WO2020105931A1 - 광학체 및 이를 포함하는 표시장치 - Google Patents

광학체 및 이를 포함하는 표시장치

Info

Publication number
WO2020105931A1
WO2020105931A1 PCT/KR2019/015335 KR2019015335W WO2020105931A1 WO 2020105931 A1 WO2020105931 A1 WO 2020105931A1 KR 2019015335 W KR2019015335 W KR 2019015335W WO 2020105931 A1 WO2020105931 A1 WO 2020105931A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical body
dispersion
optical
dispersions
luminance
Prior art date
Application number
PCT/KR2019/015335
Other languages
English (en)
French (fr)
Inventor
고승진
유배근
성종대
Original Assignee
도레이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180145535A external-priority patent/KR102540191B1/ko
Priority claimed from KR1020180145594A external-priority patent/KR20200060085A/ko
Priority claimed from KR1020180145536A external-priority patent/KR20200060052A/ko
Priority claimed from KR1020180147451A external-priority patent/KR102551104B1/ko
Application filed by 도레이첨단소재 주식회사 filed Critical 도레이첨단소재 주식회사
Priority to EP19886144.5A priority Critical patent/EP3885802A4/en
Priority to US17/294,999 priority patent/US20220011630A1/en
Publication of WO2020105931A1 publication Critical patent/WO2020105931A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3008Polarising elements comprising dielectric particles, e.g. birefringent crystals embedded in a matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133524Light-guides, e.g. fibre-optic bundles, louvered or jalousie light-guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0065Manufacturing aspects; Material aspects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one

Definitions

  • the present invention relates to an optical body and a display device including the same, and more particularly, to an optical body capable of maximizing luminance improvement while minimizing optical loss of the optical body and a display device including the same.
  • the present invention relates to an optical body having uniform optical properties and a display device including the same.
  • the flat panel display technology is mainly composed of liquid crystal displays (LCDs), projection displays and plasma displays (PDPs), which have already secured a market in the field of TV, and related technologies such as field emission displays (FED) and electroluminescent displays (ELD). It is expected to occupy the field according to each characteristic with the improvement of. LCD displays are currently used in laptops, personal computer monitors, liquid crystal TVs, automobiles, aircraft, etc., and are occupying about 80% of the flat panel market.
  • LCDs liquid crystal displays
  • PDPs projection displays and plasma displays
  • FED field emission displays
  • ELD electroluminescent displays
  • liquid crystal display In a conventional liquid crystal display, a liquid crystal and an electrode matrix are disposed between a pair of absorbent optical films.
  • the liquid crystal portion In a liquid crystal display, the liquid crystal portion has an optical state changed accordingly by moving the liquid crystal portion by an electric field generated by applying voltage to both electrodes. This process displays an image of 'pixels' carrying information using polarization in a specific direction. For this reason, liquid crystal displays include a front optical film and a back optical film that induce polarization.
  • the optical film used in such a liquid crystal display cannot necessarily be said to have high utilization efficiency of light emitted from a backlight. This is because 50% or more of the light emitted from the backlight is absorbed by the back side optical film (absorption type polarizing film). Therefore, in order to increase the utilization efficiency of backlight light in a liquid crystal display, an optical body is installed between the optical cavity and the liquid crystal assembly.
  • FIG. 1 is a view showing the optical principle of a conventional optical body. Specifically, P-polarized light among the light directed from the optical cavity to the liquid crystal assembly passes through the optical body and is transmitted to the liquid crystal assembly, and the S-polarized light is reflected from the optical body to the optical cavity, and then the polarization direction of light on the diffuse reflection surface of the optical cavity It is reflected in this randomized state and transmitted back to the optical body, so that S-polarized light is converted into P-polarized light that can pass through the polarizer of the liquid crystal assembly and then transmitted to the liquid crystal assembly after passing through the optical body.
  • the selective reflection of the S-polarized light with respect to the incident light of the optical body and the transmission of the P-polarized light have a difference in refractive index between the optical layers on the flat plate having an anisotropic refractive index and the optical layer on the flat plate having an isotropic refractive index.
  • the optical thickness of each optical layer according to the elongation treatment of the laminated optical layer and the refractive index change of the optical layer.
  • the light incident on the optical body passes through each optical layer and repeats the reflection of the S-polarized light and the transmission of the P-polarized light, and eventually only the P-polarized light among the incident polarized light is transmitted to the liquid crystal assembly.
  • the reflected S-polarized light as described above, is reflected in a randomized state in a polarized state on the diffuse reflection surface of the optical cavity and transmitted to the optical body again. As a result, it was possible to reduce power waste and loss of light generated from the light source.
  • an isotropic optical layer and an anisotropic optical layer on a flat plate having different refractive indices are alternately stacked, and elongated to have optical thickness and refractive index between each optical layer that can be optimized for selective reflection and transmission of incident polarization. Since it is manufactured, there is a problem that the manufacturing process of the optical body is complicated. In particular, since each optical layer of the optical body has a flat plate structure, since the P polarization and the S polarization must be separated in response to a wide range of incident angles of incident polarization, the number of stacked optical layers increases excessively, and the production cost increases exponentially. There was a problem. In addition, due to the structure in which the number of stacked optical layers is excessively formed, there is a problem that optical performance may be deteriorated due to optical loss.
  • DBEF dual brightness enhancement film
  • skin layers 9 and 10 are formed on both sides of the substrate 8.
  • the substrate 8 is divided into four groups (1, 2, 3, 4), in which the isotropic layer and the anisotropic layer are alternately stacked to form approximately 200 layers.
  • the four groups (1, 2, 3, 4) forming the substrate 8 separate adhesive layers (5, 6, 7) for bonding them are formed.
  • each group has a very thin thickness of about 200 layers, when the groups are individually coextruded, each group may be damaged, so the groups often include a protective layer (PBL). In this case, there was a problem in that the thickness of the substrate became thick and the manufacturing cost increased.
  • PBL protective layer
  • the thickness of the substrate is limited for slimness, when the adhesive layer is formed on the substrate and / or the skin layer, the substrate is reduced by the thickness, so the optical properties are not very good. There was. Furthermore, since the inside of the substrate and the substrate and the skin layer are combined with an adhesive layer, there is a problem that interlayer peeling occurs when an external force is applied, a long time has elapsed, or the storage place is poor. In addition, in the process of adhesion of the adhesive layer, not only the defect rate is too high, but also due to the formation of the adhesive layer, there is a problem that offset interference with the light source occurs.
  • Skin layers 9 and 10 are formed on both sides of the substrate 8, and separate adhesive layers 11 and 12 are formed to bond them between the substrate 8 and the skin layers 9 and 10.
  • peeling may occur due to a compatibility member, and due to the crystallinity of about 15%, birefringence to the elongation axis during the stretching process The risk of occurrence is high. Accordingly, in order to apply the polycarbonate sheet of the non-stretching process, it was inevitable to form an adhesive layer.
  • 3 is a perspective view of an optical body 20 including a rod-shaped polymer, in which a birefringent polymer 22 stretched in the longitudinal direction is arranged in one direction.
  • birefringent polymers 22 must be disposed inside the substrate in order to have similar transmittance and reflectance as the alternating double luminance enhancement film.
  • a 32-inch horizontal display panel based on the vertical cross-section of the optical body in order to have optical properties similar to the above-described double luminance enhancement film inside the substrate 21 having a width of 1580 mm and a height (thickness) of 400 ⁇ m or less.
  • a circular or elliptical birefringent polymer 22 having a cross-sectional diameter in the direction of 0.1 to 0.3 ⁇ m should be included at least 100 million or more.
  • FIG. 4 is a cross-sectional view of a birefringent island-in-the-sea yarn included in the base material. Since the birefringent island-in-the-sea yarn can generate an optical modulation effect at the optical modulation interface between the inner and inner portions of the substrate, a very large number of birefringent polymers are described. Even if the island-in-the-sea yarn is not disposed, optical properties can be achieved. However, since birefringent island-in-the-sea yarns are fibers, problems with compatibility with polymer substrates, ease of handling, and adhesion have arisen.
  • the present invention has been devised in view of the above points, and the optical body of the present invention is capable of maximizing luminance improvement as compared to a conventional optical body, as well as an optical body having excellent polarization and low haze, and It is an object to provide a display device including the same.
  • an object of the present invention is to provide an optical body having a uniform in-plane optical property, and further excellent optical properties, and a display device including the same.
  • the optical body of the present invention includes a substrate and a plurality of dispersions dispersed in the substrate, and the plurality of dispersions have an average aspect ratio of 0.5 or less and 0.3 ⁇ m 2 or less.
  • the number of dispersions having a cross-sectional area may be 80% or more of the total dispersions.
  • the plurality of dispersions may have a number of dispersions having a cross-sectional area of 0.3 ⁇ m 2 or less, 90% or more of the total dispersions.
  • a plurality of dispersion may be 70% to 90% of 0.01 ⁇ m 2 exceeds the number 0.09 ⁇ m the whole dispersion of the dispersion having a sectional area of not more than 2 body.
  • the haze of the optical body of the present invention may be 25% or less.
  • the plurality of dispersions may have a cross-sectional dispersion coefficient of 90% to 120% according to Equation 2 below.
  • the optical body of the present invention includes a substrate and a plurality of dispersions dispersed therein, and the plurality of dispersions have an average cross-sectional area of 1 ⁇ m 2 or less, and an aspect ratio dispersion system according to Equation 1 below.
  • the number may be more than 40%.
  • the plurality of dispersions may have an aspect ratio dispersion coefficient according to Equation 1 above, which may be 40 to 45%.
  • the plurality of dispersions may have an average aspect ratio of 0.3 to 0.5.
  • the optical body of the present invention may satisfy the following conditions (1) and (2).
  • the glass transition temperature (Tg) of the substrate may be 110 ⁇ 130 °C.
  • the haze of the optical body of the present invention may be 25% or less.
  • the optical body of the present invention can transmit the first polarization parallel to the transmission axis and reflect the second polarization parallel to the extinction axis.
  • the optical body of the present invention may be a polymer dispersion type in which a plurality of dispersions are dispersed inside a substrate.
  • the optical body of the present invention may have a luminance dispersion coefficient according to Equation 3 below, measured based on an imaginary first line in-plane parallel to the transmission axis, of 2% or less.
  • the optical body is stretched in the MD direction, and the first line may be perpendicular to the MD direction.
  • the luminance dispersion coefficient may be 1% or less.
  • the first angle and the acute angle of the acute angle is ⁇ 60 °
  • the luminance dispersion coefficient measured based on the in-plane virtual second line passing through the bisector of the first line may be within 2%. have.
  • the width when the transmission axis direction is the width direction, the width may be 85 cm or more.
  • the plurality of dispersions may be stretched in one uniaxial direction and have different refractive indices in at least one axial direction from the substrate.
  • the plurality of dispersions may be randomly dispersed inside the substrate.
  • the display device of the present invention may include the aforementioned optical body.
  • the display device may be preferably a liquid crystal display (LCD) or a light emitting diode (LED).
  • LCD liquid crystal display
  • LED light emitting diode
  • 'Dispersion has birefringence' means that when light is irradiated to a fiber having a different refractive index depending on the direction, the light incident on the dispersion is refracted into two or more different directions.
  • 'Isotropic' means that when the light passes through an object, the refractive index is constant regardless of the direction.
  • anisotropic means that the optical properties of an object are different depending on the direction of light.
  • Anisotropic objects have birefringence and correspond to isotropy.
  • the term 'light modulation' means that the irradiated light is reflected, refracted, scattered, or the intensity of the light, the period of the wave, or the nature of the light changes.
  • 'aspect ratio' refers to the ratio of the short axis length to the long axis length based on the vertical section in the longitudinal direction of the dispersion.
  • Cross-sectional area of the dispersion ( ⁇ m 2 ) ⁇ ⁇ long axis length of the dispersion / 2 ⁇ short axis length of the dispersion / 2
  • the long axis length and the short axis length of the relational expression 1 refer to the long axis and short axis of the dispersion in the cross section of the optical body perpendicular to the longitudinal direction of the optical body, based on the vertical section in the longitudinal direction of the dispersion (see FIG. 6). .
  • the optical body of the present invention and the display device including the same can not only maximize the luminance enhancement compared to the conventional optical body, but also have excellent polarization degree and low haze.
  • the optical body of the present invention and the display device including the same can be widely used in overall display devices such as liquid crystal display devices and organic light emitting display devices, since the in-plane optical properties are uniform, and furthermore, the optical properties are excellent.
  • FIG. 1 is a schematic diagram illustrating the principle of a conventional optical body.
  • DBEF dual brightness enhancement film
  • FIG 3 is a perspective view of an optical body comprising a rod-shaped polymer.
  • FIG. 4 is a cross-sectional view showing a path of light incident on a birefringent island-in-the-sea yarn used in an optical body.
  • FIG. 5 is a cross-sectional view of a random dispersion type optical body according to a preferred embodiment of the present invention.
  • FIG. 6 is a vertical cross-sectional view in the longitudinal direction of a dispersion used in a random dispersion type optical body according to one preferred embodiment of the present invention.
  • FIG. 7 is a perspective view of an optical body included in a preferred embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a coat-hanger die, which is a kind of flow control unit that can be preferably applied to the present invention
  • FIG. 9 is a side view of FIG. 8.
  • FIG. 10 is a cross-sectional view of a liquid crystal display device according to an exemplary embodiment of the present invention.
  • FIG. 11 is a perspective view of a liquid crystal display device employing an optical body according to a preferred embodiment of the present invention.
  • 12 to 14 are schematic diagrams of sampling of the first and second lines, which are the standard for measuring luminance uniformity, and the specimen to be measured for luminance.
  • 15 is a cross-sectional view perpendicular to the stretching direction of the optical body according to an embodiment of the present invention.
  • 16 is a cross-sectional view perpendicular to the stretching direction of the multilayer optical body according to the comparative example of the present invention.
  • FIG. 17 is an exploded perspective view of a compression detention for manufacturing the optical body according to Figure 16.
  • the optical body of the present invention may be a diffuse polarizer or a reflective polarizer. In addition, it may have various uses as a reflective polarizer, and may be useful for a liquid crystal display panel as a preferred example. In addition, the optical body of the present invention can also be used as a window material, and polarized radiation as a light fixture can be used for a preferred use.
  • examples of more specific uses of the optical body of the present invention include a light-receiving display device such as a liquid crystal display (LCD) or an active display device such as an organic light emitting display, which is a laptop-top computer, for use in the hand.
  • a light-receiving display device such as a liquid crystal display (LCD) or an active display device such as an organic light emitting display, which is a laptop-top computer, for use in the hand.
  • LCD liquid crystal display
  • an active display device such as an organic light emitting display
  • laptop-top computer polarized luminaires using polarized light to increase contrast and reduce glare and work luminaires.
  • the optical body of the present invention can be used as a light extractor in various optical devices, including a light guide such as a large core optical fiber (LCOF).
  • a light guide such as a large core optical fiber (LCOF).
  • LCOF large core optical fiber
  • remote light source lighting applications such as exhibition lighting, road lighting, automotive lighting, down lighting, work lighting, highlight lighting and ambient lighting.
  • the optical body of the present invention can transmit the first polarization parallel to the transmission axis and reflect the second polarization parallel to the extinction axis.
  • the magnitude of the substantial coincidence or inconsistency of the refractive index of the optics along the X, Y and Z axes in space affects the degree of scattering of polarized light rays along the axis.
  • the scattering power changes in proportion to the square of the refractive index mismatch. Therefore, the greater the degree of mismatch of the refractive index along a particular axis, the stronger the light polarized along the axis is scattered. Conversely, if the misalignment along a particular axis is small, the light rays polarized along that axis are scattered to a lesser extent.
  • the refractive index of the isotropic material of the optic along a certain axis substantially coincides with the refractive index of the anisotropic material
  • incident light polarized by an electric field parallel to this axis passes through the optic without scattering.
  • the first polarization (P wave) is transmitted without being affected by the birefringent interface formed at the boundary between the isotropic material and the anisotropic material, but the second polarization (S wave) is formed at the boundary between the isotropic material and the anisotropic material. Modulation of light occurs due to the influence of the birefringent interface.
  • the P wave is transmitted, and the S wave is modulated by light such as light scattering and reflection, so that polarization is separated, and the first polarization (P wave) is transmitted through the optical body and is usually located on top of the optical body.
  • the display is reached.
  • the optical body transmits one polarization and reflects the other polarization.
  • the transmitted polarization is polarized parallel to the transmission axis, and the reflected polarization is polarized parallel to the extinction axis.
  • the optical body of the present invention may be a polymer-dispersed optical body including a substrate and a plurality of dispersions dispersed therein, and more preferably, the dispersion may be a random-dispersed optical body randomly dispersed inside the substrate. .
  • the optical body of the present invention is a polymer having a core layer 210 including a substrate 201 and a plurality of dispersions 202 contained therein, as shown in FIG. 5 It may be a dispersion type optical body 200.
  • skin layers 210 and 220 may be further provided on one or both surfaces of the core layer 210, specifically, on one or both surfaces of the substrate 201.
  • the dispersion 202 may be a random dispersion-type optical body, which is randomly dispersed inside a substrate on a cross section of a plurality of dispersions perpendicular to the longitudinal direction, as shown in FIG. 5.
  • a plurality of dispersions may be uniformly arranged on a cross section of an optical body perpendicular to the longitudinal direction, for example, a dispersion having the same thickness in the horizontal direction at the same height in the cross section.
  • the plurality of dispersions 202 may be randomly dispersed inside the substrate.
  • the dispersion since the dispersion must form a birefringent interface with the substrate to induce a light modulation effect, when the substrate is optically isotropic, the dispersion may have optical birefringence, and conversely, when the substrate has optical birefringence The dispersion may have optical isotropy.
  • the refractive index in the x-axis direction of the dispersion is nX 1
  • the refractive index in the y-axis direction is nY 1 and the refractive index in the z-axis direction is nZ 1
  • the refractive index of the substrate is nX 2 , nY 2 and nZ 2
  • nX In- plane birefringence between 1 and nY 1 may occur.
  • At least one of the X, Y, and Z axis refractive indices of the substrate and the dispersion may be different, and more preferably, when the elongation axis is the X axis, the difference in refractive index in the Y and Z axis directions is 0.05 or less. And, the difference in refractive index with respect to the X-axis direction may be 0.1 or more. On the other hand, if the difference in refractive index is 0.05 or less, it is usually interpreted as a match.
  • the plurality of dispersions of the present invention may have an appropriate optical thickness to reflect the desired second polarization in at least the visible light wavelength range, and may have a thickness deviation within an appropriate range.
  • the optical thickness means n (refractive index)> d (physical thickness).
  • n reffractive index
  • d physical thickness
  • the wavelength and optical thickness of light are defined according to the following Equation 2.
  • 4nd, with ⁇ being the wavelength of light (nm), n being the refractive index, d being the physical thickness (nm)
  • the second polarization of the 400 nm wavelength may be reflected by Equation 2, and when adjusting the optical thickness of each of the plurality of dispersions with this principle, a desired wavelength range, particularly visible The reflectance of the second polarized light in the wavelength range of light can be significantly increased.
  • the optical body of the present invention preferably, at least two of the plurality of dispersions may have a different cross-sectional area in the direction in which the dispersion is extended, through which the cross-sectional diameter (corresponding to optical thickness) of the dispersion may be different.
  • the second polarization of the wavelength corresponding to the optical thickness may be reflected, and when the polymer having the optical thickness corresponding to each wavelength of the visible light is included, the second polarization corresponding to the visible light region may be reflected.
  • the shape of the plurality of dispersions of the present invention is not particularly limited, and may be specifically circular, elliptical, etc., and the total number of dispersions may be 25,000,000 to 80,000,000 when the thickness of the substrate is 120 ⁇ m based on 32 inches. However, it is not limited thereto.
