WO2020107780A1 - 一种化学酶法制备(s)-1,2,3,4-四氢异喹啉-3-甲酸的方法 - Google Patents

一种化学酶法制备(s)-1,2,3,4-四氢异喹啉-3-甲酸的方法 Download PDF

Info

Publication number
WO2020107780A1
WO2020107780A1 PCT/CN2019/083840 CN2019083840W WO2020107780A1 WO 2020107780 A1 WO2020107780 A1 WO 2020107780A1 CN 2019083840 W CN2019083840 W CN 2019083840W WO 2020107780 A1 WO2020107780 A1 WO 2020107780A1
Authority
WO
WIPO (PCT)
Prior art keywords
tetrahydroisoquinoline
amino acid
carboxylic acid
reaction
reaction system
Prior art date
Application number
PCT/CN2019/083840
Other languages
English (en)
French (fr)
Inventor
吴坚平
居述云
施俊巍
杨立荣
钱明心
Original Assignee
苏州同力生物医药有限公司
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州同力生物医药有限公司, 浙江大学 filed Critical 苏州同力生物医药有限公司
Publication of WO2020107780A1 publication Critical patent/WO2020107780A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/002Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by oxidation/reduction reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/12Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
    • C07D217/14Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals
    • C07D217/16Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • C12P17/12Nitrogen as only ring hetero atom containing a six-membered hetero ring
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture
    • C12P41/001Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture by metabolizing one of the enantiomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention belongs to the technical field of biocatalysis, and in particular relates to a method for preparing (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid by chemical enzyme method.
  • (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) is an important pharmaceutical intermediate and is widely used in Synthesis of various organic small molecule drugs and peptide-based drugs.
  • (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid is an important component of the antihypertensive drug quinapril (Diversity-oriented synthesis of medically imported 1, 2, 3, 4 -tetrahydroisoquinoline-3-carboxylic(acic(Tic)derivatives and higher analogs[J].Org Biomol Chem, 2014, 12(45):9054-91.).
  • (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid can be used to synthesize small molecule antagonists containing tetrahydroisoquinoline nucleus, acting on the chemokine receptor CXCR4, thus It is expected to be used to treat HIV and other diseases (Discovery of tetrahydroisoquinoline-based CXCR4 antagonists [J]. ACS Med Chem Lett, 2013, 4(11): 1025-30.).
  • the method has low yield and many steps, which is not easy for industrial application.
  • Gong et al. prepared (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (racemic phenylalanine) as a raw material by chemical enzymatic method, and synthesized the racemic 1 by Pictet-Spengler reaction. 2,3,4-Tetrahydroisoquinoline-3-carboxylic acid, followed by esterification and lipase kinetic resolution to prepare (S)-configuration product. 23.8g of racemic ester hydrochloride (0.1mol), the mass ratio of lipase to substrate is 0.2, the reaction is 48h, the product ee>99%, the yield is 49.1%.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a new method for preparing (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid.
  • the method has the characteristics of mild reaction conditions, strong stereoselectivity, high reaction efficiency, relatively simple process, etc., and has industrial application prospects.
  • the method includes:
  • the racemic form of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid or the racemization of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid salt The body is a substrate, using D-amino acid oxidase as a catalyst to selectively catalyze the oxidative dehydrogenation of (R)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid to produce formula (II) The imine acid shown, but (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid is not catalyzed and remains in the reaction system;
  • an imidic acid reducing agent is added to the reaction system at one or more time points before the oxidative dehydrogenation reaction, during the oxidative dehydrogenation reaction and after the oxidative dehydrogenation reaction.
  • the imidic acid reducing agent is used to reduce the imidic acid produced by the oxidative dehydrogenation reaction to the racemate of the 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid or Salt racemate;
  • 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid salt may be an alkali metal salt or ammonium salt of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid Etc., for example, sodium 1,2,3,4-tetrahydroisoquinoline-3-carboxylate, potassium 1,2,3,4-tetrahydroisoquinoline-3-carboxylate, 1,2,3,4-tetrakis Hydrogen isoquinoline-3-carboxylic acid ammonium.
  • the D-amino acid oxidase is a combination of one or more selected from the following D-amino acid oxidases: D-amino acid oxidase derived from Trigonopsis variabilis CBS 4095 or a mutant thereof Or other D-amino acid oxidases with amino acid sequence homology greater than 80%, D-amino acid oxidase from Fusarium Graminearum CS3005 or its mutants or other homology with amino acid sequence homology greater than 80% D-amino acid oxidase, D-amino acid oxidase from Fusarium poae 2516 or its mutants or other D-amino acid oxidases with amino acid sequence homology greater than 80%, from Fusarium solanacearum ( Fusarium (solani) M-0718 D-amino acid oxidase or its mutants or other D-amino acid oxidases with amino acid sequence homology greater than 80%
  • the D-amino acid oxidase has an amino acid sequence as shown in SEQ ID NO.1, SEQ ID NO.2, SEQ ID NO.3 or SEQ ID NO.4.
  • the catalyst is a crude enzyme solution or pure enzyme containing the isolated D-amino acid oxidase or an immobilized enzyme or a cell that expresses the D-amino acid oxidase intracellularly.
  • the cell is an engineering bacterium expressing D-amino acid oxidase
  • the host cell of the engineering bacterium is E. coli BL21(DE3).
  • the engineered bacterium contains an expression vector pET-28a(+), and the D-amino acid oxidase gene is connected to the expression vector pET-28a(+).
  • the added amount of the catalyst is based on the wet weight of the cells after centrifugation at 8000 rpm for 10 minutes, and the added amount of the cells is 1 to 5% by weight of the reaction system.
  • the oxidative dehydrogenation reaction is performed in an aerobic environment, the oxidative dehydrogenation reaction also generates hydrogen peroxide, and the method further includes performing the oxidative dehydrogenation Before the reaction, at one or more time points during the oxidative dehydrogenation reaction and after the oxidative dehydrogenation reaction, a catalase for catalytically decomposing the hydrogen peroxide is also added to the reaction system.
  • the catalase is bovine liver catalase lyophilized powder.
  • the enzyme activity of the lyophilized powder of bovine liver catalase is 4000 U/mg.
  • the enzyme activity ratio of the catalase to the D-amino acid oxidase is 1000-2000:1.
  • the reaction in step (1), is performed in the presence of coenzyme flavin adenine dinucleotide (FAD).
  • FAD coenzyme flavin adenine dinucleotide
  • the reaction in the presence of FAD helps to further increase the conversion rate.
  • FAD is equivalent to or excessive to the substrate.
  • the prepared crude enzyme solution of D-amino acid oxidase already contains a sufficient amount of FAD. In the case of directly using the crude enzyme solution, it is not necessary to add FAD. In the case of using pure D-amino acid oxidase enzyme, an appropriate amount of FAD may be added as needed.
  • the reaction system in step (1), is first constructed, and then the reaction system is controlled to react at a set temperature and in an aerobic environment, and the reaction system includes the bottom Substances, the catalyst, the solvent, the imidic acid reducing agent, and the selective catalase used to catalyze the decomposition of hydrogen peroxide, and the reaction system optionally includes a pH buffer and/or a pH adjusting agent.
  • the solvent is water, first dissolve the substrate in the aqueous solution of the pH buffer, and then selectively add the pH adjuster to prepare a substrate with a pH of 6-9 The solution is then added to the catalyst, imidate reducing agent and/or catalase to obtain the reaction system. More preferably, the pH value of the substrate solution is controlled to 7-8.
  • the pH buffering agent is phosphate, which can be formulated into a phosphate buffer solution by dissolving it in water.
  • the pH adjusting agent is ammonia water, alkali metal hydroxide or its aqueous solution.
  • the pH adjusting agent is 20 wt% to 35 wt% ammonia.
  • the pH adjusting agent is an aqueous solution of sodium hydroxide or potassium hydroxide.
  • the concentration of the starting substrate in the reaction system is controlled to be 1-20 g/L.
  • the set temperature is 20 to 70°C. More preferably, the set temperature is 30-50°C.
  • the reducing agent for the imine acid can be a reducing agent well known in the art.
  • the imidic acid reducing agent is a combination of one or more selected from the group consisting of sodium cyanoborohydride, ammonia borane, and sodium borohydride. Imine acid has very good reactivity.
  • the added amount of the imidic acid reducing agent is 3-20 equivalents of the molar amount of the substrate charged.
  • step (2) the pH value of the reaction system is adjusted to 5.0-6.0, the protein is denatured and precipitated by heating, suction filtration, freeze drying, hot ethanol dissolution and filtration, after the filtrate is concentrated, the crystal is cooled, dried and dried
