WO2020107668A1 - 基于心肌血流量和ct图像的微循环阻力指数计算方法 - Google Patents

基于心肌血流量和ct图像的微循环阻力指数计算方法 Download PDF

Info

Publication number
WO2020107668A1
WO2020107668A1 PCT/CN2019/071204 CN2019071204W WO2020107668A1 WO 2020107668 A1 WO2020107668 A1 WO 2020107668A1 CN 2019071204 W CN2019071204 W CN 2019071204W WO 2020107668 A1 WO2020107668 A1 WO 2020107668A1
Authority
WO
WIPO (PCT)
Prior art keywords
coronary
image
coronary artery
blood flow
myocardial
Prior art date
Application number
PCT/CN2019/071204
Other languages
English (en)
French (fr)
Inventor
霍云飞
刘广志
吴星云
王之元
Original Assignee
苏州润心医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州润心医疗器械有限公司 filed Critical 苏州润心医疗器械有限公司
Priority to JP2021529764A priority Critical patent/JP7236769B2/ja
Publication of WO2020107668A1 publication Critical patent/WO2020107668A1/zh
Priority to US17/330,901 priority patent/US11901081B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10104Positron emission tomography [PET]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10108Single photon emission computed tomography [SPECT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion

Definitions

  • the invention relates to the field of coronary artery imaging evaluation, in particular to a calculation method of microcirculation resistance index based on myocardial blood flow and CT images.
  • Coronary heart disease is a serious heart disease, and percutaneous coronary intervention (PCI) has become an important method for the treatment of coronary heart disease.
  • PCI percutaneous coronary intervention
  • ACS acute coronary syndrome
  • ACS acute coronary syndrome
  • IMR may be an ideal indicator to meet the above conditions.
  • IMR is an index that reflects the resistance of coronary microcirculation. It is defined as the reciprocal of the coronary artery pressure (Pd) divided by the average conduction time (Tmn) in the state of maximum congestion. In other words, the product of Pd and Tmn, the unit is mmHg ⁇ s. IMR ⁇ 25 is normal,> 30 is abnormal, suggesting that the microcirculation resistance is increased, and 25-30 is the gray area.
  • the existing IMR measurement method is to record coronary pressure and temperature synchronously through a 0.014 inch soft pressure guide wire.
  • the temperature difference of the two temperature sensors on the guide wire rod can detect the time difference of the temperature from the guide catheter to the temperature of the tip
  • the average mean transit time (Tmn) of the susceptor operation can be obtained by defining the product of P d and Tmn.
  • Coronary CTA can accurately assess the degree of coronary stenosis and identify the nature of tube wall plaque. It is a non-invasive and simple operation method for diagnosing coronary artery disease. It can be used as the first choice for screening high-risk groups. Therefore, if the blood vessels of patients with coronary heart disease are intervened, the coronary arteries of the patients should be evaluated by CTA.
  • the noninvasive microcirculation resistance index calculated by coronary CTA does not require additional imaging or drugs, and can fundamentally avoid unnecessary coronary angiography and revascularization treatment. However, because CTA cannot measure coronary flow velocity in the hyperemic state, the microcirculation resistance index cannot be directly calculated.
  • the object of the present invention is to provide a microcirculation resistance index calculation method for contrast images and hydrodynamic models to determine resting myocardial blood flow and coronary blood flow reserve (CFR) by noninvasive measurement, Furthermore, the maximum congestion state flow rate in different blood vessels in the coronary artery tree and the maximum congestion state flow rate V 1 can be determined, and the microcirculation resistance index can be obtained quickly, accurately and automatically.
  • CFR coronary blood flow reserve
  • a calculation method of microcirculation resistance index based on myocardial blood flow and CT images includes the following steps:
  • S01 Segment the heart CT image, obtain the heart image through morphological operation, perform histogram analysis on the heart image to obtain the ventricular atrial image, and obtain the myocardial image by comparing the heart image and the ventricular atrial image to determine the myocardial volume;
  • S02 processing the aortic image to obtain a complete aortic complementary image, and performing regional growth to obtain an aortic image containing a coronary artery ostium. Based on the aortic image containing the coronary artery ostium and the full aortic complementary image, a coronary artery ostium is obtained Images to determine the coronary ostia;
  • S03 Use the coronary ostia as the seed point on the myocardial image, extract the coronary artery through regional growth, calculate the average grayscale and average variance of the coronary artery, and extract the coronary tree along the direction of the coronary artery according to the grayscale distribution of the coronary artery;
  • S04 binarize the coronary artery image and draw an isosurface image to obtain a three-dimensional grid image of the coronary artery;
  • step S02 after the image containing the coronary ostium is obtained in step S02, the connected domain analysis is performed on the image containing the coronary ostium, and each connected domain is identified with different gray labels to determine the coronary ostium.
