WO2020107481A1 - Pon故障定位的方法和装置 - Google Patents

Pon故障定位的方法和装置 Download PDF

Info

Publication number
WO2020107481A1
WO2020107481A1 PCT/CN2018/118779 CN2018118779W WO2020107481A1 WO 2020107481 A1 WO2020107481 A1 WO 2020107481A1 CN 2018118779 W CN2018118779 W CN 2018118779W WO 2020107481 A1 WO2020107481 A1 WO 2020107481A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault location
parameters
fault
pon
optical line
Prior art date
Application number
PCT/CN2018/118779
Other languages
English (en)
French (fr)
Inventor
张朝
郑刚
罗勇
谢于明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2018/118779 priority Critical patent/WO2020107481A1/zh
Priority to EP18941155.6A priority patent/EP3829080A4/en
Priority to CN201880096482.1A priority patent/CN112567647B/zh
Publication of WO2020107481A1 publication Critical patent/WO2020107481A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0791Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the present application relates to optical network technology, in particular to a passive optical network (Passive Optical Network, PON) fault location method and device.
  • a passive optical network Passive Optical Network, PON
  • PON Fiber to the Home (FTTH) or Fiber to the Road (Fiber TO TO The Curb, FTTC) has become the mainstream technology for high-bandwidth home access worldwide.
  • PON usually uses point-to-multipoint (point-to-multipoint, P2MP) networking mode.
  • P2MP networking mode an optical line terminal (Optical Line Termination, OLT) is connected to an optical network unit (Optical Network Unit, ONU) through an optical distribution network (Optical Distribution Network, ODN), and each ONU can connect multiple user equipment .
  • OLT optical line terminal
  • ODN optical distribution network
  • ODN optical Distribution Network
  • the network management of each manufacturer provides topology (TOPO) information of the PON interface and the P2MP connection of the ONU, and the operator resource management system provides TOPO information of the entire network, including manually entered information of passive device splitters
  • TOPO topology
  • the manufacturer's network manager reports the abnormal information of the optical module and the optical path through an alarm.
  • the operator management system receives the abnormal information reported by the manufacturer's network management. Fault, and distinguish the fault type as a group barrier or a barrier based on the TOPO information of the PON interface and the TOPO information of the entire network.
  • the present application provides a method and device for PON fault location, which can improve the efficiency and accuracy of PON fault location.
  • a first aspect of the present application provides a method for PON fault location, including the steps of: first, a fault location device obtains parameters of multiple node devices and optical line parameters in a PON, the multiple node devices including an optical line terminal OLT and an optical network Unit ONU; Then, the fault locating device inputs the parameters of the plurality of node devices and the parameters of the optical line into the first fault locating model established in advance to obtain the first fault locating result of the PON.
  • the fault locating device acquires parameters of multiple node devices and optical line parameters in the passive optical network PON, including:
  • the fault locating device receives the parameters of the node and the parameters of the optical line sent by the multiple node devices;
  • the fault locating device receives the parameters of the plurality of node devices and the parameters of the optical line after preprocessing by the collecting device.
  • the fault locating device inputs the device parameters of the multiple nodes and the optical line parameters to a first fault model established in advance to obtain the first fault location result of the PON, including:
  • the fault location device performs feature extraction on the parameters of the plurality of equipment nodes and the parameters of the optical line to obtain characteristic parameters
  • the fault location device inputs the characteristic parameter to the first fault location model to obtain the first fault location result.
  • the fault locating device performs feature extraction on the parameters of the plurality of equipment nodes and the parameters of the optical line, and after obtaining the characteristic parameters, further includes:
  • the fault locating device inputs the characteristic parameters into a topology model established in advance to obtain topology information of the PON and/or topology information of the PON interface of the OLT;
  • the fault location device inputs the characteristic parameter to the first fault location model to obtain the first fault location result, including:
  • the fault locating device inputs the characteristic parameter into a pre-established fault type model to obtain the fault type;
  • the fault locating device inputs the fault type, at least one of the topology information of the PON and the topology information of the PON interface into the first fault location model to obtain the first fault location result.
  • the method further includes:
  • the fault location device sends the first fault location result to an operation support system OSS or an application server.
  • the method further includes:
  • the fault location device performs fault prediction based on the first fault location result to obtain a fault prediction result
  • the fault locating device sends the fault prediction result to the operation support system OSS or application server.
  • the method further includes:
  • the fault location device performs fault prediction based on the first fault location result to obtain a fault prediction result
  • the fault locating device sends the fault prediction result to the operation support system OSS or application server.
  • the method further includes:
  • the fault location apparatus receives the second fault location result sent by the plurality of node devices, and the second fault location result sent by each node device is input by the node device to the parameters of the node device and the optical line parameters established by pre-training.
  • the second fault location model is obtained;
  • the fault location device obtains a comprehensive fault location result based on the first fault location result and the second fault location result.
  • the method further includes:
  • the fault location device sends the comprehensive fault location result to the operation support system OSS or application server.
  • the second aspect of the present application provides a method for PON fault location, including:
  • the node device obtains the parameters of the node device and the parameters of the optical line, and the node device is an optical line terminal OLT or an optical network unit ONU;
  • the node device sends the parameters of the optical module and the optical line to the fault location device;
  • the node device sends the parameter of the node device and the parameter of the optical line to the fault location device.
  • the method further includes: the node device inputs the parameters of the node device and the parameters of the optical line into a second fault location model established in advance to obtain a second fault location result of the node device.
  • the method further includes:
  • the node device sends the second fault location result to an operation support system OSS, an application server, or the fault location device.
  • a third aspect of the present application provides a device for PON fault location, including:
  • An obtaining module configured to obtain parameters of multiple node devices and parameters of optical lines in a passive optical network PON, the node devices including an optical line terminal OLT and an optical network unit ONU;
  • the fault location module is configured to input the parameters of the multiple node devices and the optical line parameters into a first fault location model established in advance to obtain the first fault location result of the PON.
  • the acquisition module is specifically used to:
  • the fault location module is specifically used to:
  • the characteristic parameter is input to the first fault location model to obtain the first fault location result.
  • the method further includes:
  • a topology determination module configured to input the characteristic parameters into a topology model established in advance to obtain topology information of the PON and/or topology information of the PON interface of the OLT;
  • the fault location module is also used to:
  • At least one of the fault type, and the topology information of the PON and the topology information of the PON interface is input to the first fault location model to obtain the first fault location result.
  • the method further includes:
  • the sending module is configured to send the first fault location result to the operation support system OSS or application server.
  • the method further includes:
  • a fault prediction module configured to perform fault prediction based on the first fault location result to obtain a fault prediction result
  • the sending module is used to send the fault prediction result to the operation support system OSS or application server.
  • the method further includes:
  • a receiving module configured to receive a second fault location result sent by the multiple node devices, and the second fault location result sent by each node device is input by the node device into the parameters of the node device and the optical line parameters established by pre-training The second fault location model is obtained;
  • the fault location module is also used to obtain a comprehensive fault location result based on the first fault location result and the second fault location result.
  • the sending module is further configured to send the comprehensive fault location result to the OSS or application server.
  • the fourth aspect of the present application provides a PON fault location device, including:
  • An obtaining module used to obtain the parameters of the node equipment and the parameters of the optical line, the node equipment is an optical line terminal OLT and an optical network unit ONU;
  • the sending module is used to send the parameter of the node device and the parameter of the optical line to the fault location device.
  • the method further includes:
  • the fault location module is configured to input the parameters of the node equipment and the parameters of the optical line into a second fault location model established in advance to obtain a second fault location result of the node equipment.
  • the sending module is further used to:
  • a fifth aspect of the present application provides a passive optical network PON, including: multiple node devices and a fault location device, the multiple node devices including an optical line terminal OLT and an optical network unit ONU;
  • Each of the multiple nodes includes the PON fault location device described in the fourth aspect of the present application.
  • the fault location device includes the PON fault location device described in the third aspect of the present application.
  • the method further includes:
  • the collection device is used to obtain the parameters of the plurality of node devices and the parameters of the optical line, and preprocess the parameters of the plurality of node devices and the parameters of the optical line;
  • the collection device is also used to send the pre-processed parameters of the plurality of node devices and optical lines to the fault locating device.
  • a sixth aspect of the present application provides a fault location apparatus, including: a processor, a memory, and a transceiver, the memory is used to store instructions, the transceiver is used to communicate with other devices, and the processor is used to execute the memory Stored instructions to enable the fault location device to execute the method as described in the first aspect of the present application.
  • a seventh aspect of the present application provides a node device, including: a processor, a memory, and a transceiver, the memory is used to store instructions, the transceiver is used to communicate with other devices, and the processor is used to perform storage in the memory Instructions to enable the node device to perform the method as described in the second aspect of the present application.
  • An eighth aspect of the present application provides a computer-readable storage medium that stores instructions, and when the instructions are executed, causes the computer to execute the method according to the first aspect of the application.
  • a ninth aspect of the present application provides a computer-readable storage medium that stores instructions, and when the instructions are executed, causes the computer to perform the method according to the second aspect of the application.
  • the method and device for PON fault location provided by this application include: the fault location device obtains the parameters of multiple node devices and optical line parameters in the PON, the multiple node devices include OLT and ONU, and the parameters of multiple node devices and optical lines The parameters are input into the first fault location model established in advance to obtain the first fault location result of the PON.
  • the fault location device analyzes multiple node device parameters and optical line parameters in the PON through the AI algorithm, locates the fault in the PON, and improves the accuracy and efficiency of fault location.
  • FIG. 1 is a schematic structural diagram of a PON provided in Embodiment 1 of this application;
  • FIG. 2 is a schematic structural diagram of a PON provided in Embodiment 2 of this application;
  • FIG. 3 is a flowchart of a method for PON fault location provided in Embodiment 3 of the present application.
  • Embodiment 4 is a flowchart of a method for PON fault location provided by Embodiment 4 of the present invention.
  • Embodiment 5 is a signaling flowchart of a method for PON fault location provided by Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural diagram of a PON fault location device provided in Embodiment 6 of the present application.
  • FIG. 7 is a schematic structural diagram of a PON fault location device provided in Embodiment 7 of the present application.
  • Embodiment 8 is a schematic structural diagram of a fault locating device provided in Embodiment 8 of the present application.
  • FIG. 9 is a schematic structural diagram of a node device according to Embodiment 9 of the present application.
  • FIG. 1 is a schematic structural diagram of a PON provided in Embodiment 1 of this application.
  • the PON includes multiple node devices and a fault locating device, and the multiple node devices include an ONU and an OLT.
  • ONTs are connected to the same OLT through ODN, and the OLT is connected to the network.
  • One ONU can be connected to multiple terminal devices, such as mobile phones, fixed phones, tablets, personal computers (PCs), mobile base stations, etc.
  • Terminal devices can Conduct voice, Internet, video and other services.
  • Figure 1 is just an example, and more OLTs and ONUs can be included in the PON.
  • the OLT is the core component of the PON.
  • the OLT is connected to upper-layer network-side devices (such as switches or routers), and the lower layer is connected to one or more ODNs.
  • the OLT connects to the user equipment ONU through the ODN to realize the functions of ONU control, management and ranging.
  • An OLT can provide multiple interfaces, called PON interfaces, and each PON interface can be connected to one or more ODNs.
  • the ONU is a user-end device in the PON. It is placed on the user-end and used in conjunction with the OLT to implement Ethernet Layer 2 and Layer 3 functions and provide users with voice, data, and multimedia services. Its main functions are: choose to receive the data sent by the OLT; respond to the management commands sent by the OLT and make corresponding responses; buffer the user's Ethernet data and send it in the upstream direction in the transmission time slot allocated by the OLT.