  • the present invention has the following beneficial effects compared with the prior art:
  • the present invention unexpectedly found that D-amino acid oxidase can efficiently catalyze the oxidative dehydrogenation of (R)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, while for (S)-1,2 , 3,4-Tetrahydroisoquinoline-3-carboxylic acid has basically no catalytic effect, and combined with the use of imidic acid reducing agent, the yield is further improved.
  • the method of the present invention is used to prepare (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid with mild reaction conditions, high reaction efficiency and yield, and strong stereoselectivity (ee value>99%) ,Simple process.
  • FIG. 1 is a high-performance liquid detection pattern of 0 hour sampling in the reaction system in Example 3, wherein the retention time 8.77min is (R)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid; Time 11.238min is (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid;
  • FIG. 2 is a high-performance liquid detection pattern of the reaction system sampled in the reaction system in Example 3 for 24 hours.
  • the present invention provides a new method for preparing (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid and its derivatives, racemic 1,2,3,4-tetrahydroisoquinoline Porphyrin-3-carboxylic acid (or ammonia salt) as a substrate, using isolated D-amino acid oxidase or cells expressing D-amino acid oxidase in the cell as a catalyst, combined with an imine acid reducing agent to perform oxidative dehydrogenation- Chemical reduction reaction to obtain (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid.
  • the specific principle is as follows: racemic 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid as a substrate, stereoselective catalysis using D-amino acid oxidase (R)-1,2,3,4- Tetrahydroisoquinoline-3-carboxylic acid, generated by oxidative dehydrogenation to the corresponding imidic acid, (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid was not retained in the reaction system by catalysis .
  • Iminic acid generates a racemic substrate through the action of an imidic acid reducing agent, which is then stereoselectively catalyzed by (D)-1,2,3,4-tetrahydroisoquine under the action of D-amino acid oxidase
  • the quinoline-3-carboxylic acid can increase the yield of (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, and the ee value is >99%.
  • the generated hydrogen peroxide can be catalytically decomposed into water and oxygen by catalase. The reaction process is as follows:
  • the reaction be carried out in the presence of coenzyme flavin adenine dinucleotide (FAD).
  • FAD coenzyme flavin adenine dinucleotide
  • the coenzyme flavin adenine dinucleotide (FAD) is reduced to FADH 2.
  • one molecule Oxygen is reduced to hydrogen peroxide (H 2 O 2 ), and FADH 2 is oxidized to FAD.
  • Hydrogen peroxide is decomposed into water and oxygen under the catalysis of catalase.
  • the D-amino acid oxidase is derived from Triangle yeast, Fusarium graminearum, Fusarium oxysporum, and Fusarium solani.
  • the D-amino acid oxidase is derived from Trigonopsis variabilis CBS 4095, Fusarium graminearum CS3005, Fusarium poa 2516, or Fusarium solani M -0718.
  • the cell is an engineered bacterium expressing D-amino acid oxidase, and the host cell of the engineered bacterium is E. coli BL21(DE3).
  • the engineered bacterium contains the expression vector pET-28a(+), and the D-amino acid oxidase gene is connected to the expression vector pET-28a(+).
  • D-amino acid oxidase is crude enzyme solution, or pure enzyme, or immobilized enzyme, or resting cells of engineered bacteria expressing recombinant enzyme.
  • Catalase is used in the form of lyophilized powder.
  • the concentration of the substrate racemic 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid in the reaction system is 1-20 g/L.
  • the addition amount of the catalyst D-amino acid oxidase is calculated as the wet weight of the cells after centrifugation at 8000 rpm for 10 minutes, and the addition amount of the cells is 1 to 5% by weight of the reaction solution.
  • the imidic acid reducing agent may be sodium cyanoborohydride, ammonia borane, sodium borohydride or other chemical agents capable of reducing the imine.
  • the addition amount of the imine acid reducing agent in the reaction system is 3-20 equivalents of the molar amount of the substrate charged.
  • the enzyme activity ratio of catalase to D-amino acid oxidase is 1000-2000:1.
  • the catalase is a lyophilized powder of bovine liver catalase with an enzyme activity of 4000 U/mg.
  • the reaction temperature is 20 to 70°C
  • the time is 6 to 72 hours
  • the pH of the reaction solution is 6 to 9; more preferably, the reaction temperature is 30 to 50°C and the time is 12 to 48 hours.
  • the pH value of the reaction is controlled by a phosphate buffer solution to be 7-8.
  • genes used in the examples of the present invention are synthesized by Biotechnology (Shanghai) Co., Ltd.
  • E.coli BL21 (DE3) strains were purchased from Novagen;
  • DNA marker, PrimeStar DNA polymerase, low molecular weight standard protein and other molecular biological reagents were purchased from TaKaRa.
  • DNA marker, PrimeStar DNA polymerase, low molecular weight standard protein and other molecular biological reagents were purchased from TaKaRa.
  • the present invention analyzes each product and substrate of the catalytic reaction by high-performance liquid chromatography (HPLC).
  • HPLC analysis method of racemic 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid is: chromatography column/ ZWIX(-); column temperature/25°C; flow rate/0.5mL/min; detection wavelength/UV210nm; mobile phase: HPLC grade methanol/acetonitrile (50/50, v/v) (add 50mM formic acid and 25mM dihexylamine) .
  • HPLC grade methanol/acetonitrile 50/50, v/v
  • Example 1 Screening of D-amino acid oxidase and construction of genetically engineered bacteria expressing D-amino acid oxidase
  • microbial-derived D-amino acid oxidases can be divided into two categories: 1) Preference for amino acids with smaller substrate side chain groups (such as D-alanine), such as Fusarium oxysporum (Fusarium oxysporum)-derived D-amino acid oxidase; 2) Preference for amino acids with larger substrate side chain groups (such as D-phenylalanine), such as D-amino acid oxidase from Trigonopsis variabilis ( POLLEGIONI L, MOLLA G, SACCHI S, et al. Properties, and applications, of microbial, D-amino acid, oxidationases: current state, and perspectives [J].
  • D-alanine such as Fusarium oxysporum (Fusarium oxysporum)-derived D-amino acid oxidase
  • D-phenylalanine such as D-amino acid oxidase from Trigonopsis variabilis
  • the above D-amino acid oxidase gene sequence was codon optimized and sent to Biotech (Shanghai) Co., Ltd. for full gene synthesis, and cloned into the recombinant expression plasmid pET-28a(+).
  • the recombinant plasmid was transferred into the expression host E.coli BL21 (DE3). After verification by sequencing, the final concentration of 25% glycerol was added to the obtained engineering bacterial solution and placed at -80°C for preservation.
  • liquid LB medium peptone 10g/L, yeast powder 5g/L, NaCl 10g/L, dissolved in deionized water, set the volume, sterilized at 121°C for 20min, and ready for use. If it is solid LB medium, add 15g/L agar.
  • the prepared reaction system was placed in a 30°C metal bath shaking reactor for 120 min.
  • the reaction system with phosphate buffer instead of crude enzyme solution was used as a control.
  • the sample was diluted 10 times by mobile phase and then qualitatively analyzed by high performance liquid chromatography.
  • reaction yield of (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid is 84.1%, (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid
  • the ee value is 99.7%.
  • the substrate solution was prepared as in Example 3.
  • reaction yield of (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid is 78.9%, (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid
  • the ee value is 99.1%.
  • the substrate solution was prepared as in Example 3.
  • reaction yield of (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid is 78.2%, (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid
  • the ee value is 99.6%.
  • the substrate solution was prepared as in Example 3.
  • reaction yield of (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid is 80.6%
  • (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid The ee value reached 99.1%.
  • the substrate solution was prepared as in Example 3.
  • the reaction tube was placed in a constant temperature water bath at 30°C, magnetically stirred, and reacted for 24 hours. After the reaction, the content of two configurations of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid in the reaction system was detected by high performance liquid chromatography.
  • the reaction yield of (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid is 86.5%
  • (S)-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid The ee value reached 99.4%.
  • the substrate solution and the reaction system are as in Example 3.
  • the content of 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid in the taken samples was detected by high performance liquid chromatography.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种化学酶法制备(S)-1,2,3,4-四氢异喹啉-3-甲酸的方法,其包括:以外消旋1,2,3,4-四氢异喹啉-3-甲酸为底物,利用D-氨基酸氧化酶立体选择性催化R型异构体,经氧化脱氢生成相应的亚胺酸,S型异构体未被催化保留在反应体系中,亚胺酸经亚胺酸还原剂作用生成外消旋底物,再在D-氨基酸氧化酶的作用下被立体选择性催化其中的R型异构体,由此制备S型异构体。本发明方法反应收率可达80.6%以上,ee值>99%,且具有反应条件温和、立体选择性强、反应效率高、产率高、工艺相对简单等特点。