  • the substrate and the dispersion of the present invention can be used without limitation as long as it is a material that is commonly used to form a birefringent interface to the optical body, and the base component is preferably polyethylene naphthalate (PEN), copolyethylene naphthalate (co- PEN), polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) alloy, polystyrene (PS), heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate ( PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS), polyurethane (PU), polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile (SAN) , Ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), phenol, epoxy (EP), urea (UF
  • polycyclohexylene dimethylene terephthalate is a compound prepared by polymerization of an acid component and a diol component in a molar ratio of 1: 0.5 to 1.5, preferably 1: 0.8 to 1.2, and the acid component contains terephthalate ,
  • the diol component may include ethyl glycol and cyclohexanedimethanol.
  • the substrate component may be a material having a glass transition temperature of 110 to 130 ° C, preferably 115 to 125 ° C.
  • the dispersion component is preferably polyethylene naphthalate (PEN), copolyethylene naphthalate (co-PEN), polyethylene terephthalate (PET), polycarbonate (PC), polycarbonate (PC) alloy, polystyrene (PS) ), Heat-resistant polystyrene (PS), polymethyl methacrylate (PMMA), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene (PE), acrylonitrile butadiene styrene (ABS), polyurethane (PU) ), Polyimide (PI), polyvinyl chloride (PVC), styrene acrylonitrile (SAN), ethylene vinyl acetate (EVA), polyamide (PA), polyacetal (POM), phenol, epoxy (EP), Urea (UF), melanin (MF), unsaturated polyester (UP), silicone (SI), polycyclohexylene dimethylene terephthalate (PCTG) and cycloolefin poly
  • polyethylene naphthalate (PEN) in the process of polymerization by-products may occur.
  • the less by-products generated, the better the polymerization degree of polyethylene naphthalate (PEN), and the dispersion component of the present invention may preferably include polyethylene naphthalate (PEN) having excellent polymerization degree.
  • by-products include a residual catalyst, polyethylene glycol (PEG), and the like used in the polymerization process, and the residual catalyst (eg, Ge) content as the dispersion component of the present invention is 100 ppm or less, preferably 10 to Polyethylene naphthalate (PEN) having a content of 70 ppm, more preferably 10 to 40 ppm, and diethylene glycol (DEG) of 3.5 wt% or less, preferably 1.0 to 2.5 wt%, and more preferably 1.0 to 2.0 wt% It can contain.
  • PEN Polyethylene naphthalate
  • DEG diethylene glycol
  • polyethylene naphthalate may have a glass transition temperature of 110 to 125 ° C depending on process conditions or a molar ratio of monomers during polymerization
  • polyethylene naphthalate (PEN) used in the present invention is 110 to It may have a glass transition temperature of 125 °C, preferably 115 ⁇ 125 °C, more preferably 118 ⁇ 122 °C.
  • optical body of the present invention can satisfy the following conditions (1) and (2).
  • the temperature difference between the dispersion and the substrate before glass is 10 ° C or less, preferably 3 to 9 ° C
  • the optical body of the present invention may be more advantageous to achieve excellent physical properties.
  • optical body of the present invention may be stretched in at least one direction to form a birefringent interface between the substrate and the dispersion.
  • the plurality of dispersions of the present invention may be randomly dispersed inside the substrate.
  • the optical body of the present invention can be more easily implemented to express excellent physical properties, and an optical body that compensates for problems such as light leakage and bright lineage can be realized compared to conventional optical bodies.
  • the random dispersion type optical body is included in the substrate and the substrate and transmits the first polarized light emitted from the outside and transmits the second polarized light.
  • a plurality of dispersions for reflection are included, and the plurality of dispersions have different refractive indices in at least one axial direction from the substrate, and the plurality of dispersions included in the substrate are based on an average aspect ratio ( ⁇ based on a vertical cross section in the longitudinal direction).
  • the average aspect ratio of the short axis length to the long axis length may be 0.5 or less, preferably 0.3 to 0.5, more preferably 0.4 to 0.48, and even more preferably 0.44 to 0.46. In the case of such an optical body, it may be more advantageous to achieve excellent physical properties
  • the plurality of dispersions of the present invention may have an average cross-sectional area of 1 ⁇ m 2 or less, preferably 0.5 ⁇ m 2 or less, and more preferably 0.3 ⁇ m 2 or less.
  • the number of dispersions having a cross-sectional area of 0.3 ⁇ m 2 or less is 80% or more of the total dispersions, and preferably, the number of dispersions having a cross-sectional area of 0.3 ⁇ m 2 or less is total dispersions.
  • the number of dispersions having a cross-sectional area of 90% or more, and more preferably 0.3 ⁇ m 2 or less may be 95% or more of the total dispersions.
  • the plurality of dispersions of the present invention have a number of dispersions having a cross-sectional area of 0.21 ⁇ m 2 or less, 80% or more of the total dispersion, preferably 0.21 ⁇ m 2 or less.
  • the number of dispersions having a cross-sectional area of more than 90% of the total dispersion, more preferably 0.21 ⁇ m 2 or less, may be 95% or more of the total dispersion.
  • the plurality of dispersions of the present invention has a cross-sectional area of 0.12 ⁇ m 2 or less, and the number of dispersions having a cross-sectional area of 0.12 ⁇ m 2 or less is 80% or more of the total dispersion, preferably 0.12 ⁇ m 2 or less.
  • the number of dispersions having a cross-sectional area of more than 85% of the total dispersion, more preferably 0.12 ⁇ m 2 or less, may be 93% or more of the total dispersion, and in the case of such an optical body, it is more advantageous to achieve excellent physical properties Can be.
  • a plurality of dispersion of the invention is greater than 2 and 0.01 ⁇ m 0.09 ⁇ m 2 is that the number of the dispersion having a cross-sectional area of less than 70 to 90% of the total dispersion, preferably from 75 to 85%, more preferably 78 It may be ⁇ 82%, in the case of such an optical body may be more advantageous to achieve excellent physical properties.
  • the plurality of dispersions of the present invention may have a cross-sectional dispersion coefficient of 90% to 120%, preferably 95 to 115%, more preferably 97 to 105% according to Equation 2 below, In this case, it may be more advantageous to achieve excellent physical properties.
  • the cross-sectional dispersion coefficient is a parameter that can confirm the degree of dispersion of the cross-sectional area. If the cross-sectional dispersion coefficient is 0%, the same, the larger the difference in cross-sectional area between dispersions, or the ratio of the dispersion having a larger cross-sectional area difference to the average cross-sectional area It means increasing.
  • the optical body of the present invention is composed of those having a cross-sectional area of 0.3 or less and 80% or more according to a very large dispersion coefficient for a cross-sectional area of 90% or more.
  • the plurality of dispersions of the present invention may have an aspect ratio dispersion coefficient of 40% or more, preferably 40 to 45%, more preferably 41 to 43%, according to Equation 1 below, and in the case of such an optical body, excellent It may be more advantageous to achieve physical properties.
  • the haze of the random dispersion type optical body of the present invention may be 25% or less, preferably 10 to 20%.
  • the optical body of the present invention forms a birefringent interface between the substrate and the dispersion, and the dispersion can be stretched in at least one direction in order to have an appropriate optical thickness, for example, may be stretched in at least one direction, for example
  • the uniaxial direction may be the MD direction conveyed while the optical body is continuously manufactured.
  • the uniaxial direction may be a longitudinal direction that is a long axis direction of the dispersion shape.
  • the optical layer of the flat plate formed of an optically isotropic material and the optical layer of the flat plate formed of an optically anisotropic material are widely known together with a multi-layered optical body in which an optical layer is alternately stacked. It is a kind of sieve.
  • the polymer-dispersed optical body is a force received by each of the plurality of dispersions when it is stretched in one direction according to the form in which the other materials are dispersed and received as a plurality of dispersions within one of the optically isotropic material or the optically anisotropic material.
  • the influence due to the difference in the direction or force of the plate may be significantly larger than that of a multilayer optical body in which the layers of the plate are alternately stacked. Due to this, in the case of a multilayer type optical body, there is little risk of optical properties due to one-way elongation, for example, variations in position of luminance, but in the case of a polymer-dispersed optical body, there is a high possibility of variation in position of luminance, especially in elongation.
  • Deviation for each position in the direction perpendicular to the direction for example, in the in-plane vertical x-axis and y-axis, if the stretching direction is the x-axis, the y-axis is the vertical direction, or when extending in the MD direction, the TD direction is vertical.
  • the stretching direction is the x-axis
  • the y-axis is the vertical direction
  • the TD direction is vertical.
  • the present inventors have an effect on impurities in substances forming an optical body, that is, catalysts and by-products used in the process of manufacturing substances, and the larger the size of the dispersion, the greater the elongation. It was found that the more random the distribution of dispersions in the cross section of the optical body perpendicular to the direction, the greater the problem of luminance non-uniformity.
  • the design and / or design conditions of the process conditions in the width length of the ejected optical body, a smoothing process after ejection, a process of extending in one direction afterwards (for example, a stretching process), and / or a subsequent heat setting process
  • the influence was also large due to the control of.
  • the diameter of the roller that can be used in the smoothing process, surface non-uniformity, non-uniformity of the stretching speed in the stretching process, improper temperature of the stretching process and the heat setting step, heat uneven treatment may be.
  • the inventors of the present invention have made great efforts to control the above factors that may affect the luminance non-uniformity, but as a result of the polymer dispersion type optical system, the luminance dispersion meter measured based on the virtual first line in the plane parallel to the transmission axis A reflective polarizing film with a number of 2% or less was realized.
  • luminance measured based on an in-plane virtual first line (l) parallel to the transmission axis (q) of the optical body 100 has a center point on the first line (l).
  • the transmission axis (b) may be a vertical direction of the stretched direction, or may be a TD direction when stretched in the MD direction.
  • the specimen may have a polygonal shape such as a circle, a square, or a rectangle.
  • the size of the specimen may be, for example, 1 cm ⁇ 1 cm, 4 cm ⁇ 4 cm, 10 cm ⁇ 10 cm, etc. on a square basis, but is not limited thereto, and is parallel to the transmission axis (b) of the optical body 100. It can be set in consideration of the length in the direction (for example, the width length).
  • the luminance dispersion coefficient is the following equation using the average luminance calculated through the luminance measured for each of the five samples of the same shape and the same size having a center point on the first line (l) and the luminance standard deviation. It means the result value calculated according to 3.
  • the sample is divided into two samples (S L , S R in each direction in the left and right directions, centered on the first sample (S 1 ), which is the center of gravity of the sample where the first line (l) is vertically bisected. ) Is sampled, but is sampled such that the distance between neighboring samples is the same.
  • the distance between the samples means the distance (s) between neighboring sides of the sample, and between the samples The distances may be as long as they are the same, and the distance between samples may be zero.
  • the luminance dispersion coefficient is a parameter that can check the luminance non-uniformity between each sample. If the luminance dispersion coefficient is 0%, it means that there is no luminance difference between each sample, and the larger the luminance dispersion coefficient, the larger the luminance difference between each sample. it means.
  • the optical body according to the present invention is very excellent in luminance uniformity as the luminance dispersion coefficient calculated by Equation 3 is 2% or less, preferably 1% or less, and even more preferably 0.5% or less. If the luminance dispersion coefficient exceeds 2%, unintended contrast difference may occur on a 32-inch or larger display, and the quality of the image may be remarkable, and it is difficult to secure more than 85%, which is the uniformity quality standard.
  • the haze of the optical body may be significantly increased or the haze may be non-uniform for each position, optical characteristics such as brightness may be reduced, thickness deviation of the optical body may occur, or wrinkles may occur. Also, there is a possibility that the appearance quality, such as the phenomena, may decrease significantly.
  • the optical body having the luminance dispersion coefficient of 2% or less may be implemented by, for example, improving the degree of polymerization of a material forming a dispersion or controlling impurities.
  • the residual amount of the polymerization catalyst as an impurity in the substrate and / or dispersion may be 150 ppm, more preferably 100 ppm or less.
  • the residual amount of the Ge catalyst which is a polymerization catalyst, may be 200 ppm or less, preferably 100 ppm or less, more preferably 10 to 70 ppm, and diethylene glycol, a by-product naturally generated in the polymerization process (
  • the content of DEG) may be 4.0% by weight or less, preferably 3.5% by weight or less, and more preferably 1.0 to 2.0% by weight.
  • a roll having a uniform diameter in the film width direction may be used in the smoothing process of the ejected film during the manufacturing process.
  • a predetermined force when stretching in the MD direction in the stretching step, a predetermined force may be constantly applied in the TD direction.
  • a force may be preferably applied so as to stretch at a level of 1: 1 to 1: 1.2 in the TD direction.
  • optical properties such as polarization degree and luminance may be significantly deteriorated, and if stretched less than 1: 1, it may not be easy to achieve luminance uniformity. .
  • the optical body 100 has an acute angle of ⁇ 60 ° that is an acute angle from the first line, and the luminance measured based on the virtual second line in the plane passing through the bisector of the first line
  • the dispersion coefficient may be 2% or less, more preferably 1% or less, and even more preferably 0.5% or less.
  • the luminance non-uniformity problem is remarkable in a direction parallel to the transmission axis, for example, a direction perpendicular to the elongated direction, for example in the TD direction, for example in the width direction, and furthermore, the first line and a predetermined angle, in particular ⁇ 60 from the first line It can be noticeable along the second line that forms °.
  • these characteristics may increase the problem of luminance non-uniformity as the width of the reflective polarizing film is larger and the arrangement of the dispersion is random.
  • the second line (m, m ') passes through a center point that bisects a virtual first line (l) in the optical body 100, and the first line (l) ) Means a line segment with an acute angle of ⁇ 60 °.
  • the meaning of the luminance measured based on the second line (m or m ') is the same as the luminance measured based on the first line (l) described above, and is measured in the same manner.
  • the luminance uniformity may also be a sampled, measured and calculated result in the same way.
  • seven samples per direction (SF, SB) in each direction forward and backward with respect to the first sample (S1) having a point at which the first line (l) is vertically equalized as a center point. ) Is sampled, but the distance between neighboring samples is 50 mm, and the distance between samples means the shortest distance (s) between neighboring sides or vertices of the sample.
  • the optical body When the optical body satisfies not only the luminance characteristic based on the first line according to the present invention, but also the luminance characteristic based on the second line, it is possible to obtain improved luminance uniformity as well as higher haze uniformity There is an advantage that can express excellent luminance characteristics.
  • the dispersion size of the optical body of the preferred embodiment of the present invention is described in detail, 80% or more of the plurality of dispersions 201 dispersed in the substrate 201 is shortened to the long axis length based on the vertical cross section in the longitudinal direction.
  • the aspect ratio of the length should be 1/2 or less, and more preferably, 90% or more may satisfy the aspect ratio value of 0.5 or less.
  • the aspect ratio is as shown in Figure 6, the length direction of the dispersion, that is, for example, the MD direction, and / or for example, the long axis length is shortened as a in the dispersion section in the vertical section of the reflective polarizing film perpendicular to the stretching direction
  • the ratio (aspect ratio) of the relative length between the long axis length (a) and the short axis length (b) should be 0.5 or less.
  • the long axis length (a) is 2
  • the short axis length (b) should be less than or equal to 1.
  • the number of dispersions of the plurality of dispersions having a cross-sectional area of 0.3 ⁇ m 2 or less may be 65% or more of the total dispersions.
  • the random-dispersed optical body of the present invention is included in the above-described substrate and the inside of the substrate, the optical body including a plurality of dispersions satisfying the dispersion conditions according to the above-described preferred embodiment as a core layer, It may be a structure including an integrated skin layer formed on at least one surface of the core layer, and may further contribute to protecting the core layer and improving reliability of the optical body by further comprising a skin layer.
  • the optical body according to one embodiment that does not include the skin layer and the other embodiment that includes the skin layer may be different in use, and an optical body including the skin layer is used in various general-purpose liquid crystal display devices such as displays. This may be preferable, and in the case of a portable liquid crystal display device, for example, a portable electronic device, a smart electronic device, and a smart phone, it may be preferable to use an optical body that does not include a skin layer as a slimmed optical body is required, but is limited thereto. It does not work.
  • Figure 5 is a cross-sectional view of the random dispersion type optical body of the present invention, a plurality of dispersions 202 inside the substrate 201 is randomly dispersed and arranged on the core layer 210 and at least one surface of the core layer The integrally formed skin layer 220 is shown.
  • the core layer 210 has an average aspect ratio (average aspect ratio of a short axis length to a long axis length based on a vertical cross-section in the lengthwise direction) of 0.5 or less. It may be preferably 0.3 to 0.5, more preferably 0.4 to 0.48, and even more preferably 0.44 to 0.46.
  • Figure 6 is a vertical cross-section in the longitudinal direction of the dispersion used in a preferred embodiment of the present invention, when the long axis length is a and the short axis length is b, the long axis length (a) and the short axis length (b)
  • the relative length ratio (aspect ratio) of should be 0.5 or less, preferably 0.3 to 0.5, more preferably 0.4 to 0.48, and even more preferably 0.44 to 0.46. If the ratio of the short axis length to the long axis length does not satisfy 0.5 or less, it is difficult to achieve desired optical properties.
  • FIG. 7 is a perspective view of an optical body included in a preferred embodiment of the present invention, a plurality of random dispersions 208 are extended in the longitudinal direction inside the base 201 of the core layer 210, and the skin layer ( 220) may be formed on the top and / or bottom of the core layer 210.
  • the random dispersions 208 may extend in various directions, respectively, but it is advantageous to extend in parallel in one direction, and more preferably, between the stretching bodies in a direction perpendicular to the light irradiated from the external light source. Stretching parallel to is effective in maximizing the light modulation effect.
  • the thickness of the core layer is preferably 20 ⁇ 350 ⁇ m, more preferably 50 ⁇ 250 ⁇ m, but is not limited thereto, depending on the specific use and whether or not the skin layer is included, the core layer according to the thickness of the skin layer
  • the thickness of can be designed differently.
  • the total number of dispersions may be 25,000,000 to 80,000,000 when the thickness of the substrate is 120 ⁇ m based on 32 inches, but is not limited thereto.
  • the skin layer component may be a component that is commonly used, and may be used without limitation as long as it is typically used in a reflective polarizing film.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PC polycarbonate
  • PC polycarbonate
  • PS polystyrene
  • PS heat resistant polystyrene
  • PMMA polymethyl methacrylate
  • PBT polybutylene terephthalate
  • PP polypropylene
  • PE polyethylene
  • PE acrylonitrile butadiene styrene
  • ABS polyurethane
  • PU polyimide
  • PI polyvinyl chloride
  • SAN ethylene vinyl acetate
  • EVA ethylene vinyl acetate
  • PA polyamide
  • PA polyacetal
  • EP phenol, epoxy
  • polycyclohexylene dimethylene terephthalate is a compound prepared by polymerization of an acid component and a diol component in a molar ratio of 1: 0.5 to 1.5, preferably 1: 0.8 to 1.2, and the acid component contains terephthalate ,
  • the diol component may include ethyl glycol and cyclohexanedimethanol.
  • the thickness of the skin layer may be 30 ⁇ 500 ⁇ m, but is not limited thereto.
  • the width of the optical body may be 85 cm or more as a basis for manufacturing.
  • the width may be a length in the direction of the transmission axis, and the optical body according to the present invention has an advantage in that the width is only 85 cm or more and is formed in a large area, and the luminance uniformity in the corresponding direction can be secured.
  • the optical body according to one preferred embodiment of the present invention that satisfies the above-described luminance uniformity has a haze of 30% or less, more preferably 25% or less, even more preferably 22% or less, even more preferably 20% It may be:
  • the haze uniformity measured by the sampling method of the same sample as the measuring method of luminance uniformity and calculated along the first line may be 3% or less, more preferably 2% or less, and even more preferably 1% or less.
  • a difference in the percentage of thickness measured and calculated by the experimental method described below for the sampled sample may be within 1%.