  • the ONU provides an Ethernet user port or a traditional telephone service (plain old telephone service (POTS) user port, it is called an optical network termination (ONT).
  • POTS plain old telephone service
  • ODN includes a passive optical splitter for optical power distribution, a backbone fiber connected between the passive optical splitter and the OLT, and a branch fiber connected between the passive optical splitter and the ONU.
  • ODN transmits the downstream data of OLT to each ONU through a splitter.
  • the ODN aggregates the upstream data of the ONU and transmits it to the OLT.
  • At least a first-level optical splitter is provided between the OLT and the ONU.
  • this optical network is a first-level optical splitting network.
  • this optical network is a two-level optical splitting network.
  • the first optical splitter passing is the first optical splitter
  • the second optical splitter passing is the second optical splitter.
  • this optical network is a multi-level optical splitting network.
  • the first optical splitter in turn is the first optical splitter.
  • the second beam splitter is the second beam splitter, and so on, and the Nth beam splitter passing by is the Nth beam splitter.
  • the fault locating device may be one or more independent devices, or may be integrated with other devices, such as integrated in the manufacturer's network management system, or integrated in the operator's resource management system, or integrated in In the gateway and the application server, this embodiment does not limit the form of the fault locating device.
  • the node device is used to acquire the parameters of the device and the parameters of the optical line, and send the parameters of the node device and the parameters of the optical line to the fault locating device.
  • the parameters of the node equipment include optical module parameters of the node equipment and parameters of other devices.
  • the OLT and the ONU may include one or more optical modules.
  • the optical module is composed of optoelectronic devices, functional circuits, and optical interfaces.
  • the optoelectronic devices include a transmitting and/or receiving part.
  • the optical module can perform photoelectric conversion and electro-optical conversion.
  • the transmitting end of the optical module converts the electrical signal into an optical signal, and the receiving end converts the optical signal into an electrical signal.
  • the optical module can be divided into: optical receiving module, optical sending module, integrated optical transceiver module and optical forwarding module according to functions.
  • Optical modules can be divided into hot-swappable and non-hot-swappable according to their usage. According to the package type, it can be divided into: SFF, SFP, GBIC, XENPAK, XFP, etc.
  • the transmission mode it can be divided into asynchronous transmission mode PON (ATMpassiveopticalnetwork, APON), broadband PON (broadbandpassive opticaloptical network, BPON), Ethernet PON (ethernetpassive opticaloptical network, EPON), gigabit PON (gigabitpassive opticaloptical network) , GPON), 10 Gigabit Ethernet PON (10G ethernet passive optical, 10G-EPON), etc.
  • PON ATMpassiveopticalnetwork, APON
  • broadband PON broadband PON
  • Ethernet PON ethernetpassive opticaloptical network, EPON
  • gigabit PON gigabitpassive opticaloptical network
  • GPON gigabit PON
  • 10G ethernet passive optical, 10G-EPON etc.
  • the optical module of the OLT is used to receive upstream data from the ONU and send the upstream data of the ONU to the network, and also to receive downstream data from the network and send the downstream data to the ONU.
  • the ONU optical module is used to receive uplink data from user equipment (UE) and send the uplink data to the OLT.
  • the ONU optical module is also used to receive downlink data from the OLT and send the received downlink data to the UE .
  • the parameters of the optical module may include: module type, module voltage, module current, module temperature, received power, transmitted power, received bit error rate, etc.
  • the node equipment also includes other devices, such as a PON MAC chip.
  • the PON MAC chip is used for protocol deframing or framing of electrical signals. It can also include components or chips that implement the forwarding function, which can be used to implement LAN switch (LSW) forwarding, network processing (NP) or traffic management (TM), etc. It also includes some storage devices, power modules, etc.
  • LSW LAN switch
  • NP network processing
  • TM traffic management
  • the node device can obtain the parameters of the device through detection, or can directly obtain these parameters and directly report them to the fault location device.
  • the parameters reported by the node device can be dynamically configured by the fault locating device.
  • the optical line refers to the path for optical signal transmission between the OLT and the ONU.
  • the optical path may include passive components such as backbone optical fibers, branch optical fibers, and optical splitters.
  • the parameters of the optical line may include the quality of the optical signal in the optical line, for example, optical layer statistics, optical layer alarms, optical distance, etc.
  • the optical line parameters may be monitored by the OLT and ONT. This is only an example, and this embodiment does not address this Limit it.
  • the node device can periodically detect the parameters of the device and the parameters of the optical line. In order to improve the accuracy and effectiveness of the fault location, the node device can set the detection period to be shorter, so that the fault can be discovered in time.
  • the node device in some scenarios, due to the lack of detection instruments that detect the parameters of the node equipment and the parameters of the optical line, it is difficult to locate the fault. For example, it is impossible to determine which optical splitter the ONU is attached to, or when the fault occurs. The node equipment still failed in the optical line.
  • each ONU and OLT in the PON can detect the parameters of the device and the optical line. All ONUs and OLTs in the PON will report the parameters of the device and the optical line to the fault location device, thereby making the PON Fault location is easy to implement.
  • the fault locating device After acquiring the parameters of multiple node devices and optical lines in the PON, the fault locating device inputs the parameters of multiple node devices and optical lines into the first fault location model established in advance to obtain the first fault location of the PON result.
  • the fault location device uses artificial intelligence (AI) algorithm for fault location.
  • AI artificial intelligence
  • the AI algorithm establishes a fault location model by performing machine learning or deep learning on a large number of samples, and then uses the fault location model to locate the fault.
  • the fault location model may be a neural network model, but is not limited to a neural network module.
  • the neural network model refers to a program and data obtained by training a large amount of data for performing neural network calculations, such as cognitive computing. Commonly used neural network models include recurrent neural network modules and convolutional neural network models.
  • the fault locating device obtains the first fault locating result of the PON through the first fault locating module, and the first fault locating result may include information about the type of the fault and information about the faulty device.
  • the fault location device performs feature extraction on the parameters of the multiple node devices and the optical line parameters to obtain the feature parameters, and inputs the feature parameters into the first fault location model to obtain the first fault location result.
  • the characteristic parameters extracted by the fault locating device may include steady-state information, jitter information, and trends of the optical module. This is only an example and is not limited thereto.
  • the fault location device is also used to input characteristic parameters into a pre-established fault type model to obtain the fault type.
  • the fault type can be a group barrier type or a single barrier type.
  • a group barrier affects a large number of users, which may be a problem with the backbone fiber.
  • a single barrier affects a small number of users, and may only affect a single user.
  • group barriers and individual barriers only divide the fault type in one dimension.
  • the type of fault can also be divided according to other dimensions, for example, damaged fiber, bent fiber, loose connector, etc.
  • the information of the faulty device is used to indicate which device is faulty.
  • the faulty device can be OLT, ONU, optical splitter, optical fiber.
  • the faulty device information can be the device identification, for example, the OLT and ONU identification.
  • the faulty device information can also be It is the position information of the optical fiber, for example, the trunk fiber and the end fiber.
  • the information of the faulty device may also be the identifier of the optical splitter or the position information of the optical splitter.
  • the fault locating device is also used to input the characteristic parameters into the topology model established in advance to obtain the topology information of the PON and/or the topology information of the PON interface of the OLT, the fault type, and the topology information of the PON and the At least one of the topological information of the interface is input into the first fault location model to obtain the first fault location result.
  • the topology model can be established by a decision tree inheritance learning algorithm.
  • the decision tree inheritance learning algorithm can be a gradient boosting tree (Gradient Boosting Decison Tree, GBDT) or a Stacking algorithm.
  • the characteristics of the input topology model can be the characteristics of the optical modules and optical lines of multiple ONUs. According to the characteristics of the optical modules and optical lines of multiple ONUs, it can be determined whether the ONUs are under the same optical splitter to obtain the PON topology. Information and/or topology information of the PON interface of the OLT.
  • the PON topology information is used to describe the connection relationship of all devices in the entire PON.
  • An OLT can include multiple PON interfaces, and each ONU can be connected to multiple ONUs.
  • the topology information of the PON interface is used to describe the devices connected to the PON interface ( Including the relationship between ONU, splitter, etc.).
  • a similarity analysis can be performed on the abnormal behavior of multiple ONUs within the time window under the same PON interface to determine the faulty device.
  • the fault locating device may also obtain PON topology information and/or OLT PON interface topology information from other equipment.
  • the fault locating device receives the topology information of the PON from the resource management equipment, and receives the topology information of the PON interface of the OLT from the network management system of the equipment manufacturer.
  • the fault location device After determining the first fault location result, optionally, the fault location device sends the first fault location result to the OSS or application server, and the OSS or application server can generate a fault analysis report based on the first fault location result and report the fault analysis Show it to users.
  • the node device is also used to: input the parameters of the node device and the parameters of the optical line into a second fault location model established in advance to obtain a second fault location result of the node device, and the second fault location result may include fault type information And fault location.
  • the node device sends the second fault location result to the fault location device, operation support system (Operation Support System, OSS), or application server.
  • operation support system Operaation Support System, OSS
  • application server application server
  • the second fault location model is different from the first fault location model.
  • the fault location device performs centralized fault location through the first fault location model, and can locate faults of the entire PON, while the OLT and ONU perform distributed fault location through the second fault location module, and can locate their own faults.
  • the distributed fault location may be independently performed by each node device, or the centralized fault location may be separately performed by the fault location device, or the centralized fault location and the distributed fault location may be combined.
  • the fault location apparatus receives a second fault location result sent by multiple node devices, and the second fault location result sent by each node device is input by the node device to the parameters of the node device and the optical line parameters established by pre-training.
  • the second fault location model is obtained, and the fault location device obtains the comprehensive fault location result according to the first fault location result and the second fault location result, and sends the comprehensive fault location result to the OSS or the application server.
  • a centralized fault can only locate an ONU that has a fault, but cannot locate a specific fault type.
  • distributed fault location can be accurate Locate the type of fault that occurred in the ONU.
  • the fault locating device is also used to: perform fault prediction to obtain a fault prediction result according to the first fault location result, and send the fault prediction result to the OSS or application server.
  • Fault prediction refers to reasoning and analysis based on the faults that have been located to obtain possible future faults. For example, according to the current faulty fiber in the PON, the trend of fiber cracking is predicted.
  • the fault prediction results include information about possible future faults.
  • the fault location device may also combine the PON topology information and/or the OLT PON interface topology information to perform fault prediction.
  • the fault locating device obtains the parameters of all the connected nodes and the parameters of the optical line in the PON, and inputs the parameters of multiple node devices and the parameters of the optical line to the first pre-trained establishment Fault location model to get the first fault location result of PON.
  • the problem that the PON fault location is difficult to locate due to the large number of node devices in the PON, the many optical line problems, and the difficulty in obtaining data required for positioning is solved in the prior art.
  • the fault location device uses AI algorithm to analyze the big data, locate the fault in the PON, and improve the accuracy and efficiency of fault location.
  • FIG. 2 is a schematic diagram of a PON architecture provided in Embodiment 2 of the present application.
  • the PON of this embodiment further includes a collection device on the basis of FIG. 1, and the collection device may include one or more independent
  • the device may also be integrated with other devices, such as integrated into the manufacturer's gateway system, or integrated into the operator's resource management system, or integrated into the gateway or application server.
  • the collection device is used to receive the parameters sent by the multiple node devices and the optical line parameters, pre-process the parameters of the multiple node devices and the optical line parameters, and send the pre-processed parameters of the multiple node devices and the optical line parameters to the fault Positioning means.
  • the preprocessing includes one or more of the following processes: converging the received node device parameters and optical line parameters according to time granularity; converging the received node device parameters and optical line parameters according to object dimensions, for example , According to the trunk fiber, splitter, OLT and ONU to converge; the abnormal data in the parameters of the received node equipment and optical line parameters are filtered out.