Description

一种化学酶法制备(S)-1,2,3,4-四氢异喹啉-3-甲酸的方法 技术领域
本发明属于生物催化技术领域,具体涉及一种化学酶法制备(S)-1,2,3,4-四氢异喹啉-3-甲酸的方法。
背景技术
(S)-1,2,3,4-四氢异喹啉-3-甲酸(1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid)是一种重要的药物中间体,被广泛应用于多种有机小分子药物以及肽基药物的合成。例如,(S)-1,2,3,4-四氢异喹啉-3-甲酸是降压药喹那普利的重要组成部分(Diversity-oriented synthesis of medicinally important 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(Tic)derivatives and higher analogs[J].Org Biomol Chem,2014,12(45):9054-91.)。此外,(S)-1,2,3,4-四氢异喹啉-3-甲酸可用于合成含有四氢异喹啉母核的小分子拮抗剂,作用于趋化因子受体CXCR4,从而有望用于治疗HIV等疾病(Discovery of tetrahydroisoquinoline-based CXCR4 antagonists[J].ACS Med Chem Lett,2013,4(11):1025-30.)。
现有技术中,制备光学纯(S)-1,2,3,4-四氢异喹啉-3-甲酸的方法有化学手性合成和生物催化动力学拆分两种。研究人员最初利用Pictet-Spengler反应制备光学纯(S)-1,2,3,4-四氢异喹啉-3-甲酸,以L-苯丙氨酸为原料,在浓酸与高温条件下,与甲醛缩合生成目标产物,该法工艺相对简单,但生成的产物会发生部分消旋化。随后,Bischler-Nepieralski反应,[2+2+2]环加成方法等也被用于制备(S)-1,2,3,4-四氢异喹啉-3-甲酸及其衍生物,该类方法路线较复杂,成本高(Diversity-oriented synthesis of medicinally important 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid(Tic)derivatives and higher analogs[J].Org Biomol Chem,2014,12(45):9054-91.)。近年来,Kurata等通过臭氧分解、氧化及去保护作用三步不对成合成(S)-1,2,3,4-四氢异喹啉-3-甲酸(Synthesis of Optically Pure(R)-and(S)-Tetrahydroisoquinoline-1-and-3-Carboxylic Acids[J].Synthesis,2015,47(09):1238-44.)。该法产率低,步骤较多,不易于工业化应用。龚等利用化学酶法制备(S)-1,2,3,4-四氢异喹啉-3-甲酸即以外消旋苯丙氨酸为原料,经Pictet-Spengler反应合成外消旋1,2,3,4-四氢异喹啉-3-甲酸,然后经酯化作用、脂肪酶动力学拆分制备(S)-构型产物。23.8g外消旋酯盐酸盐(0.1mol),脂肪酶和底物质量比为0.2,反应48h,产物ee>99%,收率为49.1%。该法所得产物立体选择性高,工艺相对简单,但仍存在最大理论产率只有50%的问题(化学酶法合成光学纯(S)-1,2,3,4-四氢喹啉-3-羧酸的研究[J].现代化工,2003,23(12):23-5.)。
发明内容
本发明的目的在于克服现有技术的不足,提供一种新的制备(S)-1,2,3,4-四氢异喹啉-3-甲酸的方法。该方法具有反应条件温和、立体选择性强、反应效率高、工艺相对简单等特点,具有工业化应用前景。
为实现上述目的,本发明采取的技术方案如下:
一种化学酶法制备(S)-1,2,3,4-四氢异喹啉-3-甲酸(I)的方法,
Figure PCTCN2019083840-appb-000001
所述方法包括:
(1)以1,2,3,4-四氢异喹啉-3-甲酸的外消旋体或1,2,3,4-四氢异喹啉-3-甲酸盐的外消旋体为底物,利用D-氨基酸氧化酶作为催化剂,选择性催化(R)-1,2,3,4-四氢异喹啉-3-甲酸进行氧化脱氢反应,生成式(II)所示的亚胺酸,而(S)-1,2,3,4-四氢异喹啉-3-甲酸未被催化,保留在反应体系中;
Figure PCTCN2019083840-appb-000002
其中,在进行所述氧化脱氢反应前、所述氧化脱氢反应过程中和所述氧化脱氢反应后中的一个或多个时间点向所述反应体系中加入亚胺酸还原剂,所述亚胺酸还原剂用于将所述氧化脱氢反应生成的所述亚胺酸还原为所述1,2,3,4-四氢异喹啉-3-甲酸的外消旋体或其盐的外消旋体;
(2)将所述(S)-1,2,3,4-四氢异喹啉-3-甲酸与反应体系分离。
进一步地,所述1,2,3,4-四氢异喹啉-3-甲酸盐可以为1,2,3,4-四氢异喹啉-3-甲酸的碱金属盐或铵盐等,具体例如1,2,3,4-四氢异喹啉-3-甲酸钠、1,2,3,4-四氢异喹啉-3-甲酸钾、1,2,3,4-四氢异喹啉-3-甲酸铵。
根据本发明,所述D-氨基酸氧化酶为选自如下D-氨基酸氧化酶中的一种或多种的组合:来源于三角酵母(Trigonopsis variabilis)CBS 4095的D-氨基酸氧化酶或其突变体或与其氨基酸序列同源性大于80%的其它D-氨基酸氧化酶、来自禾谷镰刀菌(Fusarium graminearum)CS3005的D-氨基酸氧化酶或其突变体或与其氨基酸序列同源性大于80%的其它D-氨基酸氧化酶、来自梨孢镰刀菌(Fusarium poae)2516的D-氨基酸氧化酶或其突变体或与其氨基酸序列同源性大于80%的其它D-氨基酸氧化酶,来自茄病镰刀菌(Fusarium solani)M-0718的D-氨基酸氧化酶或其突变体或与其氨基酸序列同源性大于80%的其它D-氨基酸氧化酶。
优选地,所述D-氨基酸氧化酶具有如SEQ ID NO.1、SEQ ID NO.2、SEQ ID NO.3或SEQ ID NO.4所示的氨基酸序列。
根据本发明的一些具体且优选的方面,所述的催化剂为含有所述离体的D-氨基酸氧化酶的粗酶液或者纯酶或者固定化酶或胞内表达D-氨基酸氧化酶的细胞。