  • the ascending aorta and the center line are extracted using the feature that the aorta has a circular cross section to obtain an aorta image.
  • the binarization of the coronary artery image in step S04 includes:
  • step S05 the cardiac ultrasound (MCE) or single photon emission computed tomography (SPECT) or positron emission tomography (PET) or cardiac nuclear magnetic (MRI) or CT perfusion is used to determine the static Resting myocardial blood flow and coronary flow reserve (CFR)
  • MCE cardiac ultrasound
  • SPECT single photon emission computed tomography
  • PET positron emission tomography
  • MRI cardiac nuclear magnetic
  • CT perfusion is used to determine the static Resting myocardial blood flow and coronary flow reserve (CFR)
  • the step S06 includes:
  • the step S07 includes:
  • P, ⁇ , ⁇ are flow velocity, pressure, blood flow density, blood flow viscosity
  • the inlet boundary condition is: the inlet flow velocity V 1 of the coronary stenosis blood vessel in the maximum congestion state;
  • the step S07 includes:
  • represents the density of blood
  • u z and u r represent the flow velocity in z direction and r direction
  • represents the dynamic viscosity of blood
  • p represents the pressure of blood
  • the inlet boundary condition is: the inlet velocity V 1 of the coronary stenosis blood vessel in the maximum congestion state
  • the step S07 further includes calculating the pressure difference from the inlet to the outlet with a three-dimensional model for different types of bending of the blood vessel, and calculating against the two-dimensional axisymmetric model to establish a pair of bending types for storing various types Database of correction coefficients for two-dimensional axisymmetric results;
  • the invention can quickly, accurately and fully obtain the microcirculation resistance index through the myocardial blood flow and the CT image of the heart. Through non-invasive measurement, the operation is simple, greatly reducing the difficulty and risk of surgery, and can be widely applied in the clinic.
  • FIG. 1 is a flowchart of the method of the present invention
  • Figure 2 is the result of myocardial segmentation of cardiac CT images
  • Figure 3 is the result of aortic segmentation with coronary entrance
  • Figure 4 is the result of coronary artery segmentation
  • Figure 5 is the result of coronary artery segmentation
  • Figure 6 is a grid model of the coronary artery segmentation results
  • FIG. 7 is a schematic diagram of the blood flow of the heart and coronary arteries.
  • the calculation method of the microcirculation resistance index IMR based on myocardial blood flow and CT images of the present invention includes extracting myocardial images, extracting coronary ostia, extracting coronary arteries, generating a coronary artery mesh model, and determining the resting state Myocardial blood flow and coronary flow reserve (CFR), calculation of the total flow at the entrance of the coronary artery in the maximum congestion state, calculation of the blood flow velocity V1 in the congestion state, and determination of the microcirculation resistance index. It includes the following steps:
  • the heart CT image is segmented, the heart image is obtained through morphological operation, the heart image is subjected to histogram analysis to obtain the ventricular atrial image, and the heart image is obtained by making the difference between the heart image and the ventricular atrial image, as shown in FIG. 2.
  • Morphological expansion is performed on the binary image of the aortic image to obtain a binary image of the full aorta, and a complementary image of the full aorta is obtained by pixel inversion.
  • the region is grown according to the average grayscale of the points on the center line of the aorta, and an image of the aorta containing the coronary ostium is obtained, as shown in FIG. 3.
  • the coronary artery is taken as the seed point, and the coronary artery is extracted by regional growth.
  • the average grayscale and average variance of the coronary artery are calculated.
  • the coronary artery tree is extracted along the direction of the coronary artery, as shown in the figure 5 shows.
  • the coronary artery image data V1 is obtained.
  • the voxels in the data form a cube spatially, and the pixel values of the voxels belonging to the coronary artery section are not 0 (the pixel value is approximately between -3000 and 3000), and the rest The voxel pixel values are all 0.
  • the data needs to be transformed into spatial three-dimensional grid data V3 in order to facilitate the calculation in step five.
  • a voxel is defined as an extremely small hexahedron, with eight vertices on a cube composed of four pixels between adjacent upper and lower layers.
  • the isosurface is a set of points in space that have a certain attribute value. It can be expressed as:
  • c is the pixel value 1 given during the three-dimensional reconstruction.
  • the processing steps for the 3D model include:
  • P, ⁇ , ⁇ are flow velocity, pressure, blood flow density, blood flow viscosity, respectively.
  • the inlet boundary condition is: the inlet flow velocity V1 of the coronary stenosis vessel in the maximum congestion state;
  • represents the density of blood
  • u z and u r respectively represent the flow velocity in the z direction and r direction
  • represents the dynamic viscosity of blood
  • p represents the pressure of blood
  • the inlet boundary condition is: the inlet velocity V 1 of the coronary stenosis blood vessel in the maximum congestion state