  • the skin layer when the skin layer is formed, it is integrally formed between the core layer 210 and the skin layer 220. As a result, it is possible not only to prevent deterioration of the optical properties due to the adhesive layer, but also to add more layers to a limited thickness, thereby significantly improving the optical properties. Furthermore, since the skin layer is manufactured simultaneously with the core layer, and then the stretching process is performed, unlike the conventional core layer stretching and bonding the unstretched skin layer, the skin layer of the present invention can be stretched in at least one axial direction. . Through this, the surface hardness is improved compared to the unstretched skin layer, thereby improving scratch resistance and improving heat resistance.
  • the optical body according to the present invention may further include a structured surface layer such as a micro lens, a lenticular shape, and a prism shape for changing a path of light, such as condensation or diffusion, in an upper or lower portion of the optical body.
  • a structured surface layer such as a micro lens, a lenticular shape, and a prism shape for changing a path of light, such as condensation or diffusion, in an upper or lower portion of the optical body.
  • the optical body in which the above-described dispersion is randomly dispersed in the substrate may be manufactured through a manufacturing method described below. However, it is not limited thereto.
  • the base component and the dispersion component may be separately supplied to independent extruded portions, in which case the extruded portion may be composed of two or more. Also included in the present invention is to supply one extruded portion including a separate supply path and a distribution port so that the polymers do not mix.
  • the extruded portion may be an extruder, which may further include a heating means and the like to convert the solid-phase supplied polymers into a liquid phase.
  • the base component or the dispersion component may be advantageous to express the luminance uniformity when the content of impurities is used to be below a certain level.
  • the viscosity of the polymer is designed so that there is a difference in the flowability of the polymer so that the dispersion component can be arranged inside the base component, and preferably, the base component has better flowability than the dispersion component.
  • an optical body in which the dispersion is randomly arranged inside the substrate may be manufactured through a difference in viscosity of the dispersion component in the substrate.
  • a skin layer is included on at least one surface of the manufactured optical body, at least one surface of the optical body is laminated with the skin layer component transferred from the extrusion.
  • the skin layer component may be laminated on both sides of the optical body.
  • the material and thickness of the skin layers may be the same or different from each other.
  • FIG. 8 is a cross-sectional view of a coat-hanger die, which is a type of preferred flow control unit applicable to the present invention
  • FIG. 9 is a side view of FIG. 8.
  • the size and arrangement of the cross-sectional area of the dispersion component can be randomly controlled by appropriately controlling the degree of spreading of the substrate.
  • the dispersion component included therein also spreads wide from side to side.
  • cooling and smoothing the optical body from which the spread is induced by the flow control unit is cooled, and stretching the optical body after the smoothing step; And opening and fixing the stretched optical body.
  • the cooling used in the manufacture of the conventional optical body is solidified, and then a smoothing step may be performed through a casting roll process or the like.
  • the roll to be used can preferably be used having a uniform diameter, there is an advantage that can easily secure the luminance uniformity.
  • the stretching may be performed through a stretching process of a conventional optical body, thereby inducing a difference in refractive index between the base component and the dispersion component, thereby causing a light modulation phenomenon at the interface, and the spread-induced first component (dispersion) Body composition), the aspect ratio is further reduced through stretching.
  • the stretching process may preferably perform uniaxial stretching or biaxial stretching, and more preferably uniaxial stretching.
  • stretching may be performed in the longitudinal direction of the first component.
  • the longitudinal direction may be the MD direction.
  • the stretching ratio may be 3 to 12 times.
  • methods for changing the isotropic material to birefringence are conventionally known and, for example, when stretching under appropriate temperature conditions, the dispersion molecules are oriented so that the material can be birefringent.
  • the stretching speed, or fixing the TD direction of the optical body conveyed and stretched in the MD direction with a clip or forceps, or by stretching by applying a predetermined force the luminance in a direction parallel to the transmission axis It can be easy to ensure uniformity.
  • the final optical body may be manufactured through the step of opening and fixing the stretched optical body.
  • the heat-setting may be heat-set through a conventional method, and preferably may be performed through an IR heater at 180 to 200 ° C for 0.1 to 3 minutes. At this time, it is easy to secure heat uniformity in a direction parallel to the transmission axis by applying heat at the same level regardless of the position of the optical body.
  • the optical body of the present invention described above is employed in a light source assembly or a display device, and can be used to improve light efficiency.
  • the light source assembly may be an assembly typically employed in work lights, lighting, or liquid crystal displays.
  • the light source assembly employed in the liquid crystal display device is classified into a direct type in which the lamp is located at the bottom, an edge type in which the lamp is located at the side, and the optical body according to embodiments of the present invention is employed in any type of light source assembly. It is possible. In addition, it is applicable to a backlight assembly disposed on the bottom of the liquid crystal panel or a front light assembly disposed on the top of the liquid crystal panel.
  • the optical body of the present invention can be employed in an active light emitting display such as an organic light emitting display device.
  • the optical body may be employed in front of the panel of the organic light emitting display device to improve contrast ratio and improve visibility.
  • the liquid crystal display device 2700 includes a backlight unit 2400 and a liquid crystal panel assembly 2500.
  • the backlight unit 2400 includes an optical body 2111 that modulates the optical characteristics of the emitted light, wherein the other components and other components included in the backlight unit and the positional relationship of the optical body 2111 may vary depending on the purpose. There is no particular limitation in the present invention.
  • the light source 2410 the light guide plate 2415 for guiding light emitted from the light source 2410, and the reflective film 2320 disposed under the light guide plate 2415 ), And an optical body 2111 disposed on the light guide plate 2415.
  • the light source 2410 is disposed on both sides of the light guide plate 2415.
  • an LED Light Eimitting Diode
  • a CCFL Cold Cathode Fluorescent Lamp
  • an HCFL Hot Cathode Fluorescent Lamp
  • an EEFL Extra Electrode Fluorescent Lamp
  • the light source 2410 may be disposed only on one side of the light guide plate 2415.
  • the light guide plate 2415 moves light emitted from the light source 2410 through total internal reflection, and then emits light upward through a scattering pattern formed on the bottom surface of the light guide plate 2415.
  • a reflective film 2420 is disposed under the light guide plate 2415 to reflect light emitted downward from the light guide plate 2415 upwards.
  • An optical body 2111 is disposed on the light guide plate 2415. Since the optical body 2111 has been described in detail above, a duplicate description is omitted. Other optical sheets may be further disposed above or below the optical body 2111. For example, a liquid crystal film partially reflecting the incident circularly polarized light, a phase difference film for converting circularly polarized light into linearly polarized light, and / or a protective film may be further installed.
  • the light source 2410, the light guide plate 2415, the reflective film 2420, and the optical body 2111 may be accommodated by the bottom chassis 2440.
  • the liquid crystal panel assembly 2500 includes a first display panel 2511, a second display panel 2512, and a liquid crystal layer (not shown) interposed therebetween, of the first display panel 2511 and the second display panel 2512.
  • a polarizing plate (not shown) attached to each surface may be further included.
  • the liquid crystal display device 2700 may further include a top chassis 2600 covering an edge of the liquid crystal panel assembly 2500 and surrounding side surfaces of the liquid crystal panel assembly 2500 and the backlight unit 2400.
  • FIG. 11 is an example of a liquid crystal display device employing an optical body according to a preferred embodiment of the present invention, in which a reflector 3280 is inserted on a frame 3270, and cooled on an upper surface of the reflector 3280.
  • a cathode fluorescent lamp 3290 is located.
  • An optical film 3320 is positioned on the upper surface of the cold cathode fluorescent lamp 3290, and the optical film 3320 may be stacked in the order of a diffuser plate 3321, an optical body 3322, and an absorbing polarizing film 3323.
  • the components included in the optical film and the stacking order between the components may vary depending on the purpose, and some components may be omitted or provided in plural.
  • a retardation film (not shown) or the like can also be inserted at an appropriate position in the liquid crystal display device.
  • the liquid crystal display panel 3310 on the upper surface of the optical film 3320 may be positioned to be fitted to the mold frame 3300.
  • the light irradiated from the cold cathode fluorescent lamp 3290 reaches the diffusion plate 3321 among the optical films 3320.
  • the light transmitted through the diffusion plate 3321 passes through the optical body 3322 in order to move the light in a direction perpendicular to the optical film 3320, and thus optical modulation occurs.
  • the P wave transmits the optical body without loss, but in the case of the S wave, light modulation (reflection, scattering, refraction, etc.) occurs, and is reflected by the reflector 3280, which is the back side of the cold cathode fluorescent lamp 3290, and the light thereof.
  • the properties of P are randomly changed to P or S waves, they pass through the optical body 3322 again.
  • the liquid crystal display panel 3310 is reached. Meanwhile, the cold cathode fluorescent lamp 3290 may be replaced with LEDs.
  • an optical body according to one embodiment of the present invention by applying an optical body according to one embodiment of the present invention, a plurality of light modulation characteristics can be effectively exhibited, luminance can be improved, light leakage, no bright lines do not occur, and foreign matter is exhibited on the exterior.
  • the appearance defect can be prevented at the same time, there is an advantage that can ensure the reliability of the optical body in a high temperature and high humidity environment in which a liquid crystal display device is used.
  • the micropattern layer and the light collecting layer having respective functions are integrated into the optical body, thereby reducing the thickness of the light source assembly, simplifying the assembly process, and improving the image quality of the liquid crystal display device including such a light source assembly. Can be.
  • the use of the optical body has been mainly described for liquid crystal displays, but is not limited thereto, and can be widely used in flat panel display technologies such as projection displays, plasma displays, field emission displays, and electroluminescent displays.
  • the dispersion component has a refractive index of 1.65 and a glass transition temperature of 120 ° C.
  • Polymeric acid and diol components are polymerized in a 1: 2 molar ratio using ethyl ether and cyclohexanedimethanol as terephthalates and diol components as an acid component in 60% by weight of polycarbonate as a base component and polycarbonate as a base component.
  • First extruded raw materials having a glass transition temperature of 112 ° C., each containing 39% by weight of reacted polycyclohexylene dimethylene terephthalate (PCTG) and 1% by weight of phosphorous acid (H 3 PO 3 ) It was put into the second and second extruded parts.
  • PCTG polycyclohexylene dimethylene terephthalate
  • H 3 PO 3 phosphorous acid
  • the polyetherene naphthalate (PEN) was used as a polyetherene naphthalate (PEN) containing a Ge catalyst residual amount of 30 ppm, a polymerization by-product of diethylene glycol (DEG) 1.5 wt%, used in the polymerization process.
  • DEG diethylene glycol
  • Extrusion temperature of the base component and the dispersion component was set to 245 ° C., and confirmed by Cap.Rheometer to I.V. Correction of the polymer flow through adjustment, through the flow path to which the Filteration Mixer was applied, induced dispersion to be randomly dispersed inside the substrate, and induced spreading in the coat hanger dies of FIGS. 8 and 9 for correcting the flow rate and pressure gradient of the substrate layer polymer.
  • the width of the die inlet is 200 mm
  • the thickness is 10 mm
  • the width of the die outlet is 1,260 mm
  • the thickness is 2.5 mm
  • the flow velocity is 1.0 m / min.
  • a smoothing process was performed on the cooling and casting rolls, and stretched 6 times in the MD direction.
  • Example 2 In the same manner as in Example 1, a random dispersion type optical body having a cross-sectional structure as shown in FIG. 5 and an average aspect ratio and cross-sectional area of the dispersion as shown in Table 1 was prepared.
  • the polyetherene naphthalate (PEN) used as a dispersion component contains polyetherene naphthalate (PEN) containing 45 ppm of the residual amount of Ge catalyst used in the polymerization process and 2.0% by weight of the polymerization by-product diethylene glycol (DEG). Used.
  • Example 2 In the same manner as in Example 1, a random dispersion type optical body having a cross-sectional structure as shown in FIG. 5 was manufactured.
  • the polyetherene naphthalate (PEN) used as a dispersion component contains polyetherene naphthalate (PEN) containing 80 ppm of the Ge catalyst residual amount used in the polymerization process and 3.0 wt% of diethylene glycol (DEG), a by-product of polymerization. Used.
  • the polyetherene naphthalate (PEN) used as a dispersion component is a polyetherene naphthalate (PEN) containing 140 ppm of Ge catalyst residual amount used in the polymerization process and 3.0 wt% of diethylene glycol (DEG), a by-product of polymerization. Used.
  • the luminance of the prepared optical body was performed as follows. After assembling the panel on a 32 "direct type backlight unit equipped with a reflective film, a light guide plate, a diffuser plate, and an optical body, the brightness was measured at nine points using a Topcon BM-7 meter to show the average value.
  • the relative luminance shows the relative values of luminances of the other examples and comparative examples.
  • Haze was measured using a haze and permeability measuring device (COH-400, manufactured by Nippon Denshoku Kogyo Co.).
  • the measurement of the dispersion aspect ratio is based on a cross-sectional photograph of 0.1 mm ⁇ 0.1 mm, respectively, taken from the vertical cross-section of the optical body perpendicular to the extension direction through the FE-SEM, and according to the dispersion included in the cross-sectional photograph.
  • the aspect ratio was calculated by measuring the length of the direction and the length of the transverse direction. At this time, the reliability of the numerical value for the cross-sectional area was secured by targeting that the number of dispersions in the cross-section photograph was 1,000 or more.
  • the measurement of the length and the number is calculated through the ImageJ program to calculate the cross-sectional area distribution (long axis length, short axis length, number) of all the dispersions in the picture by using the contrast difference between the dispersion and the substrate in the cross-section of the FESEM.
  • the cross-sectional area of each of the dispersions was calculated through the following equation (1).
  • the long axis and the short axis length of the dispersion of the relational expression 1 mean the long axis and short axis of the dispersion in the cross section of the optical body perpendicular to the extending direction of the optical body.
  • Example 2 Example 3 Comparative Example 1 Average area of dispersion 0.032 0.062 0.168 0.245 Standard deviation of the cross-sectional area of the dispersion 0.032 0.068 0.135 0.177
  • Cross-sectional dispersion coefficient 100% 110% 80% 72%
  • Aspect ratio variance coefficient 42% 43% 34% 28% Number of dispersions having a cross-sectional area of 0.3 ⁇ m 2 or less 100% of total dispersion 99.9% of total dispersion included 88% of total dispersion 76% of total dispersion 0.01 ⁇ m than 2 and the number of the dispersion having a cross-sectional area of less than 2 0.09 ⁇ m 80.8% of total dispersion Includes 77.2% of total dispersion Including 31.7% of total dispersion 19.6% of all dispersions included Relative luminance 100 96 94 91 Haze
  • a random dispersion type optical body was prepared, and the prepared random dispersion type optical body was confirmed to have the physical property values shown in Table 2 through the above experimental examples.
  • the optical bodies prepared in Examples 1 to 3 not only have superior luminance values than the optical bodies prepared in Comparative Examples 1 to 2, but also have low haze values and excellent polarization.
  • the optical bodies prepared in Examples 1 to 3 not only have superior luminance values than the optical bodies prepared in Comparative Examples 1 to 2, but also have low haze values and excellent polarization.
  • the optical bodies prepared in Example 1 not only had the best luminance value, but also had a low haze value and excellent polarization.
  • a random dispersion type optical body was manufactured in the same manner as in Example 1.
  • polyetherene naphthalate having a refractive index of 1.65 and a glass transition temperature of 115 ° C as a dispersion component, and ethyl glycol and cyclo as a terephthalate and diol component as an acid component in 55% by weight of polycarbonate as a base component.
  • PCTG polycyclohexylene dimethylene terephthalate
  • the acid component and the diol component are polymerized in a 1: 2 molar ratio using hexane dimethanol and phosphorous acid (H 3 PO 3 ) 1 weight Including%, raw materials having a glass transition temperature of 108 ° C.
  • PEN polyetherene naphthalate
  • DEG polyethylene glycol
  • a random dispersion type optical body was manufactured in the same manner as in Example 1.
  • PCTG polycyclohexylene dimethylene terephthalate
  • the polyetherene naphthalate (PEN) was used as a polyetherene naphthalate (PEN) containing 1.5 wt% of the residual amount of Ge catalyst used in the polymerization process and the polymerization byproduct diethylene glycol (DEG) of 30 ppm.
  • a random dispersion type optical body was manufactured in the same manner as in Example 1.
  • PCTG polycyclohexylene dimethylene terephthalate
  • the polyetherene naphthalate (PEN) was used as a polyetherene naphthalate (PEN) containing 1.5 wt% of the residual amount of Ge catalyst used in the polymerization process and the polymerization byproduct diethylene glycol (DEG) of 30 ppm.
  • a random dispersion type optical body was manufactured in the same manner as in Example 1.
  • PCTG polycyclohexylene dimethylene terephthalate
  • the polyetherene naphthalate (PEN) was used as a polyetherene naphthalate (PEN) containing 1.5 wt% of the residual amount of Ge catalyst used in the polymerization process and the polymerization byproduct diethylene glycol (DEG) of 30 ppm.
  • the luminance of the prepared optical body was performed as follows. After assembling the panel on a 32 "direct type backlight unit equipped with a reflective film, a light guide plate, a diffuser plate, and an optical body, the brightness was measured at nine points using a Topcon BM-7 meter to show the average value.
  • the relative luminance shows the relative values of luminances of the other examples and comparative examples.
  • Haze was measured using a haze and permeability measuring device (COH-400, manufactured by Nippon Denshoku Kogyo Co.).
  • the optical bodies prepared in Example 1 not only had the best luminance value, but also had a low haze value and excellent polarization.
  • DEG diethylene glycol
  • Extrusion temperature of the base component and the dispersion component was set to 245 ° C., and confirmed by Cap.Rheometer to I.V. Correction of the polymer flow through adjustment, through the flow path to which the Filteration Mixer was applied, induced dispersion to be randomly dispersed inside the substrate, and induced spreading in the coat hanger dies of FIGS. 8 and 9 for correcting the flow rate and pressure gradient of the substrate layer polymer.
  • the flow rate is 1.0 m / min.
  • a smoothing process was performed on the cooling and casting rolls, and then the stretching process was stretched 6 times in the MD direction, and at this time, a predetermined force was applied in the TD direction so as to stretch in the MD direction and 1.1 times in the TD direction.
  • a heat dissipation was performed through a heater chamber at 180 ° C for 2 minutes to prepare a random dispersion type optical body as shown in Table 4 below having a cross-sectional structure as shown in FIG.
  • the refractive index of the dispersion component of the prepared optical body was (nx: 1.88, ny: 1.58, nz: 1.58) and the refractive index of the base component was 1.58.
  • the width of the optical body was 158 cm.
  • Example 5 Prepared in the same manner as in Example 5, but not subjected to any treatment such as stretching or clip fixing in the TD direction in the softening process, as well as polymerization by-product diethylene glycol (DEG) polyetherene naphthalate containing 6.5% by weight (PEN)
  • DEG diethylene glycol
  • PEN polyetherene naphthalate containing 6.5% by weight
  • PEN polymer by-product polyethylene naphthalate
  • DEG diethylene glycol
  • One slit-type extrusion detention consists of 300 layers, the thickness of the slit of the first slit-type extrusion detention of the bottom surface of the fifth detention distribution plate of FIG. 17 is 0.26 mm, and the slit thickness of the second slit-type extrusion detention is 0.21 mm.
  • the slit thickness of the third slit-type extrusion mold was 0.17 mm
  • the slit thickness of the fourth slit-type extrusion mold was 0.30 mm
  • the diameter of the discharge port of the sixth mold distribution plate was 15 mm ⁇ 15 mm.
  • the four multi-layered composites discharged through the four slit-type extrusion cages and the skin layer components conveyed through separate passages were laminated in a collection block to be laminated into a single core layer and a skin layer integrally formed on both sides of the core layer. .
  • the core layer polymer on which the skin layer was formed was induced to spread in the coat hanger dies of FIGS. 8 and 9 to correct the flow rate and pressure gradient. The flow rate was 1 m / min.
  • the refractive index of the first component of the prepared reflective polarizer was (nx: 1.88, ny: 1.64, nz: 1.64), and the refractive index of the second component was 1.64.
  • Group A has 300 layers (150 repeating units), the repeating unit has a thickness of 168 nm, an average optical thickness of 275.5 nm, and an optical thickness deviation of about 20%.