进一步地,所述细胞为表达D-氨基酸氧化酶的工程菌,所述工程菌的宿主细胞为E.coli BL21(DE3)。
根据本发明的一个具体方面,所述工程菌含有表达载体pET-28a(+),所述D-氨基酸氧化酶基因连接在表达载体pET-28a(+)上。
根据本发明的一些具体且优选的方面,所述催化剂的添加量以8000rpm离心10min后 的细胞湿重计,所述细胞的添加量为所述反应体系重量的1~5%。
根据本发明的一些具体且优选的方面,使所述氧化脱氢反应在有氧环境中进行,所述氧化脱氢反应还生成有过氧化氢,所述方法还包括在进行所述氧化脱氢反应前、所述氧化脱氢反应过程中和所述氧化脱氢反应后中的一个或多个时间点还向所述反应体系中加入用于催化分解所述过氧化氢的过氧化氢酶。
进一步地,所述过氧化氢酶为牛肝过氧化氢酶冻干粉。根据本发明的一个具体方面,所述牛肝过氧化氢酶冻干粉的酶活为4000U/mg。
根据本发明的一些优选方面,所述过氧化氢酶与所述D-氨基酸氧化酶的酶活比为1000~2000∶1。
根据本发明的一些优选方面,步骤(1)中,使所述反应在辅酶黄素腺嘌呤二核苷酸(FAD)存在下进行。使反应在FAD存在下进行,有助于进一步提高转化率。进一步地,FAD与所述的底物等当量或者是过量的。一般情况下,所制备的D-氨基酸氧化酶的粗酶液中已经含有足够量的FAD,在直接采用粗酶液的情况下,无需再另外添加FAD。在使用D-氨基酸氧化酶纯酶的情况下,可以根据需要再外加适量的FAD。
根据本发明的一些具体且优选的方面,步骤(1)中,首先构建所述反应体系,然后控制所述反应体系处于设定温度和有氧环境中进行反应,所述反应体系包括所述底物、所述催化剂、溶剂、亚胺酸还原剂和选择性的用于催化分解过氧化氢的过氧化氢酶,所述反应体系还选择性的包括pH缓冲剂和/或pH调节剂。
根据本发明的一个优选方面,所述溶剂是水,先将底物溶解于所述pH缓冲剂的水溶液中,再选择性的加入所述pH调节剂,配制pH值为6~9的底物溶液,然后加入所述催化剂、亚胺酸还原剂和/或过氧化氢酶,得到所述反应体系。更优选地,控制底物溶液的pH值为7~8。
根据本发明的一个具体且优选方面,所述pH缓冲剂为磷酸盐,将其溶于水可以配制成磷酸盐缓冲溶液。
根据本发明的一些优选方面,所述的pH调节剂为氨水、碱金属氢氧化物或其水溶液。
根据本发明的一个具体且优选方面,所述的pH调节剂为20wt%~35wt%氨水。
根据本发明的又一具体方面,所述的pH调节剂为氢氧化钠或氢氧化钾的水溶液。
根据本发明的一些具体且优选的方面,步骤(1)中,控制所述反应体系中起始底物的浓度为1~20g/L。
根据本发明的优选方面,所述设定温度为20~70℃。更优选地,所述设定温度为30~50℃。
根据本发明,所述的亚胺酸还原剂可以采用本领域熟知的还原剂。根据本发明的一些具体且优选的方面,所述亚胺酸还原剂为选自氰基硼氢化钠、氨硼烷和硼氢化钠中的一种或多种的组合,这些还原剂被证明对于亚胺酸具有非常好的反应活性。
根据本发明的一些具体且优选的方面,所述亚胺酸还原剂的添加量为所述底物投料摩尔量的3~20个当量。
进一步地,步骤(2)中,将反应体系的pH值调至5.0-6.0,加热使蛋白变性析出,抽 滤,冷冻干燥,热乙醇溶解过滤,滤液浓缩后,冷却析晶,干燥,即得所述式(I)所示的化合物。
由于以上技术方案的实施,本发明与现有技术相比具有如下有益效果:
本发明意外发现D-氨基酸氧化酶可高效选择性催化(R)-1,2,3,4-四氢异喹啉-3-甲酸进行氧化脱氢反应,而对于(S)-1,2,3,4-四氢异喹啉-3-甲酸基本无催化作用,同时结合亚胺酸还原剂的使用,进一步提高了产率。采用本发明方法来制备(S)-1,2,3,4-四氢异喹啉-3-甲酸,反应条件温和,反应效率及收率高,立体选择性强(ee值>99%),工艺简单。
附图说明
图1为实施例3中反应体系中0小时取样的高效液相检测图谱,其中,保留时间8.77min为(R)-1,2,3,4-四氢异喹啉-3-甲酸;保留时间11.238min为(S)-1,2,3,4-四氢异喹啉-3-甲酸;
图2为实施例3中反应体系中反应24小时取样的高效液相检测图谱。
具体实施方式
本发明提供一种制备(S)-1,2,3,4-四氢异喹啉-3-甲酸及其衍生物的新方法,以外消旋1,2,3,4-四氢异喹啉-3-甲酸(或氨盐)为底物,利用离体的D-氨基酸氧化酶或胞内表达D-氨基酸氧化酶的细胞等作为催化剂,结合亚胺酸还原剂,进行氧化脱氢-化学还原反应,获得(S)-1,2,3,4-四氢异喹啉-3-甲酸。
具体原理为:以外消旋1,2,3,4-四氢异喹啉-3-甲酸为底物,利用D-氨基酸氧化酶立体选择性催化(R)-1,2,3,4-四氢异喹啉-3-甲酸,经氧化脱氢生成相应的亚胺酸,(S)-1,2,3,4-四氢异喹啉-3-甲酸未被催化保留在反应体系中。亚胺酸经亚胺酸还原剂作用生成外消旋底物,再在D-氨基酸氧化酶的作用下被立体选择性催化其中的(R)-1,2,3,4-四氢异喹啉-3-甲酸,可实现(S)-1,2,3,4-四氢异喹啉-3-甲酸产率的提高,且ee值>99%。其中生成的过氧化氢可经过氧化氢酶催化分解成水和氧气。反应过程示意如下:
Figure PCTCN2019083840-appb-000003
进一步地,优选使反应在辅酶黄素腺嘌呤二核苷酸(FAD)存在下进行,在催化过程中,辅酶黄素腺嘌呤二核苷酸(FAD)被还原为FADH 2,随后,一分子氧被还原为过氧化氢(H 2O 2),而FADH 2则被氧化为FAD。过氧化氢在过氧化氢酶的催化下分解成水和氧气。反应过程示意如下:
Figure PCTCN2019083840-appb-000004
作为优选,所述D-氨基酸氧化酶来源于三角酵母、禾谷镰刀菌、梨孢镰刀菌、茄病镰刀菌。具体的,所述D-氨基酸氧化酶来源于三角酵母(Trigonopsis variabilis)CBS 4095、禾谷镰刀菌(Fusarium graminearum)CS3005、梨孢镰刀菌(Fusarium poae)2516或茄病镰刀菌(Fusarium solani)M-0718。作为优选,所述细胞为表达D-氨基酸氧化酶的工程菌,所述工程菌的宿主细胞为E.coli BL21(DE3)。具体地,所述工程菌含有表达载体pET-28a(+),所述D-氨基酸氧化酶基因连接在表达载体pET-28a(+)上。