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Quality & Reliability (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Vascular Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种基于心肌血流量和CT图像的微循环阻力指数计算方法,包括通过提取心肌图像,确定心肌体积;定位冠状动脉口,对冠状动脉精确分割;通过对冠状动脉体数据的边缘检测,生成计算所需要的网格模型;通过无创测量确定静息态心肌血流量和CFR;计算最大充血态下的冠脉入口处的总流量;确定冠脉树中不同血管里面最大充血态的流量,进而确定最大充血态的流速V1;得到最大充血状态下的平均传导时间Tmn,以V1作为冠脉入口流速,并计算冠脉入口到冠脉狭窄远端的压力降ΔP,狭窄远端冠状动脉内平均压Pd=Pa-ΔP,计算微循环阻力指数。基于心脏CT图像,能快速准确的全自动得到微循环阻力指数。

Description

基于心肌血流量和CT图像的微循环阻力指数计算方法 技术领域
本发明涉及冠状动脉影像学评价领域,具体地涉及一种基于心肌血流量和CT图像的微循环阻力指数计算方法。
背景技术
冠心病是严重的心脏疾病,经皮冠脉动脉介入(PCI)已成为冠心病治疗的一个重要手段,多年的研究表明,通过PCI治疗冠心病尤其是急性冠脉综合征(acute coronary syndrome,ACS)的病死率得以显著降低,但已有的研究表明,即使通过冠脉介入或冠脉搭桥术治疗,仍有25%患者在心外膜血管成功重建后,并未能实现组织水平心肌再灌注,其主要原因在于冠脉微循环功能障碍。冠脉微循环功能受损是决定急性心肌梗塞预后的独立危险因素,因此对患者冠脉微循环功能状态的评估越来越受到重视。
目前评估冠脉微循环可以通过负荷心电图、放射性核素显像技术、核磁共振成像技术等方法。但以上各种评估技术受检查技术手段本身及检查人员影响较大,不能精确评估冠脉微循环功能,同时这些指标反映的是心外膜血管及微循环共同作用的结果。我们需要一个更精确,更稳定的指标,其只反映冠脉微循环功能状态,不是心外膜血管的影响。目前IMR可能是能满足上述条件的一个理想指标。IMR是反映冠状动脉微循环阻力的指标,被定义为冠脉远端动脉压力(Pd)除以最大充血状态下的平均传导时间(Tmn)的倒数,换言之,即Pd与Tmn的乘积,单位为mmHg·s。IMR<25为正常,>30为异常,提示微循环阻力升高,而25-30为灰区。
现有的IMR测量方法是通过0.014英寸软压力导丝同步记录冠脉压力和温度,导丝杆上的两个温度感受器探测到温度变化的时间差就可知道盐水从指引导管到达导丝头端温度感受器运行的平均传导时间(transit mean time,Tmn),根据定义P d与Tmn的乘积就可得出IMR值。但上述压力导丝测量IMR需要介入血管末端,增加手术难度和风险,同时压力导丝昂贵的价格也限制其大规模应用。
冠脉CTA能准确评估冠脉狭窄程度,且能辨别管壁斑块性质,是一种 无创、操作简单的诊断冠状动脉病变检查方法,可作为筛查高危人群的首选方法。因此,如果对于冠心病患者的血管进行干预,前期应该对患者冠脉进行CTA的评价。
通过冠脉CTA计算无创获得的微循环阻力指数无需额外影像检查或药物,能从根本上避免不必要的冠脉血管造影与血运重建治疗。但是因为CTA无法测量充血态下冠脉流速,无法直接计算微循环阻力指数。
发明内容
为了解决上述的技术问题,本发明目的是:提供一种于造影图像和流体力学模型的微循环阻力指数计算方法,通过无创测量确定静息态心肌血流量和冠状动脉血流储备(CFR),进而确定冠脉树中不同血管里面最大充血态的流量,进而确定最大充血态的流速V 1,能快速、准确、全自动得到微循环阻力指数。
本发明的技术方案是:
一种基于心肌血流量和CT图像的微循环阻力指数计算方法,包括以下步骤:
S01:对心脏CT图像进行分割,通过形态学操作得到心脏图像,对该心脏图像进行直方图分析得到心室心房图像,通过心脏图像与心室心房图像做差得到心肌图像,确定心肌体积;
S02:对主动脉图像进行处理得到全主动脉互补图像,进行区域生长,得到含有冠状动脉口的主动脉图像,根据含有冠状动脉口的主动脉图像与全主动脉互补图像,得到含有冠状动脉口的图像,确定冠状动脉口;
S03:在心肌图像上以冠状动脉口为种子点,通过区域生长提取冠状动脉,计算冠状动脉的平均灰度和平均方差,根据冠脉灰度分布,沿着冠状动脉方向提取冠脉树;
S04:将冠状动脉图像进行二值化,绘制等值面图像,得到冠状动脉三维网格图像;
S05:计算得到最大充血态下的冠脉入口处的总流量Q total=心肌体积×心肌血流量×CFR,CFR为冠状动脉血流储备;
S06:计算充血态下的血流速度V 1和最大充血状态下的平均传导时间 Tmn;
S07:将V 1作为冠脉狭窄血管的入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP,狭窄远端冠状动脉内平均压P d=P a-ΔP,其中,P a是主动脉平均压,得到微循环阻力指数IMR=P d*Tmn。
优选的技术方案中,所述步骤S02中得到含有冠状动脉口的图像后,对含有冠状动脉口的图像进行连通域分析,用不同的灰度标签标识各个连通域,确定冠状动脉口。
优选的技术方案中,所述步骤S02中,在心脏图像上,利用主动脉截面成圆形的特征,提取升主动脉及中心线,得到主动脉图像。