  • the collection device can also be used to dynamically configure the collection parameters, collection frequency, or collection period, and inform the node device which parameters to collect by configuring the collection parameters.
  • the node device and the collection device communicate through a collection interface.
  • the node device sends the node device parameters and the optical line parameters to the collection device through the collection interface.
  • the collection interface includes but is not limited to the following interfaces: CLI, SNMP, TR069, SFTP, MQTT, TELEMETRY.
  • the collection device sends the pre-processed parameters of multiple node devices and the parameters of the optical line to the fault locating device through a data interface.
  • the data interface can use a common big data platform related message mechanism, such as KAFKA.
  • the fault location device sends the first fault location result to the OSS or application server through an output interface, which includes but is not limited to Restful.
  • FIG. 3 is a flowchart of a PON fault location method according to Embodiment 3 of the present invention. As shown in FIG. 3, this embodiment provides The method includes the following steps:
  • Step S101 The fault locating device acquires parameters of multiple node devices and optical line parameters in the PON, where the multiple node devices include an OLT and an ONU.
  • the fault locating device receives the parameters of the node and the optical line sent by the multiple node devices, or the fault locating device receives the parameters of the multiple node devices and the optical line parameters preprocessed by the collection device.
  • the description of the parameters of the node device and the parameters of the optical line in the first embodiment will not be repeated here.
  • Step 102 The fault locating device inputs the parameters of multiple node devices and the optical lines into the first fault locating model established in advance to obtain the first fault locating result of the PON.
  • the fault location device performs feature extraction on the parameters of the multiple node devices and the optical line parameters to obtain the feature parameters, and inputs the feature parameters into the first fault location model to obtain the first fault location result.
  • the fault location device performs feature extraction on the parameters of multiple equipment nodes and optical lines, and after obtaining the feature parameters, the fault location device inputs the feature parameters into the topology model established in advance to obtain the topology information of the PON and/or OLT Topology information of the PON interface.
  • the fault locating device inputs the characteristic parameters into the pre-established fault type model to obtain the fault type, and inputs the fault type, at least one of the topology information of the PON and the topology information of the PON interface into the first fault location model to obtain the first fault location result .
  • the fault location device sends the first fault location result to the OSS or application server.
  • the fault location device also performs fault prediction based on the first fault location result, obtains the fault prediction result, and sends the fault prediction result to the OSS or application server.
  • the OSS or application server displays the fault prediction results to the staff, so that the staff can prevent or take measures in advance based on the fault prediction results to prevent future failures, to avoid the occurrence of the failure, or to minimize the loss of the failure.
  • the fault location apparatus also receives second fault location results sent by multiple node devices, and the second fault location result sent by each node device is established by the node device by inputting the parameters of the node device and the parameters of the optical line in advance training The second fault location model is obtained.
  • the fault location device obtains the comprehensive fault location result according to the first fault location result and the second fault location result, and sends the comprehensive fault location result to the OSS or application server.
  • the fault locating device acquires the parameters of multiple node devices and optical line parameters in the PON.
  • the multiple node devices include OLT and ONU, and input the parameters of multiple node devices and optical line parameters to the first A fault location model to obtain the first fault location result of PON.
  • the fault location device analyzes multiple node device parameters and optical line parameters in the PON through the AI algorithm, locates the fault in the PON, and improves the accuracy and efficiency of fault location.
  • FIG. 4 is a flowchart of a PON fault location method according to Embodiment 4 of the present invention. As shown in FIG. 4, this embodiment provides The method includes the following steps:
  • Step S201 The node device obtains the parameters of the node device and the parameters of the optical line, and the node device is an OLT or an ONU.
  • Step S202 The node device sends the parameter of the node device and the parameter of the optical line to the fault locating device.
  • the node equipment sends the parameters and the parameters of the optical line to the fault location device.
  • the fault location device performs centralized fault location based on the parameters of the multiple node devices and the optical line parameters in the PON.
  • Step S203 The node device inputs the parameters of the node device and the parameters of the optical line into a second fault location model established in advance to obtain a second fault location result of the node device.
  • the node device performs distributed fault location based on its own parameters and optical line parameters to obtain a second fault location result, where the second fault location result includes fault type information and fault location.
  • Step S204 The node device sends the second fault location result to the OSS, application server, or fault location device.
  • step S203 and step S204 are optional steps.
  • the node device obtains the parameters of the node device and the parameters of the optical line.
  • the node device is an OLT or ONU, and sends the parameters of the node device and the parameters of the optical line to the fault location device, so that the fault location device is based on the node in the PON
  • the parameters of the equipment and the parameters of the optical line are analyzed by the AI algorithm for big data to locate the fault in the PON.
  • the node equipment performs distributed fault location on the acquired parameters and optical line parameters according to the AI algorithm. The combination of centralized fault location and distributed fault location further improves the accuracy of fault location.
  • FIG. 5 is a signaling flowchart of a PON fault location method according to Embodiment 5 of the present invention. As shown in FIG. 5, this embodiment The method provided includes the following steps:
  • Step S301 The node device obtains the parameters of the node device and the parameters of the optical line.
  • Step S302 The node device sends the parameters of the node device and the parameters of the optical line to the collection device.
  • Step S303 The collection device pre-processes the parameters of the multiple node devices and the parameters of the optical line.
  • Step S304 The collection device sends the pre-processed parameters of the node equipment and the optical line parameters to the fault location device.
  • Step S305 The fault location device inputs the parameters of the multiple node devices and the optical line parameters into the first fault location model established in advance to obtain the first fault location result of the PON.
  • Step S306 The fault location device sends the first fault location result to the OSS or application server.
  • Step S307 The node device inputs the parameters of the node device and the parameters of the optical line into the second fault location model established in advance to obtain the second fault location result of the node device.
  • Step S308 The node device sends the second fault location result to the collection device.
  • Step S309 The collection device sends the second fault location result to the fault location device.
  • Step S310 The fault location device sends the second fault location result to the OSS or application server.
  • steps S306-S310 are optional steps.
  • steps S306-S310 and S302-S305 may be executed in parallel.
  • FIG. 6 is a schematic structural diagram of a PON fault location device provided in Embodiment 6 of the present application. As shown in FIG. 6, the device provided in this embodiment includes:
  • the obtaining module 11 is configured to obtain parameters of multiple node devices and optical line parameters in the PON, where the node devices include an optical line terminal OLT and an optical network unit ONU;
  • the fault location module 12 is configured to input the parameters of the plurality of node devices and the parameters of the optical line into a first fault location model established in advance to obtain the first fault location result of the PON.
  • the obtaining module 11 is specifically used to:
  • the fault location module 12 is specifically used to:
  • the characteristic parameter is input to the first fault location model to obtain the first fault location result.
  • the method further includes: a topology determination module, configured to input the characteristic parameters into a topology model established in advance to obtain topology information of the PON and/or topology information of the PON interface of the OLT.
  • a topology determination module configured to input the characteristic parameters into a topology model established in advance to obtain topology information of the PON and/or topology information of the PON interface of the OLT.
  • the fault location module 12 is also used to:
  • the fault locating device inputs the characteristic parameter into a pre-established fault type model to obtain the fault type;
  • the fault locating device inputs the fault type, at least one of the topology information of the PON and the topology information of the PON interface into the first fault location model to obtain the first fault location result.
  • the method further includes:
  • the sending module 13 is configured to send the first fault location result to the OSS or application server.
  • a fault prediction module is also included;
  • a fault prediction module configured to perform fault prediction based on the first fault location result to obtain a fault prediction result
  • the sending module 13 is also used to send the fault prediction result to the OSS or application server.
  • the method further includes:
  • a receiving module configured to receive a second fault location result sent by the multiple node devices, and the second fault location result sent by each node device is input by the node device into the parameters of the node device and the optical line parameters established by pre-training The second fault location model is obtained;
  • the fault location module 12 is further configured to obtain a comprehensive fault location result based on the first fault location result and the second fault location result;
  • the sending module 13 is configured to send the comprehensive fault location result to the OSS or application server.
  • the device provided in this embodiment may be used to execute the method performed by the fault locating device in the above embodiments, and the specific implementation manner and technical effect are similar, and are not repeated here.
  • FIG. 7 is a schematic structural diagram of a PON fault location device provided in Embodiment 7 of the present application. As shown in FIG. 7, the device provided in this embodiment includes:
  • the obtaining module 21 is used to obtain the parameters of the node equipment and the parameters of the optical line.
  • the node equipment is an optical line terminal OLT and an optical network unit ONU;
  • the sending module 22 is used to send the parameter of the node device and the parameter of the optical line to the fault location device.
  • Optional also includes:
  • the fault location module 23 is configured to input the parameters of the node device and the parameters of the optical line into a second fault location model established in advance to obtain a second fault location result of the node device.
  • the sending module 22 is further used to:
  • the apparatus provided in this embodiment may be used to execute the method performed by the node device in the foregoing embodiments.
  • the specific implementation manner and technical effect are similar, and are not described here again.
  • FIG. 8 is a schematic structural diagram of a fault locating device provided in Embodiment 8 of the present application.
  • the fault locating device provided in this embodiment includes: a processor 31, a memory 32, and a transceiver 33.
  • the memory 32 is used to store instructions
  • the transceiver 33 is used to communicate with other devices
  • the processor 31 is used to execute the instructions stored in the memory 32, so that the fault locating device executes the fault as in the above method embodiment The method performed by the positioning device.
  • FIG. 9 is a schematic structural diagram of a node device provided in Embodiment 9 of the present application.
  • the node device provided in this embodiment includes a processor 41, a memory 42, and a transceiver 43.
  • the memory 42 is used for To store instructions
  • the transceiver 43 is used to communicate with other devices
  • the processor 41 is used to execute instructions stored in the memory 42 so that the node device executes the same as the node device in the above method embodiment. method.
  • Embodiment 10 of the present application provides a computer-readable storage medium that stores instructions, and when the instructions are executed, causes the computer to execute the method performed by the fault locating device in the foregoing method embodiments.
  • Embodiment 11 of the present application provides a computer-readable storage medium that stores instructions, and when the instructions are executed, causes the computer to execute the method performed by the node device in the foregoing method embodiments.
  • One or more of the above modules or units may be implemented by software, hardware, or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor may be used to execute the program instructions and implement the above method flow.
  • the processor may include but is not limited to at least one of the following: central processing unit (central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller (microcontroller unit, MCU), or artificial intelligence
  • CPU central processing unit
  • DSP digital signal processor
  • MCU microcontroller
  • the processor can be built in SoC (system on chip) or application specific integrated circuit (ASIC), or it can be an independent semiconductor chip.
  • the processor processes the core used to execute software instructions for calculation or processing, and may further include necessary hardware accelerators, such as field programmable gate array (field programmable gate array (FPGA), PLD (programm
  • the hardware may be CPU, microprocessor, DSP, MCU, artificial intelligence processor, ASIC, SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator or non-integrated discrete device Any one or any combination of them, it can run the necessary software or does not depend on the software to perform the above method flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供一种PON故障定位的方法和装置,包括:故障定位装置获取PON中的多个节点设备的参数和光线路的参数,多个节点设备包括OLT和ONU,将多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到PON的第一故障定位结果。故障定位装置通过AI算法对PON中的多个节点设备参数和光线路的参数进行分析,定位PON中故障,提升了故障定位的准确性和效率。