反应体系中,D-氨基酸氧化酶的使用形式为粗酶液,或者是纯酶,或者固定化酶,或者表达重组酶的工程菌静息细胞。过氧化氢酶的使用形式为冻干粉末。
作为优选,反应体系中底物外消旋1,2,3,4-四氢异喹啉-3-甲酸的浓度为1~20g/L。
作为一个具体且优选的方面,反应体系中,催化剂D-氨基酸氧化酶的添加量以8000rpm离心10min后的细胞湿重计,所述细胞的添加量为反应液重量的1~5%。
作为优选,反应体系中,亚胺酸还原剂可以是氰基硼氢化钠、氨硼烷、硼氢化钠或其它能够还原亚胺的化学试剂。反应体系中亚胺酸还原剂的添加量为底物投料摩尔量的3~20个当量。
作为优选,反应体系中,过氧化氢酶与D-氨基酸氧化酶的酶活比为1000~2000∶1。
作为一个具体方面,过氧化氢酶为牛肝过氧化氢酶冻干粉末,酶活为4000U/mg。
作为优选,反应体系中,反应的温度为20~70℃,时间为6~72小时,反应液的pH值为6~9;更优选地,反应的温度为30~50℃,时间为12~48小时。作为一个具体且优选的方面,通过磷酸缓冲溶液控制反应的pH值为7~8。
以下结合具体实施例,对本发明做进一步说明。应理解,以下实施例仅用于说明本发明而非用于限制本发明的范围。
本发明实施例中的实验方法如无特别说明均为常规方法。
本发明实施例中所用基因由生工生物工程(上海)股份有限公司合成。E.coli BL21(DE3)菌种购自Novagen公司;DNA marker、PrimeStar DNA聚合酶、低分子量标准蛋白等分子生物学实验试剂购自TaKaRa。基因克隆及表达具体操作可参见J.萨姆布鲁克等编的《分子克隆实验指南》。
本发明通过高效液相色谱(HPLC)分析催化反应的各个产物和底物。外消旋1,2,3,4-四氢异喹啉-3-甲酸的HPLC分析方法为:色谱柱/
Figure PCTCN2019083840-appb-000005
ZWIX(-);柱温/25℃;流速 /0.5mL/min;检测波长/UV210nm;流动相:HPLC级甲醇/乙腈(50/50,v/v)(加入50mM甲酸和25mM二己胺)。具体各相关物质出峰情况见图1。
实施例1 D-氨基酸氧化酶的筛选及表达D-氨基酸氧化酶的基因工程菌的构建
根据底物特异性的不同,微生物来源的D-氨基酸氧化酶可分为两大类:1)偏好底物侧链基团较小的氨基酸(如D-丙氨酸),如尖孢镰刀菌(Fusarium oxysporum)来源的D-氨基酸氧化酶;2)偏好底物侧链基团较大的氨基酸(如D-苯丙氨酸),如三角酵母(Trigonopsis variabilis)来源的D-氨基酸氧化酶(POLLEGIONI L,MOLLA G,SACCHI S,et al.Properties and applications of microbial D-amino acid oxidases:current state and perspectives[J].Appl Microbiol Biotechnol,2008,78(1):1-16.)。分别用这两种D-氨基酸氧化酶的氨基酸序列在美国国立生物技术信息中心(NCBI)数据库(https://www.ncbi.nlm.nih.gov/)中进行BLASTp分析,选取序列一致性不同的4种D-氨基酸氧化酶作进一步研究(如表1所示)。
表1 四种不同来源的D-氨基酸氧化酶
Figure PCTCN2019083840-appb-000006
将上述D-氨基酸氧化酶基因序列经密码子优化后送生工生物工程(上海)股份有限公司进行全基因合成,并克隆到重组表达质粒pET-28a(+)上。重组质粒转入表达宿主E.coli BL21(DE3)中,经测序验证无误后,向所得工程菌菌液中加入终浓度为25%的甘油并置于-80℃保藏备用。
实施例2
2.1微生物的培养
液体LB培养基组成:蛋白胨10g/L,酵母粉5g/L,NaCl 10g/L,用去离子水溶解后定容,121℃灭菌20min,待用。若为固体LB培养基,则另加15g/L琼脂。
将含有D-氨基酸氧化酶基因的工程菌接种于5mL液体LB(含50μg/ml卡那霉素)培养基中,37℃,200rpm振荡培养8小时左右。按1%(V/V)的接种量接种于100mL液体LB(含50μg/ml卡那霉素)培养基中培养,OD 600达到0.6-0.8后,加入诱导剂异丙基硫代半乳糖苷(终浓度为0.1mM),18℃诱导15h。培养结束后,将培养液倒入100mL离心管中4000rpm离心10min,弃上清,收集菌体细胞,用50mM磷酸缓冲液(pH=8.0)洗涤细胞两次,放于-80℃超低温冰箱中保存,备用。
2.2粗酶液的制备
将菌体重悬于25mL磷酸缓冲液(50mM,pH=8.0)中,超声破碎菌悬液,离心后得到的上清为含D-氨基酸氧化酶的粗酶液。
2.3高效液相色谱检测反应体系中各对映体含量
反应体系(1ml):10g/L E 1、E 2、E 3或E 4湿菌体(超声波破碎),2g/L底物外消旋1,2,3,4-四氢异喹啉-3-甲酸,反应介质为磷酸盐缓冲液(50mM,pH=8.0)。将配好的反应体系置于30℃金属浴振荡反应器内反应120min。磷酸盐缓冲液代替粗酶液的反应体系作为对照。样品经流动相稀释10倍后用高效液相色谱进行定性分析。
结果表明:与对照相比,E 1、E 2、E 3以及E 4能够立体选择性催化(R)-1,2,3,4-四氢异喹啉-3-甲酸反应,而(S)-1,2,3,4-四氢异喹啉-3-甲酸含量基本保持不变。
实施例3 FsDAAO-NH 3·BH 3制备(S)-1,2,3,4-四氢异喹啉-3-甲酸
底物溶液的配制:用50mM的磷酸盐缓冲溶液(pH=8.0)配制5g/L外消旋1,2,3,4-四氢异喹啉-3-甲酸溶液并用30%氨水调节溶液pH值至8.0。
向100mL反应器中加入24mL底物溶液,6mL FsDAAO粗酶液(粗酶液中已含有足量辅酶FAD,因此,粗酶液反应体系中不需额外添加FAD),12mg过氧化氢酶冻干粉末和0.4g NH 3·BH 3。混匀后,立即取样,作为“0小时”。将反应体系置于30℃恒温水浴中,磁力搅拌,反应24小时,取样。高效液相色谱检测所取样品中1,2,3,4-四氢异喹啉-3-甲酸两种构型的含量。
0小时、24小时取样的检测结果分别如图1和图2所示,FsDAAO表现出严格的R-构型立体选择性,(S)-1,2,3,4-四氢异喹啉-3-甲酸的反应收率为81.2%(反应收率=实际产物浓度(g/L)/理论产物浓度(g/L)×100%),(S)-1,2,3,4-四氢异喹啉-3-甲酸的ee值为99.2%。