  • Group B has 300 layers (150 repeating units), the repeating unit has a thickness of 138 nm, an average optical thickness of 226.3 nm, and an optical thickness deviation of about 20%.
  • Group C has 300 layers (150 repeating units), the repeating unit has a thickness of 110 nm, an average optical thickness of 180.4 nm, and an optical thickness deviation of about 20%.
  • Group D has 300 layers (150 repeat units), the repeat unit has a thickness of 200 nm, an average optical thickness of 328 nm, and an optical thickness deviation of about 20%.
  • the prepared multilayer reflective polarizer had a core layer thickness of 92.4 ⁇ m and a skin layer thickness of 153.8 ⁇ m, respectively, with a total thickness of 400 ⁇ m and a total width of 98 cm.
  • An arbitrary first line parallel to the transmission axis of the manufactured optical body was selected, and a total of five samples having a size of 100 mm ⁇ 100 mm of a square having a center point on the first line were sampled. At this time, two samples in the left direction and two samples in the right direction were sampled around the first sample having the center point at the point where the first line was vertically bisected, but the distance between adjacent samples was 50 mm.
  • the luminance dispersion coefficient was calculated through Equation 3 below.
  • Example 5 In addition, with respect to the average luminance of the five samples, the average luminance of Example 5 was based on 100%, and the average luminance of the remaining examples and comparative examples was shown as relative luminance.
  • the measurement of the dispersion aspect ratio is based on the cross-sectional photograph taken with respect to the vertical cross section perpendicular to the stretching direction of the optical body through the FE-SEM, and the longitudinal length of each dispersion included in the cross-section photograph.
  • the aspect ratio was calculated by measuring the length in the transverse direction. At this time, the reliability of the numerical value for the cross-sectional area was secured by targeting that the number of dispersions in the cross-sectional photograph was 1,000 or more.
  • the measurement of the length and number of the FE-SEM through the ImageJ program calculates the cross-sectional area distribution (long axis length, short axis length, number) of all dispersions in the picture by using the contrast difference between the dispersion and the substrate.
  • the cross-sectional area of each of the dispersions was calculated through the following relational expression 1.
  • Cross-sectional area of the dispersion ( ⁇ m 2 ) ⁇ ⁇ long axis length of the dispersion / 2 ⁇ short axis length of the dispersion / 2
  • the thickness based on the center point of each sampled sample was measured, and then the thickness percentage of other samples was calculated based on the sample thickness of the maximum thickness at 100%. After counting the number of samples with a thickness percentage difference exceeding 1%, the excess number was evaluated as 0 5 points, 1 4 points, 2 3 points, 3 2 points, 4 1 points.
  • Comparative Example 8 which is a multilayer optical chain, it was confirmed that the content of by-products in the polymer chip forming the layer is high, and the luminance uniformity based on the first line or the second line is excellent even when there is no treatment in the TD direction. .
  • Example 5 and Comparative Examples 6 to 7 which are polymer dispersion-type optical fibers containing a dispersion, it can be confirmed that the luminance uniformity is significantly changed by various factors such as width, by-product content, and cross-sectional area.
  • the present invention relates to an optical body and a display device including the same, and more particularly, to an optical body capable of maximizing luminance improvement while minimizing optical loss of the optical body and a display device including the same.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

본 발명은 광학체 및 이를 포함하는 표시장치에 관한 것으로, 보다 상세하게는 광학체의 광손실을 최소화하면서 휘도향상을 극대화 할 수 있는 광학체 및 이를 포함하는 표시장치에 관한 것이다.

Description

광학체 및 이를 포함하는 표시장치
본 발명은 광학체 및 이를 포함하는 표시장치에 관한 것으로, 보다 상세하게는 광학체의 광손실을 최소화하면서 휘도향상을 극대화 할 수 있는 광학체 및 이를 포함하는 표시장치에 관한 것이다.
또한, 본 발명은 광학적 물성이 균일한 광학체 및 이를 포함하는 표시장치에 관한 것이다.
평판디스플레이 기술은 TV분야에서 이미 시장을 확보한 액정디스플레이(LCD), 프로젝션 디스플레이 및 플라즈마 디스플레이(PDP)가 주류를 이루고 있고, 또 전계방출디스플레이(FED)와 전계발광디스플레이(ELD)등이 관련기술의 향상과 더불어 각 특성에 따른 분야를 점유할 것으로 전망된다. 액정 디스플레이는 현재 노트북, 퍼스널 컴퓨터 모니터, 액정 TV, 자동차, 항공기 등 사용범위가 확대되고 있으며 평판시장의 80%가량을 차지하고 있고 세계적으로 LCD의 수요가 급증해 현재까지 호황을 누리고 있다.
종래의 액정 디스플레이는 한 쌍의 흡광성 광학필름들 사이에 액정 및 전극 매트릭스를 배치한다. 액정 디스플레이에 있어서, 액정 부분은 두 전극에 전압을 인가하여 생성되는 전기장에 의해 액정부분을 움직이게 함으로써, 이에 따라 변경되는 광학 상태를 가지고 있다. 이러한 처리는 정보를 실은 '픽셀'을 특정 방향의 편광을 이용하여 영상을 표시한다. 이러한 이유 때문에, 액정 디스플레이는 편광을 유도하는 전면 광학필름 및 배면 광학필름을 포함한다.
이러한 액정 디스플레이에서 사용되는 광학필름은 백라이트로부터 발사되는 광의 이용효율이 반드시 높다고는 할 수 없다. 이것은, 백라이트로부터 발사되는 광 중 50%이상이 배면측 광학필름(흡수형 편광필름)에 의해 흡수되기 때문이다. 그래서, 액정 디스플레이에서 백라이트 광의 이용효율을 높이기 위해서, 광학캐비티와 액정어셈블리 사이에 광학체를 설치한다.
도 1은 종래의 광학체의 광학원리를 도시하는 도면이다. 구체적으로, 광학캐비티로부터 액정어셈블리로 향하는 빛 중 P편광은 광학체를 통과하여 액정어셈블리로 전달되도록 하고, S편광은 광학체에서 광학캐비티로 반사된 다음 광학캐비티의 확산반사면에서 빛의 편광 방향이 무작위화된 상태로 반사되어 다시 광학체로 전달되어 결국에는 S편광이 액정어셈블리의 편광기를 통과할 수 있는 P편광으로 변환되어 광학체를 통과한 후 액정어셈블리로 전달되도록 하는 것이다.
상기 광학체의 입사광에 대한 S편광의 선택적 반사와 P편광의 투과작용은 이방성 굴절률을 갖는 평판상의 광학층과, 등방성 굴절률을 갖는 평판상의 광학층이 상호 교호 적층된 상태에서 각 광학층간의 굴절율 차이와 적층된 광학층의 신장 처리에 따른 각 광학층들의 광학적 두께 설정 및 광학층의 굴절률 변화에 의해서 이루어진다.
즉, 광학체로 입사되는 빛은 각 광학층을 거치면서 S편광의 반사와 P편광의 투과 작용을 반복하여 결국에는 입사편광 중 P편광만 액정어셈블리로 전달된다. 한편, 반사된 S편광은 전술한 바와 같이, 광학캐비티의 확산반사면에서 편광상태가 무작위화 된 상태로 반사되어 다시 광학체로 전달된다. 이에 의해, 광원으로부터 발생된 빛의 손실과 함께 전력 낭비를 줄일 수 있었다.
그런데, 이러한 종래 광학체는 굴절률이 상이한 평판상의 등방성 광학층과 이방성 광학층이 교호 적층되고, 이를 신장처리하여 입사편광의 선택적 반사 및 투과에 최적화될 수 있는 각 광학층간의 광학적 두께 및 굴절률을 갖도록 제작되기 때문에, 광학체의 제작공정이 복잡하다는 문제점이 있었다. 특히, 광학체의 각 광학층이 평판 구조를 가지고 있어서, 입사편광의 광범위한 입사각 범위에 대응하여 P편광과 S편광을 분리하여야 하기 때문에, 광학층의 적층수가 과도하게 증가하여 생산비가 기하급수적으로 증가하는 문제가 있었다. 또한, 광학층의 적층수가 과도하게 형성되는 구조에 의하여 광손실에 의한 광학적 성능 저하가 우려되는 문제점이 있었다.
도 2는 종래의 광학체 중 하나인 이중휘도향상필름(DBEF : dual brightness enhancement film)의 단면도이다. 구체적으로 이중휘도향상필름은 기재(8)의 양면에 스킨층(9, 10)이 형성된다. 기재(8)은 4개의 그룹(1, 2, 3, 4)으로 구분되는데, 각각의 그룹들은 등방층과 이방층이 교호적층되어 대략 200층을 형성한다. 한편, 기재(8)을 형성하는 4개의 그룹(1, 2, 3, 4) 사이에 이들을 결합하기 위한 별도의 접착층(5, 6, 7)이 형성된다. 또한 각각의 그룹들은 200층 내외의 매우 얇은 두께를 가지므로 이들 그룹들을 개별적으로 공압출하는 경우 각각의 그룹들이 손상될 수 있어 상기 그룹들은 보호층(PBL)을 포함하는 경우가 많았다. 이 경우 기재의 두께가 두꺼워지고 제조원가가 상승하는 문제가 있었다.
또한, 디스플레이 패널에 포함되는 이중휘도향상필름의 경우 슬림화를 위하여 기재의 두께에 제약이 있으므로, 기재 및/또는 스킨층에 접착층이 형성되면 그 두께만큼 기재가 줄어들게 되므로 광학물성 향상에 매우 좋지 않은 문제가 있었다. 나아가, 기재 내부 및 기재과 스킨층을 접착층으로 결합하고 있으므로, 외력을 가하거나, 장시간 경과하거나 또는 보관장소가 좋지 않은 경우에는 층간 박리 현상이 발생하는 문제가 있었다. 또한 접착층의 부착과정에서 불량률이 지나치게 높아질 뿐만 아니라 접착층의 형성으로 인하여 광원에 대한 상쇄간섭이 발생하는 문제가 있었다.
기재(8)의 양면에 스킨층(9, 10)이 형성되며, 상기 기재(8)와 스킨층(9, 10) 사이에 이들을 결합하기 위하여 별도의 접착층(11, 12)이 형성된다. 종래의 폴리카보네이트 재질의 스킨층과 PEN-coPEN이 교호적층된 기재과 공압출을 통해 일체화하는 경우 상용성 부재로 인하여 박리가 일어날 수 있으며, 결정화도 15% 내외로 인하여 연신 공정 수행시 신장축에 대한 복굴절 발생 위험성이 높다. 이에 따라 무연신 공정의 폴리카보네이트 시트를 적용하기 위해서 접착층을 형성할 수 밖에 없었다. 그 결과 접착층 공정의 추가로 인하여 외부 이물 및 공정 불량 발생에 따른 수율 감소가 나타나며, 통상적으로 스킨층의 폴리카보네이트 무연신 시트를 생산시에는 와인딩 공정으로 인한 불균일한 전단 압력에 의한 복굴절 발생이 나타나 이를 보완하기 위한 폴리머 분자구조 변형 및 압출라인의 속도 제어 등의 별도의 제어가 요구되어 생산성 저하 요인이 발생되었다.
종래의 이중휘도향상필름의 제조방법을 간단히 설명하면, 기재를 형성하는 평균 광학적 두께가 상이한 4개의 그룹을 별도로 공압출한 뒤, 다시 4개의 공압출된 4개의 그룹을 연신한 후, 연신된 4개의 그룹을 접착제로 접착하여 기재를 제작한다. 왜냐하면 접착제 접착후 기재를 연신하면 박리현상이 발생하기 때문이다. 이후, 기재의 양면에 스킨층을 접착하게 된다. 결국 다층구조를 만들기 위해서는 2층구조를 접어서 4층 구조를 만들고 연속해서 접는 방식의 다층구조를 만드는 공정을 통해 하나의 그룹(209층)을 형성하고 이를 공압출하므로 두께 변화를 줄 수 없어 하나의 공정에서 다층내부에 그룹을 형성하기 어려웠다. 그 결과 평균 광학적 두께가 상이한 4개의 그룹을 별도로 공압출한 뒤 이를 접착할 수 밖에 없는 실정이다.
상술한 공정은 단속적으로 이루어지므로 제작단가의 현저한 상승을 불러왔으며, 그 결과 백라이트 유닛에 포함되는 모든 광학필름들 중 원가가 가장 비싼 문제가 있었다. 이에 따라, 원가절감의 차원에서 휘도저하를 감소하고서라도 반사형 편광자를 제외한 액정 디스플레이가 빈번하게 출시되는 심각한 문제가 발생하였다.
이에, 이중휘도향상필름이 아닌 기재 내부에 길이방향으로 신장된 복굴절성 폴리머를 배열하여 광학체의 기능을 달성할 수 있는 분산체가 분산된 광학체가 제안되었다. 도 3은 봉상형 폴리머를 포함하는 광학체(20)의 사시도로서, 기재(21) 내부에 길이방향으로 신장된 복굴절성 폴리머(22)가 일방향으로 배열되어 있다. 이를 통해 기재(21)와 복굴절성 폴리머(22) 간의 복굴절성 계면에 의하여 광변조 효과를 유발하여 광학체의 기능을 수행할 수 있게 되는 것이다. 그러나, 상술한 교호적층된 이중휘도향상필름에 비하여 가시광선 전체 파장영역의 광을 반사하기 어려워 광변조 효율이 너무나도 떨어지는 문제가 발생하였다.
이에, 교호적층된 이중휘도향상필름과 비슷한 투과율 및 반사율을 가지기 위해서는 기재 내부에 지나치게 많은 수의 복굴절성 폴리머(22)를 배치하여야 하는 문제가 있었다. 구체적으로 광학체의 수직단면을 기준으로 가로 32인치 디스플레이 패널을 제조하는 경우 가로 1580 ㎜이고 높이(두께) 400㎛ 이하인 기재(21) 내부에 상술한 이중휘도향상필름과 유사한 광학 물성을 가지기 위해서는 길이 방향의 단면직경이 0.1 ~ 0.3㎛인 원형 또는 타원형의 복굴절성 폴리머(22)가 최소 1억개 이상 포함되어야 하는데, 이 경우 생산비용이 지나치게 많아질 뿐 아니라, 설비가 지나치게 복잡해지고 또한 이를 생산하는 설비를 제작하는 것 자체가 거의 불가능하여 상용화되기 어려운 문제가 있었다. 또한, 시트 내부에 포함되는 복굴절성 폴리머(22)의 광학적 두께를 다양하게 구성하기 어려우므로 가시광선 전체 영역의 광을 반사하기 어려워 물성이 감소하는 문제가 있었다.
이를 극복하기 위하여 기재 내부에 복굴절성 해도사를 포함하는 기술적 사상이 제안되었다. 도 4는 기재내부에 포함되는 복굴절성 해도사의 단면도로서, 복굴절성 해도사는 내부의 도부분과 해부분의 광변조 계면에서 광변조 효과를 발생시킬 수 있으므로, 상술한 복굴절성 폴리머와 같이 매우 많은 수의 해도사를 배치하지 않더라도 광학물성을 달성할 수 있다. 그러나, 복굴절성 해도사는 섬유이므로 폴리머인 기재와의 상용성, 취급용이성, 밀착성의 문제가 발생하였다.
나아가, 원형 형상으로 인하여 광산란이 유도되어 가시광선 영역의 광파장에 대한 반사편광 효율이 저하되어, 기존 제품 대비 편광특성이 저하되어 휘도 향상 한계가 있었으며, 더불어 해도사의 경우 도접합 현상을 줄이면서, 해성분 영역이 세분화 되므로 공극 발생으로 인하여 빛샘, 즉 광 손실현상으로 인한 광특성저하 요인이 발생되었다. 또한 직물 형태로 조직 구성으로 인하여 레이어 구성의 한계로 인하여 반사 및 편광 특성 향상에 한계점이 발생되는 문제가 있었다. 또한 이와 같은 광학체의 경우 레이어간의 간격 및 분산체간의 이격공간으로 인하여 휘선보임이 관찰되는 문제가 발생하였다.
한편, 반사편광필름을 구성하는 물질 간 계면에서 굴절률 차이를 유발시키기 위해서는 상술한 것과 같이 이들 물질을 신장시키는 공정, 예를 들어 연신공정이 반드시 필요하다. 그러나 이러한 연신공정으로 인해 경우에 따라서 필름의 면내 휘도가 불균일해지는 문제점이 있다. 이러한 문제점은 예를 들어 필름의 길이방향으로 연신공정 시 가해지는 힘이 폭 방향으로 불균일한 경우, 연신속도가 일정하지 않은 경우, 연신 뒤 수행될 수 있는 열고정 조건 설계와 같은 공정상의 조건설계 어려움, 조건의 제어 곤란함 뿐만 아니라, 반사편광필름을 이루는 광학적 물질의 종류, 불순물 포함여부, 계면을 형성하는 광학적 등방성 물질과 이방성 물질 간의 구조, 형상, 크기 등에 의해서도 영향을 받음에 따라서 면내 임의의 지점에서의 휘도 편차가 발생하고 이로 인해 편차가 심할 시 화상이 표시될 때 얼룩이 발생한 것과 같이 보이거나, 목적하는 명암을 제대로 구현할 수 없는 등 화상품질이 현저히 저하되는 문제가 있다.
따라서 이러한 문제점을 해결하여 연신공정을 거치더라도 면내 임의지점에서 휘도의 편차가 현저히 감소한 반사편광필름의 개발이 시급한 실정이다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 본 발명의 광학체는 종래의 광학체에 비하여 휘도향상을 극대화할 수 있을 뿐만 아니라, 우수한 편광도 및 낮은 헤이즈(Haze)를 가지는 광학체 및 이를 포함하는 표시장치를 제공하는데 목적이 있다.
또한, 본 발명은 면내 광학적 물성이 균일하고, 이에 더 나아가 광학적 물성이 우수한 광학체 및 이를 포함하는 표시장치를 제공하는데 목적이 있다.
상술한 과제를 해결하기 위하여, 본 발명의 광학체는 기재 및 상기 기재 내부에 분산되어 포함되는 복수개의 분산체를 포함하고, 상기 복수개의 분산체는 평균종횡비가 0.5 이하이며, 0.3㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 80% 이상일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 복수개의 분산체는 0.3㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 90% 이상일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 복수개의 분산체는 0.01㎛2 초과하고 0.09㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 70% ~ 90%일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 광학체의 헤이즈(Haze)는 25% 이하일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 복수개의 분산체는 하기의 수학식 2에 따른 단면적 분산계수가 90% ~ 120%일 수 있다.
[수학식 2]
Figure PCTKR2019015335-appb-I000001
한편, 본 발명의 광학체는 기재 및 상기 기재 내부에 분산되어 포함되는 복수개의 분산체를 포함하고, 상기 복수개의 분산체는 평균단면적이 1㎛2 이하이고, 하기의 수학식 1에 따른 종횡비 분산계수가 40% 이상일 수 있다.
[수학식 1]
Figure PCTKR2019015335-appb-I000002
본 발명의 바람직한 일실시예에 따르면, 복수개의 분산체는 상기의 수학식 1에 따른 종횡비 분산계수가 40 ~ 45%일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 복수개의 분산체는 평균종횡비가 0.3 ~ 0.5일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 광학체는 하기 조건 (1) 및 (2)를 만족할 수 있다.
(1) 분산체의 유리전이온도(Tg) > 기재의 유리전이온도(Tg)
(2) 분산체 및 기재의 유리전이온도의 차이가 10℃ 이하
본 발명의 바람직한 일실시예에 따르면, 기재의 유리전이온도(Tg)는 110 ~ 130℃일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 광학체의 헤이즈(Haze)는 25% 이하일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 광학체는 투과축에 평행한 제1 편광은 투과시키고, 소광축에 평행한 제2 편광은 반사시킬 수 있다.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 광학체는 기재 내부에 다수의 분산체가 분산된 폴리머 분산형일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 본 발명의 광학체는 투과축에 평행한 면내 가상의 제1선을 기준으로 측정된 하기의 수학식 3에 따른 휘도 분산계수가 2% 이하일 수 있다.