Description

PON故障定位的方法和装置 技术领域
本申请涉及光网络技术,尤其涉及一种无源光网络(Passive Optical Network,PON)故障定位的方法和装置。
背景技术
随着PON技术成熟演进,光纤到户(Fiber TO The Home,FTTH)或者光纤到路边(Fiber TO The Curb,FTTC)在全球成为高带宽家庭接入的主流技术,PON通常采用点到多点(point-to-multipoint,P2MP)的组网模式。P2MP组网模式中,一个光线路终端(Optical Line Termination,OLT)通过光分配网络(Optical Distribution Network,ODN)与光网络单元(Optical Network Unit,ONU)连接,每个ONU可以连接多个用户设备。PON的组网模式、有源或无源的ODN以及功能复杂的ONU等,使得PON光路的故障定位更加困难。
现有技术中,各厂商网管提供PON接口与下挂ONU的P2MP连接的拓扑(topology,TOPO)信息,运营商资源管理系统提供整网的TOPO信息,包括人为录入的无源器件分光器的信息,当PON光路故障时,厂商网管通过告警上报光模块及光路的异常信息,运营商管理系统接收厂商网管上报的异常信息,故障处理人员登录到OLT或ONU上查询相关状态,判断哪些设备出现了故障,并根据PON接口的TOPO信息以及全网的TOPO信息区分故障类型为群障还是个障。
但是,PON的ONU的数量较大,依靠人工判断故障效率低,并且人工判断故障准确率低。
发明内容
本申请提供一种PON故障定位的方法和装置,能够提高PON故障定位的效率和准确率。
本申请第一方面提供一种PON故障定位的方法,包括步骤:首先是故障定位装置获取PON中的多个节点设备的参数和光线路的参数,所述多个节点设备包括光线路终端OLT和光网络单元ONU;然后,所述故障定位装置将所述多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到所述PON的第一故障定位结果。
一种示例性的方式中,所述故障定位装置获取无源光网络PON中的多个节点设备的参数和光线路的参数,包括:
所述故障定位装置接收所述多个节点设备发送的节点的参数和光线路的参数;
或者,所述故障定位装置接收采集装置预处理后的所述多个节点设备的参数和光 线路的参数。
一种示例性的方式中,所述故障定位装置将所述多个节点的设备参数和光线路的参数输入到预先训练建立的第一故障模型,得到所述PON的第一故障定位结果,包括:
所述故障定位装置对所述多个设备节点的参数和光线路的参数进行特征提取,得到特征参数;
所述故障定位装置将所述特征参数输入到所述第一故障定位模型,得到所述第一故障定位结果。
一种示例性的方式中,所述故障定位装置对所述多个设备节点的参数和光线路的参数进行特征提取,得到特征参数之后,还包括:
所述故障定位装置将所述特征参数输入预先训练建立的拓扑模型,得到所述PON的拓扑信息和/或所述OLT的PON接口的拓扑信息;
所述故障定位装置将所述特征参数输入到所述第一故障定位模型,得到所述第一故障定位结果,包括:
所述故障定位装置将所述特征参数输入预先建立的故障类型模型,得到故障类型;
所述故障定位装置将所述故障类型,以及所述PON的拓扑信息和所述PON接口的拓扑信息中的至少一个输入所述第一故障定位模型,得到所述第一故障定位结果。
一种示例性的方式中,还包括:
所述故障定位装置将所述第一故障定位结果发送给运营支撑系统OSS或者应用服务器。
一种示例性的方式中,还包括:
所述故障定位装置根据所述第一故障定位结果,进行故障预测得到故障预测结果;
所述故障定位装置将所述故障预测结果发送给运营支撑系统OSS或者应用服务器。
一种示例性的方式中,还包括:
所述故障定位装置根据所述第一故障定位结果,进行故障预测得到故障预测结果;
所述故障定位装置将所述故障预测结果发送给运营支撑系统OSS或者应用服务器。
一种示例性的方式中,还包括:
所述故障定位装置接收所述多个节点设备发送的第二故障定位结果,每个节点设备发送的第二故障定位结果由该节点设备将该节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型得到;
所述故障定位装置根据所述第一故障定位结果和所述第二故障定位结果,得到综合故障定位结果。
一种示例性的方式中,还包括:
所述故障定位装置将所述综合故障定位结果发送给运营支撑系统OSS或者应用服务器。
本申请第二方面提供一种PON故障定位的方法,包括:
节点设备获取所述节点设备的参数和光线路的参数,所述节点设备为光线路终端OLT或光网络单元ONU;
所述节点设备将所述光模块和光线路的参数发送给故障定位装置;
所述节点设备将所述节点设备的参数和光线路的参数发送给故障定位装置。
一种示例性的方式中,还包括:所述节点设备将所述节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型,得到所述节点设备的第二故障定位结果。
一种示例性的方式中,还包括:
所述节点设备将所述第二故障定位结果发送给运营支撑系统OSS、应用服务器或者所述故障定位装置。
本申请第三方面提供一种PON故障定位的装置,包括:
获取模块,用于获取无源光网络PON中的多个节点设备的参数和光线路的参数,所述节点设备包括光线路终端OLT和光网络单元ONU;
故障定位模块,用于将所述多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到所述PON的第一故障定位结果。
一种示例性的方式中,所述获取模块具体用于:
接收所述多个节点设备发送的节点的参数和光线路的参数;
或者,接收采集装置预处理后的所述多个节点设备的参数和光线路的参数。
一种示例性的方式中,所述故障定位模块具体用于:
对所述多个节点设备的参数和光线路的参数进行特征提取,得到特征参数;
将所述特征参数输入到所述第一故障定位模型,得到所述第一故障定位结果。
一种示例性的方式中,还包括:
拓扑确定模块,用于将所述特征参数输入预先训练建立的拓扑模型,得到所述PON的拓扑信息和/或所述OLT的PON接口的拓扑信息;
所述故障定位模块还用于:
将所述特征参数输入预先建立的故障类型模型,得到故障类型;
将所述故障类型,以及所述PON的拓扑信息和所述PON接口的拓扑信息中的至少一个输入所述第一故障定位模型,得到所述第一故障定位结果。
一种示例性的方式中,还包括:
发送模块,用于将所述第一故障定位结果发送给运营支撑系统OSS或者应用服务器。
一种示例性的方式中,还包括:
故障预测模块,用于根据所述第一故障定位结果,进行故障预测得到故障预测结果;
发送模块,用于将所述故障预测结果发送给运营支撑系统OSS或者应用服务器。
一种示例性的方式中,还包括:
接收模块,用于接收所述多个节点设备发送的第二故障定位结果,每个节点设备发送的第二故障定位结果由该节点设备将该节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型得到;
所述故障定位模块,还用于根据所述第一故障定位结果和所述第二故障定位结果,得到综合故障定位结果。
一种示例性的方式中,发送模块,还用于将所述综合故障定位结果发送给OSS或者应用服务器。
本申请第四方面提供一种PON故障定位的装置,包括:
获取模块,用于获取节点设备的参数和光线路的参数,所述节点设备为光线路终端OLT和光网络单元ONU;
发送模块,用于将所述节点设备的参数和光线路的参数发送给故障定位装置。
一种示例性的方式中,还包括:
故障定位模块,用于将所述节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型,得到所述节点设备的第二故障定位结果。
一种示例性的方式中,所述发送模块还用于:
将所述第二故障定位结果发送给运营支撑系统OSS、应用服务器或者所述故障定位装置。
本申请第五方面提供一种无源光网络PON,包括:多个节点设备和故障定位装置,所述多个节点设备包括光线路终端OLT和光网络单元ONU;
所述多个节点中每个节点包括本申请第四方面所述的PON故障定位的装置;
所述故障定位装置包括本申请第三方面所述的PON故障定位的装置。
一种示例性的方式中,还包括:
采集装置,用于获取所述多个节点设备的参数和光线路的参数,对所述多个节点设备的参数和光线路的参数进行预处理;
所述采集装置,还用于将预处理后的所述多个节点设备的参数和光线路的参数发送给所述故障定位装置。
本申请第六方面提供一种故障定位装置,包括:处理器、存储器和收发器,所述存储器用于存储指令,所述收发器用于和其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述故障定位装置执行如本申请第一方面所述的方法。
本申请第七方面提供一种节点设备,包括:处理器、存储器和收发器,所述存储器用于存储指令,所述收发器用于和其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述节点设备执行如本申请第二方面所述的方法。
本申请第八方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当所述指令被执行时,使得计算机执行如本申请第一方面所述的方法。
本申请第九方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当所述指令被执行时,使得计算机执行如本申请第二方面所述的方法。
本申请提供的PON故障定位的方法和装置,包括:故障定位装置获取PON中的多个节点设备的参数和光线路的参数,多个节点设备包括OLT和ONU,将多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到PON的第一故障定位结果。故障定位装置通过AI算法对PON中的多个节点设备参数和光线路的参数进行分析,定位PON中故障,提升了故障定位的准确性和效率。
附图说明
图1为本申请实施例一提供的PON的架构示意图;
图2为本申请实施例二提供的PON的架构示意图;
图3为本申请实施例三提供的PON故障定位的方法的流程图;
图4为本发明实施例四提供的PON故障定位的方法的流程图;
图5为本发明实施例五提供的PON故障定位的方法的信令流程图;
图6为本申请实施例六提供的一种PON故障定位的装置的结构示意图;
图7为本申请实施例七提供的一种PON故障定位的装置的结构示意图;
图8为本申请实施例八提供的一种故障定位装置的结构示意图;
图9为本申请实施例九提供的一种节点设备的结构示意图。
具体实施方式
本申请提供一种PON,图1为本申请实施例一提供的PON的架构示意图,如图1所示,该PON包括多个节点设备和故障定位装置,该多个节点设备包括ONU和OLT。