实施例4 FsDAAO-NH 3·BH 3制备(S)-1,2,3,4-四氢异喹啉-3-甲酸
底物溶液的配制:用50mM的磷酸盐缓冲溶液(pH=8.0)配制2.5g/L外消旋1,2,3,4-四氢异喹啉-3-甲酸溶液并用30%氨水调节溶液pH值至8.0。
向100mL反应器中加入24mL底物溶液,6mL FsDAAO粗酶液(粗酶液中已含有足量辅酶FAD,因此,粗酶液反应体系中不需额外添加FAD),12mg过氧化氢酶冻干粉末和0.25g NH 3·BH 3。混匀后,立即取样,作为“0小时”。将反应体系置于30℃恒温水浴中,磁力搅拌,反应16小时,取样。高效液相色谱检测所取样品中1,2,3,4-四氢异喹啉-3-甲酸两种构型的含量。(S)-1,2,3,4-四氢异喹啉-3-甲酸的反应收率为84.1%,(S)-1,2,3,4-四氢异喹啉-3-甲酸的ee值为99.7%。
实施例5 FgDAAO-NaBH 4制备(S)-1,2,3,4-四氢异喹啉-3-甲酸
按实施例3的方法配制底物溶液。
向100mL反应器中加入20mL底物溶液,10mL FgDAAO粗酶液(粗酶液中已含有足量辅酶FAD,因此,粗酶液反应体系中不需额外添加FAD),15mg过氧化氢酶冻干粉末和0.2g NaBH 4。混匀后,立即取样,作为“0小时”。将反应体系置于30℃恒温水浴中,磁力搅拌,反应24小时,取样。高效液相色谱检测所取样品中1,2,3,4-四氢异喹啉-3-甲酸两种构型的含量。(S)-1,2,3,4-四氢异喹啉-3-甲酸的反应收率为78.9%,(S)-1,2,3,4-四氢异喹啉-3-甲酸的ee值为99.1%。
实施例6 FpDAAO-NaCNBH 3制备(S)-1,2,3,4-四氢异喹啉-3-甲酸
按实施例3的方法配制底物溶液。
向100mL反应器中加入20mL底物溶液,10mL FpDAAO粗酶液(粗酶液中已含有足量辅酶FAD,因此,粗酶液反应体系中不需额外添加FAD),10mg过氧化氢酶冻干粉末和0.35g NaCNBH 3。混匀后,立即取样,作为“0小时”。将反应体系置于30℃恒温水浴中,磁力搅拌,反应30小时,取样。高效液相色谱检测所取样品中1,2,3,4-四氢异喹啉-3-甲酸两种构型的含量。(S)-1,2,3,4-四氢异喹啉-3-甲酸的反应收率为78.2%,(S)-1,2,3,4-四氢异喹啉-3-甲酸的ee值为99.6%。
实施例7 TvDAAO-NH 3·BH 3制备(S)-1,2,3,4-四氢异喹啉-3-甲酸
按实施例3的方法配制底物溶液。
向100mL反应器中加入10mL底物溶液,20mL TvDAAO粗酶液(粗酶液中已含有足量辅酶FAD,因此,粗酶液反应体系中不需额外添加FAD),10mg过氧化氢酶冻干粉末和0.17g NH 3·BH 3。混匀后,立即取样,作为“0小时”。将反应体系置于30℃恒温水浴中,磁力搅拌,反应36小时,取样。高效液相色谱检测所取样品中1,2,3,4-四氢异喹啉-3-甲酸两种构型的含量。(S)-1,2,3,4-四氢异喹啉-3-甲酸的反应收率为80.6%,(S)-1,2,3,4-四氢异喹啉-3-甲酸的ee值达99.1%。
实施例8 纯酶FsDAAO-NH 3·BH 3制备(S)-1,2,3,4-四氢异喹啉-3-甲酸
按实施例3的方法配制底物溶液。
取1.6ml底物溶液加入到5mL反应管中,再加入FsDAAO纯酶液,黄素腺嘌呤二核苷酸钠盐,过氧化氢酶,NH 3·BH 3,并用磷酸盐缓冲溶液(50mM,pH=8.0)将反应总体积补到2ml,FsDAAO纯酶的终浓度为0.2mg/ml,FAD终浓度为100μM,28mg NH 3·BH 3(20个当量),过氧化氢酶终浓度为1mg/ml。混匀后,取出50μL,作为“0小时”并进行HPLC分析。将反应管置于30℃恒温水浴中,磁力搅拌,反应24小时。反应结束后用高效液相色谱检测反应体系中1,2,3,4-四氢异喹啉-3-甲酸两种构型的含量。(S)-1,2,3,4-四氢异喹啉-3-甲酸的反应收率为86.5%,(S)-1,2,3,4-四氢异喹啉-3-甲酸的ee值达99.4%。
实施例9 (S)-1,2,3,4-四氢异喹啉-3-甲酸的制备与分离
底物溶液及反应体系如实施例3。
反应结束后,将反应体系的pH值调至5.0-6.0。99℃水浴,待蛋白变性析出后,抽滤。取滤液冷冻干燥后,用热乙醇溶解并过滤,以除去过量的氨硼烷。取滤液于50℃条件下旋蒸,将反应体积浓缩10倍。置于冰上,冷却后,抽滤。将析出的白色晶体,小心刮下,置于烘箱中,烘干并称重。称取0.01g白色烘干晶体,用50mM磷酸盐缓冲溶液(pH=8.0)定容至10ml。高效液相色谱检测所取样品中1,2,3,4-四氢异喹啉-3-甲酸两种构型的含量。(S)-1,2,3,4-四氢异喹啉-3-甲酸的分离产率为74.2%(分离产率=实际分离得到的产物的量(mg)/理论的产物的量(mg)×100%),(S)-1,2,3,4-四氢异喹啉-3-甲酸的ee值达99.4%。
对比例 FsDAAO制备(S)-1,2,3,4-四氢异喹啉-3-甲酸
底物溶液的配制:用50mM的磷酸盐缓冲溶液(pH=8.0)配制5g/L的外消旋1,2,3,4-四氢异喹啉-3-甲酸溶液并用30%氨水调节溶液pH值至8.0。
取1.6ml底物溶液加入到5mL反应管中,再加入0.4mL FsDAAO粗酶液(粗酶液中已含有足量辅酶FAD,因此,粗酶液反应体系中不需额外添加FAD)。混匀后,取样,作为“0小时”并进行HPLC分析。将反应管置于30℃恒温水浴中,磁力搅拌,反应24小时。反应结束后用HPLC法检测反应体系中1,2,3,4-四氢异喹啉-3-甲酸两种构型的含量,即可得知反应体系中1,2,3,4-四氢异喹啉-3-甲酸两种构型的浓度(g/L)。FsDAAO表现出严格的R-构型立体选择性,(S)-1,2,3,4-四氢异喹啉-3-甲酸的转化率为49.9%(转化率=[(初始外消旋底物的浓度(g/L)-残余的底物浓度(g/L))/初始外消旋底物的浓度(g/L)]×100%),(S)-1,2,3,4-四氢异喹啉-3-甲酸的ee值达99%以上。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (13)

  1. 一种化学酶法制备(S)-1,2,3,4-四氢异喹啉-3-甲酸(I)的方法,
    Figure PCTCN2019083840-appb-100001
    所述方法包括:
    (1)以1,2,3,4-四氢异喹啉-3-甲酸的外消旋体或1,2,3,4-四氢异喹啉-3-甲酸盐的外消旋体为底物,利用D-氨基酸氧化酶作为催化剂,选择性催化(R)-1,2,3,4-四氢异喹啉-3-甲酸进行氧化脱氢反应,生成式(II)所示的亚胺酸,而(S)-1,2,3,4-四氢异喹啉-3-甲酸未被催化,保留在反应体系中;
    Figure PCTCN2019083840-appb-100002
    其中,在进行所述氧化脱氢反应前、所述氧化脱氢反应过程中和所述氧化脱氢反应后中的一个或多个时间点向所述反应体系中加入亚胺酸还原剂,所述亚胺酸还原剂用于将所述氧化脱氢反应生成的所述亚胺酸还原为所述1,2,3,4-四氢异喹啉-3-甲酸的外消旋体或1,2,3,4-四氢异喹啉-3-甲酸盐的外消旋体;
    (2)将所述(S)-1,2,3,4-四氢异喹啉-3-甲酸与反应体系分离。
  2. 如权利要求1所述的方法,其特征在于,所述1,2,3,4-四氢异喹啉-3-甲酸盐为1,2,3,4-四氢异喹啉-3-甲酸的碱金属盐或铵盐。
  3. 如权利要求1所述的方法,其特征在于,所述D-氨基酸氧化酶为选自如下D-氨基酸氧化酶中的一种或多种的组合:来源于三角酵母(Trigonopsis variabilis)CBS 4095的D-氨基酸氧化酶或其突变体或与其氨基酸序列同源性大于80%的其它D-氨基酸氧化酶、来自禾谷镰刀菌(Fusarium graminearum)CS3005的D-氨基酸氧化酶或其突变体或与其氨基酸序列同源性大于80%的其它D-氨基酸氧化酶、来自梨孢镰刀菌(Fusarium poae)2516的D-氨基酸氧化酶或其突变体或与其氨基酸序列同源性大于80%的其它D-氨基酸氧化酶,来自茄病镰刀菌(Fusarium solani)M-0718的D-氨基酸氧化酶或其突变体或与其氨基酸序列同源性大于80%的其它D-氨基酸氧化酶。
  4. 如权利要求1或3所述的方法,其特征在于,所述的催化剂为含有所述离体的D-氨基酸氧化酶的粗酶液或者纯酶或者固定化酶或胞内表达D-氨基酸氧化酶的细胞。
  5. 如权利要求4所述的方法,其特征在于,所述细胞为表达D-氨基酸氧化酶的工程菌,所述工程菌的宿主细胞为E.coli BL21(DE3)。
  6. 如权利要求5所述的方法,其特征在于,所述工程菌含有表达载体pET-28a(+),所述D-氨基酸氧化酶基因连接在表达载体pET-28a(+)上。
  7. 如权利要求1所述的方法,其特征在于,使所述氧化脱氢反应在有氧环境中进行,所述氧化脱氢反应还生成过氧化氢,所述方法还包括在进行所述氧化脱氢反应前、所述氧化脱 氢反应过程中和所述氧化脱氢反应后中的一个或多个时间点还向所述反应体系中加入用于催化分解所述过氧化氢的过氧化氢酶。
  8. 如权利要求7所述的方法,其特征在于,所述过氧化氢酶为牛肝过氧化氢酶冻干粉。
  9. 如权利要求1所述的方法,其特征在于,步骤(1)中,使所述氧化脱氢反应在辅酶黄素腺嘌呤二核苷酸存在下进行。
  10. 如权利要求1所述的方法,其特征在于,步骤(1)中,首先构建所述反应体系,然后控制所述反应体系处于设定温度和有氧环境中进行反应,所述反应体系包括所述底物、所述催化剂、溶剂、亚胺酸还原剂和选择性的用于催化分解过氧化氢的过氧化氢酶,所述反应体系还选择性的包括pH缓冲剂和/或pH调节剂。
  11. 如权利要求10所述的方法,其特征在于,所述溶剂是水,先将底物溶解于所述pH缓冲剂的水溶液中,再选择性的加入所述pH调节剂,配制pH值为6~9的底物溶液,然后加入所述催化剂、亚胺酸还原剂和选择性的过氧化氢酶,得到所述反应体系。
  12. 如权利要求10所述的方法,其特征在于,步骤(1)中,控制所述反应体系中起始底物的浓度为1~20g/L,所述设定温度为20~70℃;所述亚胺酸还原剂的添加量为所述底物投料摩尔量的3~20个当量。
  13. 如权利要求1所述的方法,其特征在于,所述亚胺酸还原剂为选自氰基硼氢化钠、氨硼烷和硼氢化钠中的一种或多种的组合。
PCT/CN2019/083840 2018-11-30 2019-04-23 一种化学酶法制备(s)-1,2,3,4-四氢异喹啉-3-甲酸的方法 WO2020107780A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811454875.3A CN111254181B (zh) 2018-11-30 2018-11-30 一种化学酶法制备(s)-1,2,3,4-四氢异喹啉-3-甲酸的方法
CN201811454875.3 2018-11-30