优选的技术方案中,所述步骤S04中冠状动脉图像二值化,包括:
遍历冠状动脉图像V1中的体素,如果体素像素A1等于0,则该像素值不变;如果A1不等于0,则将A1的像素值设为1,得到一个新的数据V2。
优选的技术方案中,所述步骤S05中通过心脏超声(MCE)或者单光子发射计算机断层成像术(SPECT)或者正电子发射断层成像术(PET)或者心脏核磁(MRI)或者CT灌流,确定静息态心肌血流量和冠状动脉血流储备(CFR)
优选的技术方案中,所述步骤S06包括:
S61:基于流量体积标度律和心脏CT三维重建的心表冠状动脉树,确定树内任意一根血管内的血流量Q=Q total×(V/V total) 3/4,其中,V total是心脏CT三维重建的所有心表冠状动脉的血体之和,V是心表冠状动脉树内任意一根血管及其下游血管中的血体之和;
S62:基于流量体积标度律和心脏CT三维重建的心表冠状动脉树,确定树内任意一根血管内的血流速度V 1=Q/D,其中,D是该血管的平均直径;
S63:根据冠脉血管长度L和流速V 1得到最大充血状态下的平均传导时间Tmn=L/V 1
优选的技术方案中,其特征在于,所述步骤S07包括:
对血管三维网格进行求解,用数值法求解连续性和Navier-Stokes方程:
Figure PCTCN2019071204-appb-000001
Figure PCTCN2019071204-appb-000002
其中,
Figure PCTCN2019071204-appb-000003
P,ρ,μ分别为流速、压力、血流密度、血流粘性;
入口边界条件为:最大充血态下的冠脉狭窄血管的入口流速V 1
通过三维计算流体力学计算每个冠脉狭窄的压力降ΔP 1、ΔP 2、ΔP 3…,冠脉入口到冠脉狭窄远端的压力降ΔP=∑ΔP i(i=1,2,3…),狭窄远端冠状动脉内平均压P d=P a-ΔP,其中,P a是主动脉平均。
优选的技术方案中,其特征在于,所述步骤S07包括:
基于CT重构的几何结构,将有狭窄的血管拉直,构建二维轴对称模型,划分二维网格,用数值法求解连续性和Navier-Stokes方程:
Figure PCTCN2019071204-appb-000004
Figure PCTCN2019071204-appb-000005
Figure PCTCN2019071204-appb-000006
其中,ρ表示血液的密度,u z、u r分别表示z向、r方向的流速,μ表示血液的动力粘度,p表示血液的压强;
入口边界条件为:最大充血态下的冠脉狭窄血管的入口流速V 1
通过二维计算流体力学计算每个冠脉狭窄的压力降ΔP 1、ΔP 2、ΔP 3…,冠脉入口到冠脉狭窄远端的压力降ΔP=∑ΔP i(i=1,2,3…),狭窄远端冠状动脉内平均压P d=P a-ΔP,其中,P a是主动脉平均压。
优选的技术方案中,所述步骤S07还包括,针对血管不同类型的弯曲,用三维模型计算从入口到出口的压力差,对照二维轴对称模型计算,建立用于存储各种类型的弯曲对二维轴对称结果的修正系数的数据库;
得到压力后对照数据库中的修正系数,得到修正后的从入口到出口的压力差,然后计算IMR。
与现有技术相比,本发明的优点是:
本发明通过心肌血流量和心脏CT图像,能快速、准确、全自动得到微循环阻力指数。通过无创测量,操作简便,大大降低手术难度和风险,可在临床上大规模推广应用。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1为本发明的方法流程图;
图2为心脏CT图像的心肌分割结果;
图3为带有冠脉入口的主动脉分割结果;
图4为冠脉入口分割结果;
图5为冠状动脉分割结果;
图6为冠状动脉分割结果的网格模型;
图7为心脏及冠状动脉血流示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
给定心脏CT图像,根据逆向方法,提取心脏,以非目标区域的降主动脉、脊椎、肋骨为对象进行处理,通过逐步的去除胸腔壁、肺部、椎骨和降主动脉等非心脏组织来提取得到心脏图像。在得到的心脏图像上,通过利用主动脉截面成圆形的特征,提取升主动脉及中心线,得到主动脉图像。
如图1所示,本发明的基于心肌血流量和CT图像的微循环阻力指数IMR的计算方法包括提取心肌图像、提取冠状动脉口、提取冠状动脉、生成冠状动脉网格模型、确定静息态心肌血流量和冠状动脉血流储备(CFR)、计算最大充血态下的冠脉入口处的总流量、计算充血态下的血流速度V1、确定微循环阻力指数。具体包括以下步骤:
1:提取心肌图像:
对心脏CT图像进行分割,通过形态学操作得到心脏图像,对该心脏图像进行直方图分析得到心室心房图像,通过心脏图像与心室心房图像做差得到心肌图像,如图2所示。
2:提取冠状动脉口:
对主动脉图像的二值化图像进行形态学膨胀,得到全主动脉的二值图像, 并通过像素取反得到全主动脉互补图像。
根据主动脉中心线上点的平均灰度进行区域生长,得到含有冠状动脉口的主动脉图像,如图3所示。
用含有冠状动脉口的主动脉图像与全主动脉互补图像做图像乘法,得到含有冠状动脉口的图像,对含有冠状动脉口的图像进行连通域分析,用不同的灰度标签标识各个连通域,确定冠状动脉口,如图4所示。
3:提取冠状动脉:
在心肌图像上,以冠状动脉口为种子点,通过区域生长提取冠状动脉,计算冠状动脉的平均灰度和平均方差,根据冠脉灰度分布,沿着冠状动脉方向提取冠脉树,如图5所示。
4:生成冠状动脉网格模型:
通过步骤三,得到冠状动脉图像数据V1,该数据中的体素在空间上构成一个立方体,属于冠状动脉部分的体素像素值不为0(像素值大约在-3000到3000之间),其余体素像素值都为0。
本步骤需要把数据变成空间三维网格数据V3,以便于步骤五中的计算。
(1)冠状动脉数据二值化
遍历冠状动脉图像数据V1中体素,做简单的像素值判断,如果像素A1等于0,则该像素值不变;如果A1不等于0,则将A1的像素值设为1。
最终会得到一个新的图像数据V2,该图像中,属于冠状动脉部分的体素像素值为1,其余部分为0。
(2)等值面生成
体素被定义为一个极小的六面体,相邻上下层之间的四个像素组成的立方体上的八个顶点。而等值面就是在空间中所以具有某个相同属性值的点的集合。它可以表示成:
{(x,y,z)│f(x,y,z)=c},c是常数
本方法中的c是在三维重构过程中给定的像素值1。
提取等值面的流程如下:
(1)将原始数据经过预处理之后,读入特定的数组中;
(2)从网格数据体中提取一个单元体成为当前单元体,同时获取该单元体的所有信息;
(3)将当前单元体8个顶点的函数值与给定等值面值C进行比较,得到该单元体的状态表;
(4)根据当前单元体的状态表索引,找出与等值面相交的单元体棱边,并采用线性插值的方法计算出各个交点的位置坐标;
(5)利用中心差分法求出当前单元体8个顶点的法向量,再采用线性插值的方法得到三角面片各个顶点的法向;
(6)根据各个三角面片顶点的坐标和顶点法向量进行等值面图象的绘制。
最终得到冠状动脉的三维网格图像数据V3,如图6所示。
5:计算充血态下的血流速度V 1
通过心脏超声(MCE)或者单光子发射计算机断层成像术(SPECT)或者正电子发射断层成像术(PET)或者心脏核磁(MRI)或者CT灌流等无创测量,来确定静息态心肌血流量和冠状动脉血流储备(CFR);通过心肌体积、心肌血流量、CFR,计算最大充血态下的冠脉入口处(包括左冠脉树和右冠脉树之和)的总流量Q total=心肌体积×心肌血流量×CFR;
基于流量体积标度律和心脏CT三维重建的心表冠状动脉树,确定树内任何一根血管内的血流量Q:Q=Q total×(V/V total) 3/4,其中,V total是心脏CT三维重建的所有心表冠状动脉(包括左冠脉树和右冠脉树之和)的血体之和、V是心表冠状动脉树内任何一根血管及其下游血管中的血体之和,如图7所示;基于流量体积标度律和心脏CT三维重建的心表冠状动脉树,确定树内任何一根血管内的血流速度V 1:V 1=Q/D,其中,D是该血管的平均直径(该血管的血体除以该血管的长度);根据冠脉血管长度L和流速V 1通过公式Tmn=L/V 1最大充血状态下的平均传导时间Tmn;
6:微循环阻力指数计算:
以V1作为冠脉狭窄血管的入口流速,用计算流体力学(CFD)方法计算每个冠脉狭窄的压力降ΔP 1、ΔP 2、ΔP 3等,冠脉入口到冠脉狭窄远端的压力降ΔP=∑ΔP i(i=1,2,3…),狭窄远端冠状动脉内平均压P d=P a-ΔP,其中,P a是主动脉平均压,最后通过公式IMR=P d*Tmn计算微循环阻力指数。
针对三维模型处理步骤包括:
基于CT重构的几何结构,划分三维网格,用数值法(如:有限差分、有限元、有限体积法等)求解连续性和Navier-Stokes方程:
Figure PCTCN2019071204-appb-000007
Figure PCTCN2019071204-appb-000008
其中,
Figure PCTCN2019071204-appb-000009
P,ρ,μ分别为流速、压力、血流密度、血流粘性。
入口边界条件为:最大充血态下的冠脉狭窄血管的入口流速V1;
基于公式[A1]和[A2],执行三维CFD计算每个冠脉狭窄的压力降ΔP 1、ΔP 2、ΔP 3等,冠脉入口到冠脉狭窄远端的压力降ΔP=∑ΔP i(i=1,2,3…),狭窄远端冠状动脉内平均压P d=P a-ΔP,其中,P a是主动脉平均压。
针对二维模型模型,包括以下步骤:
基于CT重构的几何结构,把有狭窄的血管拉直(二维轴对称模型),划分二维网格,用数值法(如:有限差分、有限元、有限体积法等)求解连续性和Navier-Stokes方程:
Figure PCTCN2019071204-appb-000010
Figure PCTCN2019071204-appb-000011
Figure PCTCN2019071204-appb-000012
其中,ρ表示血液的密度,u z、u r分别表示z向、r方向的流速,μ表示血液的动力粘度,p表示血液的压强。
入口边界条件为:最大充血态下的冠脉狭窄血管的入口流速V 1
基于公式[A3]-[A5],执行二维CFD计算每个冠脉狭窄的压力降ΔP 1、ΔP 2、ΔP 3等,冠脉入口到冠脉狭窄远端的压力降ΔP=∑ΔP i(i=1,2,3…),狭窄远端冠状动脉内平均压P d=P a-ΔP,其中,P a是主动脉平均压。
针对血管不同类型的弯曲,用三维模型计算从入口到出口的压力差,对照二维轴对称模型计算,建立用于存储各种类型的弯曲对二维轴对称结果的修正系数的数据库;算出压力后对照数据库中的修正系数,精确得到从入口到出口的压力差,最后通过公式IMR=P d*Tmn计算微循环阻力指数。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保 护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (9)