多个ONU通过ODN连接到同一个OLT,OLT与网络连接,一个ONU可以连接多个终端设备,例如手机、固定电话、平板电脑、个人电脑(personal computer,PC)、移动基站等,终端设备可以进行语音、上网、视频等业务。图1只是举例说明,PON中还可以包括更多的OLT和ONU。
OLT是PON的核心部件,OLT与上层的网络侧设备(例如交换机或路由器)连接,下层连接一个或者多个ODN。OLT通过ODN下连用户端设备ONU,实现对ONU的控制、管理和测距等功能。一个OLT可以提供多个接口,称为PON接口,每个PON接口可以连接一个或多个ODN。
ONU是PON中的用户端设备,放置在用户端,与OLT配合使用,实现以太网二层、三层功能,为用户提供语音、数据和多媒体业务。它主要的功能是:选择接收OLT发送的数据;响应OLT发出的管理命令,并作相应的响应;对用户的以太网数据进行缓存,并在OLT分配的发送时隙口中向上行方向发送。
需要说明的是,如果ONU提供Ethernet用户端口或者传统电话业务(plain old telephone service,POTS)用户端口,则称为光网络终端(optical network termination,ONT)。
ODN包括用于光功率分配的无源光分光器、连接在无源光分光器和OLT之间的主干光纤,以及连接在无源光分光器和ONU之间的分支光纤,下行传输数据时,ODN将OLT下行的数据通过分光器传输到各个ONU。同样的,上行传输数据时,ODN将ONU的上行数据汇聚后传输到OLT。
OLT与ONU之间设置有至少一级分光器,当连接OLT与ONU的光纤线路中仅经过一个分光器时,此光网络为一级分光网络。当连接OLT与ONU的光纤线路中经过两个分光器时,此光网络为两级分光网络。从OLT到ONU,经过的第一个分光器为第一级分光器,经过的第二个分光器为第二级分光器。当连接OLT与ONU的光纤线路中经过三个及以上的分光器时,此光网络为多级分光网络,从OLT到ONU,依次经过的第一个分光器为第一级分光器,经过的第二个分光器为第二级分光器,依次类推,经过的第N个分光器为第N级分光器。
本申请实施例中,故障定位装置可以是一个或者多个独立的设备,也可以与其他设备集成在一起的,如集成在厂商的网管系统中,或者集成在运营商资源管理系统, 或者集成在网关、应用服务器中,本实施例不对故障定位装置的形式进行限定。
节点设备用于获取设备的参数和光线路的参数,并将节点设备的参数和光线路的参数发送给故障定位装置。节点设备的参数包括节点设备的光模块的(optical module)参数以及其他器件的参数。
OLT和ONU可以包括一个或者多个光模块,光模块由光电子器件、功能电路和光接口等组成,光电子器件包括发射和/或接收部分。光模块能够进行光电转换和电光转换,光模块的发送端把电信号转换为光信号,接收端把光信号转换为电信号。
光模块按照功能可以划分为:光接收模块、光发送模块、光收发一体模块和光转发模块等。光模块按照使用方式分为:可热插拔和非热插拔。按照封装类型可以分为:SFF、SFP、GBIC、XENPAK、XFP等。按照传输方式可以分为异步传输模式PON(ATM passive optical network,APON)、宽带PON(broadband passive optical network,BPON)、以太网PON(ethernet passive optical network,EPON)、千兆PON(gigabit passive optical network,GPON)、10千兆以太网PON(10G ethernet passive optical network,10G-EPON)等。
OLT的光模块用于从ONU接收上行数据,并将ONU的上行数据发送给网络,还用于从网络接收下行数据,并将下行数据发送给ONU。ONU的光模块用于从用户设备(User equipment,UE)接收上行数据,并将上行数据发送给OLT,ONU的光模块还用于从OLT接收下行数据,并将接收到的下行数据发送给UE。
光模块的参数可以包括:模块类型、模块电压、模块电流、模块温度、接收功率、发送功率、接收误码率等。
节点设备除了光模块,还包括其他器件,例如,PON MAC芯片,PON MAC芯片用于对电信号进行协议解帧或者组帧。还可以包括实现转发功能的组件或芯片,可用于实现局域网交换(LAN switch,LSW)转发、网络处理(network process,NP)或流量管理(traffic management,TM)等。还包括一些存储装置、电源模块等。除了获取光模块的参数,还可以获取节点设备的其他器件的参数,不同器件的参数可能不同,这里不再一一列举。
节点设备可以通过检测获取到设备的参数,也可以直接得到这些参数,直接上报给故障定位装置。节点设备上报的参数可以由故障定位设备动态配置。
光线路是指OLT和ONU之间用于光信号传输的路径,该光线路上可能包括主干光纤、分支光纤、分光器等无源器件。光线路的参数可以包括光线路中光信号的质量,例如,光层统计、光层告警、光距等,光线路的参数可以由OLT和ONT监控得到,这里只是举例说明,本实施例不对此进行限制。
节点设备可以周期性检测设备的参数和光线路的参数,为了提高故障定位的准确率和实效性,节点设备可以将检测周期设置的较短,以便于能够及时发现故障。现有技术中,在一些场景中,由于缺少检测节点设备的参数和光线路的参数的检测仪器,导致故障定位困难,例如,无法判断ONU挂在哪个分光器下,也无法在发生故障时判断是节点设备还是光线路出现了故障。
本实施例中,PON中的每个ONU和OLT都能够检测设备的参数和光线路的参数,PON中的所有ONU和OLT都会将设备的参数和光线路的参数上报给故障定位装置, 从而使得PON的故障定位易于实现。
故障定位装置获取到PON中的多个节点设备的参数和光线路的参数后,将多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到PON的第一故障定位结果。
本实施例中,故障定位装置采用人工智能(Artificial Intelligence,AI)算法进行故障定位,AI算法通过对大量的样本进行机器学习或者深度学习建立故障定位模型,后续使用该故障定位模型定位故障。该故障定位模型可以是神经网络模型,但不限于神经网络模块,神经网络模型是指经过大量数据训练而得到的用于执行神经网络计算,如认知计算的程序和数据。常用的神经网络模型包括循环神经网络模块和卷积神经网络模型。
故障定位设备通过第一故障定位模块得到PON的第一故障定位结果,第一故障定位结果可以包括故障类型的信息和故障设备的信息。示例性的,故障定位装置对多个节点设备的参数和光线路的参数进行特征提取,得到特征参数,将特征参数输入到第一故障定位模型,得到第一故障定位结果。
故障定位装置提取到的特征参数可以包括光模块的稳态信息、抖动信息和趋势等,这里只是举例说明,并不以此为限。
可选的,故障定位装置还用于将特征参数输入预先建立的故障类型模型,得到故障类型。故障类型可以是群障类型或者个障类型,群障影响用户数大,可能是主干光纤有问题,个障影响用户数小,可能只影响单个用户。
可以理解的是,群障和个障只是对故障类型在一个维度上的划分。当然,故障的类型还可以按照其他维度进行划分,例如,光纤受损、光纤弯折、连接器松动等。
故障设备的信息用于指示哪个设备发生了故障,故障设备可以是OLT、ONU、分光器、光纤,故障设备的信息可以是设备的标识,例如,OLT和ONU的标识,故障设备的信息还可以是光纤的位置信息,例如,主干光纤、末端光纤,故障设备的信息还可以是分光器的标识或者分光器的位置信息。
可选的,故障定位装置还用于将特征参数输入预先训练建立的拓扑模型,得到PON的拓扑信息和/或OLT的PON接口的拓扑信息,将故障类型,以及PON的拓扑信息和所述PON接口的拓扑信息中的至少一个输入第一故障定位模型,得到第一故障定位结果。
该拓扑模型可以是通过决策树继承类学习算法建立得到的,决策树继承类学习算法可以是梯度提升树(Gradient Boosting Decison Tree,GBDT)或Stacking算法。
输入拓扑模型的特征可以是多个ONU的光模块和光线路变化的特征,根据多个ONU的光模块和光线路变化的特征可以判断该若干个ONU是否在同个分光器下,从而得到PON的拓扑信息和/或OLT的PON接口的拓扑信息。
PON的拓扑信息用于描述整个PON中所有设备的连接关系,一个OLT可以包括多个PON接口,每个PON接口下可以连接多个ONU,PON接口的拓扑信息用于描述PON接口连接的设备(包括ONU、分光器等)之间的关系。
在得到故障类型,PON的拓扑信息和/或OLT的PON接口的拓扑信息后,可以对同一个PON接口下多个ONU在时间窗内的异常行为进行相似度分析,从而确定故障 设备。
可选的,故障定位装置还可以从其他设备获取PON的拓扑信息和/或OLT的PON接口的拓扑信息。例如,故障定位装置从资源管理设备处接收PON的拓扑信息,从设备厂商的网管系统处接收OLT的PON接口的拓扑信息。
在确定第一故障定位结果后,可选的,故障定位装置将第一故障定位结果发送给OSS或者应用服务器,OSS或者应用服务器可以根据第一故障定位结果生成故障分析报告,并将故障分析报告展示给用户。
可选的,节点设备还用于:将节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型,得到节点设备的第二故障定位结果,第二故障定位结果可以包括故障类型信息和故障位置。
可选的,节点设备将第二故障定位结果发送给故障定位装置、运营支撑系统(Operation Support System,OSS)或者应用服务器。
第二故障定位模型和第一故障定位模型不同。故障定位装置通过第一故障定位模型进行集中式故障定位,能够定位整个PON的故障,而OLT和ONU通过第二故障定位模块进行分布式故障定位,能够定位自身故障。
本实施例中,可以由各节点设备单独进行分布式故障定位,也可以由故障定位装置单独进行集中式故障定位,还可以将集中式故障定位和分布式故障定位结合。
示例性的,故障定位装置接收多个节点设备发送的第二故障定位结果,每个节点设备发送的第二故障定位结果由该节点设备将该节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型得到,故障定位装置根据第一故障定位结果和第二故障定位结果,得到综合故障定位结果,将综合故障定位结果发送给OSS或者应用服务器。
结合集中式故障定位和分布式故障定位可以使得故障定位更加准确,例如,通过集中式故障只能定位某个ONU出现了故障,但是无法定位具体的故障类型,此时通过分布式故障定位能够准确定位ONU发生的故障的类型。
可选的,故障定位装置还用于:根据第一故障定位结果,进行故障预测得到故障预测结果,将故障预测结果发送给OSS或者应用服务器。故障预测是指基于已经定位到的故障进行推理分析,得到未来可能发生的故障,例如,根据PON中当前故障的光纤,预测光纤裂化的趋势,故障预测结果中包括未来可能发生的故障的信息。
可选的,故障定位装置还可以结合PON的拓扑信息和/或OLT的PON接口的拓扑信息进行故障预测。