[수학식 3]
Figure PCTKR2019015335-appb-I000003
본 발명의 바람직한 일실시예에 따르면, 광학체는 MD 방향으로 연신된 것으로서 상기 제1선은 MD 방향에 수직일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 휘도 분산계수는 1% 이하일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 제1선과 예각인 사잇각이 ±60°이고, 상기 제1선의 이등분점을 통과하는 면내 가상의 제2선을 기준으로 측정된 휘도 분산계수가 2% 이내일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 투과축 방향을 폭 방향으로 할 때, 폭이 85㎝ 이상일 수 있다.
본 발명의 바람직한 일실시예에 따르면, 복수개의 분산체는 어느 일축방향으로 신장되어 기재와 적어도 하나의 축방향으로 상이한 굴절률을 가질 수 있다.
본 발명의 바람직한 일실시예에 따르면, 복수개의 분산체는 기재 내부에 랜덤하게 분산되어 있을 수 있다.
또한, 본 발명의 표시장치는 앞서 언급한 광학체를 포함할 수 있다.
이 때, 표시장치는 바람직하게는 액정표시장치(LCD) 또는 발광 다이오드(LED)일 수 있다
이하, 본 명세서에서 사용된 용어에 대해 간략히 설명한다.
'분산체가 복굴절성을 가진다'는 의미는 방향에 따라 굴절률이 다른 섬유에 빛을 조사하는 경우 분산체에 입사한 빛이 방향이 다른 두 개의 빛 이상으로 굴절된다는 것이다.
'등방성'이라 함은 빛이 물체를 통과할 때, 방향에 상관없이 굴절률이 일정한 것을 의미한다.
'이방성'이라 함은 빛의 방향에 따라 물체의 광학적 성질이 다른 것으로 이방성 물체는 복굴절성을 가지며 등방성에 대응된다.
'광변조'라 함은 조사된 빛이 반사, 굴절, 산란하거나 빛의 세기, 파동의 주기 또는 빛의 성질이 변화하는 것을 의미한다.
'종횡비'라 함은 분산체의 길이방향의 수직단면을 기준으로 장축길이에 대한 단축길이의 비를 의미한다.
'분산체의 단면적'라 함은 하기 관계식 1로 정의된다.
[관계식 1]
분산체의 단면적(㎛2) = π × 분산체의 장축길이/2 × 분산체의 단축길이/2
관계식 1의 장축길이 및 단축길이는 분산체의 길이방향의 수직단면이 기준으로, 구체적으로 광학체의 신장방향 방향에 수직한 광학체의 단면 내 분산체 장축, 단축을 의미한다(도 6 참조).
본 발명의 광학체 및 이를 포함하는 표시장치는 종래의 광학체에 비하여 휘도향상을 극대화할 수 있을 뿐만 아니라, 우수한 편광도 및 낮은 헤이즈(Haze)를 가진다.
또한, 본 발명의 광학체 및 이를 포함하는 표시장치는 면내 광학적 물성이 균일하고, 이에 더 나아가 광학적 물성이 우수함에 따라서 액정표시장치, 유기발광표시장치 등 표시장치 전반에 널리 사용될 수 있다.
도 1은 종래의 광학체의 원리를 설명하는 개략도이다.
도 2는 현재 사용되고 있는 이중휘도향상필름(DBEF)의 단면도이다.
도 3은 봉상형 폴리머를 포함하는 광학체의 사시도이다.
도 4는 광학체에 사용되는 복굴절성 해도사에 입사한 광의 경로를 도시한 단면도이다.
도 5는 본 발명의 바람직한 일구현예에 따른 랜덤 분산형 광학체의 단면도이다.
도 6은 본 발명의 바람직한 일구현예에 따른 랜덤 분산형 광학체에 사용되는 분산체의 길이방향의 수직단면도이다.
도 7은 본 발명의 바람직한 일구현예에 포함되는 광학체의 사시도이다.
도 8은 본 발명에 바람직하게 적용될 수 있는 흐름제어부의 일종인 코트-행거 다이의 단면도이고, 도 9은 도 8의 측면도이다.
도 10은 본 발명의 바람직한 일구현예에 따른 액정 표시 장치의 단면도이다.
도 11은 본 발명의 바람직한 일구현예에 따른 광학체를 채용한 액정표시장치의 사시도이다.
도 12 내지 도 14는 휘도균일성을 측정하는 기준이 되는 제1선과 제2선 및 휘도 측정대상인 시편의 샘플링 모식도이다.
도 15는 본 발명의 일 실시예에 따른 광학체의 연신방향에 수직한 단면도이다.
도 16은 본 발명의 비교예에 따른 다층형 광학체의 연신방향에 수직한 단면도이다.
도 17은 도 16에 따른 광학체을 제조하기 위한 압축구금의 분해사시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
본 발명의 광학체는 확산 편광기 또는 반사 편광기일 수도 있다. 또한, 반사 편광기로서 다양한 용도를 가질 수 있으며, 바람직한 예로서 액정 디스플레이 패널에 유용할 수 있다. 또한, 본 발명의 광학체는 창문 재료로서도 사용할 수 있고, 광 고정체로서 편광된 방사광이 바람직한 용도로 사용할 수 있다.
한편, 본 발명의 광학체의 더욱 구체적인 용도의 예로서 액정 디스플레이(LCD)와 같은 수광형 표시장치나, 유기발광디스플레이와 같은 능동형 표시장치를 들 수 있는데, 이는 랩-탑 컴퓨터, 손에 들고 쓸 수 있는 계산기, 디지털 시계, 자동차 계기반 디스플레이, 콘트라스트를 증가시키고 눈부심을 감소시키기 위해 편광을 이용하는 편광된 조명기구 및 작업 조명기구에 널리 사용될 수 있다.
또한, 본 발명의 광학체는 대형 코어 광학 섬유(LCOF: Large Core Optical Fiber)와 같은 광 가이드를 비롯하여 다양한 광학 장치에 광 추출체로서도 사용할 수 있다. 구체적으로 건축물의 고조명, 장식용 조명, 의학용 조명, 표지(signage), 시각적 안내물(예; 비행기 또는 극장의 통로에 또는 착륙 스트립), 디스플레이(예; 특히, 과량의 열이 문제인 장치 디스플레이) 및 전시 조명, 도로 조명, 자동차 조명, 하방 조명, 작업 조명, 강조 조명 및 주위 조명과 같이, 다양한 원거리 광원 조명 용도에 유용하게 사용할 수 있다.
본 발명의 광학체는 투과축에 평행한 제1 편광은 투과시키고, 소광축에 평행한 제2 편광은 반사시킬 수 있다.
먼저, 본 발명의 광학체에 의해 투과되는 제1 편광과 반사되는 제2편광에 대해 구체적으로 설명한다.
공간상의 X, Y 및 Z축에 따른 광학체의 굴절률의 실질적인 일치 또는 불일치의 크기는 그 축에 따라 편광된 광선의 산란 정도에 영향을 미친다. 일반적으로, 산란능은 굴절률 불일치의 제곱에 비례하여 변화한다. 따라서, 특정 축에 따른 굴절률의 불일치의 정도가 더 클수록, 그 축에 따라 편광된 광선이 더 강하게 산란된다. 반대로, 특정 축에 따른 불일치가 작은 경우, 그 축에 따라 편광된 광선은 더 적은 정도로 산란된다. 어떤 축에 따른 광학체의 등방성 물질의 굴절률이 이방성 물질의 굴절률과 실질적으로 일치되는 경우, 이러한 축에 평행한 전기장으로 편광된 입사광은 산란되지 않고 광학체를 통과한다. 보다 구체적으로, 제1 편광(P파)은 등방성 물질과 이방성 물질의 경계에 형성되는 복굴절 계면에 영향을 받지않고 투과되나, 제2 편광(S파)은 등방성 물질과 이방성 물질의 경계에 형성되는 복굴절성 계면에 영향을 받아 광의 변조가 일어난다. 이를 통해 P파는 투과되고 S파는 광의 산란, 반사 등의 광의 변조가 발생하게 되어 결국 편광의 분리가 이루어지고, 제1 편광(P파)은 광학체를 투과하여 통상 광학체의 상부에 위치하는 액정디스플레이에 도달하게 된다. 이러한 원리로 광학체는 하나의 편광은 투과시키고, 다른 편광은 반사시키는 작용을 하게 되며, 투과된 편광은 투과축에 평행하게 편광되고, 반사되는 편광은 소광축에 평행하게 편광된다.
본 발명의 광학체는 기재 및 기재 내부에 분산되어 포함되는 복수개의 분산체를 포함하는 폴리머 분산형 광학체일 수 있고, 보다 바람직하게는 분산체가 랜덤하게 기재 내부에 분산된 랜덤 분산형 광학체일 수 있다.
구체적으로, 본 발명의 광학체는 도 5에 도시된 것과 같이 기재(201) 및 기재(201) 내부에 분산되어 포함되는 다수의 분산체(202)를 포함하는 코어층(210)을 구비한 폴리머 분산형 광학체(200)일 수 있다. 또한, 상기 코어층(210)의 일면 또는 양면, 구체적으로 기재(201)의 일면 또는 양면에는 스킨층(210,220)이 더 구비될 수 있다.
또한, 상기 분산체(202)는 도 5에 도시된 것과 같이 다수의 분산체 길이방향에 수직한 광학체의 단면 상에서 랜덤하게 기재 내부에 분산된, 랜덤 분산형 광학체일 수 있다. 또는 도 15와 같이 다수의 분산체 길이방향에 수직한 광학체의 단면 상에서 일정하게 배열된, 예를 들어 단면에서 동일 높이에는 수평방향으로 동일두께의 분산체가 배열된 형태일 수 있다. 바람직하게는 다수의 분산체(202)는 기재 내부에 랜덤하게 분산된 것일 수 있다. 이를 통해 종래의 광학체에 비해 빛샘, 휘선보임 등의 문제 발생이 최소화 또는 방지되는 동시에 매우 우수한 휘도, 편광도 등 광학적 특성을 발현하기에 유리할 수 있다.
이 때, 분산체는 기재와 복굴절 계면을 형성하여 광변조 효과를 유발시켜야 되므로 기재가 광학적 등방성인 경우, 분산체는 광학적으로 복굴절성을 가질 수 있고, 반대로 기재가 광학적으로 복굴절성을 갖는 경우에는 분산체는 광학적 등방성을 가질 수 있다. 구체적으로, 분산체의 x축 방향의 굴절율이 nX1, y축 방향의 굴절율이 nY1 및 z축 방향의 굴절율이 nZ1이고, 기재의 굴절율이 nX2, nY2 및 nZ2일 때, nX1과 nY1 사이의 면내 복굴절이 발생할 수 있다. 더욱 바람직하게는 기재와 분산체의 X, Y, Z축 굴절율 중 적어도 어느 하나가 상이할 수 있으며, 보다 바람직하게는 신장축이 X축인 경우 Y축 및 Z축 방향에 대한 굴절율의 차이가 0.05 이하이고, X축 방향에 대한 굴절율의 차이가 0.1 이상일 수 있다. 한편 통상적으로 굴절율의 차이가 0.05 이하이면 정합으로 해석된다.
본 발명의 복수개의 분산체는 목적하는 제2 편광을 적어도 가시광선 파장범위에서 반사시키기 위해 적절한 광학적 두께를 가질 수 있고, 적절한 범위내의 두께 편차를 가질 수 있다. 광학적 두께(optical thickness)는 n(굴절율)>d(물리적 두께)를 의미한다. 한편 빛의 파장과 광학적 두께는 하기 관계식 2에 따라 정의된다.
[관계식 2]
λ = 4nd, 단 λ는 빛의 파장(nm), n은 굴절율, d는 물리적 두께(nm)
따라서, 분산체의 평균 광학적 두께가 150nm일 경우 관계식 2에 의해 400nm 파장의 제2 편광을 반사시킬 수 있을 것이고, 이러한 원리로 복수개의 분산체 각각의 광학적 두께를 조절할 경우 목적하는 파장범위, 특히 가시광선 파장범위에서의 제2 편광의 반사율을 현저히 증가시킬 수 있다.
이에 따라 본 발명의 광학체는 바람직하게는 복수개의 분산체 중 적어도 2개는 분산체가 신장된 방향으로 단면적이 상이할 수 있고, 이를 통해 분산체의 단면직경(광학적 두께에 해당함)이 다를 수 있어 광학적 두께에 대응되는 파장의 제2 편광을 반사시킬 수 있으며, 가시광선의 각 파장에 대응하는 광학적 두께를 가지는 폴리머를 포함할 경우 가시광선 영역에 대응되는 제2 편광을 반사시킬 수 있다.
또한, 본 발명의 복수개의 분산체 그 형상은 특별한 제한은 없으며, 구체적으로 원형, 타원형 등일 수 있고, 전체 분산체의 개수는 32인치를 기준으로 기재의 두께가 120㎛일 때 25,000,000 ~ 80,000,000 개일 수 있으나 이에 제한되지 않는다.
한편, 본 발명의 기재와 분산체는 통상적으로 광학체에 복굴절 계면을 형성하도록 사용되는 물질이라면 제한 없이 사용할 수 있고, 기재 성분은 바람직하게는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열성 폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU), 폴리이미드(PI), 폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴(SAN), 에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화폴리에스테르(UP), 실리콘(SI), 폴리시클로헥실렌 디메틸렌테레프탈레이트(PCTG) 및 사이크로올레핀폴리머 중에서 선택된 1종 이상을 포함할 수 있으며, 보다 바람직하게는 폴리카보네이트(PC) 및 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)을 포함할 수 있다. 이 때, 폴리시클로헥실렌 디메틸렌테레프탈레이트는 산 성분과 디올 성분이 1 : 0.5 ~ 1.5 몰비, 바람직하게는 1 : 0.8 ~ 1.2 몰비로 중합하여 제조된 화합물로서, 산 성분은 테레프탈레이트를 포함하고, 디올 성분은 에틸글리콜 및 사이클로헥산디메탄올을 포함할 수 있다. 또한, 기재 성분은 유리전이온도가 110 ~ 130℃, 바람직하게는 115 ~ 125℃의 유리전이온도를 가지는 물질일 수 있다.
또한, 분산체 성분은 바람직하게는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열성 폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU), 폴리이미드(PI), 폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴(SAN), 에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화폴리에스테르(UP), 실리콘(SI), 폴리시클로헥실렌 디메틸렌테레프탈레이트(PCTG) 및 사이크로올레핀폴리머를 단독 또는 혼합하여 사용할 수 있으며 보다 바람직하게는 폴리에틸렌나프탈레이트(PEN)을 포함할 수 있다.
한편, 폴리에틸렌나프탈레이트(PEN)은 중합하는 과정에 있어서, 부산물이 발생할 수 있다. 발생하는 부산물이 적을수록 폴리에틸렌나프탈레이트(PEN)의 중합도가 우수하며, 본 발명의 분산체 성분으로는 바람직하게 중합도가 우수한 폴리에틸렌나프탈레이트(PEN)을 포함할 수 있다. 이 때, 부산물에는 중합하는 과정에 있어서 사용된 잔류 촉매, 폴리에틸렌 글리콜(PEG) 등이 있으며, 본 발명의 분산체 성분으로 잔류 촉매(예를 들어, Ge) 함량이 100ppm 이하, 바람직하게는 10 ~ 70ppm, 더욱 바람직하게는 10 ~ 40ppm, 디에틸렌글리콜(DEG)의 함량이 3.5 중량% 이하, 바람직하게는 1.0 ~ 2.5 중량%, 더욱 바람직하게는 1.0 ~ 2.0 중량%인 폴리에틸렌나프탈레이트(PEN)를 포함할 수 있다.
또한, 폴리에틸렌나프탈레이트(PEN)은 중합하는 과정에 있어서, 공정 조건 또는 단량체의 몰비에 따라 110 ~ 125℃의 유리전이온도를 가질 수 있으며, 본 발명에서 사용하는 폴리에틸렌나프탈레이트(PEN)은 110 ~ 125℃, 바람직하게는 115 ~ 125℃, 더욱 바람직하게는 118 ~ 122℃의 유리전이온도를 가질 수 있다.
나아가, 본 발명의 광학체는 하기 조건 (1) 및 (2)를 만족할 수 있다.
(1) 분산체의 유리전이온도(Tg) > 기재의 유리전이온도(Tg)
(2) 분산체 및 기재의 유리전의온도의 차이가 10℃ 이하, 바람직하게는 3 ~ 9℃
이와 같은 조건 (1) 및 (2)를 만족함으로서, 본 발명의 광학체는 우수한 물성을 달성하기에 보다 유리할 수 있다.
또한, 본 발명의 광학체는 기재와 분산체 간에 복굴절 계면을 형성하기 위해 적어도 하나의 방향으로 연신된 것일 수 있다.
또한, 본 발명의 복수개의 분산체는 기재 내부에 랜덤하게 분산된 것일 수 있다. 이를 통해 본 발명의 광학체를 보다 용이하게 구현하여 우수한 물성을 발현할 수 있고, 종래의 광학체에 비해 빛샘, 휘선보임 등의 문제점까지 상쇄시킨 광학체를 구현할 수 있다.
또한, 본 발명의 광학체, 구체적으로 랜덤 분산형 광학체에 대해 더욱 구체적으로 설명하면, 랜덤 분산형 광학체는 기재 및 기재 내부에 포함되어 외부에서 조사되는 제1 편광을 투과시키고 제2 편광을 반사시키기 위한 복수개의 분산체를 포함하며, 복수개의 분산체는 기재와 적어도 하나의 축방향으로 굴절율이 상이하고, 기재 내부에 포함된 복수개의 분산체는 평균종횡비(≒ 길이방향의 수직 단면을 기준으로 장축길이에 대한 단축길이의 평균종횡비)가 0.5이하일 수 있고, 바람직하게는 0.3 ~ 0.5, 더욱 바람직하게는 0.4 ~ 0.48, 더더욱 바람직하게는 0.44 ~ 0.46일 수 있다. 이러한 광학체의 경우 우수한 물성을 달성하기에 보다 유리할 수 있다
한편, 본 발명의 복수개의 분산체는 평균단면적이 1㎛2 이하, 바람직하게는 0.5㎛2 이하, 더욱 바람직하게는 0.3㎛2 이하일 수 있다.
또한, 본 발명의 복수개의 분산체는 0.3㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 80% 이상, 바람직하게는 0.3㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 90% 이상, 더욱 바람직하게는 0.3㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 95% 이상일 수 있다.
또한, 더욱 구체적으로 말하면, 본 발명의 복수개의 분산체는 0.21㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 80% 이상, 바람직하게는 0.21㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 90% 이상, 더욱 바람직하게는 0.21㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 95% 이상일 수 있다.
또한, 더더욱 구체적으로 말하면, 본 발명의 복수개의 분산체는 0.12㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 80% 이상, 바람직하게는 0.12㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 85% 이상, 더욱 바람직하게는 0.12㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 93% 이상일 수 있어, 이러한 광학체의 경우 우수한 물성을 달성하기에 보다 유리할 수 있다.
또한, 본 발명의 복수개의 분산체는 0.01㎛2 초과하고 0.09㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 70 ~ 90%, 바람직하게는 75 ~ 85%, 더욱 바람직하게는 78 ~ 82%일 수 있어, 이러한 광학체의 경우 우수한 물성을 달성하기에 보다 유리할 수 있다.
한편, 본 발명의 복수개의 분산체는 하기의 수학식 2에 따른 단면적 분산계수가 90% ~ 120%, 바람직하게는 95 ~ 115%, 더욱 바람직하게는 97 ~ 105%일 수 있어, 이러한 광학체의 경우 우수한 물성을 달성하기에 보다 유리할 수 있다.