  1. 一种基于心肌血流量和CT图像的微循环阻力指数计算方法,其特征在于,包括以下步骤:
    S01:对心脏CT图像进行分割,通过形态学操作得到心脏图像,对该心脏图像进行直方图分析得到心室心房图像,通过心脏图像与心室心房图像做差得到心肌图像,确定心肌体积;
    S02:对主动脉图像进行处理得到全主动脉互补图像,进行区域生长,得到含有冠状动脉口的主动脉图像,根据含有冠状动脉口的主动脉图像与全主动脉互补图像,得到含有冠状动脉口的图像,确定冠状动脉口;
    S03:在心肌图像上以冠状动脉口为种子点,通过区域生长提取冠状动脉,计算冠状动脉的平均灰度和平均方差,根据冠脉灰度分布,沿着冠状动脉方向提取冠脉树;
    S04:将冠状动脉图像进行二值化,绘制等值面图像,得到冠状动脉三维网格图像;
    S05:计算得到最大充血态下的冠脉入口处的总流量Q total=心肌体积×心肌血流量×CFR,CFR为冠状动脉血流储备;
    S06:计算充血态下的血流速度V 1和最大充血状态下的平均传导时间Tmn;
    S07:将V 1作为冠脉狭窄血管的入口流速,计算冠脉入口到冠脉狭窄远端的压力降ΔP,狭窄远端冠状动脉内平均压P d=P a-ΔP,其中,P a是主动脉平均压,得到微循环阻力指数IMR=P d*Tmn。
  2. 根据权利要求1所述的基于心肌血流量和CT图像的微循环阻力指数计算方法,其特征在于,所述步骤S02中得到含有冠状动脉口的图像后,对含有冠状动脉口的图像进行连通域分析,用不同的灰度标签标识各个连通域,确定冠状动脉口。
  3. 根据权利要求1所述的基于心肌血流量和CT图像的微循环阻力指数计算方法,其特征在于,所述步骤S02中,在心脏图像上,利用主动脉截面成圆形的特征,提取升主动脉及中心线,得到主动脉图像。
  4. 根据权利要求1所述的基于心肌血流量和CT图像的微循环阻力指数计算方法,其特征在于,所述步骤S04中冠状动脉图像二值化,包括:
    遍历冠状动脉图像V1中的体素,如果体素像素等于0,则该像素值不 变;如果不等于0,则将像素值设为1,得到一个新的数据V2。
  5. 根据权利要求1所述的基于心肌血流量和CT图像的微循环阻力指数计算方法,其特征在于,所述步骤S05中通过心脏超声(MCE)或者单光子发射计算机断层成像术(SPECT)或者正电子发射断层成像术(PET)或者心脏核磁(MRI)或者CT灌流,确定静息态心肌血流量和冠状动脉血流储备(CFR)
  6. 根据权利要求1所述的基于心肌血流量和CT图像的微循环阻力指数计算方法,其特征在于,所述步骤S06包括:
    S61:基于流量体积标度律和心脏CT三维重建的心表冠状动脉树,确定树内任意一根血管内的血流量Q=Q total×(V/V total) 3/4,其中,V total是心脏CT三维重建的所有心表冠状动脉的血体之和,V是心表冠状动脉树内任意一根血管及其下游血管中的血体之和;
    S62:基于流量体积标度律和心脏CT三维重建的心表冠状动脉树,确定树内任意一根血管内的血流速度V 1=Q/D,其中,D是该血管的平均直径;
    S63:根据冠脉血管长度L和流速V 1得到最大充血状态下的平均传导时间Tmn=L/V 1
  7. 根据权利要求1所述的基于心肌血流量和CT图像的微循环阻力指数计算方法,其特征在于,所述步骤S07具体包括:
    对血管三维网格进行求解,用数值法求解连续性和Navier-Stokes方程:
    Figure PCTCN2019071204-appb-100001
    Figure PCTCN2019071204-appb-100002
    其中,
    Figure PCTCN2019071204-appb-100003
    P,ρ,μ分别为流速、压力、血流密度、血流粘性;
    入口边界条件为:最大充血态下的冠脉狭窄血管的入口流速V 1
    通过三维计算流体力学计算每个冠脉狭窄的压力降ΔP 1、ΔP 2、ΔP 3…,冠脉入口到冠脉狭窄远端的压力降ΔP=∑ΔP i(i=1,2,3…),狭窄远端冠状动脉内平均压P d=P a-ΔP,其中,P a是主动脉平均。
  8. 根据权利要求1所述的基于心肌血流量和CT图像的微循环阻力指数计算方法,其特征在于,所述步骤S07包括:
    基于CT重构的几何结构,将有狭窄的血管拉直,构建二维轴对称模型,划分二维网格,用数值法求解连续性和Navier-Stokes方程:
    Figure PCTCN2019071204-appb-100004
    Figure PCTCN2019071204-appb-100005
    Figure PCTCN2019071204-appb-100006
    其中,ρ表示血液的密度,u z、u r分别表示z向、r方向的流速,μ表示血液的动力粘度,p表示血液的压强;
    入口边界条件为:最大充血态下的冠脉狭窄血管的入口流速V 1
    通过二维计算流体力学计算每个冠脉狭窄的压力降ΔP 1、ΔP 2、ΔP 3…,冠脉入口到冠脉狭窄远端的压力降ΔP=∑ΔP i(i=1,2,3…),狭窄远端冠状动脉内平均压P d=P a-ΔP,其中,P a是主动脉平均压。
  9. 根据权利要求8所述的基于心肌血流量和CT图像的微循环阻力指数计算方法,其特征在于,所述步骤S07还包括,针对血管不同类型的弯曲,用三维模型计算从入口到出口的压力差,对照二维轴对称模型计算,建立用于存储各种类型的弯曲对二维轴对称结果的修正系数的数据库;
    得到压力后对照数据库中的修正系数,得到修正后的从入口到出口的压力差,然后计算IMR。
PCT/CN2019/071204 2018-11-28 2019-01-10 基于心肌血流量和ct图像的微循环阻力指数计算方法 WO2020107668A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021529764A JP7236769B2 (ja) 2018-11-28 2019-01-10 心筋血流量及びct画像に基づく微小循環抵抗指数の計算方法
US17/330,901 US11901081B2 (en) 2018-11-28 2021-05-26 Method for calculating index of microcirculatory resistance based on myocardial blood flow and CT image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811432014.5A CN111227821B (zh) 2018-11-28 2018-11-28 基于心肌血流量和ct图像的微循环阻力指数计算方法
CN201811432014.5 2018-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/330,901 Continuation US11901081B2 (en) 2018-11-28 2021-05-26 Method for calculating index of microcirculatory resistance based on myocardial blood flow and CT image

Publications (1)

Publication Number Publication Date
WO2020107668A1 true WO2020107668A1 (zh) 2020-06-04

Family

ID=70854186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/071204 WO2020107668A1 (zh) 2018-11-28 2019-01-10 基于心肌血流量和ct图像的微循环阻力指数计算方法

Country Status (4)

Country Link
US (1) US11901081B2 (zh)
JP (1) JP7236769B2 (zh)
CN (1) CN111227821B (zh)
WO (1) WO2020107668A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022522051A (ja) * 2019-04-15 2022-04-13 博動医学影像科技(上海)有限公司 冠血流量及び血流速度の取得方法並びに装置
CN116188336A (zh) * 2023-04-17 2023-05-30 柏意慧心(杭州)网络科技有限公司 基于血管造影的心肌病形态学计算方法、装置及存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3766080A1 (en) * 2018-03-15 2021-01-20 Koninklijke Philips Electronics N.V. Method of estimating physiological parameters using medical image data
CN111815585B (zh) * 2020-06-29 2022-08-05 苏州润迈德医疗科技有限公司 基于ct序列图像获取冠脉树和冠脉入口点的方法和系统
CN111815586B (zh) * 2020-06-29 2022-08-05 苏州润迈德医疗科技有限公司 基于ct图像获取左心房、左心室的连通域的方法和系统
CN113780421B (zh) * 2021-06-07 2022-06-07 广州天鹏计算机科技有限公司 基于人工智能的脑部pet影像识别方法
CN114098692B (zh) * 2021-10-28 2022-09-30 北京心世纪医疗科技有限公司 基于血流分配最优化的左心室辅助装置植入方法
CN114886390B (zh) * 2022-03-23 2023-09-12 杭州脉流科技有限公司 获取冠脉血流储备分数的方法
CN116115208B (zh) * 2022-11-18 2024-06-04 北京工业大学 一种基于物理驱动预测静息冠状动脉微循环阻力的方法
CN115869003A (zh) * 2022-12-30 2023-03-31 杭州脉流科技有限公司 基于ct图像的冠状动脉微循环阻力指数计算方法和装置
CN117322918B (zh) * 2023-12-01 2024-02-02 北京唯迈医疗设备有限公司 一种介入手术冠脉开口位置自动探测控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130060133A1 (en) * 2011-09-01 2013-03-07 Ghassan S. Kassab Non-invasive systems and methods for determining fractional flow reserve
CN104036107A (zh) * 2013-03-04 2014-09-10 西门子公司 确定狭窄的功能性严重程度
CN106023202A (zh) * 2016-05-20 2016-10-12 苏州润心医疗科技有限公司 基于心脏ct图像的冠状动脉血流储备分数计算方法
CN106473731A (zh) * 2016-10-25 2017-03-08 北京工业大学 基于个性化冠状动脉分支血流量的ffrct计算方法
CN104161534B (zh) * 2013-05-17 2018-02-02 刘丽 动态单光子放射计算机断层或单光子放射计算机断层/计算机断层心肌血流量化系统及方法
CN108348206A (zh) * 2015-11-05 2018-07-31 皇家飞利浦有限公司 用于无创血流储备分数(ffr)的侧支流建模
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002095A2 (en) * 2012-06-26 2014-01-03 Sync-Rx, Ltd. Flow-related image processing in luminal organs
US8702613B2 (en) * 2008-09-22 2014-04-22 3Dt Holdings, Llc Methods for determining fractional flow reserve
US9405886B2 (en) * 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
US9119540B2 (en) * 2010-09-16 2015-09-01 Siemens Aktiengesellschaft Method and system for non-invasive assessment of coronary artery disease
US10034614B2 (en) * 2012-02-29 2018-07-31 General Electric Company Fractional flow reserve estimation
CN108294735B (zh) * 2012-03-13 2021-09-07 西门子公司 用于冠状动脉狭窄的非侵入性功能评估的方法和系统
US9247918B2 (en) * 2012-07-09 2016-02-02 Siemens Aktiengesellschaft Computation of hemodynamic quantities from angiographic data
WO2014027692A1 (ja) * 2012-08-16 2014-02-20 株式会社東芝 画像処理装置、医用画像診断装置及び血圧モニタ
US10433740B2 (en) * 2012-09-12 2019-10-08 Heartflow, Inc. Systems and methods for estimating ischemia and blood flow characteristics from vessel geometry and physiology
EP2900142B1 (en) * 2012-09-25 2019-09-04 The Johns Hopkins University A method for estimating flow rates, pressure gradients, coronary flow reserve, and fractional flow reserve from patient specific computed tomography angiogram-based contrast distribution data
US10595807B2 (en) * 2012-10-24 2020-03-24 Cathworks Ltd Calculating a fractional flow reserve
US20160000341A1 (en) * 2013-02-18 2016-01-07 Ramot At Tel-Aviv University Ltd. Intravascular pressure drop derived arterial stiffness and reduction of common mode pressure effect
CN105580019B (zh) * 2013-07-30 2018-09-14 哈特弗罗公司 为优化诊断性能利用边界条件模型化血流的方法和系统
US9700219B2 (en) * 2013-10-17 2017-07-11 Siemens Healthcare Gmbh Method and system for machine learning based assessment of fractional flow reserve
US9501622B2 (en) * 2014-03-05 2016-11-22 Heartflow, Inc. Methods and systems for predicting sensitivity of blood flow calculations to changes in anatomical geometry
US9785746B2 (en) 2014-03-31 2017-10-10 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
EP3140757B1 (en) * 2014-05-05 2020-06-24 Siemens Healthcare GmbH Method and system for non-invasive functional assessment of coronary artery stenosis using flow computations in models based on diseased patients and hypothetical normal anatomical models
US10206587B2 (en) * 2014-05-16 2019-02-19 Toshiba Medical Systems Corporation Image processing apparatus, image processing method, and storage medium
US10872698B2 (en) 2015-07-27 2020-12-22 Siemens Healthcare Gmbh Method and system for enhancing medical image-based blood flow computations using physiological measurements
US10517678B2 (en) 2015-10-02 2019-12-31 Heartflow, Inc. System and method for diagnosis and assessment of cardiovascular disease by comparing arterial supply capacity to end-organ demand
CN105326486B (zh) * 2015-12-08 2017-08-25 博动医学影像科技(上海)有限公司 血管压力差与血流储备分数的计算方法及系统
CN106327487B (zh) * 2016-08-18 2018-01-02 苏州润迈德医疗科技有限公司 基于x射线冠脉造影图像的冠状动脉血流储备分数计算方法
CN106650029B (zh) * 2016-11-28 2019-11-22 博动医学影像科技(上海)有限公司 基于cfd仿真的分叉血管压力差及ffr的快速计算方法及系统
CN107689032A (zh) * 2017-07-05 2018-02-13 北京工业大学 一种个性化无创计算患者最大充血状态下冠脉分支血流量的方法
CN107978371B (zh) * 2017-11-30 2021-04-02 博动医学影像科技(上海)有限公司 快速计算微循环阻力的方法及系统
US10580526B2 (en) * 2018-01-12 2020-03-03 Shenzhen Keya Medical Technology Corporation System and method for calculating vessel flow parameters based on angiography
CN108511075B (zh) * 2018-03-29 2022-10-25 杭州脉流科技有限公司 一种非侵入式获取血流储备分数的方法和系统
CN108735270A (zh) * 2018-05-25 2018-11-02 杭州脉流科技有限公司 基于降维模型的血流储备分数获取方法、装置、系统和计算机存储介质
CN112384137B (zh) * 2018-11-13 2023-11-14 苏州润迈德医疗科技有限公司 基于造影图像获取静息态下血管评定参数的方法及装置
CN110786841B (zh) * 2019-11-04 2021-05-25 苏州润迈德医疗科技有限公司 基于微循环阻力指数调节最大充血状态流速的方法及装置
PL433612A1 (pl) * 2020-04-21 2021-10-25 Narodowy Instytut Kardiologii Stefana Kardynała Wyszyńskiego-Państwowy Instytut Badawczy Sposób określania obszaru niedokrwienia narządu, program komputerowy do określania obszaru niedokrwienia narządu oraz produkt programu komputerowego do określania obszaru niedokrwienia narządu
NL2026137B1 (en) * 2020-07-24 2022-03-28 Medis Ass B V Method and device for determining a coronary microvascular resistance score
US20220082647A1 (en) * 2020-09-17 2022-03-17 Siemens Healthcare Gmbh Technique for determining a cardiac metric from cmr images