本实施例提供的PON,通过增加故障定位装置,故障定位装置获取PON中的所有接节点备的参数和光线路的参数,将多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到PON的第一故障定位结果。解决了现有技术由于PON中的节点设备数量庞大、光线路问题多、定位所需数据难获得等情况导致PON故障定位难的问题。并且故障定位装置通过AI算法进行大数据分析,定位PON中故障,提升了故障定位的准确性和效率。
图2为本申请实施例二提供的PON的架构示意图,如图2所示,本实施例的PON在图1所示的基础上,还包括采集装置,采集装置可以包括一个或者多个独立的设备, 也可以与其他设备集成在一起的,如集成在厂商的网关系统中,或者集成在运营商资源管理系统,或者集成在网关、应用服务器中。
采集装置用于接收多个节点设备发送的参数和光线路的参数,对多个节点设备的参数和光线路的参数进行预处理,将预处理后的多个节点设备的参数和光线路的参数发送给故障定位装置。
该预处理包括以下处理中的一个或者多个:对接收到的节点设备的参数和光线路的参数按照时间粒度进行汇聚;对接收到的节点设备的参数和光线路的参数按照对象维度进行汇聚,例如,按照主干光纤、分光器、OLT和ONU进行汇聚;对接收到的节点设备的参数和光线路的参数中的异常数据进行筛除。
该采集装置还可以用于动态配置采集参数、采集频率或者采集周期,通过配置采集参数告知节点设备对哪些参数进行采集。
节点设备和采集装置之间通过采集接口进行通信,节点设备通过采集接口将节点设备的参数和光线路的参数发送给采集装置,该采集接口包括但不限于以下接口:CLI、SNMP、TR069、SFTP、MQTT、TELEMETRY。
采集装置通过数据接口将预处理后的多个节点设备的参数和光线路的参数发送给故障定位装置,该数据接口可以采用通用的大数据平台相关消息机制,例如KAFKA。
故障定位装置通过输出接口将第一故障定位结果发送给OSS或者应用服务器,该输出接口包括但不限于Restful。
基于上述所示的PON,本申请实施例三提供一种PON故障定位的方法,图3为本发明实施例三提供的PON故障定位的方法的流程图,如图3所示,本实施例提供的方法包括以下步骤:
步骤S101、故障定位装置获取PON中的多个节点设备的参数和光线路的参数,该多个节点设备包括OLT和ONU。
故障定位装置接收多个节点设备发送的节点的参数和光线路的参数,或者,故障定位装置接收采集装置预处理后的多个节点设备的参数和光线路的参数。节点设备的参数和光线路的参数实施例一的描述,这里不再赘述。
步骤102、故障定位装置将多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到PON的第一故障定位结果。
示例性的,故障定位装置对多个节点设备的参数和光线路的参数进行特征提取,得到特征参数,将特征参数输入到第一故障定位模型,得到第一故障定位结果。
可选的,故障定位装置对多个设备节点的参数和光线路的参数进行特征提取,得到特征参数之后,故障定位装置将特征参数输入预先训练建立的拓扑模型,得到PON的拓扑信息和/或OLT的PON接口的拓扑信息。故障定位装置将特征参数输入预先建立的故障类型模型,得到故障类型,将故障类型,以及PON的拓扑信息和PON接口的拓扑信息中的至少一个输入第一故障定位模型,得到第一故障定位结果。
本实施例的具体实现方式,参照前述实施例的描述,这里不再赘述。
可选的,故障定位装置将第一故障定位结果发送给OSS或者应用服务器。
可选的,故障定位装置还根据第一故障定位结果,进行故障预测,得到故障预测结果,将故障预测结果发送给OSS或者应用服务器。OSS或者应用服务器将故障预测 结果展示给工作人员,以便于工作人员根据故障预测结果对未来可能发生的故障进行提前预防或者采取措施,避免故障的发生,或者将故障发生的损失降低到最小。
可选的,故障定位装置还接收多个节点设备发送的第二故障定位结果,每个节点设备发送的第二故障定位结果由该节点设备将该节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型得到。故障定位装置根据第一故障定位结果和第二故障定位结果,得到综合故障定位结果,将综合故障定位结果发送给OSS或者应用服务器。
本实施例中,故障定位装置获取PON中的多个节点设备的参数和光线路的参数,多个节点设备包括OLT和ONU,将多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到PON的第一故障定位结果。故障定位装置通过AI算法对PON中的多个节点设备参数和光线路的参数进行分析,定位PON中故障,提升了故障定位的准确性和效率。
基于上述所示的PON,本申请实施例四提供一种PON故障定位的方法,图4为本发明实施例四提供的PON故障定位的方法的流程图,如图4所示,本实施例提供的方法包括以下步骤:
步骤S201、节点设备获取节点设备的参数和光线路的参数,该节点设备为OLT或者ONU。
步骤S202、节点设备将节点设备的参数和光线路的参数发送给故障定位装置。
节点设备将参数和光线路的参数发送给故障定位装置,故障定位装置基于PON中的多个节点设备的参数和光线路的参数进行集中式故障定位。
步骤S203、节点设备将节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型,得到节点设备的第二故障定位结果。
节点设备根据自身的参数和光线路的参数进行分布式故障定位,得到第二故障定位结果,第二故障定位结果包括故障类型信息和故障位置。
步骤S204、节点设备将第二故障定位结果发送给OSS、应用服务器或者故障定位装置。
其中,步骤S203和步骤S204为可选步骤。
本实施例中,节点设备获取节点设备的参数和光线路的参数,该节点设备为OLT或ONU,将节点设备的参数和光线路的参数发送给故障定位装置,以使得故障定位装置基于PON中的节点设备的参数和光线路的参数,通过AI算法进行大数据分析,定位PON中的故障。同时,节点设备根据AI算法,对获取到的参数和光线路的参数进行分布式故障定位。将集中式故障定位和分布式故障定位结合进一步提高了故障定位的准确率。
基于上述所示的PON,本申请实施例五提供一种PON故障定位的方法,图5本发明实施例五提供的PON故障定位的方法的信令流程图,如图5所示,本实施例提供的方法包括以下步骤:
步骤S301、节点设备获取节点设备的参数和光线路的参数。
步骤S302、节点设备向采集装置发送节点设备的参数和光线路的参数。
步骤S303、采集装置对多个节点设备的参数和光线路的参数进行预处理。
步骤S304、采集装置将预处理后的节点设备的参数和光线路的参数发送给故障定位装置。
步骤S305、故障定位装置将多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到PON的第一故障定位结果。
步骤S306、故障定位装置将第一故障定位结果发送给OSS或者应用服务器。
步骤S307、节点设备将节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型,得到节点设备的第二故障定位结果。
步骤S308、节点设备将第二故障定位结果发送给采集装置。
步骤S309、采集装置将第二故障定位结果发送给故障定位装置。
步骤S310、故障定位装置将第二故障定位结果发送给OSS或者应用服务器。
本实施例中,步骤S306-S310为可选步骤,当节点设备进行故障定位时,步骤S306-S310与S302-S305可以是并行执行的。
图6为本申请实施例六提供的一种PON故障定位的装置的结构示意图,如图6所示,本实施例提供的装置,包括:
获取模块11,用于获取PON中的多个节点设备的参数和光线路的参数,所述节点设备包括光线路终端OLT和光网络单元ONU;
故障定位模块12,用于将所述多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到所述PON的第一故障定位结果。
一种示例性的方式中,所述获取模块11具体用于:
接收所述多个节点设备发送的节点的参数和光线路的参数;
或者,接收采集装置预处理后的所述多个节点设备的参数和光线路的参数。
一种示例性的方式中,所述故障定位模块12具体用于:
对所述多个节点设备的参数和光线路的参数进行特征提取,得到特征参数;
将所述特征参数输入到所述第一故障定位模型,得到所述第一故障定位结果。
一种示例性的方式中,还包括:拓扑确定模块,用于将所述特征参数输入预先训练建立的拓扑模型,得到所述PON的拓扑信息和/或所述OLT的PON接口的拓扑信息。
相应的,所述故障定位模块12还用于:
所述故障定位装置将所述特征参数输入预先建立的故障类型模型,得到故障类型;
所述故障定位装置将所述故障类型,以及所述PON的拓扑信息和所述PON接口的拓扑信息中的至少一个输入所述第一故障定位模型,得到所述第一故障定位结果。
一种示例性的方式中,还包括:
发送模块13,用于将所述第一故障定位结果发送给OSS或者应用服务器。
一种示例性的方式中,还包括故障预测模块;
故障预测模块,用于根据所述第一故障定位结果,进行故障预测得到故障预测结果;
发送模块13,还用于将所述故障预测结果发送给OSS或者应用服务器。
一种示例性的方式中,还包括:
接收模块,用于接收所述多个节点设备发送的第二故障定位结果,每个节点设备 发送的第二故障定位结果由该节点设备将该节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型得到;
所述故障定位模块12,还用于根据所述第一故障定位结果和所述第二故障定位结果,得到综合故障定位结果;
发送模块13,用于将所述综合故障定位结果发送给OSS或者应用服务器。
本实施例提供的装置,可用于执行上述实施例中故障定位装置执行的方法,具体实现方式和技术效果类似,这里不再赘述。
图7为本申请实施例七提供的一种PON故障定位的装置的结构示意图,如图7所示,本实施例提供的装置,包括:
获取模块21,用于获取节点设备的参数和光线路的参数,所述节点设备为光线路终端OLT和光网络单元ONU;
发送模块22,用于将所述节点设备的参数和光线路的参数发送给故障定位装置。
可选的,还包括:
故障定位模块23,用于将所述节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型,得到所述节点设备的第二故障定位结果。
一种示例性的方式中,所述发送模块22还用于:
将所述第二故障定位结果发送给运营支撑系统OSS、应用服务器或者所述故障定位装置。
本实施例提供的装置,可用于执行上述实施例中节点设备执行的方法,具体实现方式和技术效果类似,这里不再赘述。
图8为本申请实施例八提供的一种故障定位装置的结构示意图,如图8所示,本实施例提供的故障定位装置,包括:处理器31、存储器32和收发器33,所述存储器32用于存储指令,所述收发器33用于和其他设备通信,所述处理器31用于执行所述存储器32中存储的指令,以使所述故障定位装置执行如上述方法实施例中故障定位装置执行的方法。