[수학식 2]
Figure PCTKR2019015335-appb-I000004
결국, 단면적 분산계수란 단면적의 분산정도를 확인할 수 있는 파라미터로서, 만일, 단면적 분산계수가 0%일 경우이면 동일, 클수록 분산체 간 단면적 차이 또는, 평균단면적에 보다 단면적 차이가 큰 분산체의 비율이 증가하는 것을 의미한다.
본 발명의 광학체는 단면적에 대한 분산계수가 90% 이상으로서 매우 큼에 따라서 단면적이 0.3 이하가 80% 이상인 것들로 구성되되, 분산체 간 단면적 분포가 매우 넓어 짐에 따라서 목적하는 파장영역대를 모두 세분화하여 커버함으로써 휘도를 보다 현저히 향상시킬 수 있는 이점이 있다.
나아가, 본 발명의 복수개의 분산체는 하기의 수학식 1에 따른 종횡비 분산계수가 40% 이상, 바람직하게는 40 ~ 45%, 더욱 바람직하게는 41 ~ 43%일 수 있으며, 이러한 광학체의 경우 우수한 물성을 달성하기에 보다 유리할 수 있다.
[수학식 1]
Figure PCTKR2019015335-appb-I000005
한편, 본 발명의 랜덤 분산형 광학체의 헤이즈(Haze)는 25% 이하, 바람직하게는 10 ~ 20%일 수 있다.
나아가, 본 발명의 광학체는 기재와 분산체 간에 복굴절 계면을 형성하고, 분산체가 적절한 광학적 두께를 갖기 위해 적어도 어느 일방향으로 신장될 수 있고, 일예로 적어도 하나의 방향으로 연신된 것일 수 있으며, 일예로 일축 방향으로 연신될 경우 상기 일축방향은 광학체가 연속되어 제조되면서 반송되는 MD 방향일 수 있다. 또한, 상기 일축방향은 분산체 형상의 장축방향인 길이방향일 수 있다.
한편, 본 발명의 광학체 형태인 폴리머 분산형에 대해서 설명하면, 광학적 등방성 물질로 형성된 평판의 광학층과 광학적 이방성 물질로 형성된 평판의 광학층이 서로 교호 적층된 다층형 광확체와 더불어 널리 알려진 광학체의 일종이다. 다만, 폴리머 분산형 광학체는 광학적 등방성 물질 또는 광학적 이방성 물질 중 어느 하나의 물질 내부에 다른 물질이 다수개의 분산체로서 분산되어 수용된 형태임에 따라서 일방향으로 신장될 때 다수의 분산체 각각이 받는 힘의 방향이나 힘의 차이에 의한 영향이 평판의 층이 교호적층된 구조인 다층형 광학체에 대비해 현저히 클 수 있다. 이로 인해 다층형 광학체의 경우 일방향 신장에 따른 광학적 물성, 예를 들어 휘도의 위치별 편차가 발생할 우려가 적지만, 폴리머 분산형 광학체의 경우 휘도의 위치별 편차가 발생할 우려가 크고, 특히 신장되는 방향에 수직한 방향, 예를 들어 면내 수직인 x축, y축 중 신장방향이 x축인 경우 이에 수직인 방향인 y축 또는, MD 방향으로 신장되는 경우 이에 수직인 TD 방향에서 위치 별로 편차가 현저히 큰 문제가 있다. 또한, 제조되는 광학체의 폭 방향 길이가 커질수록 이러한 문제는 더욱 커질 수 있다.
본 발명자는 이를 해결하기 위해 연구를 거듭한 결과, 이러한 문제는 광학체를 형성하는 물질 내 불순물 즉, 물질을 제조하는 과정에서 사용된 촉매, 부산물에도 영향이 있으며, 분산체의 크기가 클수록, 신장방향에 수직인 광학체의 단면내 분산체들의 분포가 랜덤 할수록 휘도 불균일의 문제는 더 커진다는 것을 알아냈다. 또한, 토출된 광학체의 폭 길이나, 토출된 후 평활화 공정, 이후의 일방향으로 신장시키는 공정(예를들어 연신공정), 및/또는 이후의 열고정 공정에서 공정조건의 설계 및/또는 설계된 조건의 제어 등에 의해서도 영향이 크다는 것을 알게 되었다. 구체적으로 평활화 공정에서의 사용될 수 있는 롤러의 직경, 표면의 불균일성이나, 연신공정에서 연신속도의 불균일, 연신공정과 열고정 단계에서의 온도의 부적절성, 열의 불균등 처리 일 수 있다.
본 발명의 발명자는 휘도 불균일에 영향을 미칠 수 있는 위와 같은 인자들을 제어하도록 각고의 노력을 한 결과, 폴리머 분산형 광학체임에도 투과축에 평행한 면내 가상의 제1선을 기준으로 측정된 휘도 분산계수가 2% 이하인 반사편광필름을 구현했다.
도 12를 참조하여 설명하면, 광학체(100)의 투과축(q)에 평행한 면내 가상의 제1선(ℓ)을 기준으로 측정된 휘도란 상기 제1선(ℓ) 상에 중심점이 있는 소정의 크기를 갖는 시편의 휘도를 의미한다. 상기 투과축(b)은 연신된 방향의 수직방향일 수 있고, MD 방향으로 연신된 경우 TD 방향일 수 있다. 또한, 상기 시편은 형상이 원이나 정사각형, 직사각형과 같은 다각형도 무방하다. 또한, 상기 시편의 크기는 일예로 정사각형 기준 1㎝×1㎝, 4㎝×4㎝, 10㎝×10㎝ 등일 수 있으나 이에 제한되지는 않으며 광학체(100)의 투과축(b)에 평행한 방향으로의 길이(예를 들어 폭길이)를 고려하여 설정할 수 있다.
또한, 상기 휘도 분산계수란 상기 제1선(ℓ) 상에 중심점이 있는 동일형상, 동일크기의 시료 5개에 대해 각각 측정된 휘도를 통해 계산된 평균휘도와, 휘도 표준편차를 이용해 하기 수학식 3에 따라서 계산한 결과값을 의미한다. 이때 상기 시료는 상기 제1선(ℓ)을 수직 이등분하는 지점이 시료의 무게중심점인 제1시료(S1)를 중심으로 좌측방향, 우측방향으로 각 방향 당 2개의 시료(SL, SR)를 샘플링 하되, 이웃한 시료간 거리가 같도록 되도록 샘플링 한 것이며, 도 12 및 도 14를 참고하여 설명하면 상기 시료 간 거리는 시료의 이웃하는 변 사이의 거리(s)를 의미하고, 상기 시료 간 거리는 동일하기면 하면 무방하고, 시료간 거리는 0일수도 있다.
[수학식 3]
Figure PCTKR2019015335-appb-I000006
결국 휘도 분산계수란 각 시료들 간의 휘도 불균일을 확인할 수 있는 파라미터로서, 만일 휘도 분산계수가 0%일 경우 각 시료들간 휘도 차이가 없음을 의미하고, 휘도 분산계수가 커질수록 각 시료들간 휘도 차이가 커짐을 의미한다. 본 발명에 따른 광학체는 수학식 3으로 계산되는 휘도 분산계수가 2% 이하, 바람직하게는 1% 이하, 보다 더 바람직하게는 0.5% 이하임에 따라서 휘도 균일성이 매우 우수하다. 만일 휘도 분산계수가 2%를 초과할 경우 32인치 이상의 디스플레이에서 의도하지 않은 명암차 등이 발생하여 화상의 품질저하가 현저할 수 있고, 유니포미티(Uniformity) 품질 기준인 85% 이상을 확보하기 어려워 제품화되지 못할 우려가 있다. 또한, 분산계수가 2%를 초과 시에 광학체의 헤이즈가 현저히 증가하거나 헤이즈가 위치별로 불균일할 수 있고, 휘도가 감소하는 등 광학적 특성이 저하될 수 있고, 광학체의 두께편차가 발생하거나, 주름, 움 현상 등 외관품질 역시 현저히 저하할 우려가 있다.
상기 휘도 분산계수가 2% 이하인 광학체는 일예로 기재나, 분산체를 형성하는 물질의 중합도를 향상시키거나, 불순물을 제어하는 방식으로 구현할 수 있다. 구체적으로 기재 및/또는 분산체 내 불순물로서 중합촉매의 잔류량이 150ppm, 보다 바람직하게는 100ppm 이하일 수 있다. 상기 분산체를 PEN으로 상정하여 설명하면 중합촉매인 Ge촉매의 잔류량이 200ppm 이하, 바람직하게는 100ppm이하, 더욱 바람직하게는 10 ~ 70ppm일 수 있고, 중합과정에서 자연발생되는 부산물인 디에틸렌글리콜(DEG)의 함량이 4.0중량% 이하, 바람직하게는 3.5중량% 이하, 더욱 바람직하게는 1.0 ~ 2.0 중량%일 수 있다.
다른 일예로 제조공정 중 토출된 필름의 평활화 공정에서 사용되는 롤의 직경이 필름 폭방향으로 균일한 것을 사용할 수 있다. 또 다른 일예로 제조공정 중 연신공정에서 소정의 연신속도를 기준으로 ±3% 이내로 연신속도 균일성을 제어하는 것이 바람직하다.
다른 일례로 연신공정에서 MD 방향으로 연신 시에, TD 방향으로 소정의 힘을 일정하게 가할 수도 있다. 소정의 힘을 TD 방향으로 가하는 경우 바람직하게는 TD 방향으로 1:1 내지 1:1.2 수준으로 연신되도록 힘을 가할 수 있다. 이 경우 만일 TD 방향으로 1:1.2를 초과하여 연신될 경우 편광도, 휘도 등 광학적 특성이 현저히 저하될 우려가 있고, 1:1 미만으로 적게 연신될 경우 휘도 균일성을 달성하기 용이하지 않을 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 광학체(100)는 상기 제1선과 예각인 사잇각이 ±60°이고, 상기 제1선의 이등분점을 통과하는 면내 가상의 제2선을 기준으로 측정된 휘도 분산계수가 2% 이하일 수 있고, 보다 바람직하게는 1%이하, 더욱 바람직하게는 0.5% 이하일 수 있다. 휘도 불균일 문제는 투과축에 평행한 방향, 일예로 신장된 방향에 수직인 방향, 일예로 TD 방향, 일예로 폭 방향에서 현저한데, 이에 나아가 상기 제1선과 소정의 각도, 특히 제1선과 ±60°를 이루는 제2선을 따라서 현저할 수 있다. 또한, 이러한 특징은 반사편광필름의 폭이 클수록, 분산체의 배열이 랜덤할수록 휘도 불균일 문제는 커질 수 있다.
도 13 및 도 14를 참조하여 설명하면, 제2선(m,m')은 광학체(100) 내 가상의 제1선(ℓ)을 수직이등분하는 중심점을 통과하며, 상기 제1선(ℓ)과 이루는 예각의 각도가 ±60°인 선분을 의미한다.
한편, 제2선(m 또는 m')을 기준으로 측정된 휘도의 의미는 상술한 제1선(ℓ)을 기준으로 측정된 휘도와 동일한 의미, 동일한 방식으로 측정된 것이다. 또한, 휘도 균일성 역시 동일한 방식으로 시료가 샘플링되고, 측정 및 계산된 결과값일 수 있다. 시료의 샘플링 방식에 대해 구체적으로 설명하면, 제1선(ℓ)을 수직이등 하는 지점을 중심점으로 갖는 제1시료(S1)를 중심으로 전방, 후방으로 각 방향 당 7개의 시료(SF, SB)를 샘플링 하되, 이웃한 시료간 거리가 50㎜가 되도록 샘플링 한 것이며, 이때, 시료 간 거리는 시료의 이웃하는 변이나, 꼭지점 사이의 최단거리(s)를 의미한다.
광학체는 본 발명에 따른 제1선을 기준으로 한 휘도특성 뿐만 아니라 제2선을 기준으로 한 휘도 특성까지 만족시킬 경우 더욱 향상된 휘도균일성을 수득할 수 있을 뿐만 아니라 헤이즈의 균일도가 더욱 높아져 더욱 우수한 휘도특성을 발현할 수 있는 이점이 있다.
본 발명의 바람직한 일예의 광학체의 분산체 크기에 대해서 상세히 설명하면, 기재(201) 내 분산된 다수의 분산체(201) 중 80% 이상은 길이방향의 수직단면을 기준으로 장축길이에 대한 단축길이의 종횡비가 1/2 이하여야 하고 보다 바람직하게는 90% 이상이 상기 종횡비 값이 0.5 이하를 만족할 수 있다. 상기 종횡비는 도 6에 도시된 것과 같이 분산체의 길이방향 즉, 일예로 MD방향, 및/또는 일예로 신장방향에 수직한 반사편광필름의 수직단면 내 분산체 단면에서 장축길이를 a라 하고 단축길이를 b라 했을 때 장축길이(a)와 단축길이(b)의 상대적인 길이의 비(종횡비)가 0.5 이하여야 한다. 다시 말해 장축길이(a)가 2일 때 단축길이(b)는 1보다 작거나 같아야 하는 것이다. 만일 종횡비가 0.5이하인 분산체가 80% 미만인 경우에는 원하는 광학물성을 달성하기 어렵다. 또한, 상기 다수의 분산체는 0.3㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 65% 이상일 수 있다.
나아가, 본 발명의 랜덤 분산형 광학체는 상술한 기재 및 기재 내부에 포함되고, 상술한 바람직한 일구현예에 따른 분산체 조건들을 만족하는 복수개의 분산체를 포함하는 광학체를 코어층으로 하고, 코어층의 적어도 일면에 형성된 일체화된 스킨층을 포함하는 구조일 수 있고, 스킨층을 더 구비함을 통해 코어층 보호, 광학체의 신뢰성 향상에 기여할 수 있다.
스킨층을 포함하지 않는 일구현예와 스킨층을 포함하는 다른 일구현예에 따른 광학체는 용도상에서 차이가 있을 수 있고, 디스플레이 등 각종 범용적 액정표시장치에는 스킨층을 포함하는 광학체를 사용함이 바람직할 수 있으며, 휴대용 액정표시장치, 예를 들어 휴대용 전자기기, 스마트 전자기기, 스마트폰의 경우 슬림화된 광학체가 요구됨에 따라 스킨층을 포함하지 않는 광학체를 사용함이 바람직할 수 있으나 이에 제한되는 것은 아니다.
구체적으로, 도 5는 본 발명의 랜덤 분산형 광학체의 단면도로써, 기재(201) 내부에 복수개의 분산체(202)들이 랜덤하게 분산되어 배열된 코어층(210) 및 코어층의 적어도 일면에 일체로 형성된 스킨층(220)을 나타낸다.
먼저, 코어층(210)에 대해 설명하면 코어층은 기재 내부에 포함된 복수개의 분산체는 평균종횡비(≒길이방향의 수직단면을 기준으로 장축길이에 대한 단축길이의 평균종횡비)가 0.5이하, 바람직하게는 0.3 ~ 0.5, 더욱 바람직하게는 0.4 ~ 0.48, 더더욱 바람직하게는 0.44 ~ 0.46일 수 있다.
구체적으로, 도 6은 본 발명의 바람직한 일구현예에 사용되는 분산체의 길이방향의 수직단면으로서, 장축길이를 a라 하고 단축길이를 b라 했을 때 장축길이(a)와 단축길이(b)의 상대적인 길이의 비(종횡비)의 평균이 0.5 이하, 바람직하게는 0.3 ~ 0.5, 더욱 바람직하게는 0.4 ~ 0.48, 더더욱 바람직하게는 0.44 ~ 0.46이여야 한다. 만일 장축길이에 대한 단축길이의 비가 0.5이하를 만족하지 못하는 경우, 원하는 광학물성을 달성하기 어렵다.
도 7는 본 발명의 바람직한 일구현예에 포함되는 광학체의 사시도로서, 코어층(210)의 기재(201) 내부에 복수개의 랜덤 분산체(208)가 길이방향으로 신장되어 있으며, 스킨층(220)은 코어층(210)의 상부 및/또는 하부에 형성될 수 있다. 이 경우 랜덤 분산체(208)는 각각 다양한 방향으로 신장될 수 있지만, 바람직하게는 어느 일 방향으로 평행하여 신장되는 것이 유리하며, 보다 바람직하게는 외부광원에서 조사되는 광에 수직하는 방향으로 신장체간에 평행하게 신장되는 것이 광변조 효과를 극대화하는데 효과적이다.
또한, 코어층의 두께는 20 ~ 350㎛인 것이 바람직하고, 보다 바람직하게는 50 ~ 250㎛일 수 있으나, 이에 제한되지 않고, 구체적인 용도 및 스킨층의 포함여부, 스킨층의 두께에 따라 코어층의 두께는 달리 설계될 수 있다. 또한 전체 분산체의 개수는 32인치를 기준으로 기재의 두께가 120㎛일 때 25,000,000 ~ 80,000,000 개일 수 있으나 이에 제한되지 않는다.
다음으로, 코어층의 적어도 일면에 포함될 수 있는 스킨층(220)에 대해 설명하면, 스킨층 성분은 통상적으로 사용되는 성분을 사용할 수 있으며, 통상적으로 반사편광 필름에서 사용되는 것이라면 제한없이 사용될 수 있으나, 바람직하게는 폴리에틸렌나프탈레이트(PEN), 코폴리에틸렌나프탈레이트(co-PEN), 폴리에틸렌테레프탈레이트(PET), 폴리카보네이트(PC), 폴리카보네이트(PC) 얼로이, 폴리스타이렌(PS), 내열성 폴리스타이렌(PS), 폴리메틸메타아크릴레이트(PMMA), 폴리부틸렌테레프탈레이트(PBT), 폴리프로필렌(PP), 폴리에틸렌(PE), 아크릴로니트릴부타디엔스티렌(ABS), 폴리우레탄(PU), 폴리이미드(PI), 폴리비닐클로라이드(PVC), 스타이렌아크릴로니트릴(SAN), 에틸렌초산비닐(EVA), 폴리아미드(PA), 폴리아세탈(POM), 페놀, 에폭시(EP), 요소(UF), 멜라닌(MF), 불포화폴리에스테르(UP), 실리콘(SI), 폴리시클로헥실렌 디메틸렌테레프탈레이트(PCTG) 및 사이크로올레핀폴리머 중에서 선택된 1종 이상을 포함할 수 있으며, 보다 바람직하게는 폴리카보네이트(PC) 및 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)을 포함할 수 있다. 이 때, 폴리시클로헥실렌 디메틸렌테레프탈레이트는 산 성분과 디올 성분이 1 : 0.5 ~ 1.5 몰비, 바람직하게는 1 : 0.8 ~ 1.2 몰비로 중합하여 제조된 화합물로서, 산 성분은 테레프탈레이트를 포함하고, 디올 성분은 에틸글리콜 및 사이클로헥산디메탄올을 포함할 수 있다.
상기 스킨층의 두께는 30 ~ 500㎛일 수 있으나 이에 제한되지 않는다.
또한, 광학체의 폭은 제조 시 기준으로 85㎝ 이상일 수 있다. 상기 폭은 투과축 방향의 길이일 수 있고, 본 발명에 따른 광학체는 폭이 85㎝ 이상으로 대면적으로 형성됨에도 불과하고 해당 방향으로의 휘도균일성을 담보할 수 있는 이점이 있다.
또한, 상술한 휘도균일성을 만족하는 본 발명의 바람직한 일실시예에 따른 광학체는 헤이즈가 30% 이하, 보다 바람직하게는 25% 이하, 보다 더 바람직하게는 22% 이하 더욱 바람직하게는 20%이하일 수 있다. 또한, 휘도균일성의 측정방법과 동일한 시료의 샘플링 방법으로 측정되고, 계산된 제1선을 따른 헤이즈 균일도가 3% 이하 보다 바람직하게는 2% 이하, 보다 더 바람직하게는 1% 이하일 수 있다. 또한, 균일한 두께가 확보됨에 따라서 샘플링된 시료에 대해 후술하는 실험방법으로 측정되고 계산된 두께백분율 차이가 1% 이내일 수 있다.
