要求11所述的装置,其特征在于,所述校正通知中包括检测到的障碍原因信息。
  14. 如权利要求9所述的装置,其特征在于,还包括:
    统计模块,用于统计所述第一检测信号值和所述第二检测信号值对应的第三标定位置;
    匹配模块,用于将所述第三标定位置与所述第一标定位置进行匹配,在所述第一标定位置中确定没有匹配到所述第三标定位置的所述第二标定位置。
  15. 一种电子装置,其特征在于,所述电子装置包括本体、滑动组件、检测组件和驱动组件,所述驱动组件用于控制所述滑动组件在收容于所述本体的第一位置和自所述本体露出的第二位置之间滑动,所述检测组件包括磁场产生元件、第一霍尔元件和第二霍尔元件,所述磁场产生元件、所述第一霍尔元件和所述第二霍尔元件分别固定在所述滑动组件和所述本体上,所述电子装置还包括:存储器、与所述滑动组件电性连接的处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时,实现如权利要求1-7中任一所述的滑动组件的滑动校正方法。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-7中任一所述的滑动组件的滑动校正方法。
PCT/CN2019/105423 2018-11-30 2019-09-11 滑动组件的滑动校正方法和装置 WO2020108006A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021530972A JP7254929B2 (ja) 2018-11-30 2019-09-11 スライドコンポーネントのスライド補正方法及び装置
EP19891640.5A EP3876072A4 (en) 2018-11-30 2019-09-11 SLIP CORRECTION METHOD AND APPARATUS FOR SLIDING COMPONENT
KR1020217019123A KR102457991B1 (ko) 2018-11-30 2019-09-11 슬라이딩 어셈블리의 슬라이딩 보정 방법 및 장치
US17/331,568 US11789470B2 (en) 2018-11-30 2021-05-26 Method and apparatus for calibrating sliding of sliding component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811457561.9A CN109542174B (zh) 2018-11-30 2018-11-30 滑动组件的滑动校正方法和装置
CN201811457561.9 2018-11-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/331,568 Continuation US11789470B2 (en) 2018-11-30 2021-05-26 Method and apparatus for calibrating sliding of sliding component

Publications (1)

Publication Number Publication Date
WO2020108006A1 true WO2020108006A1 (zh) 2020-06-04

Family

ID=65851946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105423 WO2020108006A1 (zh) 2018-11-30 2019-09-11 滑动组件的滑动校正方法和装置

Country Status (6)

Country Link
US (1) US11789470B2 (zh)
EP (1) EP3876072A4 (zh)
JP (1) JP7254929B2 (zh)
KR (1) KR102457991B1 (zh)
CN (1) CN109542174B (zh)
WO (1) WO2020108006A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213004A4 (en) * 2020-12-04 2024-03-13 Samsung Electronics Co Ltd ELECTRONIC DEVICE COMPRISING A FLEXIBLE SCREEN AND METHOD FOR OPERATING ELECTRONIC DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109542174B (zh) * 2018-11-30 2020-07-31 Oppo广东移动通信有限公司 滑动组件的滑动校正方法和装置
CN111625025B (zh) * 2020-04-24 2023-04-28 Oppo(重庆)智能科技有限公司 参数校准方法、装置、存储介质及电子设备
CN112328082B (zh) * 2020-11-10 2022-12-20 昆山国显光电有限公司 滑移终端以及滑移终端位移检测的校对方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170237884A1 (en) * 2015-10-30 2017-08-17 Essential Products, Inc. Apparatus and method to maximize the display area of a mobile device
CN108848224A (zh) * 2018-07-25 2018-11-20 维沃移动通信有限公司 一种移动终端
CN108900663A (zh) * 2018-06-08 2018-11-27 Oppo广东移动通信有限公司 滑动组件的滑动控制方法、装置和电子装置
CN109542174A (zh) * 2018-11-30 2019-03-29 Oppo广东移动通信有限公司 滑动组件的滑动校正方法和装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812958B1 (en) * 1998-09-10 2004-11-02 Intel Corporation Storable digital camera associated with a computer system
GB2358538B (en) * 1999-11-24 2003-11-05 Orange Personal Comm Serv Ltd Mobile communications
KR100548339B1 (ko) * 2003-04-30 2006-02-02 엘지전자 주식회사 휴대용 단말기의 카메라 장치
US7210629B2 (en) * 2003-06-05 2007-05-01 Samsung Electronics Co., Ltd. Portable communication device
JP2005354420A (ja) 2004-06-10 2005-12-22 Samsung Electro Mech Co Ltd 自動スライド型移動通信端末機、スライド型移動通信端末機の自動駆動方法及び着信信号感知方法
JP2006325114A (ja) 2005-05-20 2006-11-30 Toya Kensetsu Kogyo:Kk 携帯電話機
JP5140364B2 (ja) * 2007-09-28 2013-02-06 京セラ株式会社 携帯端末、表示切替方法、表示切替プログラム
JP2009199301A (ja) 2008-02-21 2009-09-03 Nec Tokin Corp 電子機器
US8818718B2 (en) 2010-08-02 2014-08-26 Qualcomm Incorporated PND repositioning detector for better navigation accuracy in a car
TWI533655B (zh) * 2012-09-14 2016-05-11 和碩聯合科技股份有限公司 可攜式電子裝置
JP6387629B2 (ja) 2013-04-16 2018-09-12 株式会社リコー モータ制御装置、画像形成装置およびモータ制御方法
KR101356236B1 (ko) * 2013-05-22 2014-02-03 김대인 카메라 노출이 가능하면서 스마트폰을 휴대가능한 장지갑.
JP6122714B2 (ja) 2013-07-03 2017-04-26 Kyb株式会社 変位センサ
US9746937B2 (en) 2015-10-02 2017-08-29 Blackberry Limited Method and apparatus for movable assembly position sensing and virtual keyboard display
CN106856516A (zh) 2015-12-09 2017-06-16 小米科技有限责任公司 电子设备
CN105554196A (zh) 2016-01-26 2016-05-04 孔岳 一种全屏手机
CN106534093B (zh) * 2016-10-25 2019-10-25 Oppo广东移动通信有限公司 一种终端数据的处理方法、装置及系统
CN107092772B (zh) * 2017-03-01 2019-12-10 深圳怡化电脑股份有限公司 一种传感器特征曲线的确定方法及其装置
CN108833623B (zh) * 2018-06-08 2020-12-29 Oppo广东移动通信有限公司 滑动组件的滑动控制方法、装置和电子装置
CN108900664B (zh) * 2018-06-08 2021-02-02 Oppo广东移动通信有限公司 电子设备及电子设备的控制方法
CN108900665B (zh) * 2018-06-08 2021-04-06 Oppo广东移动通信有限公司 电子设备及电子设备的控制方法
CN108897375B (zh) * 2018-06-12 2020-07-03 Oppo广东移动通信有限公司 滑动机构的控制方法、装置、电子设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170237884A1 (en) * 2015-10-30 2017-08-17 Essential Products, Inc. Apparatus and method to maximize the display area of a mobile device
CN108900663A (zh) * 2018-06-08 2018-11-27 Oppo广东移动通信有限公司 滑动组件的滑动控制方法、装置和电子装置
CN108848224A (zh) * 2018-07-25 2018-11-20 维沃移动通信有限公司 一种移动终端
CN109542174A (zh) * 2018-11-30 2019-03-29 Oppo广东移动通信有限公司 滑动组件的滑动校正方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4213004A4 (en) * 2020-12-04 2024-03-13 Samsung Electronics Co Ltd ELECTRONIC DEVICE COMPRISING A FLEXIBLE SCREEN AND METHOD FOR OPERATING ELECTRONIC DEVICE