图9为本申请实施例九提供的一种节点设备的结构示意图,如图10所示,本实施例提供的节点设备,包括:处理器41、存储器42和收发器43,所述存储器42用于存储指令,所述收发器43用于和其他设备通信,所述处理器41用于执行所述存储器42中存储的指令,以使所述节点设备执行如上述方法实施例中节点设备执行的方法。
本申请实施例十提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当所述指令被执行时,使得计算机执行如上述方法实施例中故障定位装置执行的方法。
本申请实施例十一提供一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当所述指令被执行时,使得计算机执行如上述方法实施例中节点设备执行的方法。
以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。所述处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、 数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。该处理器可以内置于SoC(片上系统)或专用集成电路(application specific integrated circuit,ASIC),也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、DSP、MCU、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种无源光网络PON故障定位的方法,其特征在于,包括:
    故障定位装置获取无源光网络PON中的多个节点设备的参数和光线路的参数,所述多个节点设备包括光线路终端OLT和光网络单元ONU;
    所述故障定位装置将所述多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到所述PON的第一故障定位结果。
  2. 根据权利要求1所述的方法,其特征在于,所述故障定位装置获取无源光网络PON中的多个节点设备的参数和光线路的参数,包括:
    所述故障定位装置接收所述多个节点设备发送的节点设备的参数和光线路的参数;
    或者,所述故障定位装置接收采集装置预处理后的所述多个节点设备的参数和光线路的参数。
  3. 根据权利要求1或2所述的方法,其特征在于,所述故障定位装置将所述多个节点的设备参数和光线路的参数输入到预先训练建立的第一故障模型,得到所述PON的第一故障定位结果,包括:
    所述故障定位装置对所述多个设备节点的参数和光线路的参数进行特征提取,得到特征参数;
    所述故障定位装置将所述特征参数输入到所述第一故障定位模型,得到所述第一故障定位结果。
  4. 根据权利要求3所述的方法,其特征在于,所述故障定位装置对所述多个设备节点的参数和光线路的参数进行特征提取,得到特征参数之后,还包括:
    所述故障定位装置将所述特征参数输入预先训练建立的拓扑模型,得到所述PON的拓扑信息和/或所述OLT的PON接口的拓扑信息;
    所述故障定位装置将所述特征参数输入到所述第一故障定位模型,得到所述第一故障定位结果,包括:
    所述故障定位装置将所述特征参数输入预先建立的故障类型模型,得到故障类型;
    所述故障定位装置将所述故障类型,以及所述PON的拓扑信息和所述PON接口的拓扑信息中的至少一个输入所述第一故障定位模型,得到所述第一故障定位结果。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,还包括:
    所述故障定位装置根据所述第一故障定位结果,进行故障预测得到故障预测结果;
    所述故障定位装置将所述故障预测结果和所述第一故障定位结果发送给运营支撑系统OSS或者应用服务器。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,还包括:
    所述故障定位装置接收所述多个节点设备发送的第二故障定位结果,每个节点设备发送的第二故障定位结果由该节点设备将该节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型得到;
    所述故障定位装置根据所述第一故障定位结果和所述第二故障定位结果,得到综合故障定位结果;
    所述故障定位装置将所述综合故障定位结果发送给运营支撑系统OSS或者应用服 务器。
  7. 一种无源光网络PON故障定位的方法,其特征在于,包括:
    节点设备获取所述节点设备的参数和光线路的参数,所述节点设备为光线路终端OLT或光网络单元ONU;
    所述节点设备将所述节点设备的参数和光线路的参数发送给故障定位装置。
  8. 根据权利要求7所述的方法,其特征在于,还包括:
    所述节点设备将所述节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型,得到所述节点设备的第二故障定位结果;
    所述节点设备将所述第二故障定位结果发送给运营支撑系统OSS、应用服务器或者所述故障定位装置。
  9. 一种无源光网络PON故障定位的装置,其特征在于,包括:
    获取模块,用于获取无源光网络PON中的多个节点设备的参数和光线路的参数,所述节点设备包括光线路终端OLT和光网络单元ONU;
    故障定位模块,用于将所述多个节点设备的参数和光线路的参数输入到预先训练建立的第一故障定位模型,得到所述PON的第一故障定位结果。
  10. 根据权利要求9所述的装置,其特征在于,所述获取模块具体用于:
    接收所述多个节点设备发送的节点的参数和光线路的参数;
    或者,接收采集装置预处理后的所述多个节点设备的参数和光线路的参数。
  11. 根据权利要求9或10所述的装置,其特征在于,所述故障定位模块具体用于:
    对所述多个节点设备的参数和光线路的参数进行特征提取,得到特征参数;
    将所述特征参数输入到所述第一故障定位模型,得到所述第一故障定位结果。
  12. 根据权利要求11所述的装置,其特征在于,还包括:
    拓扑确定模块,用于将所述特征参数输入预先训练建立的拓扑模型,得到所述PON的拓扑信息和/或所述OLT的PON接口的拓扑信息;
    所述故障定位模块还用于:
    将所述特征参数输入预先建立的故障类型模型,得到故障类型;
    将所述故障类型,以及所述PON的拓扑信息和所述PON接口的拓扑信息中的至少一个输入所述第一故障定位模型,得到所述第一故障定位结果。
  13. 根据权利要求9-12任一项所述的装置,其特征在于,还包括:
    故障预测模块,用于根据所述第一故障定位结果,进行故障预测得到故障预测结果;
    发送模块,用于将所述故障预测结果和所述第一故障定位结果发送给运营支撑系统OSS或者应用服务器。
  14. 根据权利要求9-13任一项所述的装置,其特征在于,还包括:
    接收模块,用于接收所述多个节点设备发送的第二故障定位结果,每个节点设备发送的第二故障定位结果由该节点设备将该节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型得到;
    所述故障定位模块,还用于根据所述第一故障定位结果和所述第二故障定位结果,得到综合故障定位结果;
    发送模块,用于将所述综合故障定位结果发送给OSS或者应用服务器。
  15. 一种无源光网络PON故障定位的装置,其特征在于,包括:
    获取模块,用于获取节点设备的参数和光线路的参数,所述节点设备为光线路终端OLT和光网络单元ONU;
    发送模块,用于将所述节点设备的参数和光线路的参数发送给故障定位装置。
  16. 根据权利要求15所述的装置,其特征在于,还包括:
    故障定位模块,用于将所述节点设备的参数和光线路的参数输入预先训练建立的第二故障定位模型,得到所述节点设备的第二故障定位结果;
    所述发送模块还用于:将所述第二故障定位结果发送给运营支撑系统OSS、应用服务器或者所述故障定位装置。
  17. 一种无源光网络PON,其特征在于,包括:多个节点设备和故障定位装置,所述多个节点设备包括光线路终端OLT和光网络单元ONU;
    所述多个节点中每个节点包括权利要求15或16所述的PON故障定位的装置;
    所述故障定位装置包括权利要求9-14任一项所述的PON故障定位的装置。
  18. 根据权利要求17所述的PON,其特征在于,还包括:
    采集装置,用于获取所述多个节点设备的参数和光线路的参数,对所述多个节点设备的参数和光线路的参数进行预处理;
    所述采集装置,还用于将预处理后的所述多个节点设备的参数和光线路的参数发送给所述故障定位装置。
  19. 一种故障定位装置,其特征在于,包括:处理器、存储器和收发器,所述存储器用于存储指令,所述收发器用于和其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述故障定位装置执行如权利要求1-6任一项所述的方法。
  20. 一种节点设备,其特征在于,包括:处理器、存储器和收发器,所述存储器用于存储指令,所述收发器用于和其他设备通信,所述处理器用于执行所述存储器中存储的指令,以使所述节点设备执行如权利要求7或8所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被执行时,使得计算机执行如权利要求1-6任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令被执行时,使得计算机执行如权利要求7或8所述的方法。
PCT/CN2018/118779 2018-11-30 2018-11-30 Pon故障定位的方法和装置 WO2020107481A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/118779 WO2020107481A1 (zh) 2018-11-30 2018-11-30 Pon故障定位的方法和装置
EP18941155.6A EP3829080A4 (en) 2018-11-30 2018-11-30 PON FAULT LOCATION METHOD AND DEVICE
CN201880096482.1A CN112567647B (zh) 2018-11-30 2018-11-30 Pon故障定位的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/118779 WO2020107481A1 (zh) 2018-11-30 2018-11-30 Pon故障定位的方法和装置