한편, 스킨층이 형성되는 경우 코어층(210)과 스킨층(220) 사이에도 일체로 형성된다. 그 결과 접착층으로 인한 광학물성의 저하를 방지할 수 있을 뿐만 아니라 한정된 두께에 보다 많은 층을 부가할 수 있어 광학물성을 현저하게 개선시킬 수 있다. 나아가, 스킨층은 코어층과 동시에 제조된 후 연신공정이 수행되므로 종래의 코어층 연신 후 미연신 스킨층을 접착시킬 때와는 달리 본 발명의 스킨층은 적어도 하나의 축방향으로 연신될 수 있다. 이를 통해 미연신 스킨층에 비하여 표면경도가 향상되어 내스크래치성이 개선되며 내열성이 향상될 수 있다.
한편, 본 발명에 따른 광학체는 집광이나 확산과 같은 광의 경로를 변경하기 위한 마이크로렌즈, 렌티큘러, 프리즘 형상 등의 구조화된 표면층을 상술한 광학체의 상부나 하부에 일체로 더 구비할 수 있다. 이에 대한 설명은 동일 출원인에 의한 대한민국 특허출원 제2013-0169215호 및 대한민국 특허출원 제2013-0169217호가 참조로 삽입될 수 있다.
상기와 같은 분산체가 기재 내에 랜덤하게 분산되어 있는 광학체는 후술되는 제조방법을 통해 제조될 수 있다. 다만, 이에 제한되는 것은 아니다.
먼저, 기재 성분과 분산체 성분을 개별적으로 독립된 압출부들에 공급할 수 있으며 이 경우 압출부는 2개 이상으로 구성될 수 있다. 또한 폴리머들이 섞이지 않도록 별도의 공급로 및 분배구를 포함하는 하나의 압출부에 공급하는 것 역시 본 발명에 포함된다. 상기 압출부는 익스트루더일 수 있으며, 이는 고체상의 공급된 폴리머들을 액상으로 전환시킬 있도록 가열수단 등을 더 포함할 수 있다. 이때, 상기 기재성분이나 분산체 성분은 불순물의 함량을 일정 수준 이하가 되는 것을 사용해야 휘도균일성을 발현하는데 유리할 수 있다.
한편, 기재 성분의 내부에 분산체 성분이 배열될 수 있도록 폴리머 흐름성 차이가 있도록 점도를 차이가 있도록 설계하며, 바람직하게는 기재 성분이 흐름성이 분산체 성분보다 좋도록 한다. 다음, 기재 성분과 분산체 성분이 믹싱존과 메시 필터존을 통과하면서 기재 내에 분산체 성분이 점성에 차이를 통해 기재 내부에 분산체가 랜덤하게 배열된 광학체를 제조할 수 있다.
추가적으로, 제조된 광학체의 적어도 일면에 스킨층을 포함시킬 경우, 광학체의 적어도 일면을 압출부에서 이송된 스킨층 성분을 합지한다. 바람직하게는 스킨층 성분은 광학체의 양면에 모두 합지될 수 있다. 양면에 스킨층이 합지되는 경우 스킨층의 재질 및 두께는 서로 동일하거나 상이할 수 있다.
다음으로, 기재 내부에 포함된 분산체 성분이 랜덤하게 배열될 수 있도록 흐름제어부에서 퍼짐을 유도할 수 있다. 구체적으로 도 8은 본 발명에 적용될 수 있는 바람직한 흐름제어부의 일종인 코트-행거 다이의 단면도이고, 도 9은 도 8의 측면도이다. 이를 통해 기재의 퍼짐정도를 적절하게 조절하여 분산체 성분의 단면적의 크기 및 배열을 랜덤하게 조절할 수 있다. 도 8에서 유로를 통해 이송된 스킨층이 합지된 기재가 코트-행거 다이에서 좌우로 넓게 퍼지므로 내부에 포함된 분산체 성분 역시 좌우로 넓게 퍼지게 된다.
본 발명의 바람직한 일구현예에 따르면, 흐름 제어부에서 이송된 퍼짐이 유도된 광학체를 냉각 및 평활화하는 단계, 상기 평활화 단계를 거친 광학체를 연신하는 단계; 및 상기 연신된 광학체를 열고정하는 단계를 더 포함할 수 있다.
먼저, 흐름제어부에서 이송된 광학체를 냉각 및 평활화하는 단계로서 통상의 광학체의 제조에서 사용되던 냉각하여 이를 고형화하고 이후 캐스팅 롤 공정 등을 통해 평활화 단계를 수행할 수 있다. 이때, 사용되는 롤은 바람직하게는 직경이 균일한 것을 사용할 수 있고, 이를 통해 휘도균일성을 용이하게 담보할 수 있는 이점이 있다.
이후, 상기 평활화 단계를 거친 광학체를 연신하는 공정을 거친다.
상기 연신은 통상의 광학체의 연신공정을 통해 수행될 수 있으며, 이를 통해 기재 성분과 분산체 성분간의 굴절율 차이를 유발하여 계면에서 광변조 현상을 유발할 수 있고, 상기 퍼짐유도된 제1 성분(분산체 성분)은 연신을 통해 종횡비가 더욱 줄어들게 된다. 이를 위하여 바람직하게는 연신공정은 일축연신 또는 이축연신을 수행할 수 있으며, 보다 바람직하게는 일축연신을 수행할 수 있다.
일축연신의 경우 연신방향은 제1 성분 길이방향으로 연신을 수행할 수 있다. 일예로 상기 길이방향은 MD방향일 수 있다. 또한 연신비는 3 ~ 12배 일 수 있다. 한편, 등방성 재료를 복굴절성으로 변화시키는 방법은 통상적으로 알려진 것이며 예를 들어 적절한 온도 조건 하에서 연신시키는 경우, 분산체 분자들은 배향되어 재료는 복굴절성으로 될 수 있다. 이때, 연신속도를 균일하게 제어하거나, MD 방향으로 반송되며 연신되는 광학체의 TD방향을 클립이나 집게 등으로 고정시키거나 또는 소정의 힘을 가해 연신시키는 것을 통해 투과축과 평행한 방향으로의 휘도균일성을 담보하는데 용이할 수 있다.
다음, 상기 연신된 광학체를 열고정하는 단계를 거쳐 최종적인 광학체를 제조할 수 있다. 상기 열고정은 통상의 방법을 통해 열고정될 수 있으며, 바람직하게는 180 ~ 200℃에서 0.1 ~ 3분 동안 IR 히터를 통해 수행될 수 있다. 이때, 열고정은 광학체의 위치에 관계없이 동일한 수준으로 열을 가하도록 하는 것이 투과축과 평행한 방향으로의 휘도균일성을 담보하는데 용이할 수 있다.
이상에서 상술한 본 발명의 광학체는 광원 어셈블리나 표시장치 등에 채용되어, 광 효율을 증진시키는데 사용될 수 있다. 광원 어셈블리는 작업등, 조명, 또는 액정표시장치에 통상적으로 채용되는 어셈블리일 수 있다. 상기 액정표시장치에 채용되는 광원어셈블리는 램프가 하부에 위치하는 직하형, 램프가 사이드에 위치하는 에지형 등으로 분류되는데, 본 발명의 구현예들에 따른 광학체는 어떠한 종류의 광원 어셈블리에도 채용 가능하다. 또, 액정 패널의 아래쪽에 배치되는 백라이트(back light) 어셈블리나 액정 패널의 위쪽에 배치되는 프론트 라이트(front light) 어셈블리에도 적용 가능하다.
또한, 본 발명의 광학체는 유기발광표시장치와 같은 능동 발광형 디스플레이에도 채용이 가능하다. 이 경우 광학체는 유기발광표시장치의 패널 전방에 명암비 향상, 시인성 향상 등을 위해 채용될 수 있다.
이하에서는 다양한 적용예의 일예로서, 광학체가 에지형 광원 어셈블리를 포함하는 액정 표시 장치에 적용된 경우를 예시한다.
도 10은 본 발명의 바람직한 일구현예에 따른 액정 표시 장치의 단면도로서, 액정 표시 장치(2700)는 백라이트 유닛(2400), 및 액정 패널 어셈블리(2500)를 포함한다.
백라이트 유닛(2400)은 출사된 빛의 광학적 특성을 변조하는 광학체(2111)를 포함하며, 이때 백라이트 유닛에 포함되는 기타구성 및 기타구성과 광학체(2111)의 위치관계는 목적에 따라 달라질 수 있어 본 발명에서 특별히 한정하지 않는다.
다만, 본 발명의 바람직한 일구현예에 따르면, 도 10과 같이 광원(2410), 광원(2410)으로부터 출사된 빛을 가이드하는 도광판(2415), 도광판(2415)의 하측에 배치된 반사 필름(2320), 및 도광판(2415)의 상측에 배치되는 광학체(2111)로 구성 및 배치될 수 있다.
이때, 광원(2410)은 도광판(2415)의 양 사이드에 배치된다. 광원(2410)은 예를 들어 LED(Light Eimitting Diode), CCFL(Cold Cathode Fluorescent Lamp), HCFL(Hot Cathode Fluorescent Lamp), EEFL(External Electrode Fluorescent Lamp) 등이 사용될 수 있다. 다른 실시예에서, 광원(2410)은 도광판(2415)의 일측에만 배치될 수도 있다.
도광판(2415)은 광원(2410)으로부터 출사된 빛을 내부 전반사를 통해 이동시키다가 도광판(2415) 하면에 형성된 산란패턴 등을 통해 상측으로 출사시킨다. 도광판(2415)의 아래에는 반사 필름(2420)이 배치되어, 도광판(2415)으로부터 아래로 출사된 빛을 상부로 반사한다.
도광판(2415)의 상부에는 광학체(2111)가 배치된다. 광학체(2111)에 대해서는 앞서 상세히 설명하였으므로, 중복 설명은 생략한다. 광학체(2111)의 위 또는 아래에는 다른 광학 시트들이 더 배치될 수도 있다. 예를 들어, 입사된 원편광을 일부 반사하는 액정 필름, 원편광 빛을 선형 편광으로 변환시키는 위상차 필름 및/또는 보호 필름을 더 설치할 수 있다.
또한, 광원(2410), 도광판(2415), 반사 필름(2420) 및 광학체(2111)는 바텀 샤시(2440)에 의해 수납될 수 있다.
액정 패널 어셈블리(2500)는 제1 표시판(2511), 제2 표시판(2512) 및 그 사이에 개재된 액정층(미도시)을 포함하며, 제1 표시판(2511) 및 제2 표시판(2512)의 표면에 각각 부착된 편광판(미도시)을 더 포함할 수 있다.
액정 표시 장치(2700)는 액정 패널 어셈블리(2500)의 테두리를 덮으며, 액정 패널 어셈블리(2500) 및 백라이트 유닛(2400)의 측면을 감싸는 탑 샤시(2600)를 더 포함할 수 있다.
한편, 구체적으로 도 11은 본 발명의 바람직한 일구현예에 따른 광학체를 채용한 액정표시장치의 일례로서, 프레임(3270)상에 반사판(3280)이 삽입되고, 반사판(3280)의 상면에 냉음극형광램프(3290)가 위치한다. 냉음극형광램프(3290)의 상면에 광학필름(3320)이 위치하며, 광학필름(3320)은 확산판(3321), 광학체(3322) 및 흡수편광필름(3323)의 순으로 적층될 수 있으나, 광학필름에 포함되는 구성 및 각 구성간의 적층순서는 목적에 따라 달라질 수 있고, 일부 구성요소가 생략되거나 복수개로 구비될 수 있다. 나아가, 위상차 필름(미도시) 등도 액정표시 장치 내의 적절한 위치에 삽입될 수 있다. 한편, 상기 광학필름(3320)의 상면에 액정표시패널(3310)이 몰드프레임(3300)에 끼워져 위치할 수 있다.
빛의 경로를 중심으로 살펴보면, 냉음극형광램프(3290)에서 조사된 빛이 광학필름(3320) 중 확산판(3321)에 도달한다. 확산판(3321)을 통해 전달된 빛은 빛의 진행방향을 광학필름(3320)에 대하여 수직으로 진행시키기 위하여 광학체(3322)를 통과하게 되면서 광변조가 발생하게 된다. 구체적으로 P파는 광학체를 손실없이 투과하나, S파의 경우 광변조(반사, 산란, 굴절 등)가 발생하여 다시 냉음극형광램프(3290)의 뒷면인 반사판(3280)에 의해 반사되고 그 빛의 성질이 P파 또는 S파로 랜덤하게 바뀐 후 다시 광학체(3322)을 통과하게 되는 것이다. 그 뒤 흡수편광필름(3323)을 지난 후, 액정표시패널(3310)에 도달하게 된다. 한편, 냉음극형광램프(3290)는 LED로 대체될 수 있다.
이상에서 설명한 구현예들은 본 발명의 일구현예들에 따른 광학체가 적용됨으로써, 복수의 광변조 특성을 효과적으로 나타낼 수 있고, 휘도가 개선될 수 있으며, 빛샘, 휘선이 발생하지 않고 이물이 외관에 시현되는 외관불량이 방지될 수 있는 동시에 액정표시 장치가 사용되는 고온 다습한 환경에서도 광학체의 신뢰성을 담보할 수 있는 이점이 있다. 또한, 각기 기능을 갖는 마이크로패턴층, 집광층이 광학체에 일체화 됨으로써, 광원 어셈블리의 두께를 줄일 수 있고, 조립 공정을 단순화시킬 수 있으며, 이러한 광원 어셈블리를 포함하는 액정표시 장치의 화질이 개선될 수 있다.
한편 본 발명에서는 광학체의 용도를 액정디스플레이를 중심으로 설명하였지만 이에 한정되는 것은 아니며, 프로젝션 디스플레이, 플라즈마 디스플레이, 전계방출디스플레이 및 전계발광디스플레이 등 평판디스플레이 기술에 널리 사용될 수 있다.
이상에서 본 발명에 대하여 구현예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명의 구현예를 한정하는 것이 아니며, 본 발명의 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 구현예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
실시예 1 : 랜덤 분산형 광학체의 제조
분산체 성분으로서 굴절율이 1.65이고, 유리전이온도가 120℃인 폴리에텔렌나프탈레이트(PEN)와, 기재 성분으로서 폴리카보네이트 60 중량%에 산성분으로 테레프탈레이트와 디올성분으로 에틸글리콜과 사이크로헥산디메탄올을 사용하여 산 성분 및 디올 성분이 1:2 몰비로 중합반응한 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)를 39중량% 및 아인산(H3PO3) 1 중량%를 포함하여, 유리전이온도가 112℃인 원료를 각각 제1 압출부 및 제2 압출부에 투입하였다. 이 때, 폴리에텔렌나프탈레이트(PEN)는 중합하는 과정에서 사용된 Ge 촉매 잔류량 30ppm, 중합 부산물인 디에틸렌글리콜(DEG) 1.5 중량%를 포함하는 폴리에텔렌나프탈레이트(PEN)를 사용하였다.
기재 성분과 분산체 성분의 압출 온도는 245℃로 하고, Cap.Rheometer 확인하여 I.V. 조정을 통해 폴리머 흐름을 보정하고, Filteration Mixer가 적용된 유로 통과하여 기재 내부에 분산체가 랜덤분산되도록 유도하였고, 기재층 폴리머를 유속 및 압력구배를 보정하는 도 8 및 9의 코트행거다이에서 퍼짐을 유도하였다. 구체적으로 다이 입구의 폭은 200mm이고 두께는 10mm이며 다이출구의 폭은 1,260mm이고, 두께는 2.5 mm이며, 유속은 1.0m/min이다. 그 뒤 냉각 및 캐스팅 롤에서 평활화 공정을 수행하고 MD 방향으로 6배 연신하였다. 이어서 180℃에서 2분 동안 히터챔버를 통해 열고정을 수행하여 두께가 120㎛인 도 5와 같은 단면구조를 가지는 랜덤 분산형 광학체를 제조하였다. 제조된 광학체의 분산체 성분의 굴절율은 (nx:1.88, ny:1.58, nz:1.58)이고 기재성분의 굴절율은 1.58였다.
실시예 2 : 랜덤 분산형 광학체의 제조
실시예 1과 동일한 방법으로 도 5와 같은 단면구조 및 표 1과 같은 분산체의 평균종횡비 및 단면적을 가지는 랜덤 분산형 광학체를 제조하였다.
다만, 분산체 성분으로서 사용된 폴리에텔렌나프탈레이트(PEN)는 중합하는 과정에서 사용된 Ge 촉매 잔류량 45ppm, 중합 부산물인 디에틸렌글리콜(DEG) 2.0 중량%를 포함하는 폴리에텔렌나프탈레이트(PEN)를 사용하였다.
실시예 3 : 랜덤 분산형 광학체의 제조
실시예 1과 동일한 방법으로 도 5와 같은 단면구조를 가지는 랜덤 분산형 광학체를 제조하였다.
다만, 분산체 성분으로서 사용된 폴리에텔렌나프탈레이트(PEN)는 중합하는 과정에서 사용된 Ge 촉매 잔류량 80ppm, 중합 부산물인 디에틸렌글리콜(DEG) 3.0 중량%를 포함하는 폴리에텔렌나프탈레이트(PEN)를 사용하였다.
비교예 1 : 랜덤 분산형 광학체의 제조
실시예 1과 동일한 방법으로 도 5와 같은 단면구조를 가지는 랜덤 분산형 광학체를 제조하였다.
다만, 분산체 성분으로서 사용된 폴리에텔렌나프탈레이트(PEN)는 중합하는 과정에서 사용된 Ge 촉매 잔류량 140ppm, 중합 부산물인 디에틸렌글리콜(DEG) 3.0 중량%를 포함하는 폴리에텔렌나프탈레이트(PEN)를 사용하였다.
실험예 1
상기 실시예를 통해 제조된 광학체에 대하여 다음과 같은 물성을 평가하여 그 결과를 하기 표 1 에 나타내었다.
1. 상대 휘도
상기 제조된 광학체의 휘도를 측정하기 위하여 하기와 같이 수행하였다. 반사필름, 도광판, 확산판, 광학체가 구비된 32" 직하형 백라이트 유니트 위에 패널을 조립한 후, 탑콘사의 BM-7 측정기를 이용하여 9개 지점의 휘도를 측정하여 평균치를 나타내었다.
상대휘도는 실시예 1의 광학체의 휘도를 100(기준)으로 하였을 때, 다른 실시예 및 비교예의 휘도의 상대값을 나타낸 것이다.
2. 헤이즈(Haze)
헤이즈 및 투과도 측정기(니폰 덴쇼쿠 고교 코포레이티드(Nippon Denshoku Kogyo Co.) 제품인 COH-400) 분석설비를 이용하여 헤이즈를 측정하였다.
3. 종횡비, 단면적, 분산체 개수 측정방법
분산체 종횡비의 측정은 FE-SEM을 통해 신장방향에 수직한 광학체의 수직단면에 대해 촬영된 가로, 세로 각각 0.1㎜×0.1㎜ 단면사진을 기준으로, 상기 단면사진에 포함된 분산체별로 종방향의 길이와 횡방향의 길이를 측정하여 종횡비를 산출하였으며, 이때, 단면사진 내 분산체 개수가 1,000개 이상인 것을 대상으로 하여 단면적에 대한 수치의 신뢰성을 확보하였다.
구체적으로 길이 및 개수의 측정은 ImageJ 프로그램을 통해 FESEM의 단면사진에서 분산체와 기재간의 명암 단차를 이용하여 사진상의 모든 분산체의 단면적 분포(장축길이, 단축길이, 개수)를 산출하고, 이를 통해 분산체들 각각의 단면적을 하기 관계식 1을 통해 계산하였다.
[관계식 1]
분산체의 단면적(㎛2) = 3.14 ×(분산체의 장축길이×분산체의 단축길이)/2
이때, 관계식 1의 분산체 장축길이, 단축길이는 광학체의 신장방향에 수직한 광학체의 단면 내 분산체 장축, 단축을 의미한다.