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130060133A1 (en) * 2011-09-01 2013-03-07 Ghassan S. Kassab Non-invasive systems and methods for determining fractional flow reserve
CN104036107A (zh) * 2013-03-04 2014-09-10 西门子公司 确定狭窄的功能性严重程度
CN104161534B (zh) * 2013-05-17 2018-02-02 刘丽 动态单光子放射计算机断层或单光子放射计算机断层/计算机断层心肌血流量化系统及方法
CN108348206A (zh) * 2015-11-05 2018-07-31 皇家飞利浦有限公司 用于无创血流储备分数(ffr)的侧支流建模
CN106023202A (zh) * 2016-05-20 2016-10-12 苏州润心医疗科技有限公司 基于心脏ct图像的冠状动脉血流储备分数计算方法
CN106473731A (zh) * 2016-10-25 2017-03-08 北京工业大学 基于个性化冠状动脉分支血流量的ffrct计算方法
CN108550189A (zh) * 2018-05-03 2018-09-18 苏州润迈德医疗科技有限公司 基于造影图像和流体力学模型的微循环阻力指数计算方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022522051A (ja) * 2019-04-15 2022-04-13 博動医学影像科技(上海)有限公司 冠血流量及び血流速度の取得方法並びに装置
JP7227400B2 (ja) 2019-04-15 2023-02-21 上海博動医療科技股▲分▼有限公司 冠血流量及び血流速度の取得方法並びに装置
CN116188336A (zh) * 2023-04-17 2023-05-30 柏意慧心(杭州)网络科技有限公司 基于血管造影的心肌病形态学计算方法、装置及存储介质
CN116188336B (zh) * 2023-04-17 2023-12-22 柏意慧心(杭州)网络科技有限公司 基于血管造影的心肌病形态学计算方法、装置及存储介质

Also Published As

Publication number Publication date
US20210280318A1 (en) 2021-09-09
CN111227821B (zh) 2022-02-11
CN111227821A (zh) 2020-06-05
JP2022508239A (ja) 2022-01-19
JP7236769B2 (ja) 2023-03-10
US11901081B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
WO2020107668A1 (zh) 基于心肌血流量和ct图像的微循环阻力指数计算方法
WO2020107667A1 (zh) 基于心肌血流量和ct图像的冠状动脉血流储备分数计算方法
WO2019210553A1 (zh) 基于造影图像和流体力学模型的微循环阻力指数计算方法
CN106023202B (zh) 基于心脏ct图像的冠状动脉血流储备分数计算方法
CN104768465B (zh) 血流储备分数(ffr)指标
Azhari et al. Three-dimensional mapping of acute ischemic regions using MRI: wall thickening versus motion analysis
JP5584006B2 (ja) 投影画像生成装置、投影画像生成プログラムおよび投影画像生成方法
JP6484760B2 (ja) 非侵襲的血流予備量比(ffr)に対する側副血流モデル化
WO2019169779A1 (zh) 一种无需血管扩张剂测量血流储备分数的方法
JP6749917B2 (ja) iFR−CT
CN110120031B (zh) 一种得到血管血流储备分数的方法和装置
JP2021183165A (ja) 動脈網における流量および圧力勾配を患者特定コンピュータ断層撮影アルゴリズムに基づくコントラスト分布から判断するための方法
Ammar et al. Endocardial border detection in cardiac magnetic resonance images using level set method
WO2018095791A1 (en) Vascular tree standardization for biophysical simulation and/or an extension simulation for pruned portions
CN113902690A (zh) 基于血管腔内影像计算血流储备分数的方法、装置、计算设备以及存储介质
CN112704505B (zh) 一种利用cta和dsa测量冠状动脉血流储备分数的方法
Radaelli et al. On the segmentation of vascular geometries from medical images
CN113100737B (zh) 基于冠状动脉cta的缺血心肌负荷定量评价系统
CN111839496A (zh) 一种通过常规造影图像测量出血流储备分数的方法
Zhang et al. Area stenosis associated with non-invasive fractional flow reserve obtained from coronary CT images
CN112690814B (zh) 一种低误差的冠状动脉血流储备分数测量方法
US20230410307A1 (en) Method and system for visualization
Maklad et al. Extraction of liver volumetry based on blood vessel from the portal phase CT dataset
Bousse et al. Coronary extraction and characterization in multi-detector computed tomography
Hutter et al. Prior-based automatic segmentation of the carotid artery lumen in tof mra (pascal)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890477

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19890477

Country of ref document: EP

Kind code of ref document: A1