Publications (1)

Publication Number Publication Date
WO2020107780A1 true WO2020107780A1 (zh) 2020-06-04

Family

ID=70851907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083840 WO2020107780A1 (zh) 2018-11-30 2019-04-23 一种化学酶法制备(s)-1,2,3,4-四氢异喹啉-3-甲酸的方法

Country Status (2)

Country Link
CN (1) CN111254181B (zh)
WO (1) WO2020107780A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755552B (zh) * 2021-04-15 2023-04-18 中国科学院天津工业生物技术研究所 手性稠环四氢异喹啉类生物碱及其类似物的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194020A (zh) * 2005-06-09 2008-06-04 大赛璐化学工业株式会社 L-氨基酸的制造方法
US20110086396A1 (en) * 2005-08-02 2011-04-14 Kaneka Corporation D-amino acid oxidase, and method for production of l-amino acid, 2-oxo acid, or cyclic imine
CN104557911A (zh) * 2013-10-17 2015-04-29 苏州同力生物医药有限公司 一种左旋吡喹酮的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194020A (zh) * 2005-06-09 2008-06-04 大赛璐化学工业株式会社 L-氨基酸的制造方法
US20110086396A1 (en) * 2005-08-02 2011-04-14 Kaneka Corporation D-amino acid oxidase, and method for production of l-amino acid, 2-oxo acid, or cyclic imine
CN104557911A (zh) * 2013-10-17 2015-04-29 苏州同力生物医药有限公司 一种左旋吡喹酮的制备方法

Also Published As

Publication number Publication date
CN111254181A (zh) 2020-06-09
CN111254181B (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
WO2019228083A1 (zh) 羰基还原酶突变体及其在环戊二酮类化合物还原中的应用
WO2017119731A1 (ko) Co 수화효소 및 이를 이용한 개미산의 제조방법
CN110628841B (zh) 酶催化不对称合成右美沙芬关键中间体的新方法
EP3894548A1 (en) Engineered ketoreductase polypeptides and uses thereof
CN105624128B (zh) 一种固定化单胺氧化酶及其在合成手性氮杂双环化合物中的应用
WO2019091366A1 (zh) 一种利用活性包涵体制备光学纯l-叔亮氨酸的方法
WO2016138641A1 (zh) 假丝酵母及其羰基还原酶的产生及应用
WO2020107780A1 (zh) 一种化学酶法制备(s)-1,2,3,4-四氢异喹啉-3-甲酸的方法
WO2019128387A1 (zh) 一种酶法拆分制备(s)-1,2,3,4-四氢异喹啉-1-甲酸及其衍生物的方法
CN111471736B (zh) 制备c1,2-位脱氢甾体化合物的方法
WO2020107781A1 (zh) 一种酶法拆分制备(s)-1,2,3,4-四氢异喹啉-3-甲酸的方法
CN111254170B (zh) 一种多酶耦合制备(s)-1,2,3,4-四氢异喹啉-3-甲酸的方法
WO2020034660A1 (zh) 一种制备(s)-1,2,3,4-四氢异喹啉-1-甲酸及其衍生物的方法
WO2019184936A1 (zh) 一种制备(s)-1,2,3,4-四氢异喹啉-1-甲酸及其衍生物的方法
CN111518851A (zh) 一种固定化酶连续制备[14/15n]-l-瓜氨酸的方法
CN112410380A (zh) 一种2,4-二氟苄胺的制备方法
AU2020103435A4 (en) Method for preparing (s)-1,2,3,4-tetrahydroisoquinoline-1-carboxylic acid and derivatives thereof
CN114045271B (zh) 固定化羰基还原酶及其在制备(2r,3s)-2-羟基-4-苯基丁烷衍生物的应用
CN111500549B (zh) 制备c1,2-位脱氢甾体化合物的酶及其应用
CN114990138B (zh) 基因、表达载体、菌株及在提高头孢菌素c产量中的应用
CN114574454B (zh) 一种短链脱氢酶及其突变体和应用
US11999976B2 (en) Engineered ketoreductase polypeptides and uses thereof
CN112442523A (zh) 一种酶法拆分制备(r)-1,2,3,4-四氢异喹啉-1-甲酸及其衍生物的方法
CN115109760A (zh) 单胺氧化酶及其在制备药物中间体中的应用
CN117802059A (zh) 一种美国白蛾性信息素的酶工艺合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890108

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890108

Country of ref document: EP

Kind code of ref document: A1