Also Published As

Publication number Publication date
CN109542174B (zh) 2020-07-31
EP3876072A1 (en) 2021-09-08
KR102457991B1 (ko) 2022-10-21
CN109542174A (zh) 2019-03-29
US11789470B2 (en) 2023-10-17
US20210286380A1 (en) 2021-09-16
JP7254929B2 (ja) 2023-04-10
JP2022508287A (ja) 2022-01-19
KR20210094010A (ko) 2021-07-28
EP3876072A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2020108006A1 (zh) 滑动组件的滑动校正方法和装置
CN108833623B (zh) 滑动组件的滑动控制方法、装置和电子装置
RU2645302C1 (ru) Способ и аппарат для установки яркости экрана
WO2018210145A1 (zh) 一种息屏控制方法、装置、存储介质和电子设备
WO2020108007A1 (zh) 摄像模组控制方法和装置
CN107911554B (zh) 电子装置及电子装置的控制方法
WO2020108008A1 (zh) 摄像模组控制方法和装置
CN108924283B (zh) 滑动组件的滑动控制方法、装置和电子装置
CN103702029A (zh) 拍摄时提示对焦的方法及装置
US10992856B2 (en) Method for detecting position of movable structure, detection component, and electronic device
US11631190B2 (en) Electronic device and method for controlling auto focusing thereof
WO2018086382A1 (zh) 智能设备的屏幕背光控制系统与方法
CN104880842A (zh) 一种触摸显示面板及显示装置
CN108833699B (zh) 电子装置及其滑动组件的控制方法和装置
CN108900663B (zh) 滑动组件的滑动控制方法、装置和电子装置
CN105763798A (zh) 控制方法、控制装置及电子装置
CN108924342B (zh) 移动终端及其控制方法、控制组件和存储介质
CN108924284B (zh) 电子装置及其滑动组件的控制方法和装置
CN108924286B (zh) 电子装置及其滑动组件的控制方法和装置
WO2022028470A1 (zh) 电子设备及红外模组控制方法
CN109460178B (zh) 滑动组件的滑动显示方法和装置
CN110311999B (zh) 电子设备的控制方法和装置
WO2019039228A1 (ja) 電子機器、プログラムおよび制御方法
CN110311996B (zh) 滑出组件的控制方法、检测组件及电子装置
CN109361791B (zh) 一种电子设备和光学器件检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530972

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891640

Country of ref document: EP

Effective date: 20210604

ENP Entry into the national phase

Ref document number: 20217019123

Country of ref document: KR

Kind code of ref document: A