Publications (1)

Publication Number Publication Date
WO2020107481A1 true WO2020107481A1 (zh) 2020-06-04

Family

ID=70852509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118779 WO2020107481A1 (zh) 2018-11-30 2018-11-30 Pon故障定位的方法和装置

Country Status (3)

Country Link
EP (1) EP3829080A4 (zh)
CN (1) CN112567647B (zh)
WO (1) WO2020107481A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210081770A1 (en) * 2019-09-17 2021-03-18 GOWN Semiconductor Corporation System architecture based on soc fpga for edge artificial intelligence computing
CN113630670A (zh) * 2021-08-05 2021-11-09 烽火通信科技股份有限公司 一种pon链路弱光故障定界方法、系统及装置
CN113794959A (zh) * 2021-10-20 2021-12-14 深圳市天威网络工程有限公司 一种pon网络故障自动定位方法及其系统
CN114025260A (zh) * 2021-11-01 2022-02-08 中国电信股份有限公司 光接入网故障定位方法、装置、设备及介质
CN114039834A (zh) * 2021-11-03 2022-02-11 中盈优创资讯科技有限公司 一种实现光网端到端故障一键诊断的处理方法及装置
CN114979843A (zh) * 2022-06-30 2022-08-30 中国电信股份有限公司 拓扑信息更新方法、装置、电子设备及非易失性存储介质
CN115334381A (zh) * 2022-10-17 2022-11-11 成都同步新创科技股份有限公司 一种光网络无源分光器线路分析管理方法及系统
CN116436522A (zh) * 2023-06-14 2023-07-14 国网天津市电力公司蓟州供电分公司 电力通信接入网故障定位装置及定位方法
TWI814662B (zh) * 2022-12-09 2023-09-01 中華電信股份有限公司 用於被動式光纖網路之故障判斷系統、方法及其電腦程式產品
EP4198803A4 (en) * 2020-08-17 2024-01-10 Zte Corp FAULT PROCESSING METHOD AND APPARATUS, NETWORK DEVICE AND STORAGE MEDIUM
CN114979843B (zh) * 2022-06-30 2024-05-24 中国电信股份有限公司 拓扑信息更新方法、装置、电子设备及非易失性存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236458A (zh) * 2021-11-18 2022-03-25 深圳供电局有限公司 基于测试数据流的双芯智能电表故障定位方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102386974A (zh) * 2011-12-13 2012-03-21 中国电信股份有限公司 Pon网络故障检测方法和装置
CN103597848A (zh) * 2011-06-07 2014-02-19 阿尔卡特朗讯 用于光网络通信系统的故障检测器
US20160234582A1 (en) * 2015-02-10 2016-08-11 Daniel Ronald Method and system for redundancy in a passive optical network
CN107911762A (zh) * 2017-11-15 2018-04-13 国网安徽省电力公司宿州供电公司 一种基于决策树的onu故障诊断方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046929B1 (en) * 1999-08-24 2006-05-16 Ciena Corporation Fault detection and isolation in an optical network
US7619979B2 (en) * 2004-06-15 2009-11-17 International Business Machines Corporation Fault isolation in a network
CN100495978C (zh) * 2004-12-21 2009-06-03 中国联合通信有限公司 一种用于通信网络中的故障定位方法及装置
KR100618130B1 (ko) * 2005-04-04 2006-08-31 한국과학기술원 파장분할다중방식 수동형 광가입자망에서의 광선로 장애위치 검출 장치
CN101110648B (zh) * 2006-07-18 2010-11-24 华为技术有限公司 检测pon中故障onu的方法
TWI350071B (en) * 2006-09-11 2011-10-01 Univ Nat Taiwan Science Tech Detection system for identifying faults in a passive optical network
CN100440810C (zh) * 2006-10-12 2008-12-03 中兴通讯股份有限公司 一种自动获取光网络节点内部连接关系的方法
CN101079668B (zh) * 2007-07-05 2011-07-20 华为技术有限公司 光纤故障定位设备、方法及装置
CN101753207B (zh) * 2008-12-16 2013-08-28 华为技术有限公司 光纤链路故障识别方法、装置及系统
CN101841738A (zh) * 2009-03-20 2010-09-22 华为技术有限公司 光接入系统中识别光网络单元的方法、光接入系统和设备
CN101998189B (zh) * 2009-08-20 2015-07-22 中兴通讯股份有限公司 一种光接入节点的管理方法及光接入节点
US20140056582A1 (en) * 2012-08-27 2014-02-27 Calix, Inc. Detecting and communicating potential optical fiber issues in optical networks
CN104885415A (zh) * 2012-12-21 2015-09-02 三菱电机株式会社 Pon系统及olt
CN104202082B (zh) * 2014-09-25 2017-03-08 重庆邮电大学 一种低开销的高生存性pon保护结构
CN104601228A (zh) * 2015-02-04 2015-05-06 苏州萤石光电科技有限公司 Pon网络光纤链路故障定位系统和定位方法
CN107703398A (zh) * 2017-11-08 2018-02-16 云南电网有限责任公司电力科学研究院 一种epon无源光网络自动化配网终端测试仪
CN108833002B (zh) * 2018-04-28 2020-04-28 烽火通信科技股份有限公司 一种基于无源光网络的光链路检测方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597848A (zh) * 2011-06-07 2014-02-19 阿尔卡特朗讯 用于光网络通信系统的故障检测器
CN102386974A (zh) * 2011-12-13 2012-03-21 中国电信股份有限公司 Pon网络故障检测方法和装置
US20160234582A1 (en) * 2015-02-10 2016-08-11 Daniel Ronald Method and system for redundancy in a passive optical network
CN107911762A (zh) * 2017-11-15 2018-04-13 国网安徽省电力公司宿州供电公司 一种基于决策树的onu故障诊断方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3829080A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210081770A1 (en) * 2019-09-17 2021-03-18 GOWN Semiconductor Corporation System architecture based on soc fpga for edge artificial intelligence computing
US11544544B2 (en) * 2019-09-17 2023-01-03 Gowin Semiconductor Corporation System architecture based on SoC FPGA for edge artificial intelligence computing
EP4198803A4 (en) * 2020-08-17 2024-01-10 Zte Corp FAULT PROCESSING METHOD AND APPARATUS, NETWORK DEVICE AND STORAGE MEDIUM
CN113630670B (zh) * 2021-08-05 2023-07-18 烽火通信科技股份有限公司 一种pon链路弱光故障定界方法、系统及装置
CN113630670A (zh) * 2021-08-05 2021-11-09 烽火通信科技股份有限公司 一种pon链路弱光故障定界方法、系统及装置
CN113794959A (zh) * 2021-10-20 2021-12-14 深圳市天威网络工程有限公司 一种pon网络故障自动定位方法及其系统
CN113794959B (zh) * 2021-10-20 2024-01-09 深圳市天威网络工程有限公司 一种pon网络故障自动定位方法及其系统
CN114025260A (zh) * 2021-11-01 2022-02-08 中国电信股份有限公司 光接入网故障定位方法、装置、设备及介质
CN114039834B (zh) * 2021-11-03 2024-01-05 中盈优创资讯科技有限公司 一种实现光网端到端故障一键诊断的处理方法及装置
CN114039834A (zh) * 2021-11-03 2022-02-11 中盈优创资讯科技有限公司 一种实现光网端到端故障一键诊断的处理方法及装置
CN114979843A (zh) * 2022-06-30 2022-08-30 中国电信股份有限公司 拓扑信息更新方法、装置、电子设备及非易失性存储介质
CN114979843B (zh) * 2022-06-30 2024-05-24 中国电信股份有限公司 拓扑信息更新方法、装置、电子设备及非易失性存储介质
CN115334381A (zh) * 2022-10-17 2022-11-11 成都同步新创科技股份有限公司 一种光网络无源分光器线路分析管理方法及系统
TWI814662B (zh) * 2022-12-09 2023-09-01 中華電信股份有限公司 用於被動式光纖網路之故障判斷系統、方法及其電腦程式產品
CN116436522A (zh) * 2023-06-14 2023-07-14 国网天津市电力公司蓟州供电分公司 电力通信接入网故障定位装置及定位方法
CN116436522B (zh) * 2023-06-14 2023-08-15 国网天津市电力公司蓟州供电分公司 电力通信接入网故障定位装置及定位方法

Also Published As

Publication number Publication date
CN112567647A (zh) 2021-03-26
EP3829080A1 (en) 2021-06-02
CN112567647B (zh) 2022-07-22
EP3829080A4 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2020107481A1 (zh) Pon故障定位的方法和装置
US8670663B2 (en) Methods, systems, and computer-readable media for providing notification of a power failure
US7809262B2 (en) Methods, systems, and computer-readable media for determining physical layer failures
US8655168B2 (en) Passive optical network maintenance method, an optical network unit, and an optical line terminal
US8818188B2 (en) Traffic generation and analysis for ONU emulation
CN101345581B (zh) 一种无源光网络的故障定位方法及系统
CN101114879A (zh) 一种手持式无源光网络的链路故障诊断装置
CN106452571B (zh) 电力终端通信接入网拓扑相关性故障段判定与分析方法
CN103227966B (zh) Pon中的透明保护切换操作
US8855493B2 (en) ONU emulator deployment for mixed types of ONU traffic
CN103299585B (zh) 适用于待机状态配置管理的数据处理
US10462036B2 (en) Line rate ethernet traffic testing
McGettrick et al. Experimental end-to-end demonstration of shared N: M dual-homed protection in SDN-controlled long-reach PON and pan-European core
CN103354508A (zh) 一种omci管理方法
CN106301837A (zh) 无源光网络告警检测方法及装置
CN104811243A (zh) 长发光检测方法及装置
US20180287884A1 (en) Cross-layer link discovery
JP2010154404A (ja) 加入者宅側光回線終端装置
Tomasov et al. FPGA xPON traffic analysis
US9351057B2 (en) Service provisioning enabled management in SIEPON switching subsystem
JP2011035738A (ja) 障害onu特定方法及び装置
Adisatya et al. Analysis of XG-PON Based FTTH Design for Downstream and Upstream Configurations
CN102932055A (zh) 应用于时分无源光网络的光冲突检测装置及方法
WO2024109604A1 (zh) 一种pon系统的故障分析方法、装置及设备
KR101251302B1 (ko) Pon 시스템 및 그에 대한 ont 이상 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18941155

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018941155

Country of ref document: EP

Effective date: 20210224

WWE Wipo information: entry into national phase

Ref document number: 18941155.6

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE