WO2020107977A1 - 一种路径构建的方法及相关设备 - Google Patents

一种路径构建的方法及相关设备 Download PDF

Info

Publication number
WO2020107977A1
WO2020107977A1 PCT/CN2019/103466 CN2019103466W WO2020107977A1 WO 2020107977 A1 WO2020107977 A1 WO 2020107977A1 CN 2019103466 W CN2019103466 W CN 2019103466W WO 2020107977 A1 WO2020107977 A1 WO 2020107977A1
Authority
WO
WIPO (PCT)
Prior art keywords
bgp
node
tpd
route
label
Prior art date
Application number
PCT/CN2019/103466
Other languages
English (en)
French (fr)
Inventor
赵德涛
彭少富
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US17/297,332 priority Critical patent/US11991023B2/en
Priority to EP19888731.7A priority patent/EP3886379B1/en
Publication of WO2020107977A1 publication Critical patent/WO2020107977A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4633Interconnection of networks using encapsulation techniques, e.g. tunneling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/50Routing or path finding of packets in data switching networks using label swapping, e.g. multi-protocol label switch [MPLS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing

Definitions

  • the embodiments of the present invention relate to, but are not limited to, BGP/MPLS VPN technology, and more specifically relate to a path construction method and related equipment.
  • the BGP-LU (BGP Labeled unicast) mechanism provides a mechanism for establishing MPLS (Lorder Multiprotocol Label Switching, multi-protocol label switching, label switching path, label switching path) for the BGP (Border Gateway Protocol) border fix.
  • MPLS Long-Protocol Label Switching, multi-protocol label switching, label switching path, label switching path
  • BGP Border Gateway Protocol
  • this mechanism can establish the end-to-end AS (autonomous system) and IGP (Interior Gateway Gateway) internal gateway through the binding of BGP advertising routes and labels.
  • Co-instrument) domain MPLS LSP Co-instrument
  • the BGP-LU mechanism can only provide the same transmission path and resources for specifying different VPN services between two PEs (Provider Edge), so that when VPN users have different requirements for the transmission quality of services, such as some VPNs Services require low-latency transmission, and some require low-latency jitter transmission.
  • the current BGP-LU mechanism cannot support different VPN services for flexible and differentiated transmission paths.
  • an embodiment of the present invention provides a method for path construction, including: a second PE node advertises a first VPN route to a first PE node through an MP-BGP signaling channel, so that the first PE node according to the received The first transmission path descriptor TPD carried in the first VPN route determines the label forwarding path to the first VPN Prefix;
  • the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop.
  • An embodiment of the present invention also provides a path construction method, including: a first PE node receives a first VPN route advertised by a second PE node through an MP-BGP signaling channel;
  • the first VPN route carries a first transmission path descriptor TPD, and the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop;
  • the first PE node determines the label forwarding path to the first VPN Prefix according to the received first transmission path descriptor TPD carried in the first VPN route.
  • An embodiment of the present invention also provides a path construction method, including: an area border router ABR forwards the first BGP-LU route advertised by the second PE node to the first PE node through an MP-BGP signaling channel, so that the Create a first FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU route, and the first FTN forwarding entry is associated with a first VPN packet identified by the first TPD Label forwarding path to BGP next hop;
  • the first BGP-LU route carries a label corresponding to the first TPD and the first FEC, and the first FEC is configured by the first TPD and the second PE node for the first BGP-LU route
  • the first prefix is composed.
  • An embodiment of the present invention also provides a second PE node, including:
  • the publishing unit publishes the first VPN route to the first PE node through the MP-BGP signaling channel, so that the first PE node determines to reach the first according to the received first transmission path descriptor TPD carried in the first VPN route VPN forwarding label forwarding path;
  • the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop.
  • An embodiment of the present invention also provides a first PE node, including:
  • the receiving unit receives the first VPN route advertised by the second PE node through the MP-BGP signaling channel;
  • the first VPN route carries a first transmission path descriptor TPD, and the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop;
  • the determining unit determines the label forwarding path to the first VPN Prefix according to the received first transmission path descriptor TPD carried in the first VPN route.
  • An embodiment of the present invention also provides an area border router ABR, including:
  • the forwarding unit is used for the area border router ABR to forward the first BGP-LU route advertised by the second PE node to the first PE node through the MP-BGP signaling channel, so that the first PE node according to the received A BGP-LU route creates a first FTN forwarding entry corresponding to the first FEC, and the first FTN forwarding entry is associated with the label forwarding path of the first VPN packet identified by the first TPD reaching BGP next hop;
  • the first BGP-LU route carries a label corresponding to the first TPD and the first FEC
  • the first FEC is defined by the first TPD and the second PE node as the first BGP-LU
  • the first prefix of the route configuration is composed.
  • An embodiment of the present invention also provides a system for constructing a transmission path, which is characterized by including:
  • the second PE node is used to advertise the first VPN route to the first PE node through the MP-BGP signaling channel;
  • a first PE node configured to determine a label forwarding path to the first VPN Prefix according to the received first transmission path descriptor TPD carried in the first VPN route;
  • the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop.
  • An embodiment of the present invention also provides a second PE node, including a memory, a processor, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor A method for constructing a transmission path executed by the second PE node described above is implemented.
  • An embodiment of the present invention also provides a first PE node, including a memory, a processor, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor A method for constructing a transmission path executed by the first PE node described above is implemented.
  • An embodiment of the present invention also provides an area border router ABR, including a memory, a processor, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor A method for constructing a transmission path implemented by the above ABR.
  • ABR area border router
  • An embodiment of the present invention also provides a computer-readable storage medium that stores an information processing program on the computer-readable storage medium, and the information processing program is executed by a processor to implement any of the above-mentioned construction of a transmission path Method steps.
  • FIG. 1 is a schematic flowchart of a path construction method according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a path construction method provided in Embodiment 3 of the present invention.
  • Embodiment 3 is a schematic flowchart of a path construction method provided in Embodiment 3 of the present invention.
  • Figure 4.1 is a schematic diagram of the format of TPD TLV in the fourth embodiment of the present invention.
  • Figure 4.2 is a schematic diagram of the format of Color Sub-TLV in Embodiment 4 of the present invention.
  • Figure 4.3 is a schematic diagram of the format of IGP Prefix Algorithm Sub-TLV in the fourth embodiment of the present invention.
  • FIG. 4.4 is a schematic diagram of the format of Network Slice ID Sub-TLV in Embodiment 4 of the present invention.
  • Figure 4.5 is a schematic diagram of the format of Lable Sub-TLV in the fourth embodiment of the present invention.
  • Figure 4.6 is a schematic diagram of the format of Label-Index Sub-TLV in Embodiment 4 of the present invention.
  • Embodiment 5 is a schematic flowchart of a path construction method provided by Embodiment 5 of the present invention.
  • FIG. 6 is a schematic flowchart of a path construction method provided in Embodiment 6 of the present invention.
  • Embodiment 7 is a schematic structural diagram of a path construction system provided by Embodiment 7 of the present invention.
  • Embodiment 8 is a schematic flowchart of a path construction method provided by Embodiment 7 of the present invention.
  • Embodiment 8 of the present invention is a schematic structural diagram of a path construction system provided by Embodiment 8 of the present invention.
  • FIG. 10 is a schematic flowchart of a path construction method provided in Embodiment 8 of the present invention.
  • FIG. 11 is a schematic structural diagram of a path construction system provided by Embodiment 9 of the present invention.
  • FIG. 12 is a schematic flowchart of a path construction method provided in Embodiment 9 of the present invention.
  • FIG. 13 is a schematic structural diagram of a path construction system provided by Embodiment 10 of the present invention.
  • FIG. 14 is a schematic flowchart of a path construction method according to Embodiment 10 of the present invention.
  • FIG. 15 is a schematic structural diagram of a system for constructing a transmission path according to Embodiment 11 of the present invention.
  • FIG. 16 is a schematic structural diagram of a second PE node according to Embodiment 11 of the present invention.
  • FIG. 17 is a schematic structural diagram of a first PE node according to Embodiment 11 of the present invention.
  • FIG. 18 is a schematic structural diagram of an area border router ABR according to Embodiment 11 of the present invention.
  • the BGP-LU mechanism can only provide the same transmission path and resources for specifying different VPN services between two PEs (Provider Edges), when VPN users have different requirements for the transmission quality of services, such as some VPN Services require low-latency transmission, and some require low-latency jitter transmission.
  • the current BGP-LU mechanism cannot support different VPN services for flexible and differentiated transmission paths.
  • the embodiment of the present invention provides a new transmission path descriptor TPD (Transmission Path Descriptor), which carries the TPD corresponding to the VPN service when the VPN route is released, and can select a transmission path for the VPN service that meets the service requirements;
  • TPD Transmission Path Descriptor
  • the BGP-LU route is advertised, the TPD corresponding to the VPN service is carried, which can provide a flexible and differentiated BGP-LU transmission path for specifying VPN services between two PEs.
  • FIG. 1 is a schematic flowchart of a path construction method according to Embodiment 1 of the present invention. As shown in Figure 1, the method includes:
  • Step 101 The second PE node advertises the first VPN route to the first PE node through the MP-BGP signaling channel, so that the first PE node receives the first transmission path descriptor TPD carried in the received first VPN route Determine the label forwarding path to the first VPN Prefix;
  • the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop.
  • the method further includes:
  • TPDs corresponding to multiple underlying transmission paths supporting VPN services are defined in advance;
  • the second PE node and the first PE node create a first VPN, and determine the first TPD according to the underlying transmission path that meets the requirements of the first VPN service;
  • the underlying transmission path includes one of the following: a tunnel, a network slice, an IGP Prefix Algorithm, a specified tunnel in the network slice, a specified Algorithm in the network slice, and a specified tunnel in the network slice based on the specified Algorithm.
  • the method further includes:
  • the second PE node advertises the first BGP-LU route to the first PE node through the area border router ABR through the MP-BGP signaling channel, so that the first PE node creates the first BGP-LU route according to the received first BGP-LU route.
  • a first FTN forwarding entry corresponding to an FEC, and the first FTN forwarding entry is associated with a label forwarding path where the first VPN packet identified by the first TPD reaches BGP next hop;
  • the first BGP-LU route carries a label corresponding to the first TPD and the first FEC
  • the first FEC is configured by the first TPD and the second PE node for the first BGP-LU route
  • the first prefix composition
  • the second PE node advertises the first BGP-LU route to the first PE node through the area border router ABR through the MP-BGP signaling channel, including:
  • the second PE node allocates a first label to the first FEC, and creates a first ILM forwarding entry
  • the second PE node sends a first BGP-LU route advertisement message to the ABR and modifies BGP next-hop to the address of the second PE node, and the first BGP-LU Prefix route advertisement message carries the The first TPD and the first label;
  • the ABR creates a second FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU route advertisement message, and the second FTN forwarding entry is associated with the first identified by the first TPD
  • the VPN packet reaches the label forwarding path of BGP next hop;
  • the ABR reassigns a second label to the first FEC, and creates a second ILM forwarding entry according to the second label;
  • the ABR replaces the first label in the first BGP-LU route advertisement message with the second label and modifies BGP next-hop to the address of the ABR, and forwards it to the first PE node.
  • the method also includes:
  • the second PE node advertises the second VPN route to the first PE node through the MP-BGP signaling channel, so that the first PE node determines the arrival of the second VPN Prefix according to the received second TPD carried in the second VPN route Label forwarding path;
  • the second TPD is used to identify a label forwarding path where the second VPN packet reaches BGP next hop.
  • the method further includes:
  • the second PE node and the first PE node create a second VPN, and determine the second TPD according to the underlying transmission path that meets the second VPN service requirements.
  • the method further includes:
  • the second PE node advertises the second BGP-LU route to the first PE node through the area border router ABR through the MP-BGP signaling channel, so that the first PE node creates the first BGP-LU route according to the received second BGP-LU route.
  • a third FTN forwarding entry corresponding to the second FEC, and the third FTN forwarding entry is associated with the label forwarding path of the second VPN packet identified by the second TPD reaching BGP next hop;
  • the second BGP-LU route carries labels corresponding to the second TPD and the second FEC
  • the second FEC is configured by the second TPD and the second PE node for the second BGP-LU route Composed of the second prefix.
  • the second PE node advertises the second BGP-LU route to the first PE node through the area border router ABR through the MP-BGP signaling channel, including:
  • the second PE node allocates a third label to the second FEC, and creates a third ILM forwarding entry
  • the second PE node sends a second BGP-LU route advertisement message to the ABR and modifies BGP next-hop to the address of the second PE node, and the second BGP-LU Prefix route advertisement message carries the The second TPD and the third label;
  • the ABR creates a fourth FTN forwarding entry corresponding to the second FEC according to the received second BGP-LU route advertisement message, and the fourth FTN forwarding entry is associated with the second identified by the second TPD
  • the VPN packet reaches the label forwarding path of BGP next hop;
  • the ABR redistributes a fourth label for the second FEC, and creates a fourth ILM forwarding entry according to the fourth label;
  • the ABR replaces the third label in the second BGP-LU route advertisement message with the fourth label and modifies BGP next-hop to the address of the ABR and forwards it to the first PE node.
  • the TPD format is a TLV format, including TPD Type and Sub-TLV.
  • the TPD type is used to identify which Sub-TLVs the TPD is composed of.
  • the Sub-TLV includes one or more Sub-TLVs that constitute the TPD TLV.
  • the TPD Type includes:
  • Type 1 means TPD is composed of Color Sub-TLV and identifies a label forwarding path to BGP next hop identified by Color;
  • Type 2 means TPD is composed of IGP Prefix Algorithm Sub-TLV and identifies a label forwarding path to BGP next hop based on the specified Algorithm;
  • Type 3 means TPD is composed of Network Slice ID and Sub-TLV, and identifies the label forwarding path to BGP next hop within a network slice;
  • Type 4 means TPD is composed of Network Slice ID and Sub-TLV and Color Sub-TLV, and identifies a label forwarding path to BGP next hop identified by Color in the specified network slice;
  • Type 5 means TPD is composed of Network Slice ID, Sub-TLV and IGP Prefix Algorithm Sub-TLV, and identifies a label forwarding path to BGP next hop based on the specified algorithm in the specified network slice;
  • Type 6 means that it consists of Network Slice ID, Sub-TLV, IGP Prefix Algorithm, Sub-TLV, and Color Sub-TLV, and identifies a TE label forwarding path to BGP next hop based on the specified Algorithm in the specified network slice and identified by Color .
  • FIG. 2 is a schematic flowchart of a path construction method provided by Embodiment 2 of the present invention. As shown in Figure 2, the method includes:
  • Step 201 the first PE node receives the first VPN route advertised by the second PE node through the MP-BGP signaling channel;
  • the first VPN route carries a first transmission path descriptor TPD, and the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop;
  • Step 202 The first PE node determines the label forwarding path to the first VPN Prefix according to the received first transmission path descriptor TPD carried in the first VPN route.
  • the method further includes:
  • the first PE node receives the first BGP-LU route published by the second PE node through the area border router ABR through the MP-BGP signaling channel;
  • the first BGP-LU route carries a label corresponding to the first TPD and the first FEC
  • the first FEC is configured by the first TPD and the second PE node for the first BGP-LU route
  • the first PE node creates a first FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU route, and the association in the first FTN forwarding entry is identified by the first TPD
  • the first VPN packet reaches the label forwarding path of BGP next hop.
  • the first PE node receiving the first BGP-LU route published by the second PE node through the area border router ABR through the MP-BGP signaling channel includes:
  • the second PE node allocates a first label to the first FEC, and creates a first ILM forwarding entry
  • the second PE node sends a first BGP-LU route advertisement message to the ABR and modifies BGP next-hop to the address of the second PE node, and the first BGP-LU Prefix route advertisement message carries the The first TPD and the first label;
  • the ABR creates a second FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU route advertisement message, and the second FTN forwarding entry is associated with the first identified by the first TPD
  • the VPN packet reaches the label forwarding path of BGP next hop;
  • the ABR reassigns a second label to the first FEC, and creates a second ILM forwarding entry according to the second label;
  • the ABR replaces the first label in the first BGP-LU route advertisement message with the second label and modifies BGP next-hop to the address of the ABR, and forwards it to the first PE node.
  • the method also includes:
  • the first PE node receives the second VPN route advertised by the second PE node through the MP-BGP signaling channel; wherein the second VPN route carries a second TPD, and the second TPD is used to identify the arrival of the second VPN packet BGP next hop label forwarding path
  • the first PE node determines the label forwarding path to the second VPN Prefix according to the received second TPD carried in the second VPN route.
  • the method further includes:
  • the first PE node receives the second BGP-LU route advertised by the second PE node through the area border router ABR through the MP-BGP signaling channel;
  • the second BGP-LU route carries labels corresponding to the second TPD and the second FEC, and the second FEC is configured by the second TPD and the second PE node for the second BGP-LU route Composed of the second prefix;
  • the first PE node creates a third FTN forwarding entry corresponding to the second FEC according to the received second BGP-LU route, and the association in the third FTN forwarding entry is identified by the second TPD
  • the second VPN packet reaches the label forwarding path of BGP next hop.
  • the first PE node receiving the second BGP-LU route advertised by the second PE node through the area border router ABR through the MP-BGP signaling channel includes:
  • the second PE node allocates a third label to the second FEC, and creates a third ILM forwarding entry
  • the second PE node sends a second BGP-LU route advertisement message to the ABR and modifies BGP next-hop to the address of the second PE node, and the second BGP-LU Prefix route advertisement message carries the The second TPD and the third label;
  • the ABR creates a fourth FTN forwarding entry corresponding to the second FEC according to the received second BGP-LU route advertisement message, and the fourth FTN forwarding entry is associated with the second identified by the second TPD
  • the VPN packet reaches the label forwarding path of BGP next hop;
  • the ABR redistributes a fourth label for the second FEC, and creates a fourth ILM forwarding entry according to the fourth label;
  • the ABR replaces the third label in the second BGP-LU route advertisement message with the fourth label and modifies BGP next-hop to the address of the ABR and forwards it to the first PE node.
  • the first PE node determining the label forwarding path to the first VPN Prefix according to the received first transmission path descriptor TPD carried in the first VPN route includes:
  • the first PE node obtains a first FEC according to the first TPD, and iteratively reaches the label forwarding path of the first VPN Prefix according to the first FEC;
  • the first PE node determining the label forwarding path to the second VPN Prefix according to the received second TPD carried in the second VPN route includes:
  • the first PE node obtains a second FEC according to the second TPD, and iteratively reaches the label forwarding path of the second VPN Prefix according to the second FEC.
  • the TPD format is a TLV format, including TPD Type and Sub-TLV.
  • the TPD type is used to identify which Sub-TLVs the TPD is composed of.
  • the Sub-TLV includes one or more Sub-TLVs that constitute the TPD TLV.
  • the TPDType includes:
  • Type 1 means TPD is composed of Color Sub-TLV and identifies a label forwarding path to BGP next hop identified by Color;
  • Type 2 indicates that the TPD is composed of IGP Prefix Algorithm Sub-TLV and identifies a label forwarding path to BGP next hop based on the specified Algorithm;
  • Type 3 means TPD is composed of Network Slice ID and Sub-TLV, and identifies the label forwarding path to BGP next hop within a network slice;
  • Type 4 means TPD is composed of Network Slice ID and Sub-TLV and Color Sub-TLV, and identifies a label forwarding path to BGP next hop identified by Color in the specified network slice;
  • Type 5 means TPD is composed of Network Slice ID, Sub-TLV and IGP Prefix Algorithm Sub-TLV, and identifies a label forwarding path to BGP next hop based on the specified algorithm in the specified network slice;
  • Type 6 means that it consists of Network Slice ID, Sub-TLV, IGP Prefix Algorithm, Sub-TLV, and Color Sub-TLV, and identifies a TE label forwarding path to BGP next hop based on the specified Algorithm in the specified network slice and identified by Color .
  • FIG. 3 is a schematic flowchart of a path construction method provided in Embodiment 3 of the present invention. As shown in FIG. 3, the method includes:
  • Step 301 the area border router ABR forwards the first BGP-LU route advertised by the second PE node to the first PE node through the MP-BGP signaling channel, so that the creation is based on the received first BGP-LU route A first FTN forwarding entry corresponding to the first FEC, and the first FTN forwarding entry is associated with a label forwarding path where the first VPN packet identified by the first TPD reaches BGP next hop;
  • the first BGP-LU route carries a label corresponding to the first TPD and the first FEC, and the first FEC is configured by the first TPD and the second PE node for the first BGP-LU route
  • the first prefix is composed.
  • the area border router ABR forwards the first BGP-LU route advertised by the second PE node to the first PE node through the MP-BGP signaling channel, including:
  • the ABR receives a first BGP-LU route advertisement message sent by the second PE node, where the first BGP-LU Prefix route advertisement message carries the first TPD and the second PE is the first FEC The first label assigned;
  • the ABR creates a second FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU route advertisement message, and the second FTN forwarding entry is associated with the first FPD identified by the first TPD
  • a VPN packet reaches the label forwarding path of BGP next hop;
  • the ABR reassigns a second label to the first FEC, and creates a second ILM forwarding entry according to the second label;
  • the ABR replaces the first label in the first BGP-LU route advertisement message with the second label and modifies BGP next-hop to the address of the ABR, and forwards it to the first PE node.
  • the method also includes:
  • the area border router ABR forwards the second BGP-LU route advertised by the second PE node to the first PE node through the MP-BGP signaling channel, so that the first PE node according to the received second BGP-
  • the LU route creates a third FTN forwarding entry corresponding to the second FEC, and the third FTN forwarding entry is associated with the label forwarding path of the second VPN packet identified by the second TPD reaching BGP next hop;
  • the second BGP-LU route carries labels corresponding to the second TPD and the second FEC
  • the second FEC is configured by the second TPD and the second PE node for the second BGP-LU route Composed of the second prefix.
  • the area border router ABR forwards the second BGP-LU route advertised by the second PE node to the first PE node through the MP-BGP signaling channel, including:
  • the ABR receives a second BGP-LU route advertisement message sent by the second PE node, where the second BGP-LU Prefix route advertisement message carries the second TPD and the second PE allocated to the second FEC Third label
  • the ABR creates a fourth FTN forwarding entry corresponding to the second FEC according to the received second BGP-LU route advertisement message, and the fourth FTN forwarding entry is associated with the second identified by the second TPD
  • the VPN packet reaches the label forwarding path of BGP next hop;
  • the ABR redistributes a fourth label for the second FEC, and creates a fourth ILM forwarding entry according to the fourth label;
  • the ABR replaces the third label in the second BGP-LU route advertisement message with the fourth label and modifies BGP next-hop to the address of the ABR and forwards it to the first PE node.
  • the TPD format is a TLV format, including TPD Type and Sub-TLV.
  • the TPD type is used to identify which Sub-TLVs the TPD is composed of.
  • the Sub-TLV includes one or more Sub-TLVs that constitute the TPD TLV.
  • the TPDType includes:
  • Type 1 means TPD is composed of Color Sub-TLV and identifies a label forwarding path to BGP next hop identified by Color;
  • Type 2 indicates that the TPD is composed of IGP Prefix Algorithm Sub-TLV and identifies a label forwarding path to BGP next hop based on the specified Algorithm;
  • Type 3 means TPD is composed of Network Slice ID and Sub-TLV, and identifies the label forwarding path to BGP next hop within a network slice;
  • Type 4 means TPD is composed of Network Slice ID and Sub-TLV and Color Sub-TLV, and identifies a label forwarding path to BGP next hop identified by Color in the specified network slice;
  • Type 5 means TPD is composed of Network Slice ID, Sub-TLV and IGP Prefix Algorithm Sub-TLV, and identifies a label forwarding path to BGP next hop based on the specified algorithm in the specified network slice;
  • Type 6 means that it consists of Network Slice ID, Sub-TLV, IGP Prefix Algorithm, Sub-TLV, and Color Sub-TLV, and identifies a TE label forwarding path to BGP next hop based on the specified Algorithm in the specified network slice and identified by Color .
  • TPD Transmission Path Descriptor
  • topology-related resources such as which nodes and links
  • resources within the node such as how many queues, processor resources, etc.
  • IGP InteriorGatewayProtocol , Internal Gateway Protocol
  • LDP Label Distribution Protocol, Label Distribution Protocol
  • SR Segment Routing
  • MPLS technology establishes the underlying transmission path that meets the requirements of VPN.
  • TPD Transmission Path Descriptor
  • the TPD can be defined according to the transmission requirements of the VPN service.
  • the underlying transmission path of the TPD logo can be a tunnel, a network slice Network, Slice, IGP (Interior Gateway Protocol), the prefix algorithm Prefix Algorithm (including the flexible algorithm Flexible defined in the draft drafi-ietf-lsr-flex-algo), TE (traffic engineering, traffic engineering) label forwarding path, etc., or a combination of several.
  • the TPD may be carried in the VPN route advertisement message or the BGP-LU route advertisement message.
  • the VPN route advertisement message or the BGP-LU route advertisement message may be carried in the BGP message such as the MP-IBGP Update Update message, for example, TPD can be added to the attribute extension field of the MP-BGP Update message.
  • TPD Attribute an optional optional, transitively transitive BGP path attribute
  • the TPD TLV format is shown in Figure 4-1, including:
  • TLVType To be assigned
  • Length the number of bytes occupied by TLV
  • TPD Type Used to indicate which Sub-TLVs TPD consists of.
  • TPD TLVs can carry multiple Sub-TLVs.
  • One implementation is to define three Sub-TLVs that identify TPD and two Sub-TLVs that identify labels.
  • the three Sub-TLVs that identify TPD are as follows:
  • IGP Prefix Algorithm Sub-TLV the format is shown in Figure 4-3.
  • the TPD type in the TLV is used to identify which Sub-TLVs the TPD consists of:
  • Type is 1, indicating that the TPD is composed of Color Sub-TLV, indicating a TE label forwarding path identified by Color to the BGP next hop;
  • Type 2 indicates that the TPD is composed of IGP Prefix Algorithm Sub-TLV and identifies a label forwarding path to BGP next hop based on the specified Algorithm;
  • Type 3 means TPD is composed of Network Slice ID and Sub-TLV, and identifies the label forwarding path to BGP next hop in a slice;
  • Type is 4, indicating that TPD is composed of Network Slice ID and Sub-TLV and Color Sub-TLV, and identifies a specified TE label forwarding path to BGP next hop identified by Color in the slice;
  • Type 5 means TPD is composed of Network Slice ID, Sub-TLV and IGP Prefix Algorithm Sub-TLV, and identifies a label forwarding path to BGP next hop based on the specified algorithm in the specified slice;
  • the type is 6, indicating that it is composed of Network, Slice, ID, Sub-TLV, IGP, Prefix, Algorithm, Sub-TLV, and Color, Sub-TLV, and identifies a TE label forwarding path to BGP next hop based on the specified Algorithm and identified by Color in the specified slice.
  • the Lable Sub-TLV the format is shown in Figure 4-5.
  • the Sub-TLV carries the label assigned by BGP peer for the FEC (Forwarding Equivalent Class) corresponding to the TPD;
  • the Sub-TLV carries the BGP Prefix-SID (Segment ID) corresponding to the TPD.
  • FIG. 5 is a schematic flowchart of a path construction method provided by Embodiment 5 of the present invention. As shown in Figure 5, the method includes:
  • Step 501 The PE2 node advertises one or more VPN routes to the PE1 node through the MP-BGP signaling channel;
  • VPN routes can be published by sending BGP messages.
  • BGP messages can carry one or more VPN routes, and each VPN route carries a corresponding TPD;
  • step 502 the PE1 node determines that each VPN reaches the label forwarding path corresponding to the Prefix according to the corresponding TPD in the received one or more VPN routes.
  • the PE1 node and the PE2 node enable the IGP network.
  • the PE1 node and the PE2 node can create the first VPN according to user needs and establish the underlying transmission path that meets the requirements of the first VPN.
  • the tunnel is used to meet the transmission requirements of the first VPN.
  • the PE2 node may configure the first TPD for the first VPN. For example, according to the pre-defined TPD in Embodiment 4, it can be determined that the TPDtype of the first TPD corresponding to the first VPN is 1, indicating that the first TPD is composed of Color(Red) Sub-TLV, indicating a color (Red) identified The label forwarding path to BGP next hop.
  • the PE2 node when a VPN is created by the PE1 node and the PE2 node, the PE2 node sends a BGP message to the PE1 node through the MP-BGP signaling channel, the BGP message carries the first VPN route, and the first VPN route carries the first A TPD;
  • the PE1 node and the PE2 node can also create a second VPN according to user needs and establish an underlying transmission path that meets the requirements of the second VPN.
  • a Blue tunnel can be established in the IGP network to meet the transmission requirements of the second VPN.
  • the TPD type of the second TPD corresponding to the second VPN is also 1, indicating that the second TPD is composed of Color(Blue) Sub-TLV, indicating that one is composed of Color(Blue)
  • the second VPN route can be advertised through another BGP message, or it can be advertised at the same time as the first VPN route carried in the same BGP message. That is, when two VPNs are created by the PE1 node and the PE2 node, the PE2 node sends a BGP message to the PE1 node through the MP-BGP signaling channel, the BGP message carries the first VPN route and the second VPN route, and the first VPN route Carries a first TPD, and the second VPN route carries a second TPD.
  • multiple VPNs exist on the PE1 node and the PE2 node multiple VPN routes can be advertised separately or carried in a BGP message, and each VPN route carries its corresponding TPD when it is advertised.
  • the underlying transmission path that meets VPN requirements can also be a network slice, a designated algorithm, a tunnel within a designated network slice, a designated algorithm within a designated network slice, a designated tunnel within a designated network slice, and so on. In this way, a transmission path that meets specific requirements can be selected for different VPN services.
  • FIG. 6 is a schematic flowchart of a path construction method provided in Embodiment 6 of the present invention. As shown in Figure 6, the method includes:
  • Step 601 the BGP-LU Prefix originating node determines the TPD supported by the BGP-LU Prefix, forms a TPD-FEC, and allocates a label for the TPD-FEC to generate an ILM forwarding entry;
  • the originating node and the neighboring node enable the IGP network, create a VPN on the originating node and the neighboring node, establish an underlying transmission path that meets the VPN requirements in the IGP network, and establish MP-BGP Signaling channel.
  • the MP-BGP signaling channel can be used to advertise BGP-LU routes and VPN routes.
  • the TPD supported by the BGP-LU Prefix is generally configured on the originating node of the BGP-LU Prefix (the loopback route), and the combination of Prefix and TPD is used as FEC (Forwarding Equivalence Class, Forwarding Equivalence Class), called TPD -FEC.
  • FEC Forwarding Equivalence Class, Forwarding Equivalence Class
  • TPD -FEC Forwarding Equivalence Class
  • the corresponding Prefix-SID needs to be configured for TPD-FEC.
  • the TPD-FEC can be assigned a label to generate an ILM (Incoming Label Map) forwarding entry.
  • ILM Incoming Label Map
  • a TPD may be defined for the VPN service in advance. For details, see the content of Embodiment 4.
  • Step 602 the BGP-LU Prefix originating node advertises the BGP-LU route to the BGP neighbor.
  • the BGP next-hop setting the route in the advertisement message is itself, and carries the supported TPD and the label assigned to the TPD-FEC;
  • SAFI Subsequent Address Family Identifier
  • the announcement message also carries the corresponding Prefix SID.
  • Step 603 the BGP neighbor node creates an FTN entry based on the TPD in the received BGP-LU route, and creates an ILM forwarding entry after reallocating the label;
  • the BGP neighbor node can create an FTN (FEC to NHLFE Map, FEC to next hop label forwarding unit map) forwarding entry for the TPD-FEC, and the BGP neighbor node restarts Assign a new label to TPD-FEC, and create an ILM forwarding entry based on the reassigned new label;
  • FTN FEC to NHLFE Map, FEC to next hop label forwarding unit map
  • the forwarding information contained in the FTN and ILM forwarding entries will be associated with the resources within the node corresponding to the TPD and the BGP next-hop based on the route iterates to the underlying transmission path that meets the TPD requirements.
  • the BGP neighbor node can continue to advertise the BGP-LU route to other BGP neighbors, modify the route's BGP next-hop to itself during the advertisement, and modify the TPD-FEC label to redistribute the neighbor node's label.
  • the processing of other BGP neighbors is similar to the above BGP neighbors.
  • Step 604 the BGP-LU Prefix originating node advertises the VPN route to the BGP neighbor, and the notification message carries the supported TPD;
  • Step 605 When the BGP neighbor node receives the VPN route and iteratively reaches the label forwarding path of BGP next hop, it selects the label forwarding path according to the TPD carried in the route advertisement message.
  • the label forwarding path is selected according to the TPD carried in the routing notification message.
  • Embodiment 6 of the present invention differentiated end-to-end transmission paths for VPN services can be provided for VPN services.
  • FIG. 7 is a schematic structural diagram of a path construction system provided by Embodiment 7 of the present invention
  • FIG. 8 is a schematic flowchart of a path construction method provided by Embodiment 7 of the present invention.
  • the seventh embodiment describes the construction of an end-to-end transmission path by selecting a label forwarding path based on the Color identification on the BGP-LU path.
  • CE Customer Edge Router
  • CE 1-2 are sites of VPN1
  • CE2-1 are sites of VPN2
  • ABR nodes and Between the PE1 node, the ABR node, and the PE2 node is an IGP-enabled network.
  • the PE1 node and the ABR node, and the MP-BGP session (that is, the MP-BGP signaling channel) is established between the ABR node and the PE2 node to release BGP -LU routing, an MP-BGP session is established between the PE1 node and the PE2 node to advertise VPN routes.
  • VPN1 and VPN2 are created on the PE1 node and the PE2 node according to user needs, and then a method for constructing a path for the PE1 node to send service traffic to the PE2 node according to Embodiment 7 of the present invention, as shown in FIG. 8, includes:
  • Step 801 the PE2 node configures LU prefix and TPD (Red and Blue) to form Red FEC and Blue FEC, assign labels to Red FEC and Blue FEC and create ILM forwarding entries;
  • LU prefix and TPD Red and Blue
  • tunnels satisfying the requirements of VPN1 and VPN2 are established respectively, and different colors are used to distinguish different tunnels.
  • the Red tunnel is used to meet the requirements of VPN1 (the dotted line located above in FIG. 7 shows the Red tunnel)
  • the Blue tunnel is used to meet the requirements of VPN2 (the dotted line located below in FIG. 7 shows the Blue tunnel).
  • Red Prefix SID and Blue Prefix SID need to be assigned.
  • PHP Pultimate Hop Popping, penultimate hop pop-up
  • labels are assigned to Red FEC and Blue FEC, and ILM forwarding entries are created.
  • Step 802 the PE2 node announces the LU Prefix route to the ABR node, and at the same time modifies BGP next-hop to the address on PE2;
  • the LU Prefix routing advertisement message carries Red TPD and Blue TPD and the labels assigned to Red FEC and Blue FEC.
  • the LU Prefix routing advertisement message carries the TPD attribute attribute, the attributes carry two TLVs, one TLV carries Color Sub-TLV (Color is Red), and Label Sub-TLV (Red FEC corresponding label), if it is SR, the notification message also carries Label-Index Sub-TLV (Red Prefix SID); the other TLV carries Color Sub-TLV (Color is Blue), Label Sub-TLV (Blue corresponding label of FEC).
  • the PE2 node can also announce the LU1 Prefix route of VPN1 and the LU Prefix route of VPN2 to the ABR node.
  • the Label-Index Sub-TLV (Blue Prefix SID) should also be carried in the LU Prefix routing advertisement message.
  • the LU Prefix routing message can be carried in the MP-BGP Update message, specifically, the TPD attribute can be carried by extending the NLRI field.
  • Step 803 when receiving the LU Prefix route advertised by the PE2 node, the ABR node creates FTN forwarding entries for Red FEC and Blue FEC, and creates ILM forwarding entries after reassigning the labels;
  • the FTN forwarding entry and the ILM forwarding entry are associated with the TE label forwarding path from IGP2 identified by Color to BGP next hop.
  • Step 804 the ABR node continues to announce the LU Prefix route to the PE1 node, and at the same time modifies BGP next-hop to the address on the ABR;
  • the ABR node replaces the Red FEC and Blue FEC labels in the TLV carried in the routing message with the red FEC redistributed by the ABR node, and then forwards the Blue FEC label to the PE1 node.
  • Step 805 when the PE1 node receives the LU Prefix route announced by the ABR node, it creates FTN forwarding entries for Red FEC and Blue FEC;
  • the FTN forwarding entry is associated with the TE label forwarding path from IGP1 identified by Color to BGP next hop.
  • Step 806 the PE2 node advertises the VPN1 and VPN2 routes to the PE1 node respectively;
  • the VPN route advertisement message carries Red TPD and Blue TPD.
  • the message advertising the VPN1 route carries the TPD attribute, the attribute carries a TLV, and the TLV carries the Color Sub-TLV (Color is Red); the message advertising the VPN2 route carries the TPD attribute, and the attribute carries a TLV, TLV Carry Color Sub-TLV (Color is Blue).
  • the VPN1 route and VPN2 route can also be carried in a notification message at the same time for delivery.
  • the VPN route advertisement message can be carried in the MP-BGP Update message, specifically, the TPD attribute can be carried by extending the NLRI field.
  • step 807 after receiving the VPN1 route announced by the PE2 node, the PE1 node iteratively reaches the label forwarding path of BGP next hop according to the TPD (Red) and TPD (Blue) carried in the advertisement message.
  • TPD (Red) and BGP next hop carried in the message form Red FEC iteratively reach the label forwarding path of VPN1 Prefix through Red FEC; TPD (Blue) carried in the message and BGP next hop form Blue FEC, Find the label forwarding path to VPN2 Prefix through Blue FEC.
  • the technical solution provided in the eighth embodiment of the present invention generates end-to-end transmission paths for VPN1 and VPN2 that satisfy their respective requirements.
  • FIG. 9 is a schematic structural diagram of a path construction system provided by Embodiment 8 of the present invention
  • FIG. 10 is a schematic flowchart of a path construction method provided by Embodiment 8 of the present invention.
  • the eighth embodiment describes the selection of an end-to-end transmission path based on the network slice Network on the BGP-LU path.
  • CE Customer Edge Router
  • CE 1-2 are sites of VPN1
  • CE2-1 are sites of VPN2
  • ABR nodes and PE1 nodes, ABR nodes and PE2 nodes are IGP-enabled networks
  • PE1 nodes and ABR nodes, ABR nodes and PE2 nodes establish MP-BGP sessions for advertising LU routes, between PE1 nodes and PE2 nodes Establish an MP-BGP session to advertise VPN routes.
  • VPN1 and VPN2 are created on the PE1 node and the PE2 node according to user needs, then the method for constructing the path for the PE1 node to send service traffic to the PE2 node according to the eighth embodiment of the present invention, as shown in FIG. 10, includes:
  • Step 1001 Configure LU prefix and TPD (Slice1 and Slice2) on the PE2 node to form Slice1 FEC and Slice2 FEC, assign labels to Slice1 FEC and Slice2 FEC, and create ILM forwarding entries;
  • Step 1001 in the IGP1 and IGP2 networks, respectively establish a Network Slice that meets the requirements of VPN1 and VPN2.
  • Slice1 is used to meet the requirements of VPN1 ()
  • Slice2 is used to meet the requirements of VPN2.
  • Slice1 FEC and Slice2 FEC need to be assigned Slice1 Prefix SID and Slice2 Prefix SID respectively.
  • Step 1002 the PE2 node advertises the LU Prefix route to the ABR node, and at the same time modifies BGP next-hop to the address on PE2;
  • the LU Prefix routing advertisement message carries Slice1 TPD and Slice2 TPD and the labels assigned to Slice1 FEC and Slice2 FEC.
  • the LU Prefix routing advertisement message carries the TPD attribute
  • the attribute carries two TLVs
  • one TLV carries the Network, Slice, ID, Sub-TLV (Slice ID is 1), and Label, Sub-TLV (Slice1, FEC corresponding label)
  • Another TLV carries Network, Slice, ID, Sub-TLV (Slice ID is 2), Label, Sub-TLV (Slice2, FEC corresponding label).
  • the PE2 node can also announce the LU1 Prefix route of VPN1 and the LU Prefix route of VPN2 to the ABR node.
  • the LU Prefix routing advertisement message also carries Label-Index Sub-TLV (Slice2 Prefix SID), Label-Index Sub-TLV (Slice1 Prefix SID).
  • the LU Prefix routing message can be carried in the MP-BGP Update message, specifically, the TPD attribute can be carried by extending the NLRI field.
  • Step 1003 when the ABR node receives the LU Prefix route announced by the PE2 node, it creates FTN forwarding entries for Slice1 FEC and Slice2 FEC, and creates an ILM forwarding entry after reassigning the label;
  • the FTN forwarding entry and the ILM forwarding entry are associated with the label forwarding path from the slice identified by the Slice ID to BGP next hop.
  • Step 1004 the ABR node continues to advertise the LU Prefix route to the PE1 node, and at the same time modify BGP next-hop to the address on the ABR;
  • the ABR node replaces the Slice1 FEC, Slice2 FEC label in the TPD TLV carried in the routing message with the Slice1 FEC assigned by the ABR node, and the Slice2 FEC label is forwarded to the PE1 node.
  • Step 1005 when the PE1 node receives the LU Prefix route announced by the ABR node, it creates FTN forwarding entries for Slice1 FEC and Slice2 FEC;
  • the FTN forwarding entry is associated with the label forwarding path from the slice identified by the Slice ID to the BGP next hop.
  • Step 1006 the PE2 node advertises the VPN1 and VPN2 routes to the PE1 node respectively;
  • the VPN route advertisement message carries Slice1 TPD and Slice2 TPD.
  • the message advertising the VPN1 route carries the TPD attribute, the attribute carries a TPDTLV, and the TLV carries the Network Slice ID and Sub-TLV (Slice ID is 1).
  • the message advertising the VPN2 route carries the TPD attribute, which carries a TPD TLV, and the TLV carries the Network Slice ID, Sub-TLV (Slice ID is 2).
  • the VPN1 route and VPN2 route can also be carried in a notification message at the same time for delivery.
  • the VPN route advertisement message can be carried in the MP-BGP Update message, specifically, the TPD attribute can be carried by extending the NLRI field.
  • Step 1007 After receiving the VPN1 route announced by the PE2 node, the PE1 node iterates to the label forwarding path of the BGP next hop according to the Slice1 TPD and Slice2 TPD carried in the advertisement message.
  • Slice1FEC can be formed by TPD (Slice1) and BGP nexthop carried in the message, and the label forwarding path to VPN1 Prefix can be found through Slice1FEC;
  • Slice2 FEC can be formed by TPD (Slice2) and BGP carried in the message.
  • Slice2 FEC finds the label forwarding path to VPN2 Prefix.
  • the technical solution provided in the eighth embodiment of the present invention generates end-to-end transmission paths for VPN1 and VPN2 that satisfy their respective requirements.
  • FIG. 11 is a schematic structural diagram of a path construction system provided by Embodiment 9 of the present invention
  • FIG. 12 is a schematic flowchart of a path construction method provided by Embodiment 9 of the present invention.
  • the ninth embodiment describes selecting an FA (Flexible Algorithm, Flexible) on the BGP-LU path to construct an end-to-end transmission path.
  • CE Customer Edge Router
  • CE 1-2 are sites of VPN1
  • CE2-1 are sites of VPN2
  • ABR nodes and PE1 node, between the ABR node and the PE2 node is an IGP-enabled network
  • an MP-BGP session is established between the PE1 node and the ABR node, the ABR node and the PE2 node, and is used to advertise LU routes, between the PE1 node and the PE2 node Establish an MP-BGP session to advertise VPN routes.
  • VPN1 and VPN2 are created on the PE1 node and the PE2 node according to user needs, and then the method for constructing the path for the PE1 node to send service traffic to the PE2 node according to Embodiment 9 of the present invention, as shown in FIG. 12, includes:
  • Step 1201 Configure the LU prefix and TPD (FA128 and FA129) on the PE2 node to form FA128, FEC and FA129 FEC, assign labels to FA128 and FEC, and create ILM forwarding entries
  • FAs satisfying the requirements of VPN1 and VPN2 are established respectively.
  • FA128 is used to meet the requirements of VPN1
  • FA129 is used to meet the requirements of VPN2.
  • the PE2 node in the case of SR, the PE2 node also allocates FA1 Prefix SID and FA2 Prefix SID.
  • Step 1202 the PE2 node advertises the LU Prefix route to the ABR node, and at the same time modifies BGP next-hop to the address on PE2;
  • the LU Prefix routing advertisement message carries FA128 TPD and FA129 TPD and the labels assigned to FA128 FEC and FA129 FEC.
  • the LU Prefix routing advertisement message carries the TPD attribute, the attribute carries two TPD TLVs, one TLV carries the IGP Prefix Algorithm Sub-TLV (FA is 128), and the Label Sub-TLV (FA128 corresponds to the label of FEC) , Another TLV carries IGP Prefix Algorithm Sub-TLV (FA is 129), Label Sub-TLV (Slice2 FEC corresponding label),
  • the PE2 node can also announce the LU1 Prefix route of VPN1 and the LU Prefix route of VPN2 to the ABR node.
  • the LU-Prefix routing advertisement message also carries Label-Index Sub-TLV (FA129 Prefix SID), Label-Index Sub-TLV (FA128 Prefix SID).
  • the LU Prefix routing message can be carried in the MP-BGP Update message, specifically, the TPD attribute can be carried by extending the NLRI field.
  • Step 1203 when the ABR node receives the LU Prefix route advertised by the PE2 node, it creates FTN forwarding entries for FA128 and FEC and FA129, and creates ILM forwarding entries after reallocating labels;
  • the FTN forwarding entry and the ILM forwarding entry are associated with the label forwarding path identified by the FA to reach BGP next hop.
  • Step 1204 the ABR node continues to announce the LU Prefix route to the PE1 node, and at the same time modify BGP next-hop to the address on the ABR;
  • the ABR node replaces the labels of FA128, FEC, and FA129 in the TPD TLV carried in the routing message with the labels assigned by the ABR node to FA128, FEC, and FA129.
  • Step 1205 when the PE1 node receives the LU Prefix route notified by the ABR node, it creates FTN forwarding entries for FA128, FEC, and FA129;
  • the FTN forwarding entry is associated with the label forwarding path from the FA identifier to BGP next hop.
  • Step 1206 the PE2 node advertises the VPN1 and VPN2 routes to the PE1 node respectively;
  • the VPN routing advertisement message carries FA128 TPD and FA129 TPD.
  • the message that advertises the VPN1 route carries the TPD attribute, which carries a TPD TLV, and the TLV carries the IGP Prefix, Algorithm, Sub-TLV (FA is 128); the message that advertises the VPN2 route carries the TPD attribute, and the attribute carries a TPD TLV, which carries IGP Prefix Algorithm Sub-TLV (FA is 129).
  • the VPN1 route and VPN2 route can also be carried in a notification message at the same time for delivery.
  • the VPN route advertisement message can be carried in the MP-BGP Update message, specifically, the TPD attribute can be carried by extending the NLRI field.
  • Step 1207 after receiving the VPN1 route advertised by the PE2 node, the PE1 node iteratively reaches the label forwarding path of BGP next hop according to the FA128 TPD and FA129 TPD carried in the advertisement message.
  • Embodiment 9 of the present invention generates end-to-end transmission paths for VPN1 and VPN2 that satisfy their respective requirements.
  • FIG. 13 is a schematic structural diagram of a system for path construction provided by Embodiment 10 of the present invention
  • FIG. 14 is a schematic flowchart of a method for path construction provided by Embodiment 10 of the present invention.
  • This embodiment 10 describes the construction of an end-to-end transmission path by selecting the TE label forwarding path of the Color label in the Network Slice on the BGP-LU path.
  • CE Customer Edge Router
  • CE 1-2 are sites of VPN1
  • CE2-1 are sites of VPN2
  • ABR nodes and PE1 node, ABR node and PE2 node are IGP-enabled networks
  • PE1 node and ABR node, ABR node and PE2 node establish a BGP session, used to advertise LU routes
  • PE1 node and PE2 node establish BGP Sessions are used to advertise VPN routes.
  • VPN1 and VPN2 are created on the PE1 node and the PE2 node according to user needs, and then a method for constructing a path for the PE1 node to send service traffic to the PE2 node according to Embodiment 9 of the present invention, as shown in FIG. 14, includes:
  • Step 1401 Configure LU prefix and TPD (Slice1+Red and Slice1+Blue) on the PE2 node to form Slice1-Red FEC and Slice1-Blue FEC, assign labels to Slice1-Red FEC and Slice1-Blue FEC, and create ILM forwarding entries ;
  • a slice that meets the requirements of VPN1 and VPN2 and a TE label forwarding path within the slice are established, and the red label forwarding path in Slice1 is used to meet the requirements of VPN1 (located in FIG. 13
  • the dashed line above shows the Red label forwarding path
  • the Blue label forwarding path in Slice1 is used to meet the requirements of VPN2 (the dashed line below in FIG. 13 shows the Blue label forwarding path).
  • the PE2 node also allocates Slice1-Red Prefix SID and Slice1-Blue Prefix SID.
  • Step 1402 the PE2 node advertises the LU Prefix route to the ABR node, and at the same time modifies BGP next-hop to the address on PE2;
  • LU Prefix routing advertisement message carries TPD (Slice1+Red) and TPD (Slice1+Blue) and labels assigned to Slice1-Red FEC and Slice1-Blue FEC.
  • the notification message carries the TPD attribute
  • the attribute carries two TPD TLVs
  • one TLV carries the Network Slice ID
  • Sub-TLV (ID is 1)
  • Color Sub-TLV (Color is Red)
  • Label Sub-TLV ( Slice1-Red (label corresponding to FEC)
  • another TLV carries Network Sub-TLV (ID is 1), Color Sub-TLV (Color is Blue)
  • Label Sub-TLV label corresponding to Slice1-Blue FEC.
  • the PE2 node can also announce the LU1 Prefix route of VPN1 and the LU Prefix route of VPN2 to the ABR node.
  • the notification message also needs to carry Label-Index Sub-TLV (Slice1-Red Prefix SID), Label-Index Sub-TLV (Slice1-Blue Prefix SID).
  • the LU Prefix routing message can be carried in the MP-BGP Update message, specifically, the TPD attribute can be carried by extending the NLRI field.
  • Step 1403 when the ABR node receives the LU Prefix route announced by the PE2 node, it creates FTN forwarding entries for Slice1-Red FEC and Slice1-Blue FEC, and creates ILM forwarding entries after reassigning labels;
  • the FTN forwarding entry and the ILM forwarding entry are associated with the TE label forwarding path identified by Slice+color and reaching the BGP next hop.
  • step 1404 the ABR node continues to announce the LU Prefix route to the PE1 node, and at the same time modify BGP next-hop to the address on the ABR;
  • the ABR node replaces the Slice1-Red FEC, Slice1-Blue FEC label in the TPD TLV carried in the routing message with the ABR node Slice1-Red FEC, Slice1-Blue FEC redistributed label and forwards it to the PE1 node.
  • Step 1405 when the PE1 node receives the LU Prefix route announced by the ABR node, it creates FTN forwarding entries for Slice1-Red FEC and Slice1-Blue FEC;
  • the FTN forwarding entry is associated with the TE label forwarding path identified by Slice+color and reaching the BGP next hop.
  • Step 1406 the PE2 node advertises the VPN1 and VPN2 routes to the PE1 node
  • the VPN route advertisement message carries TPD (Slice1+Red) and TPD (Slice1+Blue).
  • the message that advertises the VPN1 route carries the TPD attribute, the attribute carries a TPD TLV, the TLV carries the Network Slice ID, Sub-TLV (ID is 1), Color Sub-TLV (Color is Red); the VPN2 route is advertised
  • the message carries the TPD attribute, and the attribute carries a TPD TLV, the TLV carries the Network Slice ID, Sub-TLV (ID is 1), and Color Sub-TLV (Color is Blue).
  • the VPN1 route and VPN2 route can also be carried in a notification message at the same time for delivery.
  • the VPN route advertisement message can be carried in the MP-BGP Update message, specifically, the TPD attribute can be carried by extending the NLRI field.
  • Step 1407 after receiving the VPN1 route announced by the PE2 node, the PE1 node iteratively reaches the label forwarding path of BGP next hop according to the TPD (Slice1+Red) and TPD (Slice1+Blue) carried in the advertisement message.
  • Slice1-Red FEC can be formed by TPD (Slice1-Red) and BGP carried in the message, and the label forwarding path to VPN1 Prefix can be found through Slice1-Red FEC; TPD (Slice1-Blue) carried in the message can be found ) And BGP nexthop form Slice1-Blue FEC, find the label forwarding path to VPN2 Prefix through Slice1-Blue FEC.
  • the technical solution provided by the tenth embodiment of the present invention generates end-to-end transmission paths for VPN1 and VPN2 that satisfy their respective requirements.
  • FIG. 15 is a schematic structural diagram of a system for constructing a transmission path according to Embodiment 11 of the present invention. As shown in FIG. 15, the system includes:
  • the second PE node is used to advertise the first VPN route to the first PE node through the MP-BGP signaling channel;
  • a first PE node configured to determine a label forwarding path to the first VPN Prefix according to the received first transmission path descriptor TPD carried in the first VPN route;
  • the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop.
  • the system also includes: area border router ABR;
  • the second PE node is also used to advertise the first BGP-LU route to the first PE node through the area border router ABR through the MP-BGP signaling channel;
  • the first PE node is further configured to create a first FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU route, and the first FTN forwarding entry is associated with the first FTN forwarding entry
  • the first VPN packet identified by the TPD reaches the label forwarding path of BGP next hop;
  • the first BGP-LU route carries a label corresponding to the first TPD and the first FEC
  • the first FEC is configured by the first TPD and the second PE node for the first BGP-LU route
  • the first prefix composition
  • the second PE node is specifically used to allocate a first label to the first FEC, create a first ILM forwarding entry; send a first BGP-LU route advertisement message to the ABR and convert BGP next-hop Modifying to the address of the second PE node, the first BGP-LU Prefix route advertisement message carries the first TPD and the first label;
  • the ABR is specifically used to create a second FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU route advertisement message, and the second FTN forwarding entry is associated with the first TPD
  • the identified first VPN packet reaches the label forwarding path of BGP next hop; redistribute the second label for the first FEC, and create a second ILM forwarding entry according to the second label; route the first BGP-LU
  • the first label in the announcement message is replaced with the second label and BGP next-hop is modified to the address of the ABR and forwarded to the first PE node.
  • the second node is also used to advertise the second VPN route to the first PE node through the MP-BGP signaling channel;
  • the first PE node is also used to determine the label forwarding path to the second VPN Prefix according to the received second TPD carried in the second VPN route;
  • the second TPD is used to identify a label forwarding path where the second VPN packet reaches BGP next hop.
  • the second node is also used to pass the area border router ABR through the MP-BGP signaling channel before the second PE node advertises the second VPN route to the first PE node through the MP-BGP signaling channel.
  • the first PE node advertises the second BGP-LU route;
  • the first node is further configured to create a third FTN forwarding entry corresponding to the second FEC according to the received second BGP-LU route, and the third FTN forwarding entry is associated with the second TPD
  • the identified second VPN packet reaches the label forwarding path of BGP next hop;
  • the second BGP-LU route carries labels corresponding to the second TPD and the second FEC
  • the second FEC is configured by the second TPD and the second PE node for the second BGP-LU route Composed of the second prefix.
  • the second node is specifically used to allocate a third label to the second FEC, create a third ILM forwarding entry; send a second BGP-LU route advertisement message to the ABR and modify BGP next-hop Is the address of the second PE node, the second BGP-LU Prefix route advertisement message carries the second TPD and the third label;
  • the ABR is specifically used to create a fourth FTN forwarding entry corresponding to the second FEC according to the received second BGP-LU route advertisement message, and the fourth FTN forwarding entry is associated with the second TPD
  • the identified second VPN packet reaches the label forwarding path of BGP next hop; redistribute the fourth label for the second FEC, and create a fourth ILM forwarding entry according to the fourth label; route the second BGP-LU
  • the third label in the announcement message is replaced with the fourth label and BGP next-hop is modified to the address of the ABR and forwarded to the first PE node.
  • the TPD format is a TLV format, including TPD Type and Sub-TLV.
  • the TPD type is used to identify which Sub-TLVs the TPD is composed of.
  • the Sub-TLV includes one or more Sub-TLVs that constitute the TPD TLV.
  • the TPD Type includes:
  • Type 1 means TPD is composed of Color Sub-TLV and identifies a label forwarding path to BGP next hop identified by Color;
  • Type 2 indicates that the TPD is composed of IGP Prefix Algorithm Sub-TLV and identifies a label forwarding path to BGP next hop based on the specified Algorithm;
  • Type 3 means TPD is composed of Network Slice ID and Sub-TLV, and identifies the label forwarding path to BGP next hop within a network slice;
  • Type 4 means TPD is composed of Network Slice ID and Sub-TLV and Color Sub-TLV, and identifies a label forwarding path to BGP next hop identified by Color in the specified network slice;
  • Type 5 means TPD is composed of Network Slice ID, Sub-TLV and IGP Prefix Algorithm Sub-TLV, and identifies a label forwarding path to BGP next hop based on the specified algorithm in the specified network slice;
  • Type 6 means that it consists of Network Slice ID, Sub-TLV, IGP Prefix Algorithm, Sub-TLV, and Color Sub-TLV, and identifies a TE label forwarding path to BGP next hop based on the specified Algorithm in the specified network slice and identified by Color .
  • FIG. 16 is a schematic structural diagram of a second PE node according to Embodiment 11 of the present invention. As shown in FIG. 16, the second PE node includes:
  • the publishing unit publishes the first VPN route to the first PE node through the MP-BGP signaling channel, so that the first PE node determines to reach the first according to the received first transmission path descriptor TPD carried in the first VPN route VPN forwarding label forwarding path;
  • the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop.
  • the second PE node also includes:
  • Definition unit for pre-defining TPD corresponding to multiple underlying transmission paths supporting VPN services
  • a creating and determining unit configured to create a first VPN with the first PE node, and determine the first TPD according to the underlying transmission path that meets the requirements of the first VPN service;
  • the underlying transmission path includes one of the following: a tunnel, a network slice, an IGP Prefix Algorithm, a specified tunnel in the network slice, a specified Algorithm in the network slice, and a specified tunnel in the network slice based on the specified Algorithm.
  • the publishing unit is further used to publish the first VPN node to the first PE node through the area border router ABR through the MP-BGP signaling channel before publishing the first VPN route to the first PE node through the MP-BGP signaling channel BGP-LU routing, so that the first PE node creates a first FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU routing, and the first FTN forwarding entry is associated with the The first VPN packet identified by the first TPD reaches the label forwarding path of BGP next hop;
  • the first BGP-LU route carries a label corresponding to the first TPD and the first FEC
  • the first FEC is configured by the first TPD and the second PE node for the first BGP-LU route
  • the first prefix composition
  • the publishing unit is specifically configured to allocate a first label to the first FEC, create a first ILM forwarding entry; send a first BGP-LU route advertisement message to the ABR and modify BGP next-hop to The address of the second PE node, the first BGP-LU Prefix route advertisement message carries the first TPD and the first label.
  • the publishing unit is also used to publish the second VPN route to the first PE node through the MP-BGP signaling channel, so that the first PE node determines according to the received second TPD carried in the second VPN route The label forwarding path to the second VPNPrefix;
  • the second TPD is used to identify a label forwarding path where the second VPN packet reaches BGP next hop.
  • the creating and determining unit is also used to create a second VPN with the first PE node, and determine the second TPD according to the underlying transmission path that meets the second VPN service requirements.
  • the publishing unit is further used to publish the second VPN route to the first PE node through the MP-BGP signaling channel, the method further includes:
  • the second PE node advertises the second BGP-LU route to the first PE node through the area border router ABR through the MP-BGP signaling channel, so that the first PE node creates the first BGP-LU route according to the received second BGP-LU route.
  • a third FTN forwarding entry corresponding to the second FEC, and the third FTN forwarding entry is associated with the label forwarding path of the second VPN packet identified by the second TPD reaching BGP next hop;
  • the second BGP-LU route carries labels corresponding to the second TPD and the second FEC
  • the second FEC is configured by the second TPD and the second PE node for the second BGP-LU route Composed of the second prefix.
  • the publishing unit is specifically configured to allocate a third label to the second FEC and create a third ILM forwarding entry; send a second BGP-LU route advertisement message to the ABR and modify BGP next-hop to The address of the second PE node, the second BGP-LU Prefix route advertisement message carries the second TPD and the third label.
  • the TPD format is a TLV format, including TPD Type and Sub-TLV.
  • the TPD type is used to identify which Sub-TLVs the TPD is composed of.
  • the Sub-TLV includes one or more Sub-TLVs that constitute the TPD TLV.
  • the TPDType includes:
  • Type 1 means TPD is composed of Color Sub-TLV and identifies a label forwarding path to BGP next hop identified by Color;
  • Type 2 indicates that the TPD is composed of IGP Prefix Algorithm Sub-TLV and identifies a label forwarding path to BGP next hop based on the specified Algorithm;
  • Type 3 means TPD is composed of Network Slice ID and Sub-TLV, and identifies the label forwarding path to BGP next hop within a network slice;
  • Type 4 means TPD is composed of Network Slice ID and Sub-TLV and Color Sub-TLV, and identifies a label forwarding path to BGP next hop identified by Color in the specified network slice;
  • Type 5 means TPD is composed of Network Slice ID, Sub-TLV and IGP Prefix Algorithm Sub-TLV, and identifies a label forwarding path to BGP next hop based on the specified algorithm in the specified network slice;
  • Type 6 means that it consists of Network Slice ID, Sub-TLV, IGP Prefix Algorithm, Sub-TLV, and Color Sub-TLV, and identifies a TE label forwarding path to BGP next hop based on the specified Algorithm in the specified network slice and identified by Color .
  • FIG. 17 is a schematic structural diagram of a first PE node according to Embodiment 11 of the present invention. As shown in FIG. 17, the first PE node includes:
  • the receiving unit receives the first VPN route advertised by the second PE node through the MP-BGP signaling channel;
  • the first VPN route carries a first transmission path descriptor TPD, and the first TPD is used to identify a label forwarding path where the first VPN packet reaches BGP next hop;
  • the determining unit determines the label forwarding path to the first VPN Prefix according to the received first transmission path descriptor TPD carried in the first VPN route.
  • the receiving unit is also used to receive, through the MP-BGP signaling channel, the second PE node advertises the second PE node via the area border router ABR before receiving the first VPN route advertised by the second PE node.
  • the first BGP-LU route carries a label corresponding to the first TPD and the first FEC, and the first FEC is configured by the first TPD and the second PE node for the first BGP-LU route Composed of the first prefix of the;
  • the first PE node further includes a creation unit
  • the creating unit is configured to create a first FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU route, and the first FPD forwarding entry is associated with the first TPD
  • the identified first VPN packet reaches the label forwarding path of BGP next hop.
  • the receiving unit is also used to receive the second VPN route published by the second PE node through the MP-BGP signaling channel; wherein, the second VPN route carries a second TPD, and the second TPD is used for identification The second VPN packet reaches the label forwarding path of BGP next hop;
  • the determining unit is further configured to determine the label forwarding path to the second VPN Prefix according to the received second TPD carried in the second VPN route.
  • the receiving unit is also used to receive the second PE node through the area border router ABR through the MP-BGP signaling channel before receiving the second VPN route published by the second PE node through the MP-BGP signaling channel The second BGP-LU route;
  • the second BGP-LU route carries labels corresponding to the second TPD and the second FEC, and the second FEC is configured by the second TPD and the second PE node for the second BGP-LU route Composed of the second prefix;
  • the creating unit is further configured to create a third FTN forwarding entry corresponding to the second FEC according to the received second BGP-LU route, and the third FTN forwarding entry is associated with the second The second VPN packet identified by the TPD reaches the label forwarding path of BGP next hop.
  • the determining unit is specifically configured to obtain the first FEC according to the first TPD, and iteratively reach the label forwarding path of the first VPN Prefix according to the first FEC;
  • a second FEC is obtained according to the second TPD, and a label forwarding path to the second VPN Prefix is iteratively reached according to the second FEC.
  • FIG. 18 is a schematic structural diagram of an area border router ABR according to Embodiment 11 of the present invention. As shown in FIG. 18, the ABR includes:
  • the forwarding unit is used for the area border router ABR to forward the first BGP-LU route advertised by the second PE node to the first PE node through the MP-BGP signaling channel, so that the first PE node according to the received A BGP-LU route creates a first FTN forwarding entry corresponding to the first FEC, and the first FTN forwarding entry is associated with the label forwarding path of the first VPN packet identified by the first TPD reaching BGP next hop;
  • the first BGP-LU route carries a label corresponding to the first TPD and the first FEC
  • the first FEC is defined by the first TPD and the second PE node as the first BGP-LU
  • the first prefix of the route configuration is composed.
  • the forwarding unit is specifically configured to receive a first BGP-LU route advertisement message sent by the second PE node, and the first BGP-LU Prefix route advertisement message carries the first TPD and the second The first label assigned by the PE to the first FEC; creating a second FTN forwarding entry corresponding to the first FEC according to the received first BGP-LU route advertisement message, in the second FTN forwarding entry Associate the first VPN packet identified by the first TPD with a label forwarding path that reaches BGP next hop; redistribute the second label for the first FEC, and create a second ILM forwarding entry based on the second label; The first label in the first BGP-LU route advertisement message is replaced with the second label, and BGP next-hop is modified to the address of the ABR, and then forwarded to the first PE node.
  • the forwarding unit is further configured to forward the second BGP-LU route advertised by the second PE node to the first PE node through the MP-BGP signaling channel, so that the first PE node according to the received
  • the second BGP-LU route creates a third FTN forwarding entry corresponding to the second FEC, and the third FTN forwarding entry is associated with the label forwarding path of the second VPN packet identified by the second TPD reaching BGP next hop ;
  • the second BGP-LU route carries labels corresponding to the second TPD and the second FEC
  • the second FEC is configured by the second TPD and the second PE node for the second BGP-LU route Composed of the second prefix.
  • the forwarding unit is specifically configured to receive a second BGP-LU route advertisement message sent by the second PE node, and the second BGP-LU Prefix route advertisement message carries the second TPD and the second The third label allocated by the PE to the second FEC; a fourth FTN forwarding entry corresponding to the second FEC is created according to the received second BGP-LU route advertisement message, and the association of the fourth FTN forwarding entry is determined by the The second VPN packet identified by the second TPD reaches the label forwarding path of BGP next hop; redistribute the fourth label for the second FEC, and create a fourth ILM forwarding entry based on the fourth label; convert the second The third label in the BGP-LU route advertisement message is replaced with the fourth label, and BGP next-hop is modified to the address of the ABR, and then forwarded to the first PE node.
  • An embodiment of the present invention also provides a second PE node, including a memory, a processor, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor A method for constructing a transmission path according to any one of the above items executed by the second PE node.
  • An embodiment of the present invention also provides a first PE node, including a memory, a processor, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor A method for constructing a transmission path according to any of the above items executed by the first PE node.
  • An embodiment of the present invention also provides an area border router ABR, including a memory, a processor, and a computer program stored on the memory and executable on the processor, when the computer program is executed by the processor A method of constructing a transmission path that implements any of the above described by ABR.
  • ABR area border router
  • An embodiment of the present invention also provides a computer-readable storage medium that stores an information processing program on the computer-readable storage medium, and the information processing program is executed by a processor to implement any of the above-mentioned construction of a transmission path Method steps.
  • the embodiments of the present invention provide a path construction method and related equipment, wherein one of the methods includes: the second PE node advertises the first VPN route to the first PE node through the MP-BGP signaling channel, The first PE node determines the label forwarding path to the first VPN Prefix according to the received first transmission path descriptor TPD carried in the first VPN route; wherein, the first TPD is used to identify the first VPN report The text reaches the label forwarding path of BGP next hop. In this way, the underlying transmission path that meets the service requirements can be selected for the VPN service.
  • computer storage media includes both volatile and nonvolatile implemented in any method or technology for storing information such as computer readable instructions, data structures, program modules, or other data Sex, removable and non-removable media.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium for storing desired information and accessible by a computer.
  • the communication medium generally contains computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种路径构建的方法及相关设备,其中方法之一包括:第二PE节点通过MP-BGP信令通道向第一PE节点发布第一VPN路由,以便第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。如此,可以为VPN业务选择满足业务要求的底层传输路径。

Description

一种路径构建的方法及相关设备
相关申请的交叉引用
本申请基于申请号为201811426164.5、申请日为2018年11月27日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明实施例涉及但不限于BGP/MPLS VPN技术,更具体的涉及一种路径构建的方法及相关设备。
背景技术
BGP-LU(BGP Labeled unicast)机制提供了一种为BGP(Border Gateway Protocol,边界网关协议)Prefix建立MPLS LSP(Multiprotocol Label Switching,多协议标签交换,Label Switch Path,标签交换路径)的机制。该机制在MPLS VPN(Virtual Private Network,虚拟专用网络)业务部署中,通过BGP通告路由和标签的绑定,能够建立端到端的跨越AS(autonomous system,自治系统)和IGP(Interior Gateway Protocol内部网关协仪)域的MPLS LSP。
但是,在实际应用中,只有IGP路由表中的路由/前缀Prefix能够产生标签绑定。因此BGP-LU机制为指定两个PE(Provider Edge)之间的不同VPN业务只能提供相同的传输路径和资源,如此当VPN用户对业务的传输质量有差别化要求的时候,比如有的VPN业务要求在低时延传输,有的要求低时延抖动传输,当前的BGP-LU机制无法支持不同VPN业务对灵活的差异化的传输路径的要求。
发明内容
有鉴于此,本发明实施例提供了一种路径构建的方法,包括:第二PE节点通过MP-BGP信令通道向第一PE节点发布第一VPN路由,以便第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;
其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。
本发明实施例还提供了一种路径构建的方法,包括:第一PE节点通过MP-BGP信令通道接收第二PE节点发布的第一VPN路由;
其中,所述第一VPN路由携带第一传输路径描述符TPD,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径;
第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径。
本发明实施例还提供了一种路径构建的方法,包括:区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第一BGP-LU路由转发给第一PE节点,以便所述根据接收到的所述第一BGP-LU路由创建所述第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一前缀prefix组成。
本发明实施例还提供了一种第二PE节点,包括:
发布单元,通过MP-BGP信令通道向第一PE节点发布第一VPN路由,以便第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;
其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。
本发明实施例还提供了一种第一PE节点,包括:
接收单元,通过MP-BGP信令通道接收第二PE节点发布的第一VPN路由;
其中,所述第一VPN路由携带第一传输路径描述符TPD,所述第一TPD用于标识第一VPN报文 达到BGP next hop的标签转发路径;
确定单元,根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径。
本发明实施例还提供了一种区域边界路由器ABR,包括:
转发单元,用于区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第一BGP-LU路由转发给第一PE节点,以便所述第一PE节点根据接收到的所述第一BGP-LU路由创建第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
其中,所述第一BGP-LU路由携带所述第一TPD和所述第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一前缀prefix组成。
本发明实施例还提供了一种构建传输路径的系统,其特征在于,包括:
第二PE节点,用于通过MP-BGP信令通道向第一PE节点发布第一VPN路由;
第一PE节点,用于根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;
其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。
本发明实施例还提供了一种第二PE节点,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第二PE节点执行的构建传输路径的方法。
本发明实施例还提供了一种第一PE节点,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述第一PE节点执行的构建传输路径的方法。
本发明实施例还提供了一种区域边界路由器ABR,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述ABR执行的构建传输路径的方法。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现上述任一项所述构建传输路径的方法的步骤。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明实施例一提供的路径构建的方法的流程示意图;
图2为本发明实施例三提供的路径构建的方法的流程示意图;
图3为本发明实施例三提供的路径构建的方法的流程示意图;
图4.1为本发明实施例四中TPD TLV的格式示意图;
图4.2为本发明实施例四中Color Sub-TLV的格式示意图;
图4.3为本发明实施例四中IGP Prefix Algorithm Sub-TLV的格式示意图;
图4.4为本发明实施例四中Network Slice ID Sub-TLV的格式示意图;
图4.5为本发明实施例四中Lable Sub-TLV的格式示意图;
图4.6为本发明实施例四中Label-Index Sub-TLV的格式示意图;
图5为本发明实施例五提供的路径构建的方法的流程示意图;
图6为本发明实施例六提供的路径构建的方法的流程示意图;
图7为本发明实施例七提供的路径构建的系统的结构示意图;
图8为本发明实施例七提供的路径构建的方法的流程示意图;
图9为本发明实施例八提供的路径构建的系统的结构示意图;
图10为本发明实施例八提供的路径构建的方法的流程示意图;
图11为本发明实施例九提供的路径构建的系统的结构示意图;
图12为本发明实施例九提供的路径构建的方法的流程示意图;
图13为本发明实施例十提供的路径构建的系统的结构示意图;
图14为本发明实施例十提供的路径构建的方法的流程示意图;
图15为本发明实施例十一提供的构建传输路径的系统的结构示意图;
图16为本发明实施例十一提供的第二PE节点的结构示意图;
图17为本发明实施例十一提供的第一PE节点的结构示意图;
图18为本发明实施例十一提供的区域边界路由器ABR的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
鉴于BGP-LU机制为指定两个PE(Provider Edge)之间的不同VPN业务只能提供相同的传输路径和资源,如此当VPN用户对业务的传输质量有差别化要求的时候,比如有的VPN业务要求在低时延传输,有的要求低时延抖动传输,当前的BGP-LU机制无法支持不同VPN业务对灵活的差异化的传输路径的要求。
因此,本发明实施例提供了一种新的传输路径描述符TPD(Transmission Path descriptor),在VPN路由发布时携带VPN业务对应的TPD,能够为VPN业务选择满足业务要求的传输路径;更进一步地,在BGP-LU路由发布时携带VPN业务对应的TPD,能够为指定两个PE之间的VPN业务提供灵活的差异化的BGP-LU传输路径。
实施例一
图1为本发明实施例一提供的路径构建的方法的流程示意图。如图1所示,该方法包括:
步骤101,第二PE节点通过MP-BGP信令通道向第一PE节点发布第一VPN路由,以便第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;
其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。
其中,在第二PE节点通过MP-BGP信令通道向第一PE节点发布第一VPN路由之前,该方法还包括:
预先定义多个支持VPN业务的底层传输路径对应的TPD;
所述第二PE节点与所述第一PE节点创建第一VPN,并根据满足所述第一VPN业务要求的底层传输路径确定第一TPD;
所述底层传输路径包括以下之一:隧道、网络切片、IGP Prefix Algorithm、网络切片内的指定隧道、网络切片内的指定Algorithm、网络切片内基于指定Algorithm的指定隧道。
其中,在第二PE节点通过MP-BGP信令通道向第一PE节点发布第一VPN路由之前,该方法还包括:
第二PE节点通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第一BGP-LU路由,以便所述第一PE节点根据接收到的所述第一BGP-LU路由创建第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述 第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一prefix组成。
其中,第二PE节点通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第一BGP-LU路由,包括:
所述第二PE节点为所述第一FEC分配第一标签,创建第一ILM转发表项;
所述第二PE节点向所述ABR发送第一BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第一BGP-LU Prefix路由通告消息携带所述第一TPD和所述第一标签;
所述ABR根据接收的所述第一BGP-LU路由通告消息创建所述第一FEC对应的第二FTN转发表项,所述第二FTN转发表项关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
所述ABR为第一FEC重新分配第二标签,并根据所述第二标签创建第二ILM转发表项;
所述ABR将所述第一BGP-LU路由通告消息中的第一标签替换为所述第二标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
其中,该方法还包括:
第二PE节点通过MP-BGP信令通道向第一PE节点发布第二VPN路由,以便第一PE节点根据接收到的所述第二VPN路由中携带的第二TPD确定到达第二VPN Prefix的标签转发路径;
其中,所述第二TPD用于标识第二VPN报文达到BGP next hop的标签转发路径。
其中,在第二PE节点通过MP-BGP信令通道向第一PE节点发布第二VPN路由之前,该方法还包括:
所述第二PE节点与所述第一PE节点创建第二VPN,并根据满足所述第二VPN业务要求的底层传输路径确定第二TPD。
其中,在第二PE节点通过MP-BGP信令通道向第一PE节点发布第二VPN路由之前,该方法还包括:
第二PE节点通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第二BGP-LU路由,以便所述第一PE节点根据接收到的所述第二BGP-LU路由创建第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成。
其中,所述第二PE节点通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第二BGP-LU路由,包括:
所述第二PE节点为所述第二FEC分配第三标签,创建第三ILM转发表项;
所述第二PE节点向所述ABR发送第二BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第二BGP-LU Prefix路由通告消息携带所述第二TPD和所述第三标签;
所述ABR根据接收的所述第二BGP-LU路由通告消息创建所述第二FEC对应的第四FTN转发表项,所述第四FTN转发表项关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
所述ABR为第二FEC重新分配第四标签,并根据所述第四标签创建第四ILM转发表项;
所述ABR将所述第二BGP-LU路由通告消息中的第三标签替换为所述第四标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
其中,TPD的格式为TLV格式,包括TPD Type和Sub-TLV,所述TPD type用来标识TPD由哪些Sub-TLV组成,所述Sub-TLV包括组成所述TPD的一种或多种Sub-TLV。
其中,所述TPD Type包括:
type为1,表示TPD由Color Sub-TLV组成,标识一个由Color标识的到达BGP next hop的标签转发路径;
type为2,表示TPD由IGP Prefix Algorithm Sub-TLV组成,标识一个基于指定Algorithm的到达 BGP next hop的标签转发路径;
type为3,表示TPD由Network Slice ID Sub-TLV组成,标识一个网络切片内的到达BGP next hop的标签转发路径;
type为4,表示TPD由Network Slice ID Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的由Color标识的到达BGP next hop的标签转发路径;
type为5,表示TPD由Network Slice ID Sub-TLV和IGP Prefix Algorithm Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的到达BGP next hop的标签转发路径;
type为6,表示由Network Slice ID Sub-TLV,IGP Prefix Algorithm Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的由Color标识的到达BGP next hop的TE标签转发路径。
实施例二
图2为本发明实施例二提供的路径构建的方法的流程示意图。如图2所示,该方法包括:
步骤201,第一PE节点通过MP-BGP信令通道接收第二PE节点发布的第一VPN路由;
其中,所述第一VPN路由携带第一传输路径描述符TPD,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径;
步骤202,第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径。
其中,在第一PE节点通过MP-BGP信令通道接收第二PE节点发布的第一VPN路由之前,该方法还包括:
第一PE节点通过MP-BGP信令通道接收第二PE节点经过区域边界路由器ABR发布的第一BGP-LU路由;
其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一前缀prefix组成
所述第一PE节点根据接收到的所述第一BGP-LU路由创建所述第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径。
其中,所述第一PE节点通过MP-BGP信令通道接收第二PE节点经过区域边界路由器ABR发布的第一BGP-LU路由,包括:
所述第二PE节点为所述第一FEC分配第一标签,创建第一ILM转发表项;
所述第二PE节点向所述ABR发送第一BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第一BGP-LU Prefix路由通告消息携带所述第一TPD和所述第一标签;
所述ABR根据接收的所述第一BGP-LU路由通告消息创建所述第一FEC对应的第二FTN转发表项,所述第二FTN转发表项关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
所述ABR为第一FEC重新分配第二标签,并根据所述第二标签创建第二ILM转发表项;
所述ABR将所述第一BGP-LU路由通告消息中的第一标签替换为所述第二标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
其中,该方法还包括:
第一PE节点通过MP-BGP信令通道接收第二PE节点发布的第二VPN路由;其中,所述第二VPN路由携带第二TPD,所述第二TPD用于标识第二VPN报文到达BGP next hop的标签转发路径
第一PE节点根据接收到的所述第二VPN路由中携带的第二TPD确定到达第二VPN Prefix的标签转发路径。
其中,在第一PE节点通过MP-BGP信令通道接收第二PE节点发布的第二VPN路由之前,该方法还包括:
第一PE节点通过MP-BGP信令通道经过区域边界路由器ABR接收第二PE节点发布的第二 BGP-LU路由;
其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成;
所述第一PE节点根据接收到的所述第二BGP-LU路由创建所述第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径。
其中,所述第一PE节点通过MP-BGP信令通道经过区域边界路由器ABR接收第二PE节点发布的第二BGP-LU路由,包括:
所述第二PE节点为所述第二FEC分配第三标签,创建第三ILM转发表项;
所述第二PE节点向所述ABR发送第二BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第二BGP-LU Prefix路由通告消息携带所述第二TPD和所述第三标签;
所述ABR根据接收的所述第二BGP-LU路由通告消息创建所述第二FEC对应的第四FTN转发表项,所述第四FTN转发表项关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
所述ABR为第二FEC重新分配第四标签,并根据所述第四标签创建第四ILM转发表项;
所述ABR将所述第二BGP-LU路由通告消息中的第三标签替换为所述第四标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
其中,所述第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径,包括:
所述第一PE节点根据所述第一TPD得到第一FEC,根据所述第一FEC迭代到达第一VPN Prefix的标签转发路径;
或者,所述第一PE节点根据接收到的所述第二VPN路由中携带的第二TPD确定到达第二VPN Prefix的标签转发路径,包括:
所述第一PE节点根据所述第二TPD得到第二FEC,根据所述第二FEC迭代到达第二VPN Prefix的标签转发路径。
其中,TPD的格式为TLV格式,包括TPD Type和Sub-TLV,所述TPD type用来标识TPD由哪些Sub-TLV组成,所述Sub-TLV包括组成所述TPD的一种或多种Sub-TLV。
其中,所述TPDType包括:
type为1,表示TPD由Color Sub-TLV组成,标识一个由Color标识的到达BGP next hop的标签转发路径;
type为2,表示TPD由IGP Prefix Algorithm Sub-TLV组成,标识一个基于指定Algorithm的到达BGP next hop的标签转发路径;
type为3,表示TPD由Network Slice ID Sub-TLV组成,标识一个网络切片内的到达BGP next hop的标签转发路径;
type为4,表示TPD由Network Slice ID Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的由Color标识的到达BGP next hop的标签转发路径;
type为5,表示TPD由Network Slice ID Sub-TLV和IGP Prefix Algorithm Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的到达BGP next hop的标签转发路径;
type为6,表示由Network Slice ID Sub-TLV,IGP Prefix Algorithm Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的由Color标识的到达BGP next hop的TE标签转发路径。
实施例三
图3为本发明实施例三提供的路径构建的方法的流程示意图。如图3所示,该方法包括:
步骤301,区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第一BGP-LU路由转发给第一PE节点,以便所述根据接收到的所述第一BGP-LU路由创建所述第一FEC对应的第一FTN 转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一前缀prefix组成。
其中,所述区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第一BGP-LU路由转发给第一PE节点,包括:
所述ABR接收所述第二PE节点发送的第一BGP-LU路由通告消息,所述第一BGP-LU Prefix路由通告消息携带所述第一TPD和所述第二PE为所述第一FEC分配的第一标签;
所述ABR根据接收的所述第一BGP-LU路由通告消息创建所述第一FEC对应的第二FTN转发表项,所述第二FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
所述ABR为第一FEC重新分配第二标签,并根据所述第二标签创建第二ILM转发表项;
所述ABR将所述第一BGP-LU路由通告消息中的第一标签替换为所述第二标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
其中,该方法还包括:
所述区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第二BGP-LU路由转发给第一PE节点,以便所述第一PE节点根据接收到的所述第二BGP-LU路由创建第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成。
其中,所述区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第二BGP-LU路由转发给第一PE节点,包括:
所述ABR接收所述第二PE节点发送的第二BGP-LU路由通告消息,所述第二BGP-LU Prefix路由通告消息携带所述第二TPD和所述第二PE为第二FEC分配的第三标签;
所述ABR根据接收的所述第二BGP-LU路由通告消息创建所述第二FEC对应的第四FTN转发表项,所述第四FTN转发表项关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
所述ABR为第二FEC重新分配第四标签,并根据所述第四标签创建第四ILM转发表项;
所述ABR将所述第二BGP-LU路由通告消息中的第三标签替换为所述第四标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
其中,TPD的格式为TLV格式,包括TPD Type和Sub-TLV,所述TPD type用来标识TPD由哪些Sub-TLV组成,所述Sub-TLV包括组成所述TPD的一种或多种Sub-TLV。
其中,所述TPDType包括:
type为1,表示TPD由Color Sub-TLV组成,标识一个由Color标识的到达BGP next hop的标签转发路径;
type为2,表示TPD由IGP Prefix Algorithm Sub-TLV组成,标识一个基于指定Algorithm的到达BGP next hop的标签转发路径;
type为3,表示TPD由Network Slice ID Sub-TLV组成,标识一个网络切片内的到达BGP next hop的标签转发路径;
type为4,表示TPD由Network Slice ID Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的由Color标识的到达BGP next hop的标签转发路径;
type为5,表示TPD由Network Slice ID Sub-TLV和IGP Prefix Algorithm Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的到达BGP next hop的标签转发路径;
type为6,表示由Network Slice ID Sub-TLV,IGP Prefix Algorithm Sub-TLV和Color Sub-TLV组 成,标识一条指定网络切片内的基于指定Algorithm的由Color标识的到达BGP next hop的TE标签转发路径。
下面通过几个具体的实施例详细阐述上述实施例一、二、三提供的技术方案。
实施例四
本发明实施例引入了一种新的传输路径描述符(Transmission Path descriptor,简称为TPD)。
创建VPN时,首先在网络中为各VPN分配相应的拓扑相关的资源(比如包含哪些节点和链路)以及节点内的资源(比如包含多少队列、处理器资源等),通过IGP(Interior Gateway Protocol,内部网关协议),LDP(Label Distribution Protocol,标签分发协议)、SR(Segment routmg,分段路由)等等MPLS技术建立满足VPN要求的底层传输路径。
在BGP/MPLS VPN系统中,可以预先为支持不同的VPN业务对应的不同底层传输路径定义不同的TPD(Transmission Path descriptor,传输路径描述符)。
具体而言,可以根据VPN业务的传输要求定义TPD。TPD标识的底层传输路径可以是隧道、网络切片Network Slice,IGP(Interior Gateway Protocol,内部网关协议)前缀算法Prefix Algorithm(包括草案drafi-ietf-lsr-flex-algo中定义的弹性算法Flexible Algorithm),TE(traffic engineering,流量工程)标签转发路径等等,或者是几者的组合。
可以在VPN路由通告消息或者BGP-LU路由通告消息中携带TPD,本发明实施例中,VPN路由通告消息或者BGP-LU路由通告消息可以承载于MP-IBGP的更新Update消息等BGP消息,例如,可以将TPD加入MP-BGP Update消息的属性扩展字段中。
为了在BGP消息中携带TPD及其对应的FEC的标签,一种具体的实现方式是扩展BGP路由的path attribute路径属性,增加一个可选地optional,可传递地transitive的BGP path attribute,称做TPD属性attribute。TPD attribute下携带一组TLV。
TPD TLV格式如图4-1所示,包括:
TLV Type:待分配;
Length:TLV所占字节数;
TPD Type:用来表示TPD由哪些Sub-TLV组成。
Flags:R Bit置位表示删除remove该TLV,否则表示增加或更新TLV。
TPD attribute在VPN路由(SAFI=128)通告消息中携带时,只需要携带标识TPD的Sub-TLV。TPD attribute在BGP-LU Prefix路由(SAFI=4)通告消息中携带时,需要携带标识TPD的Sub-TLV和标识标签的Sub-TLV。
TPD TLV可以携带多种Sub-TLVs,一种实现是定义三个标识TPD的Sub-TLV和两个标识标签的Sub-TLV。
三个标识TPD的Sub-TLV如下:
Color Sub-TLV,格式如图4-2所示。
IGP Prefix Algorithm Sub-TLV,格式如图4-3所示。
Network Slice ID Sub-TLV,格式如图4-4所示。
TLV中TPD type用来标识TPD由哪些Sub-TLV组成:
type为1,表示TPD由Color Sub-TLV组成,表示一个由Color标识的到达BGP next hop的TE标签转发路径;
type为2,表示TPD由IGP Prefix Algorithm Sub-TLV组成,标识一个基于指定Algorithm的到达BGP next hop的标签转发路径;
type为3,表示TPD由Network Slice ID Sub-TLV组成,标识一个切片内的到达BGP next hop的标签转发路径;
type为4,表示TPD由Network Slice ID Sub-TLV和Color Sub-TLV组成,标识一条指定切片内的由Color标识的到达BGP next hop的TE标签转发路径;
type为5,表示TPD由Network Slice ID Sub-TLV和IGP Prefix Algorithm Sub-TLV组成,标识一 条指定切片内的基于指定Algorithm的到达BGP next hop的标签转发路径;
type为6,表示由Network Slice ID Sub-TLV,IGP Prefix Algorithm Sub-TLV和Color Sub-TLV组成,标识一条指定切片内的基于指定Algorithm的由Color标识的到达BGP next hop的TE标签转发路径。
两个标识标签的Sub-TLV如下:
Lable Sub-TLV,格式如图4-5所示,该Sub-TLV携带的是BGP peer为该TPD对应的FEC(Forwarding Equivalent Class,转发等价类)分配的Label;
Label-Index Sub-TLV,格式如图4-6所示,该Sub-TLV携带的是该TPD对应的BGP Prefix-SID(Segment ID)。
实施例五
图5为本发明实施例五提供的路径构建的方法的流程示意图。如图5所示,该方法包括:
步骤501,PE2节点通过MP-BGP信令通道向PE1节点发布一个或多个VPN路由;
其中,可以通过发送BGP消息发布VPN路由,BGP消息可以携带一个或多个VPN路由,每一个VPN路由携带对应的TPD;
步骤502,PE1节点根据接收到的所述一个或多个VPN路由中对应的TPD确定各个VPN到达对应Prefix的标签转发路径。
其中,MPLS网络中,PE1节点和PE2节点使能IGP网络,PE1节点和PE2节点上可以按用户需要创建第一VPN,建立满足第一VPN要求的底层传输路径,例如可以在IGP网络中建立Red隧道用于满足第一VPN的传输要求。在创建VPN和建立满足VPN业务要求的隧道之后,PE2节点可以为第一VPN配置第一TPD。例如,根据实施例四中预先定义的TPD,可以确定第一VPN对应的第一TPD的TPDtype为1,表示第一TPD由Color(Red)Sub-TLV组成,表示一个由Color(Red)标识的到达BGP next hop的标签转发路径。
然后在PE1节点和PE2节点之间建立MP-BGP信令通道;可以通过MP-BGP消息发布VPN路由。
具体而言,当PE1节点和PE2节点创建了一个VPN时,PE2节点通过MP-BGP信令通道向PE1节点发送BGP消息,该BGP消息携带第一VPN路由,所述第一VPN路由中携带第一TPD;
同时,PE1节点和PE2节点上也可以按用户需要创建第二VPN,建立满足第二VPN要求的底层传输路径,例如可以在IGP网络中建立Blue隧道用于满足第二VPN的传输要求。如此,根据实施例四中预先定义的TPD,可以确定第二VPN对应的第二TPD的TPD type也为1,表示第二TPD由Color(Blue)Sub-TLV组成,表示一个由Color(Blue)标识的到达BGP next hop的标签转发路径。
如果PE1节点和PE2节点上存在两个VPN,第二VPN路由可以通过另一个BGP消息进行发布,也可以与第一VPN路由承载在同一个BGP消息中同时发布。即当PE1节点和PE2节点创建了两个VPN时,PE2节点通过MP-BGP信令通道向PE1节点发送BGP消息,该BGP消息携带第一VPN路由和第二VPN路由,所述第一VPN路由中携带第一TPD,所述第二VPN路由中携带第二TPD。以此类推,如果PE1节点和PE2节点上同时存在多个VPN,可以多个VPN路由可以分开发布或者承载与一个BGP消息中发布,每一个VPN路由发布时都携带其对应的TPD。
满足VPN要求的底层传输路径还可以是网络切片、指定Algorithm、指定网络切片内的隧道、指定网络切片内的指定Algorithm,指定网络切片内的指定Algorithm的隧道等。如此,能够为不同的VPN业务选择满足特定要求的传输路径。
其中,如何建立MP-BGP信令通道、创建VPN、用于VPN路由发布的BGP消息的格式等都为现有技术在此不再赘述。
实施例六
图6为本发明实施例六提供的路径构建的方法的流程示意图。如图6所示,该方法包括:
步骤601,BGP-LU Prefix始发节点确定BGP-LU Prefix支持的TPD,构成TPD-FEC,并为TPD-FEC分配标签,生成ILM转发表项;
其中,在步骤601之前,MPLS网络中,始发节点和邻居节点使能IGP网络,始发节点和邻居节点 上创建VPN,在IGP网络中建立满足VPN要求的底层传输路径,并且建立MP-BGP信令通道,该MP-BGP信令通道可以用于发布BGP-LU路由和VPN路由。
其中,一般在BGP-LU Prefix(一般是loopback路由)的始发节点上配置该BGP-LU Prefix支持的TPD,Prefix和TPD的组合作为FEC(转发等价类,Forwarding Equivalence Class),称为TPD-FEC。另外,BGP-SR情况下还需要为TPD-FEC配置对应的Prefix-SID。
具体而言,可以在不使能PHP(Penultimate Hop Popping,倒数第二跳弹出)情况下,为TPD-FEC分配标签,生成ILM(Incoming Label Map,入标签映射)转发表项。
其中,在步骤601之前,可以预先为VPN业务定义TPD,具体详见实施例四的内容。
步骤602,BGP-LU Prefix始发节点向BGP邻居通告BGP-LU路由,通告消息中设置路由的BGP next-hop为自身,并携带支持的TPD以及为TPD-FEC分配的标签;
本实施例中,BGP-LU路由的SAFI(Subsequent Address Family Identifier,子地址族标识)=4。
另外SR情况下,通告消息还要携带对应的Prefix SID。
步骤603,BGP邻居节点根据收到的BGP-LU路由中的TPD创建FTN表项,以及重新分配标签后创建ILM转发表项;
具体而言,BGP邻居节点收到相应的BGP-LU路由通告后,可为该TPD-FEC创建FTN(FEC to NHLFE Map,FEC至下一跳标签转发单元映射)转发表项,BGP邻居节点重新为TPD-FEC分配新的标签,根据重新分配的新标签创建ILM转发表项;
其中,FTN和ILM转发表项中包含的转发信息将关联使用TPD对应的节点内资源以及根据路由的BGP next-hop迭代到满足TPD要求的底层传输路径。
另外,BGP邻居节点可以继续向其它BGP邻居通告该BGP-LU路由,在通告时修改路由的BGP next-hop为自身,且修改TPD-FEC标签为本邻居节点重新分配的标签。其它BGP邻居的处理与上述BGP邻居类似。
步骤604,BGP-LU Prefix始发节点向BGP邻居通告VPN路由,通告消息中携带支持的TPD;
例如,在通告BGP VPN(SAFI=128)路由时,携带VPN业务需要的TPD。
步骤605,BGP邻居节点收到该VPN路由,迭代到达BGP next hop的标签转发路径时,按照路由通告消息中携带的TPD选择标签转发路径。
例如,收到VPN路由(SAFI=128)通告消息时,迭代到达BGP next hop的标签转发路径时,按照路由通告消息中携带的TPD选择标签转发路径。
通过本发明实施例六提供的技术方案,可以为VPN业务提供差异化的、可以精确到每VPN路由的端到端的传输路径。
实施例七
图7为本发明实施例七提供的路径构建的系统的结构示意图,图8为本发明实施例七提供的路径构建的方法的流程示意图。
本实施例七描述在BGP-LU路径上选择基于Color标识的标签转发路径构建端到端的传输路径。如图7所示的MPLS网络中,CE(Customer Edge Router,用户网络边缘路由器)1-1、CE 1-2为VPN1的站点,CE2-1、CE 2-2为VPN2的站点;ABR节点与PE1节点、ABR节点与PE2节点之间是使能了IGP的网络,PE1节点和ABR节点,ABR节点和PE2节点之间建立MP-BGP会话(即MP-BGP信令通道),用于发布BGP-LU路由,PE1节点和PE2节点之间建立MP-BGP会话用于发布VPN路由。PE1节点和PE2节点上按用户需要创建VPN1和VPN2,则按照本发明实施例七提供的构建PE1节点向PE2节点发送业务流量的路径的方法,如图8所示,包括:
步骤801,PE2节点配置LU prefix以及TPD(Red和Blue),组成Red FEC和Blue FEC,为Red FEC和Blue FEC分配标签并创建ILM转发表项;
其中,在步骤801之前,在IGP1和IGP2网络中,各自建立满足VPN1和VPN2要求的隧道,用颜色Color来区分不同的隧道。例如本实施例七中,Red隧道用于满足VPN1的要求(图7中位于上面的虚线所示为Red隧道),Blue隧道用于满足VPN2的要求(图7中位于下面的虚线所示为Blue隧道)。
另外,SR情况下需要分配Red Prefix SID和Blue Prefix SID,不使能PHP(Penultimate Hop Popping,倒数第二跳弹出)情况下,为Red FEC和Blue FEC分配标签,创建ILM转发表项。
步骤802,PE2节点向ABR节点通告LU Prefix路由,同时修改BGP next-hop为PE2上的地址;
其中,LU Prefix路由通告消息中携带Red TPD和Blue TPD以及为Red FEC和Blue FEC分配的标签。
具体而言,LU Prefix路由通告消息中携带TPD属性attribute,属性中携带两个TLV,一个TLV中携带Color Sub-TLV(Color为Red),Label Sub-TLV(Red FEC对应的标签),如果是SR,则通告消息还要携带Label-Index Sub-TLV(Red Prefix SID);另一个TLV中携带Color Sub-TLV(Color为Blue),Label Sub-TLV(Blue FEC对应的标签)。
其中,PE2节点也可以分别向ABR节点通告VPN1的LU Prefix路由和VPN2的LU Prefix路由。
其中,如果是SR,LU Prefix路由通告消息中还要携带Label-Index Sub-TLV(Blue Prefix SID)。
其中,LU Prefix路由消息可以承载于MP-BGP Update消息中,具体可以通过扩展NLRI字段携带TPD attribute。
步骤803,ABR节点收到PE2节点通告的LU Prefix路由时,为Red FEC和Blue FEC创建FTN转发表项,以及重新分配标签后创建ILM转发表项;
其中,FTN转发表项和ILM转发表项中关联着由Color标识的IGP2中到达BGP next hop的TE标签转发路径。
步骤804,ABR节点继续向PE1节点通告该LU Prefix路由,同时修改BGP next-hop为ABR上的地址;
其中,ABR节点把路由消息中携带的TLV中的Red FEC,Blue FEC标签替换为本ABR节点重新分配的Red FEC,Blue FEC标签后转发给PE1节点。
步骤805,PE1节点收到ABR节点通告的LU Prefix路由时,为Red FEC和Blue FEC创建FTN转发表项;
其中,FTN转发表项中关联着由Color标识的IGP1中到达BGP next hop的TE标签转发路径。
步骤806,PE2节点分别向PE1节点通告VPN1和VPN2路由;
其中,VPN路由通告消息中携带Red TPD和Blue TPD。
具体而言,通告VPN1路由的消息中携带TPD属性,属性中携带一个TLV,TLV中携带Color Sub-TLV(Color为Red);通告VPN2路由的消息中携带TPD属性,属性中携带一个TLV,TLV中携带Color Sub-TLV(Color为Blue)。VPN1路由和VPN2路由也可以同时携带在一个通告消息中进行传递。
其中,VPN路由通告消息可以承载于MP-BGP Update消息中,具体可以通过扩展NLRI字段携带TPD attribute。
步骤807,PE1节点收到PE2节点通告的VPN1路由后,根据通告消息中携带的TPD(Red)、TPD(Blue)迭代到达BGP next hop的标签转发路径。
具体而言,通过消息中携带的TPD(Red)和BGP next hop组成Red FEC,通过Red FEC迭代到达VPN1 Prefix的标签转发路径;通过消息中携带的TPD(Blue)和BGP next hop组成Blue FEC,通过Blue FEC找到到达VPN2 Prefix的标签转发路径。
其中,如何创建FTN转发表项、ILM转发表项、如何进行标签分发等属于现有技术,在此不再赘述。
本发明实施例八提供的技术方案,分别为VPN1和VPN2生成满足各自要求的端到端的传输路径。
实施例八
图9为本发明实施例八提供的路径构建的系统的结构示意图,图10为本发明实施例八提供的路径构建的方法的流程示意图。
本实施例八描述在BGP-LU路径上选择基于网络切片Network Slice构建端到端的传输路径。如图9所示的MPLS网络中,CE(Customer Edge Router,用户网络边缘路由器)1-1、CE 1-2为VPN1的站 点,CE2-1、CE 2-2为VPN2的站点;ABR节点与PE1节点,ABR节点与PE2节点之间是使能了IGP的网络,PE1节点和ABR节点,ABR节点和PE2节点之间建立MP-BGP会话,用于发布LU路由,PE1节点和PE2节点之间建立MP-BGP会话用于发布VPN路由。PE1节点和PE2节点上按用户需要创建VPN1和VPN2,则按照本发明实施例八提供的构建PE1节点向PE2节点发送业务流量的路径的方法,如图10所示,包括:
步骤1001,PE2节点上配置LU prefix以及TPD(Slice1和Slice2),组成Slice1 FEC和Slice2 FEC,为Slice1 FEC和Slice2 FEC分配标签,创建ILM转发表项;
其中,在步骤1001之前,在IGP1和IGP2网络中,各自建立满足VPN1和VPN2要求的Network Slice,例如本实施例八中,Slice1用于满足VPN1的要求(),Slice2用于满足VPN2的要求。
其中,如果是SR的情况,还需要分别为Slice1 FEC和Slice2 FEC分配Slice1 Prefix SID和Slice2 Prefix SID。
其中,,可以在不使能PHP(Penultimate Hop Popping,倒数第二跳弹出)情况下,为Slice1 FEC和Slice2 FEC分配标签,创建ILM转发表项。
步骤1002,PE2节点向ABR节点通告LU Prefix路由,同时修改BGP next-hop为PE2上的地址;
其中,LU Prefix路由通告消息中携带Slice1 TPD和Slice2 TPD以及为Slice1 FEC和Slice2 FEC分配的标签。
具体而言,LU Prefix路由通告消息中携带TPD属性attribute,属性中携带两个TLV,一个TLV中携带Network Slice ID Sub-TLV(Slice ID为1),Label Sub-TLV(Slice1 FEC对应的标签),另一个TLV中携带Network Slice ID Sub-TLV(Slice ID为2),Label Sub-TLV(Slice2 FEC对应的标签)。
其中,PE2节点也可以分别向ABR节点通告VPN1的LU Prefix路由和VPN2的LU Prefix路由。
其中,如果是SR,LU Prefix路由通告消息还要携带Label-Index Sub-TLV(Slice2 Prefix SID)、Label-Index Sub-TLV(Slice1 Prefix SID)。
其中,LU Prefix路由消息可以承载于MP-BGP Update消息中,具体可以通过扩展NLRI字段携带TPD attribute。
步骤1003,ABR节点收到PE2节点通告的LU Prefix路由时,为Slice1 FEC和Slice2 FEC创建FTN转发表项,以及重新分配标签后创建ILM转发表项;
其中,FTN转发表项、ILM转发表项中关联着由Slice ID标识的Slice内到达BGP next hop的标签转发路径。
步骤1004,ABR节点继续向PE1节点通告该LU Prefix路由,同时修改BGP next-hop为ABR上的地址;
其中,ABR节点把路由消息中携带的TPD TLV中的Slice1 FEC,Slice2 FEC标签替换为本ABR节点分配的Slice1 FEC,Slice2 FEC标签后转发给PE1节点。
步骤1005,PE1节点收到ABR节点通告的LU Prefix路由时,为Slice1 FEC,Slice2 FEC创建FTN转发表项;
其中,FTN转发表项中关联着由Slice ID标识的Slice内到达BGP next hop的标签转发路径。
步骤1006,PE2节点分别向PE1节点通告VPN1和VPN2路由;
其中,VPN路由通告消息中携带Slice1 TPD和Slice2 TPD。
具体而言,通告VPN1路由的消息中携带TPD属性,属性中携带一个TPDTLV,TLV中携带Network Slice ID Sub-TLV(Slice ID为1)。通告VPN2路由的消息中携带TPD属性,属性中携带一个TPD TLV,TLV中携带Network Slice ID Sub-TLV(Slice ID为2)。VPN1路由和VPN2路由也可以同时携带在一个通告消息中进行传递。
其中,VPN路由通告消息可以承载于MP-BGP Update消息中,具体可以通过扩展NLRI字段携带TPD attribute。
步骤1007,PE1节点收到PE2节点通告的VPN1路由后,根据通告消息中携带的Slice1 TPD和Slice2 TPD迭代到达BGP next hop的标签转发路径。
具体而言,可以通过消息中携带的TPD(Slice1)和BGP next hop组成Slice1FEC,通过Slice1FEC找到到达VPN1 Prefix的标签转发路径;通过消息中携带的TPD(Slice2)和BGP next hop组成Slice2 FEC,通过Slice2 FEC找到到达VPN2 Prefix的标签转发路径。
本发明实施例八提供的技术方案,分别为VPN1和VPN2生成满足各自要求的端到端的传输路径。
实施例九
图11为本发明实施例九提供的路径构建的系统的结构示意图,图12为本发明实施例九提供的路径构建的方法的流程示意图。
本实施例九描述在BGP-LU路径上选择FA(弹性算法,Flexible Algorithm)构建端到端的传输路径。如图11所示的MPLS网络中,CE(Customer Edge Router,用户网络边缘路由器)1-1、CE 1-2为VPN1的站点,CE2-1、CE 2-2为VPN2的站点;ABR节点与PE1节点,ABR节点与PE2节点之间是使能了IGP的网络;PE1节点和ABR节点、ABR节点和PE2节点之间建立MP-BGP会话,用于发布LU路由,PE1节点和PE2节点之间建立MP-BGP会话用于发布VPN路由。PE1节点和PE2节点上按用户需要创建VPN1和VPN2,则按照本发明实施例九提供的构建PE1节点向PE2节点发送业务流量的路径的方法,如图12所示,包括:
步骤1201,PE2节点上配置LU prefix以及TPD(FA128和FA129),组成FA128 FEC和FA129 FEC,为FA128 FEC和FA129 FEC分配标签,创建ILM转发表项;
其中,在步骤1201之前,在IGP1和IGP2网络中,各自建立满足VPN1和VPN2要求的FA。例如本实施例九中,FA128用于满足VPN1的要求,FA129用于满足VPN2的要求。
其中,如果是SR的情况,PE2节点还要分配FA1 Prefix SID和FA2 Prefix SID。
其中,不使能PHP(Penultimate Hop Popping,倒数第二跳弹出)情况下,为FA128 FEC和FA129 FEC分配标签,创建ILM转发表项。
步骤1202,PE2节点向ABR节点通告LU Prefix路由,同时修改BGP next-hop为PE2上的地址;
其中,LU Prefix路由通告消息中携带FA128 TPD和FA129 TPD以及为FA128 FEC和FA129 FEC分配的标签。
具体而言,LU Prefix路由通告消息中携带TPD属性attribute,属性中携带两个TPD TLV,一个TLV中携带IGP Prefix Algorithm Sub-TLV(FA为128),Label Sub-TLV(FA128 FEC对应的标签),另一个TLV中携带IGP Prefix Algorithm Sub-TLV(FA为129),Label Sub-TLV(Slice2 FEC对应的标签),
其中,PE2节点也可以分别向ABR节点通告VPN1的LU Prefix路由和VPN2的LU Prefix路由。
其中,如果是SR,LU Prefix路由通告消息中还要携带Label-Index Sub-TLV(FA129 Prefix SID)、Label-Index Sub-TLV(FA128 Prefix SID)。
其中,LU Prefix路由消息可以承载于MP-BGP Update消息中,具体可以通过扩展NLRI字段携带TPD attribute。
步骤1203,ABR节点收到PE2节点通告的LU Prefix路由时,为FA128 FEC和FA129 FEC创建FTN转发表项,以及重新分配标签后创建ILM转发表项;
其中,FTN转发表项、ILM转发表项中关联着由FA标识的到达BGP next hop的标签转发路径。
步骤1204,ABR节点继续向PE1节点通告该LU Prefix路由,同时修改BGP next-hop为ABR上的地址;
其中,ABR节点把路由消息中携带的TPD TLV中的FA128 FEC,FA129 FEC的标签替换为本ABR节点重新为FA128 FEC,FA129 FEC分配的标签。
步骤1205,PE1节点收到ABR节点通告的LU Prefix路由时,为FA128 FEC,FA129 FEC创建FTN转发表项;
其中,FTN转发表项表项中关联着由FA标识到达BGP next hop的标签转发路径。
步骤1206,PE2节点分别向PE1节点通告VPN1和VPN2路由;
其中,VPN路由通告消息中携带FA128 TPD和FA129 TPD。
具体而言,通告VPN1路由的消息中携带TPD属性,属性中携带一个TPD TLV,TLV中携带IGP Prefix Algorithm Sub-TLV(FA为128);通告VPN2路由的消息中携带TPD属性,属性中携带一个TPD TLV,TLV中携带IGP Prefix Algorithm Sub-TLV(FA为129)。VPN1路由和VPN2路由也可以同时携带在一个通告消息中进行传递。
其中,VPN路由通告消息可以承载于MP-BGP Update消息中,具体可以通过扩展NLRI字段携带TPD attribute。
步骤1207,PE1节点收到PE2节点通告的VPN1路由后,根据通告消息中携带的FA128 TPD和FA129 TPD迭代到达BGP next hop的标签转发路径。
具体而言,可以通过消息中携带的TPD(FA128)和BGP next hop组成FA128 FEC,通过FA128 FEC找到到达VPN1 Prefix的标签转发路径;通过消息中携带的TPD(FA129)和BGP next hop组成FA129 FEC,通过FA129 FEC找到到达VPN2 Prefix的标签转发路径。
本发明实施例九提供的技术方案,分别为VPN1和VPN2生成满足各自要求的端到端的传输路径。
实施例十
图13为本发明实施例十提供的路径构建的系统的结构示意图,图14为本发明实施例十提供的路径构建的方法的流程示意图。
本实施例十描述在BGP-LU路径上选择Network Slice内的Color标识的TE标签转发路径构建端到端的传输路径。如图13所示的MPLS网络中,CE(Customer Edge Router,用户网络边缘路由器)1-1、CE 1-2为VPN1的站点,CE2-1、CE 2-2为VPN2的站点;ABR节点与PE1节点,ABR节点与PE2节点之间是使能了IGP的网络,PE1节点和ABR节点,ABR节点和PE2节点之间建立BGP会话,用于发布LU路由,PE1节点和PE2节点之间建立BGP会话用于发布VPN路由。PE1节点和PE2节点上按用户需要创建VPN1和VPN2,则按照本发明实施例九提供的构建PE1节点向PE2节点发送业务流量的路径的方法,如图14所示,包括:
步骤1401,PE2节点上配置LU prefix以及TPD(Slice1+Red和Slice1+Blue),组成Slice1-Red FEC和Slice1-Blue FEC,为Slice1-Red FEC和Slice1-Blue FEC分配标签,创建ILM转发表项;
其中,在步骤1401之前,在IGP1和IGP2网络中,各自建立满足VPN1和VPN2要求的Slice以及Slice内的TE标签转发路径,Slice1中的Red标签转发路径用于满足VPN1的要求(图13中位于上面的虚线所示为Red标签转发路径),Slice1中的Blue标签转发路径用于满足VPN2的要求(图13中位于下面的虚线所示为Blue标签转发路径)。
其中,如果是SR的情况,PE2节点还要分配Slice1-Red Prefix SID和Slice1-Blue Prefix SID。
其中,不使能PHP(Penultimate Hop Popping,倒数第二跳弹出)情况下,为Slice1-Red FEC和Slice1-Blue FEC分配标签,创建ILM转发表项。
步骤1402,PE2节点向ABR节点通告LU Prefix路由,同时修改BGP next-hop为PE2上的地址;
其中,LU Prefix路由通告消息中携带TPD(Slice1+Red)和TPD(Slice1+Blue)以及为Slice1-Red FEC和Slice1-Blue FEC分配的标签。
具体而言,通告消息中携带TPD属性,属性中携带两个TPD TLV,一个TLV中携带Network Slice ID Sub-TLV(ID为1),Color Sub-TLV(Color为Red),Label Sub-TLV(Slice1-Red FEC对应的标签),另一个TLV中携带Network Slice ID Sub-TLV(ID为1),Color Sub-TLV(Color为Blue),Label Sub-TLV(Slice1-Blue FEC对应的标签)。
其中,PE2节点也可以分别向ABR节点通告VPN1的LU Prefix路由和VPN2的LU Prefix路由。
其中,如果是SR,通告消息中还要携带Label-Index Sub-TLV(Slice1-Red Prefix SID)、Label-Index Sub-TLV(Slice1-Blue Prefix SID)。
其中,LU Prefix路由消息可以承载于MP-BGP Update消息中,具体可以通过扩展NLRI字段携带TPD attribute。
步骤1403,ABR节点收到PE2节点通告的LU Prefix路由时,为Slice1-Red FEC和Slice1-Blue FEC创建FTN转发表项,以及重新分配标签后创建ILM转发表项;
其中,FTN转发表项、ILM转发表项中关联着由Slice+color标识的到达BGP next hop的TE标签转发路径。
步骤1404,ABR节点继续向PE1节点通告该LU Prefix路由,同时修改BGP next-hop为ABR上的地址;
其中,ABR节点把路由消息中携带的TPD TLV中的Slice1-Red FEC,Slice1-Blue FEC标签替换为本ABR节点为Slice1-Red FEC,Slice1-Blue FEC重新分配的标签后转发给PE1节点。
步骤1405,PE1节点收到ABR节点通告的LU Prefix路由时,为Slice1-Red FEC,Slice1-Blue FEC创建FTN转发表项;
其中,FTN转发表项中关联着由Slice+color标识的到达BGP next hop的TE标签转发路径。
步骤1406,PE2节点分别向PE1节点通告VPN1和VPN2路由,
其中,VPN路由通告消息中携带TPD(Slice1+Red)和TPD(Slice1+Blue)。
具体而言,通告VPN1路由的消息中携带TPD属性,属性中携带一个TPD TLV,TLV中携带Network Slice ID Sub-TLV(ID为1),Color Sub-TLV(Color为Red);通告VPN2路由的消息中携带TPD属性,属性中携带一个TPD TLV,TLV中携带Network Slice ID Sub-TLV(ID为1),Color Sub-TLV(Color为Blue)。VPN1路由和VPN2路由也可以同时携带在一个通告消息中进行传递。
其中,VPN路由通告消息可以承载于MP-BGP Update消息中,具体可以通过扩展NLRI字段携带TPD attribute。
步骤1407,PE1节点收到PE2节点通告的VPN1路由后,根据通告消息中携带的TPD(Slice1+Red)和TPD(Slice1+Blue)迭代到达BGP next hop的标签转发路径。
具体而言,可以通过消息中携带的TPD(Slice1-Red)和BGP next hop组成Slice1-Red FEC,通过Slice1-Red FEC找到到达VPN1 Prefix的标签转发路径;通过消息中携带的TPD(Slice1-Blue)和BGP next hop组成Slice1-Blue FEC,通过Slice1-Blue FEC找到到达VPN2 Prefix的标签转发路径。
本发明实施例十提供的技术方案,分别为VPN1和VPN2生成满足各自要求的端到端的传输路径。
实施例十一
图15为本发明实施例十一提供的构建传输路径的系统的结构示意图,如图15所示,该系统包括:
第二PE节点,用于通过MP-BGP信令通道向第一PE节点发布第一VPN路由;
第一PE节点,用于根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;
其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。
其中,该系统还包括:区域边界路由器ABR;
所述第二PE节点,还用于通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第一BGP-LU路由;
所述第一PE节点,还用于根据接收到的所述第一BGP-LU路由创建第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一prefix组成。
其中,所述第二PE节点,具体用于为所述第一FEC分配第一标签,创建第一ILM转发表项;向所述ABR发送第一BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第一BGP-LU Prefix路由通告消息携带所述第一TPD和所述第一标签;
所述ABR,具体用于根据接收的所述第一BGP-LU路由通告消息创建所述第一FEC对应的第二FTN转发表项,所述第二FTN转发表项关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;为第一FEC重新分配第二标签,并根据所述第二标签创建第二ILM转发表项;将所述第一BGP-LU路由通告消息中的第一标签替换为所述第二标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
其中,所述第二节点,还用于通过MP-BGP信令通道向第一PE节点发布第二VPN路由;
所述第一PE节点,还用于根据接收到的所述第二VPN路由中携带的第二TPD确定到达第二VPN Prefix的标签转发路径;
其中,所述第二TPD用于标识第二VPN报文达到BGP next hop的标签转发路径。
其中,其中,所述第二节点,还用于在第二PE节点通过MP-BGP信令通道向第一PE节点发布第二VPN路由之前,通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第二BGP-LU路由;
所述第一节点,还用于根据接收到的所述第二BGP-LU路由创建第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成。
其中,所述第二节点,具体用于为所述第二FEC分配第三标签,创建第三ILM转发表项;向所述ABR发送第二BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第二BGP-LU Prefix路由通告消息携带所述第二TPD和所述第三标签;
所述ABR,具体用于根据接收的所述第二BGP-LU路由通告消息创建所述第二FEC对应的第四FTN转发表项,所述第四FTN转发表项关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;为第二FEC重新分配第四标签,并根据所述第四标签创建第四ILM转发表项;将所述第二BGP-LU路由通告消息中的第三标签替换为所述第四标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
其中,TPD的格式为TLV格式,包括TPD Type和Sub-TLV,所述TPD type用来标识TPD由哪些Sub-TLV组成,所述Sub-TLV包括组成所述TPD的一种或多种Sub-TLV。
其中,所述TPD Type包括:
type为1,表示TPD由Color Sub-TLV组成,标识一个由Color标识的到达BGP next hop的标签转发路径;
type为2,表示TPD由IGP Prefix Algorithm Sub-TLV组成,标识一个基于指定Algorithm的到达BGP next hop的标签转发路径;
type为3,表示TPD由Network Slice ID Sub-TLV组成,标识一个网络切片内的到达BGP next hop的标签转发路径;
type为4,表示TPD由Network Slice ID Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的由Color标识的到达BGP next hop的标签转发路径;
type为5,表示TPD由Network Slice ID Sub-TLV和IGP Prefix Algorithm Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的到达BGP next hop的标签转发路径;
type为6,表示由Network Slice ID Sub-TLV,IGP Prefix Algorithm Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的由Color标识的到达BGP next hop的TE标签转发路径。
图16为本发明实施例十一提供的第二PE节点的结构示意图,如图16所示,该第二PE节点包括:
发布单元,通过MP-BGP信令通道向第一PE节点发布第一VPN路由,以便第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;
其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。
其中,该第二PE节点还包括:
定义单元,用于预先定义多个支持VPN业务的底层传输路径对应的TPD;
创建及确定单元,用于与所述第一PE节点创建第一VPN,并根据满足所述第一VPN业务要求的底层传输路径确定第一TPD;
所述底层传输路径包括以下之一:隧道、网络切片、IGP Prefix Algorithm、网络切片内的指定隧道、网络切片内的指定Algorithm、网络切片内基于指定Algorithm的指定隧道。
其中,所述发布单元,还用于在通过MP-BGP信令通道向第一PE节点发布第一VPN路由之前,通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第一BGP-LU路由,以便所述第一PE节点根据接收到的所述第一BGP-LU路由创建第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一prefix组成。
其中,所述发布单元,具体用于为所述第一FEC分配第一标签,创建第一ILM转发表项;向所述ABR发送第一BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第一BGP-LU Prefix路由通告消息携带所述第一TPD和所述第一标签。
其中,所述发布单元,还用于通过MP-BGP信令通道向第一PE节点发布第二VPN路由,以便第一PE节点根据接收到的所述第二VPN路由中携带的第二TPD确定到达第二VPNPrefix的标签转发路径;
其中,所述第二TPD用于标识第二VPN报文达到BGP next hop的标签转发路径。
其中,所述创建及确定单元,还用于与所述第一PE节点创建第二VPN,并根据满足所述第二VPN业务要求的底层传输路径确定第二TPD。
其中,所述发布单元,还用于在通过MP-BGP信令通道向第一PE节点发布第二VPN路由之前,该方法还包括:
第二PE节点通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第二BGP-LU路由,以便所述第一PE节点根据接收到的所述第二BGP-LU路由创建第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成。
其中,所述发布单元,具体用于为所述第二FEC分配第三标签,创建第三ILM转发表项;向所述ABR发送第二BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第二BGP-LU Prefix路由通告消息携带所述第二TPD和所述第三标签。
其中,TPD的格式为TLV格式,包括TPD Type和Sub-TLV,所述TPD type用来标识TPD由哪些Sub-TLV组成,所述Sub-TLV包括组成所述TPD的一种或多种Sub-TLV。
其中,所述TPDType包括:
type为1,表示TPD由Color Sub-TLV组成,标识一个由Color标识的到达BGP next hop的标签转发路径;
type为2,表示TPD由IGP Prefix Algorithm Sub-TLV组成,标识一个基于指定Algorithm的到达BGP next hop的标签转发路径;
type为3,表示TPD由Network Slice ID Sub-TLV组成,标识一个网络切片内的到达BGP next hop的标签转发路径;
type为4,表示TPD由Network Slice ID Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的由Color标识的到达BGP next hop的标签转发路径;
type为5,表示TPD由Network Slice ID Sub-TLV和IGP Prefix Algorithm Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的到达BGP next hop的标签转发路径;
type为6,表示由Network Slice ID Sub-TLV,IGP Prefix Algorithm Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的由Color标识的到达BGP next hop的TE标签转发路径。
图17为本发明实施例十一提供的第一PE节点的结构示意图,如图17所示,该第一PE节点包括:
接收单元,通过MP-BGP信令通道接收第二PE节点发布的第一VPN路由;
其中,所述第一VPN路由携带第一传输路径描述符TPD,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径;
确定单元,根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径。
其中,所述接收单元,还用于在通过MP-BGP信令通道接收第二PE节点发布的第一VPN路由之前,通过MP-BGP信令通道接收第二PE节点经过区域边界路由器ABR发布的第一BGP-LU路由;
其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一前缀prefix组成;
所述第一PE节点还包括创建单元,
所述创建单元,用于根据接收到的所述第一BGP-LU路由创建所述第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径。
其中,所述接收单元,还用于通过MP-BGP信令通道接收第二PE节点发布的第二VPN路由;其中,所述第二VPN路由携带第二TPD,所述第二TPD用于标识第二VPN报文到达BGP next hop的标签转发路径;
所述确定单元,还用于根据接收到的所述第二VPN路由中携带的第二TPD确定到达第二VPN Prefix的标签转发路径。
其中,所述接收单元,还用于在通过MP-BGP信令通道接收第二PE节点发布的第二VPN路由之前,通过MP-BGP信令通道经过区域边界路由器ABR接收第二PE节点发布的第二BGP-LU路由;
其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成;
所述创建单元,还用于根据接收到的所述第二BGP-LU路由创建所述第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径。
其中,所述确定单元,具体用于根据所述第一TPD得到第一FEC,根据所述第一FEC迭代到达第一VPN Prefix的标签转发路径;
或者,根据所述第二TPD得到第二FEC,根据所述第二FEC迭代到达第二VPN Prefix的标签转发路径。
图18为本发明实施例十一提供的区域边界路由器ABR的结构示意图,如图18所示,该ABR包括:
转发单元,用于区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第一BGP-LU路由转发给第一PE节点,以便所述第一PE节点根据接收到的所述第一BGP-LU路由创建第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
其中,所述第一BGP-LU路由携带所述第一TPD和所述第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一前缀prefix组成。
其中,所述转发单元,具体用于接收所述第二PE节点发送的第一BGP-LU路由通告消息,所述第一BGP-LU Prefix路由通告消息携带所述第一TPD和所述第二PE为所述第一FEC分配的第一标签;根据接收的所述第一BGP-LU路由通告消息创建所述第一FEC对应的第二FTN转发表项,所述第二FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;为第一FEC重新分配第二标签,并根据所述第二标签创建第二ILM转发表项;将所述第一BGP-LU路由通告消息中的第一标签替换为所述第二标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
其中,所述转发单元,还用于通过MP-BGP信令通道将第二PE节点发布的第二BGP-LU路由转发 给第一PE节点,以便所述第一PE节点根据接收到的所述第二BGP-LU路由创建第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成。
其中,所述转发单元,具体用于接收所述第二PE节点发送的第二BGP-LU路由通告消息,所述第二BGP-LU Prefix路由通告消息携带所述第二TPD和所述第二PE为第二FEC分配的第三标签;根据接收的所述第二BGP-LU路由通告消息创建所述第二FEC对应的第四FTN转发表项,所述第四FTN转发表项关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;为第二FEC重新分配第四标签,并根据所述第四标签创建第四ILM转发表项;将所述第二BGP-LU路由通告消息中的第三标签替换为所述第四标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
本发明实施例还提供了一种第二PE节点,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现第二PE节点执行的上述任一项构建传输路径的方法。
本发明实施例还提供了一种第一PE节点,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现第一PE节点执行的上述任一项构建传输路径的方法。
本发明实施例还提供了一种区域边界路由器ABR,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现ABR执行的上述任一项构建传输路径的方法。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现上述任一项所述构建传输路径的方法的步骤。
与相关技术相比,本发明实施例提供了一种路径构建的方法及相关设备,其中方法之一包括:第二PE节点通过MP-BGP信令通道向第一PE节点发布第一VPN路由,以便第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。如此,可以为VPN业务选择满足业务要求的底层传输路径。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (30)

  1. 一种路径构建的方法,包括:
    第二PE节点通过MP-BGP信令通道向第一PE节点发布第一VPN路由,以便第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;
    其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。
  2. 根据权利要求1所述的方法,其特征在于,在第二PE节点通过MP-BGP信令通道向第一PE节点发布第一VPN路由之前,该方法还包括:
    预先定义多个支持VPN业务的底层传输路径对应的TPD;
    所述第二PE节点与所述第一PE节点创建第一VPN,并根据满足所述第一VPN业务要求的底层传输路径确定第一TPD;
    所述底层传输路径包括以下之一:隧道、网络切片、IGP Prefix Algorithm、网络切片内的指定隧道、网络切片内的指定Algorithm、网络切片内基于指定Algorithm的指定隧道。
  3. 根据权利要求1所述的方法,其特征在于,在第二PE节点通过MP-BGP信令通道向第一PE节点发布第一VPN路由之前,该方法还包括:
    第二PE节点通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第一BGP-LU路由,以便所述第一PE节点根据接收到的所述第一BGP-LU路由创建第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
    其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一prefix组成。
  4. 根据权利要求3所述的方法,其特征在于,第二PE节点通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第一BGP-LU路由,包括:
    所述第二PE节点为所述第一FEC分配第一标签,创建第一ILM转发表项;
    所述第二PE节点向所述ABR发送第一BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第一BGP-LU Prefix路由通告消息携带所述第一TPD和所述第一标签;
    所述ABR根据接收的所述第一BGP-LU路由通告消息创建所述第一FEC对应的第二FTN转发表项,所述第二FTN转发表项关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
    所述ABR为第一FEC重新分配第二标签,并根据所述第二标签创建第二ILM转发表项;
    所述ABR将所述第一BGP-LU路由通告消息中的第一标签替换为所述第二标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
  5. 根据权利要求1所述的方法,其特征在于,该方法还包括:
    第二PE节点通过MP-BGP信令通道向第一PE节点发布第二VPN路由,以便第一PE节点根据接收到的所述第二VPN路由中携带的第二TPD确定到达第二VPN Prefix的标签转发路径;
    其中,所述第二TPD用于标识第二VPN报文达到BGP next hop的标签转发路径。
  6. 根据权利要求5所述的方法,其特征在于,在第二PE节点通过MP-BGP信令通道向第一PE节点发布第二VPN路由之前,该方法还包括:
    所述第二PE节点与所述第一PE节点创建第二VPN,并根据满足所述第二VPN业务要求的底层传输路径确定第二TPD。
  7. 根据权利要求5所述的方法,其特征在于,在第二PE节点通过MP-BGP信令通道向第一PE节点发布第二VPN路由之前,该方法还包括:
    第二PE节点通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第二BGP-LU路由,以便所述第一PE节点根据接收到的所述第二BGP-LU路由创建第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
    其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成。
  8. 根据权利要求7所述的方法,其特征在于,所述第二PE节点通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第二BGP-LU路由,包括:
    所述第二PE节点为所述第二FEC分配第三标签,创建第三ILM转发表项;
    所述第二PE节点向所述ABR发送第二BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第二BGP-LU Prefix路由通告消息携带所述第二TPD和所述第三标签;
    所述ABR根据接收的所述第二BGP-LU路由通告消息创建所述第二FEC对应的第四FTN转发表项,所述第四FTN转发表项关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
    所述ABR为第二FEC重新分配第四标签,并根据所述第四标签创建第四ILM转发表项;
    所述ABR将所述第二BGP-LU路由通告消息中的第三标签替换为所述第四标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
  9. 根据权利要求1或5所述的方法,其特征在于,
    TPD的格式为TLV格式,包括TPD Type和Sub-TLV,所述TPD type用来标识TPD由哪些Sub-TLV组成,所述Sub-TLV包括组成所述TPD的一种或多种Sub-TLV。
  10. 根据权利要求9所述的方法,其特征在于,
    所述TPD Type包括:
    type为1,表示TPD由Color Sub-TLV组成,标识一个由Color标识的到达BGP next hop的标签转发路径;
    type为2,表示TPD由IGP Prefix Algorithm Sub-TLV组成,标识一个基于指定Algorithm的到达BGP next hop的标签转发路径;
    type为3,表示TPD由Network Slice ID Sub-TLV组成,标识一个网络切片内的到达BGP next hop的标签转发路径;
    type为4,表示TPD由Network Slice ID Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的由Color标识的到达BGP next hop的标签转发路径;
    type为5,表示TPD由Network Slice ID Sub-TLV和IGP Prefix Algorithm Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的到达BGP next hop的标签转发路径;
    type为6,表示由Network Slice ID Sub-TLV,IGP Prefix Algorithm Sub-TLV和Color Sub-TLV组成,标识一条指定网络切片内的基于指定Algorithm的由Color标识的到达BGP next hop的TE标签转发路径。
  11. 一种构建传输路径的方法,包括:
    第一PE节点通过MP-BGP信令通道接收第二PE节点发布的第一VPN路由;
    其中,所述第一VPN路由携带第一传输路径描述符TPD,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径;
    第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径。
  12. 根据权利要求11所述的方法,其特征在于,在第一PE节点通过MP-BGP信令通道接收第二PE节点发布的第一VPN路由之前,该方法还包括:
    第一PE节点通过MP-BGP信令通道接收第二PE节点经过区域边界路由器ABR发布的第一BGP-LU路由;
    其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一前缀prefix组成
    所述第一PE节点根据接收到的所述第一BGP-LU路由创建所述第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径。
  13. 根据权利要求12所述的方法,其特征在于,所述第一PE节点通过MP-BGP信令通道接收第二PE节点经过区域边界路由器ABR发布的第一BGP-LU路由,包括:
    所述第二PE节点为所述第一FEC分配第一标签,创建第一ILM转发表项;
    所述第二PE节点向所述ABR发送第一BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第一BGP-LU Prefix路由通告消息携带所述第一TPD和所述第一标签;
    所述ABR根据接收的所述第一BGP-LU路由通告消息创建所述第一FEC对应的第二FTN转发表项,所述第二FTN转发表项关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
    所述ABR为第一FEC重新分配第二标签,并根据所述第二标签创建第二ILM转发表项;
    所述ABR将所述第一BGP-LU路由通告消息中的第一标签替换为所述第二标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
  14. 根据权利要求11所述的方法,其特征在于,该方法还包括:
    第一PE节点通过MP-BGP信令通道接收第二PE节点发布的第二VPN路由;其中,所述第二VPN路由携带第二TPD,所述第二TPD用于标识第二VPN报文到达BGP next hop的标签转发路径;
    第一PE节点根据接收到的所述第二VPN路由中携带的第二TPD确定到达第二VPN Prefix的标签转发路径。
  15. 根据权利要求14所述的方法,其特征在于,在第一PE节点通过MP-BGP信令通道接收第二PE节点发布的第二VPN路由之前,该方法还包括:
    第一PE节点通过MP-BGP信令通道经过区域边界路由器ABR接收第二PE节点发布的第二BGP-LU路由;
    其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成;
    所述第一PE节点根据接收到的所述第二BGP-LU路由创建所述第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径。
  16. 根据权利要求15所述的方法,其特征在于,所述第一PE节点通过MP-BGP信令通道经过区域边界路由器ABR接收第二PE节点发布的第二BGP-LU路由,包括:
    所述第二PE节点为所述第二FEC分配第三标签,创建第三ILM转发表项;
    所述第二PE节点向所述ABR发送第二BGP-LU路由通告消息并将BGP next-hop修改为所述第二PE节点的地址,所述第二BGP-LU Prefix路由通告消息携带所述第二TPD和所述第三标签;
    所述ABR根据接收的所述第二BGP-LU路由通告消息创建所述第二FEC对应的第四FTN转发表项,所述第四FTN转发表项关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
    所述ABR为第二FEC重新分配第四标签,并根据所述第四标签创建第四ILM转发表项;
    所述ABR将所述第二BGP-LU路由通告消息中的第三标签替换为所述第四标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
  17. 根据权利要求11或14所述的方法,其特征在于,所述第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径,包括:
    所述第一PE节点根据所述第一TPD得到第一FEC,根据所述第一FEC迭代到达第一VPN Prefix的标签转发路径;
    或者,所述第一PE节点根据接收到的所述第二VPN路由中携带的第二TPD确定到达第二VPN Prefix的标签转发路径,包括:
    所述第一PE节点根据所述第二TPD得到第二FEC,根据所述第二FEC迭代到达第二VPN Prefix的标签转发路径。
  18. 一种构建传输路径的方法,包括:
    区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第一BGP-LU路由转发给第一PE节点,以便所述根据接收到的所述第一BGP-LU路由创建所述第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
    其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一前缀prefix组成。
  19. 根据权利要求18所述的方法,其特征在于,所述区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第一BGP-LU路由转发给第一PE节点,包括:
    所述ABR接收所述第二PE节点发送的第一BGP-LU路由通告消息,所述第一BGP-LU Prefix路由通告消息携带所述第一TPD和所述第二PE为所述第一FEC分配的第一标签;
    所述ABR根据接收的所述第一BGP-LU路由通告消息创建所述第一FEC对应的第二FTN转发表项,所述第二FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
    所述ABR为第一FEC重新分配第二标签,并根据所述第二标签创建第二ILM转发表项;
    所述ABR将所述第一BGP-LU路由通告消息中的第一标签替换为所述第二标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
  20. 根据权利要求18所述的方法,其特征在于,该方法还包括:
    所述区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第二BGP-LU路由转发给第一PE节点,以便所述第一PE节点根据接收到的所述第二BGP-LU路由创建第二FEC对应的第三FTN转发表项,所述第三FTN转发表项中关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
    其中,所述第二BGP-LU路由携带所述第二TPD和第二FEC对应的标签,所述第二FEC由所述第二TPD和第二PE节点为所述第二BGP-LU路由配置的第二prefix组成。
  21. 根据权利要求20所述的方法,其特征在于,所述区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第二BGP-LU路由转发给第一PE节点,包括:
    所述ABR接收所述第二PE节点发送的第二BGP-LU路由通告消息,所述第二BGP-LU Prefix路由通告消息携带所述第二TPD和所述第二PE为第二FEC分配的第三标签;
    所述ABR根据接收的所述第二BGP-LU路由通告消息创建所述第二FEC对应的第四FTN转发表项,所述第四FTN转发表项关联由所述第二TPD标识的第二VPN报文到达BGP next hop的标签转发路径;
    所述ABR为第二FEC重新分配第四标签,并根据所述第四标签创建第四ILM转发表项;
    所述ABR将所述第二BGP-LU路由通告消息中的第三标签替换为所述第四标签并将BGP next-hop修改为所述ABR的地址后转发给所述第一PE节点。
  22. 一种第二PE节点,其特征在于,包括:
    发布单元,通过MP-BGP信令通道向第一PE节点发布第一VPN路由,以便第一PE节点根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;
    其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。
  23. 一种第一PE节点,其特征在于,包括:
    接收单元,通过MP-BGP信令通道接收第二PE节点发布的第一VPN路由;
    其中,所述第一VPN路由携带第一传输路径描述符TPD,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径;
    确定单元,根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径。
  24. 一种区域边界路由器ABR,其特征在于,包括:
    转发单元,用于区域边界路由器ABR通过MP-BGP信令通道将第二PE节点发布的第一BGP-LU路由转发给第一PE节点,以便所述第一PE节点根据接收到的所述第一BGP-LU路由创建第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
    其中,所述第一BGP-LU路由携带所述第一TPD和所述第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一前缀prefix组成。
  25. 一种构建传输路径的系统,其特征在于,包括:
    第二PE节点,用于通过MP-BGP信令通道向第一PE节点发布第一VPN路由;
    第一PE节点,用于根据接收到的所述第一VPN路由中携带的第一传输路径描述符TPD确定到达第一VPN Prefix的标签转发路径;
    其中,所述第一TPD用于标识第一VPN报文达到BGP next hop的标签转发路径。
  26. 根据权利要求25所述的系统,其特征在于,该系统还包括:区域边界路由器ABR;
    所述第二PE节点,还用于通过MP-BGP信令通道经过区域边界路由器ABR向第一PE节点发布第一BGP-LU路由;
    所述第一PE节点,还用于根据接收到的所述第一BGP-LU路由创建第一FEC对应的第一FTN转发表项,所述第一FTN转发表项中关联由所述第一TPD标识的第一VPN报文到达BGP next hop的标签转发路径;
    其中,所述第一BGP-LU路由携带所述第一TPD和第一FEC对应的标签,所述第一FEC由所述第一TPD和第二PE节点为所述第一BGP-LU路由配置的第一prefix组成。
  27. 一种第二PE节点,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至10中任一项所述构建传输路径的方法。
  28. 一种第一PE节点,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求11至17中任一项所述构建传输路径的方法。
  29. 一种区域边界路由器ABR,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求18至21中任一项所述构建传输路径的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有信息处理程序,所述信息处理程序被处理器执行时实现如权利要求1至21中任一项所述构建传输路径的方法的步骤。
PCT/CN2019/103466 2018-11-27 2019-08-30 一种路径构建的方法及相关设备 WO2020107977A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/297,332 US11991023B2 (en) 2018-11-27 2019-08-30 Path construction method and related device
EP19888731.7A EP3886379B1 (en) 2018-11-27 2019-08-30 Path construction method and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811426164.5A CN111224874B (zh) 2018-11-27 2018-11-27 一种路径构建的方法及相关设备
CN201811426164.5 2018-11-27

Publications (1)

Publication Number Publication Date
WO2020107977A1 true WO2020107977A1 (zh) 2020-06-04

Family

ID=70830425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103466 WO2020107977A1 (zh) 2018-11-27 2019-08-30 一种路径构建的方法及相关设备

Country Status (4)

Country Link
US (1) US11991023B2 (zh)
EP (1) EP3886379B1 (zh)
CN (1) CN111224874B (zh)
WO (1) WO2020107977A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4007235A1 (en) * 2020-11-30 2022-06-01 Huawei Technologies Co., Ltd. Route advertisement method, route generation method, and device
CN114726775A (zh) * 2020-06-24 2022-07-08 华为技术有限公司 一种路由信息发送方法、报文发送方法及相关装置
EP4199596A4 (en) * 2020-09-23 2024-01-17 Huawei Tech Co Ltd METHOD AND APPARATUS FOR TRANSMITTING ROUTING INFORMATION

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054960B (zh) * 2019-02-13 2024-04-26 华为技术有限公司 一种路径计算方法、装置及设备
US11888733B2 (en) 2020-09-27 2024-01-30 Juniper Networks, Inc. Label deduction with flexible-algorithm
CN115484152A (zh) * 2021-06-16 2022-12-16 华为技术有限公司 信息处理的方法、装置以及系统
CN117201379A (zh) * 2022-05-31 2023-12-08 中兴通讯股份有限公司 业务传输方法、设备和存储介质
US11949560B1 (en) * 2023-01-03 2024-04-02 Juniper Networks, Inc. Dynamic creation of overlay network slices using border gateway protocol flow specifications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106519A (zh) * 2006-07-12 2008-01-16 华为技术有限公司 自治系统边界路由器路由发布方法及自治系统边界路由器
CN102647328A (zh) * 2012-04-28 2012-08-22 华为技术有限公司 一种标签分配方法、设备与系统
CN106027391A (zh) * 2015-03-31 2016-10-12 瞻博网络公司 用于边界网关协议中的标签的语义信息
CN106713320A (zh) * 2016-12-23 2017-05-24 腾讯科技(深圳)有限公司 终端数据传输的方法和装置
US20170289032A1 (en) * 2016-03-29 2017-10-05 Cisco Technology, Inc. Extending nsh services into the vpn l2/l3 domain

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7668949B1 (en) * 2003-03-11 2010-02-23 Nortel Networks Limited Verification of configuration information in BGP VPNs
US8619774B2 (en) * 2004-10-26 2013-12-31 Cisco Technology, Inc. Method and apparatus for providing multicast messages within a virtual private network across a data communication network
US8179902B2 (en) * 2005-07-15 2012-05-15 Cisco Technology, Inc. Method and system for automatic generation of route distinguishers for virtual private networks
US7742477B1 (en) * 2006-02-03 2010-06-22 Cisco Technology, Inc. Interconnectivity between autonomous systems
US7522603B2 (en) 2006-03-14 2009-04-21 Cisco Technology, Inc. Technique for efficiently routing IP traffic on CE-CE paths across a provider network
US8189585B2 (en) * 2006-10-10 2012-05-29 Cisco Technology, Inc. Techniques for virtual private network fast convergence
US7969983B2 (en) * 2007-06-29 2011-06-28 Cisco Technology, Inc. Network scaling with summarized internet protocol label switched paths
US8098663B2 (en) * 2008-07-08 2012-01-17 Cisco Technology, Inc. Carrier's carrier without customer-edge-to-customer-edge border gateway protocol
US8773978B2 (en) * 2010-02-15 2014-07-08 Futurewei Technologies, Inc. System and method for protecting ingress and egress of a point-to-multipoint label switched path
US8705530B2 (en) * 2010-07-29 2014-04-22 At&T Intellectual Property I, L.P. Methods and apparatus to implement multipoint and replicated communication paths using upstream and recursive downstream label mappings
US9088519B2 (en) * 2012-06-15 2015-07-21 Juniper Networks, Inc. Allocating and distributing labels for packet encapsulation
US9178809B1 (en) 2013-07-01 2015-11-03 Juniper Networks, Inc. End-to-end traffic engineering label switched paths in seamless MPLS
CN112787935B (zh) * 2016-02-01 2022-12-06 华为技术有限公司 一种vpn路由通告方法、数据流转发方法及相关设备
EP3804238B1 (en) * 2018-05-30 2022-09-07 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for service provision in a communication network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101106519A (zh) * 2006-07-12 2008-01-16 华为技术有限公司 自治系统边界路由器路由发布方法及自治系统边界路由器
CN102647328A (zh) * 2012-04-28 2012-08-22 华为技术有限公司 一种标签分配方法、设备与系统
CN106027391A (zh) * 2015-03-31 2016-10-12 瞻博网络公司 用于边界网关协议中的标签的语义信息
US20170289032A1 (en) * 2016-03-29 2017-10-05 Cisco Technology, Inc. Extending nsh services into the vpn l2/l3 domain
CN106713320A (zh) * 2016-12-23 2017-05-24 腾讯科技(深圳)有限公司 终端数据传输的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BASHANDY A ET AL: "BGP Prefix Independent Convergence Draft-ietf-rtgwg-bgp-pic-05.txt", NETWORK WORKING GROUP INTERNET DRAFT, 25 May 2017 (2017-05-25), pages 1 - 30, XP015119845 *
See also references of EP3886379A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726775A (zh) * 2020-06-24 2022-07-08 华为技术有限公司 一种路由信息发送方法、报文发送方法及相关装置
EP4199596A4 (en) * 2020-09-23 2024-01-17 Huawei Tech Co Ltd METHOD AND APPARATUS FOR TRANSMITTING ROUTING INFORMATION
EP4007235A1 (en) * 2020-11-30 2022-06-01 Huawei Technologies Co., Ltd. Route advertisement method, route generation method, and device

Also Published As

Publication number Publication date
EP3886379B1 (en) 2024-04-24
EP3886379A1 (en) 2021-09-29
CN111224874A (zh) 2020-06-02
US20220014394A1 (en) 2022-01-13
EP3886379A4 (en) 2022-01-26
CN111224874B (zh) 2022-06-14
US11991023B2 (en) 2024-05-21

Similar Documents

Publication Publication Date Title
WO2020107977A1 (zh) 一种路径构建的方法及相关设备
CN110912795B (zh) 一种传输控制方法、节点、网络系统及存储介质
CN110944357B (zh) 一种网络切片的方法及装置
EP3200402B1 (en) Segment routing information obtainment method and segment routing network establishment method
WO2020029976A1 (zh) Vpn跨域的实现方法、装置和边界节点
US8098663B2 (en) Carrier's carrier without customer-edge-to-customer-edge border gateway protocol
US9444677B2 (en) Scalable edge node protection using IPv6 segment routing extension header
US9525619B2 (en) Scalable edge node protection using segment routing
EP3002913B1 (en) Tunnel establishment method, label allocation method, device, and network system
CN111385207B (zh) 一种业务数据的转发方法、网络设备及网络系统
WO2016198015A1 (zh) 一种报文传输的方法、装置和系统
US20140286195A1 (en) Service Instance Applied to MPLS Network
US11792044B2 (en) Offset label for aggregating multicasts from multiple virtual private networks on a single multicast distribution tree
US9253084B2 (en) Neighbor-label distribution with label distribution protocol
WO2015149598A1 (zh) 报文处理的方法及标签交换路由器
US9813332B2 (en) Method, device and system for establishing label switched path
WO2019205836A1 (zh) 一种数据报文转发的方法及装置
US9521072B2 (en) Method and network device for distributing multi-protocol label switching labels
US11563697B2 (en) Multiple label spaces in a label switched router
WO2016119461A1 (zh) 一种建立bgp lsp隧道的方法及网络设备
WO2022042610A1 (zh) 信息处理方法、网络控制器、节点及计算机可读存储介质
CN115250262A (zh) 消息发送方法及装置、消息接收方法及装置、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888731

Country of ref document: EP

Effective date: 20210625