구분 실시예 1 실시예 2 실시예 3 비교예 1
분산체의 평균단면적 0.032 0.062 0.168 0.245
분산체의 단면적의 표준편차 0.032 0.068 0.135 0.177
단면적 분산계수 100% 110% 80% 72%
분산체의 평균종횡비 0.454 0.433 0.343 0.296
분산체의 종횡비의 표준편차 0.191 0.187 0.117 0.082
종횡비 분산계수 42% 43% 34% 28%
0.3㎛2 이하의 단면적을 갖는 분산체의 개수 전체 분산체 중100% 포함 전체 분산체 중99.1% 포함 전체 분산체 중88% 포함 전체 분산체 중76% 포함
0.01㎛2 초과하고 0.09㎛2 이하의 단면적을 갖는 분산체의 개수 전체 분산체 중80.8% 포함 전체 분산체 중77.2% 포함 전체 분산체 중31.7% 포함 전체 분산체 중19.6% 포함
상대휘도 100 96 94 91
헤이즈(%) 14% 19% 25% 28%
편광도 89% 85% 83% 82%
비교예 2 : 출원번호 10-2013-0169215호의 실시예 1에서 제조된 랜덤 분산형 광학체
대한민국 출원번호 10-2013-0169215호의 실시예 1에 기재된 것처럼 랜덤 분산형 광학체를 제조하였으며, 제조된 랜덤 분산형 광학체는 상기 실험예를 통해 하기 표 2에 기재된 물성값을 가지는 것을 확인하였다.
구 분 비교예 2 비고
1그룹 전체 분산체 중 48% 종횡비가 1/2 이하인 분산체 중 제1그룹의 단면적은 0.2 ~ 2.0㎛2이고, 제2 그룹의 단면적은 2.0㎛2초과부터 5.0㎛2 이하이며, 제3 그룹의 단면적은 5.0㎛2 초과부터 10.0㎛2이하를 나타냄
2그룹 전체 분산체 중 40%
3그룹 전체 분산체 중 12%
상대휘도 89
헤이즈(%) 29%
편광도 82%
상기 표 1 및 표 2에서 확인할 수 있듯이, 실시예 1 ~ 3에서 제조된 광학체는 비교예 1 ~ 2에서 제조된 광학체보다 우수한 휘도값를 가질 뿐만 아니라, 헤이즈 값이 낮고, 편광도가 우수함을 확인할 수 있었다.
또한, 실시예 1 ~ 3에서 제조된 광학체 중에서는 실시예 1에서 제조된 광학체가 가장 우수한 휘도값을 가질 뿐만 아니라, 헤이즈 값이 낮고, 편광도가 우수함을 확인할 수 있었다.
실시예 4 : 랜덤 분산형 광학체의 제조
실시예 1과 동일한 방법으로 랜덤 분산형 광학체를 제조하였다.
다만, 분산체 성분으로서 굴절율이 1.65이고, 유리전이온도가 115℃인 폴리에텔렌나프탈레이트(PEN)와, 기재 성분으로서 폴리카보네이트 55 중량%에 산 성분으로 테레프탈레이트와 디올성분으로 에틸글리콜과 사이크로헥산디메탄올을 사용하여 산 성분 및 디올 성분이 1:2 몰비로 중합반응한 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)를 44중량% 및 아인산(H3PO3) 1 중량%를 포함하여, 유리전이온도가 108℃인 원료를 각각 제1압출부 및 제2 압출부에 투입하였다. 이 때, 폴리에텔렌나프탈레이트(PEN)는 중합하는 과정에서 사용된 Ge 촉매 잔류량 30ppm, 중합 부산물인 디에틸렌글리콜(DEG) 1.5 중량%를 포함하는 폴리에텔렌나프탈레이트(PEN)를 사용하였다
비교예 3 : 랜덤 분산형 광학체의 제조
실시예 1과 동일한 방법으로 랜덤 분산형 광학체를 제조하였다.
다만, 분산체 성분으로서 굴절율이 1.65이고, 유리전이온도가 120℃인 폴리에텔렌나프탈레이트(PEN)와, 기재 성분으로서 폴리카보네이트 50 중량%에 산 성분으로 테레프탈레이트와 디올성분으로 에틸글리콜과 사이크로헥산디메탄올을 사용하여 산 성분 및 디올 성분이 1:2 몰비로 중합반응한 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)를 49중량% 및 아인산(H3PO3) 1 중량%를 포함하여, 유리전이온도가 103℃인 원료를 각각 제1 압출부 및 제2 압출부에 투입하였다. 이 때, 폴리에텔렌나프탈레이트(PEN)는 중합하는 과정에서 사용된 Ge 촉매 잔류량 30ppm, 중합 부산물인 디에틸렌글리콜(DEG) 1.5 중량%를 포함하는 폴리에텔렌나프탈레이트(PEN)를 사용하였다.
비교예 4 : 랜덤 분산형 광학체의 제조
실시예 1과 동일한 방법으로 랜덤 분산형 광학체를 제조하였다.
다만, 분산체 성분으로서 굴절율이 1.65이고, 유리전이온도가 120℃인 폴리에텔렌나프탈레이트(PEN)와, 기재 성분으로서 폴리카보네이트 70 중량%에 산 성분으로 테레프탈레이트와 디올성분으로 에틸글리콜과 사이크로헥산디메탄올을 사용하여 산 성분 및 디올 성분이 1:2 몰비로 중합반응한 폴리시클로헥실렌 디메틸 렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)를 29중량% 및 아인산(H3PO3) 1 중량%를 포함하여, 유리전이온도가 121℃인 원료를 각각 제1 압출부 및 제2 압출부에 투입하였다. 이 때, 폴리에텔렌나프탈레이트(PEN)는 중합하는 과정에서 사용된 Ge 촉매 잔류량 30ppm, 중합 부산물인 디에틸렌글리콜(DEG) 1.5 중량%를 포함하는 폴리에텔렌나프탈레이트(PEN)를 사용하였다.
비교예 5 : 랜덤 분산형 광학체의 제조
실시예 1과 동일한 방법으로 랜덤 분산형 광학체를 제조하였다.
다만, 분산체 성분으로서 굴절율이 1.65이고, 유리전이온도가 125℃인 폴리에텔렌나프탈레이트(PEN)와, 기재 성분으로서 폴리카보네이트 60 중량%에 산 성분으로 테레프탈레이트와 디올성분으로 에틸글리콜과 사이크로헥산디메탄올을 사용하여 산 성분 및 디올 성분이 1:2 몰비로 중합반응한 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)를 39중량% 및 아인산(H3PO3) 1 중량%를 포함하여, 유리전이온도가 112℃인 원료를 각각 제1 압출부 및 제2 압출부에 투입하였다. 이 때, 폴리에텔렌나프탈레이트(PEN)는 중합하는 과정에서 사용된 Ge 촉매 잔류량 30ppm, 중합 부산물인 디에틸렌글리콜(DEG) 1.5 중량%를 포함하는 폴리에텔렌나프탈레이트(PEN)를 사용하였다.
실험예 2
상기 실시예 1, 4 및 비교예 3 ~ 5를 통해 제조된 광학체에 대하여 다음과 같은 물성을 평가하여 그 결과를 하기 표 3 에 나타내었다.
1. 상대 휘도
상기 제조된 광학체의 휘도를 측정하기 위하여 하기와 같이 수행하였다. 반사필름, 도광판, 확산판, 광학체가 구비된 32" 직하형 백라이트 유니트 위에 패널을 조립 한 후, 탑콘사의 BM-7 측정기를 이용하여 9개 지점의 휘도를 측정하여 평균치를 나타내었다.
상대휘도는 실시예 1의 광학체의 휘도를 100(기준)으로 하였을 때, 다른 실시예 및 비교예의 휘도의 상대값을 나타낸 것이다.
2. 헤이즈(Haze)
헤이즈 및 투과도 측정기(니폰 덴쇼쿠 고교 코포레이티드(Nippon Denshoku Kogyo Co.) 제품인 COH-400) 분석설비를 이용하여 헤이즈를 측정하였다.
구분 실시예 1 실시예 4 비교예 3 비교예 4 비교예 5
상대휘도 100 98 90 90 91
헤이즈(%) 14 25 35 34 32
편광도(%) 89 87 82 83 84
상기 표 3에서 확인할 수 있듯이, 실시예 1 및 4에서 제조된 광학체는 비교예 3 ~ 5에서 제조된 광학체보다 우수한 휘도값를 가질 뿐만 아니라, 헤이즈 값이 낮고, 편광도가 우수함을 확인할 수 있었다.
또한, 실시예 1 및 4에서 제조된 광학체 중에서는 실시예 1에서 제조된 광학체가 가장 우수한 휘도값을 가질 뿐만 아니라, 헤이즈 값이 낮고, 편광도가 우수함을 확인할 수 있었다.
실시예 5 : 랜덤 분산형 광학체의 제조
분산체 성분으로서 굴절율이 1.65인 폴리에텔렌나프탈레이트(PEN)와, 기재 성분으로서 폴리카보네이트 60 중량%에 산 성분으로 테레프탈레이트와 디올성분으로 에틸글리콜과 사이크로헥산디메탄올을 사용하여 산 성분 및 디올 성분이 1:2 몰비로 중합반응한 폴리시클로헥실렌 디메틸렌테레프탈레이트(poly cyclohexylene dimethylene terephthalate, PCTG)를 39중량% 및 아인산(H3PO3) 1 중량%를 포함한 PC 얼로이 원료를 각각 제1 압출부 및 제2 압출부에 투입하였다. 이 때, 폴리에텔렌나프탈레이트(PEN)는 중합하는 과정에서 발생하는 중합 부산물인 디에틸렌글리콜이(DEG) 2.5 중량%를 포함된 폴리에텔렌나프탈레이트(PEN) 폴리머칩을 사용하였다.
기재 성분과 분산체 성분의 압출 온도는 245℃로 하고, Cap.Rheometer 확인하여 I.V. 조정을 통해 폴리머 흐름을 보정하고, Filteration Mixer가 적용된 유로 통과하여 기재 내부에 분산체가 랜덤분산되도록 유도하였고, 기재층 폴리머를 유속 및 압력구배를 보정하는 도 8 및 9의 코트행거다이에서 퍼짐을 유도하였다. 유속은 1.0m/min이다. 그 뒤 냉각 및 캐스팅 롤에서 평활화 공정을 수행하였다, 이후 연신공정을 MD 방향으로 6배 연신하였고, 이때, MD방향으로 연신과 동시에 TD 방향으로 1.1배 연신되도록 TD 방향으로 소정의 힘을 가했다. 이어서 180℃에서 2분 동안 히터챔버를 통해 열고정을 수행하여 두께가 120㎛인 도 2와 같은 단면구조를 가지는 하기 표 4와 같은 랜덤 분산형 광학체 제조하였다. 제조된 광학체의 분산체 성분의 굴절율은 (nx:1.88, ny:1.58, nz:1.58)이고 기재성분의 굴절율은 1.58였다. 또한, 광학체의 폭은 158㎝이었다.
비교예 6 : 랜덤 분산형 광학체의 제조
실시예 5와 동일하게 실시하여 제조하되, 연식 공정에서 TD 방향으로 연신이나 클립고정 등 어떠한 처리를 하지 않을 뿐만 아니라, 중합 부산물인 디에틸렌글리콜이(DEG) 6.5중량%를 포함하는 폴리에텔렌나프탈레이트(PEN) 폴리머칩을 사용하였고, 다이 출구 폭을 변경하여 하기 표 4와 같은 폭이 90㎝인 랜덤 분산형 광학체을 제조하였다.
비교예 7 : 랜덤 분산형 광학체의 제조
비교예 6와 동일하게 실시하여 제조하되, 다이 출구 폭을 변경하여 하기 표 4와 같은 폭이 70㎝인 랜덤 분산형 광학체를 제조하였다.
비교예 8
PEN 과 PC얼로이가 각각 판상의 광학층으로 교호적층된 다층형 반사편광자를 제조하였다. 이때, PEN은 중합 부산물인 디에틸렌글리콜이(DEG) 4.4중량%를 포함하는 폴리에텔렌나프탈레이트(PEN) 폴리머칩을 사용하였고, 슬릿형 압출구금을 이용하여 제조하였다. 상기 슬릿형 압출구금은 본 발명의 동일 출원인에 의한 출원번호 제10-2012-0087416호가 참조로 삽입된다. 구체적으로 분산체로서 PEN, 기재 및 스킨층으로서 PC 얼로이를 각각 제1 압출부, 제2 압출부 및 제3 압출부에 투입하였다. PEN과 PC얼로이의 압출 온도는 295℃로 하고 Cap.Rheometer 확인하여 I.V. 조정을 통해 폴리머 흐름을 보정하고, 스킨층은 280℃ 온도 수준에서 압출공정을 수행하였다.
도 17의 슬릿형 압출구금 4개를 이용하여 평균 광학적 두께가 상이한 4개의 복합류를 제조하였다. 구체적으로 제1 압출부에서 이송된 제1 성분을 4개의 슬릿형 압출구금에 분배하고, 제2 압출부에서 이송된 제2 성분을 4개의 슬릿형 압출구금에 이송하였다. 하나의 슬릿형 압출구금은 300 레이어로 구성되며, 도17의 제5 구금분배판의 저면의 제1 슬릿형 압출구금의 슬릿의 두께는 0.26㎜, 제2슬릿형 압출구금의 슬릿두께는 0.21㎜, 제3 슬릿형 압출구금의 슬릿두께는 0.17㎜, 제4 슬릿형 압출구금의 슬릿두께는 0.30㎜ 이고, 제6 구금분배판의 토출구의 직경은 15 mm×15 mm였다. 상기 4개의 슬릿형 압출구금을 통해 토출된 4개의 다층 복합류 및 별도의 유로를 통해 이송된 스킨층 성분이 컬렉션 블록에서 합지하여 단일 코어층 및 코어층의 양면에 일체로 형성된 스킨층으로 합지하였다. 상기 스킨층이 형성된 코어층 폴리머를 유속 및 압력구배를 보정하는 도 8, 9의 코트 행거다이에서 퍼짐을 유도하였다. 유속은 1m/min이었다. 그 뒤 냉각 및 캐스팅 롤에서 평활화 공정을 수행하고 MD 방향으로 6배 연신하였고, 이때, TD 방향으로 어떠한 힘도 가하지 않았다. 이어서 180℃ 에서 2분 동안 IR 히터를 통해 열고정을 수행하여 도 16과 같은 다층 반사형 편광자를 제조하였다. 제조된 반사형 편광자의 제1성분의 굴절율은 (nx:1.88, ny:1.64, nz:1.64)이고 제2 성분의 굴절율은 1.64였다. A그룹은 300층(150 반복단위)이며 반복단위의 두께는 168nm이고, 평균 광학적두께 275.5nm이며 광학적 두께편차는 20% 내외였다. B그룹은 300층(150 반복단위)이며 반복단위의 두께는 138nm이고, 평균 광학적두께 226.3nm이며 광학적 두께편차는 20% 내외였다. C그룹은 300층(150 반복단위)이며 반복단위의 두께는 110nm이고, 평균 광학적두께 180.4nm이며 광학적 두께편차는 20% 내외였다. D그룹은 300층(150 반복단위)이며 반복단위의 두께는 200nm이고, 평균 광학적두께 328nm이며 광학적 두께편차는20% 내외였다. 제조된 다층 반사형 편광자의 코어층 두께 92.4 ㎛, 스킨층 두께를 각각 153.8㎛로, 전체 두께가 400㎛, 전체 폭이 98㎝가 되도록 하였다.
실험예 3
상기 실시예 5 및 비교예 6 ~ 8을 통해 제조된 광학체에 대하여 다음과 같은 물성을 평가하여 그 결과를 하기 표 4에 나타내었다.
1. 휘도, 휘도균일성
제조된 광학체의 투과축에 평행한 임의의 제1선을 선정하고, 상기 제1선 상에 중심점이 위치한 정사각형의 100㎜× 100㎜ 크기인 총 5개의 시료를 샘플링했다. 이때, 제1선을 수직이등분 하는 지점에 중심점이 있는 제1시료를 중심으로 좌측방향으로 2개 시료, 우측방향으로 2개 시료를 샘플링하되, 인접하는 시료들 간 거리는 50㎜가 되도록 하였다.
이후 각 시료에 대해 휘도를 측정하기 위하여 반사필름, 도광판, 확산판 및 반사편광필름인 시료 순으로 구비된 직하형 백라이트 유닛 위에 패널을 조립 한 후, 탑콘사의 BM-7 측정기를 이용하여 9개 지점의 휘도를 측정하여 평균치를 나타내었다. 이때, 백라이트 유닛은 시료의 사이즈에 맞도록 제작하여 사용하였다.
측정된 각 시료평 휘도 평균치를 통해 5개 시료에 대한 평균휘도, 휘도 표준편차를 계산한 뒤 하기 수학식 3을 통해 휘도 분산계수를 계산했다.
[수학식 3]
Figure PCTKR2019015335-appb-I000007
또한, 5개 시료에 대한 평균휘도에 대해 실시예 5의 평균휘도를 100%로 기준해서 나머지 실시예와 비교예의 평균휘도를 상대적인 상대휘도로 나타내었다.
2. 종횡비, 단면적, 분산체 개수 측정방법
분산체 종횡비의 측정은 FE-SEM을 통해 광학체의 신장방향에 수직하고, 두께방향에 평행한 수직단면에 대해 촬영된 단면사진을 기준으로, 상기 단면사진에 포함된 분산체별 종방향의 길이와 횡방향의 길이를 측정하여 종횡비를 산출하였으며, 이때, 단면사진 내 분산체 개수가 1,000개 이상인 것을 대상으로 하여 단면적에 대한 수치의 신뢰성을 확보하였다.
구체적으로 길이 및 개수의 측정은 ImageJ 프로그램을 통해 FE-SEM의 단면사진에서 분산체와 기재간의 명암 단차를 이용하여 사진상의 모든 분산체의 단면적 분포(장축길이, 단축길이, 개수)를 산출하고, 이를 통해 분산체들 각각의 단면적을 하기 관계식 1을 통해 계산하였다.
[관계식 1]
분산체의 단면적(㎛2) = π × 분산체의 장축길이/2 × 분산체의 단축길이/2
3. 두께편차
휘도 분산계수 측정을 위해 샘플링된 시료 각각의 정중앙 중심점을 기준으로 한 두께를 측정한 뒤, 최대두께의 샘플 두께를 100%로 기준해서 다른 샘플의 두께 백분율을 계산하였고, 최대두께의 샘플에 대비해서 두께백분율 차이가 1%를 초과하는 샘플의 개수를 카운팅한 뒤, 초과 개수가 0개 5점, 1개 4점, 2개 3점, 3개 2점, 4개 1점으로 평가했다.
구분 실시예 5 비교예 6 비교예 7 비교예 8
랜덤 랜덤 랜덤 다층형
폭(㎝) 158 90 70 97
DEG(중량%) 2.5 6.5 6.5 4.4
TD연신 연신비1 : 1.1 없음 없음 없음
0.3㎛2 이하의 단면적을 갖는 분산체의 비율(%) 83 36 36 -
제1선 기준 휘도균일도 0.47% 3.32% 2.60% 1.11%
제2선 기준 휘도균일도 0.48% 4.06% 3.05% 1.20%
상대휘도 100 90.9 91.8 105.5
두께편차 5 1 1 3
표 4에서 확인할 수 있듯이,
다층형 광학체인 비교예 8의 경우 층을 형성하는 폴리머칩 내 부산물의 함량이 높고, TD방향으로 어떠한 처리도 없는 경우에도 제1선이나 제2선을 기준으로 하는 휘도균일성이 우수한 것으로 확인되었다.
그러나 분산체를 포함하는 폴리머 분산형 광학체인 실시예 5, 비교예 6 내지 7의 경우 폭, 부산물의 함량, 단면적 등의 여러 인자에 의해서 휘도균일도가 현저히 달라지는 것을 확인할 수 있다.
또한, 비교예 6 및 7을 대비하면, 폭이 85㎝ 이상인 비교예 6의 경우 비교예7에 대비해 휘도균일성 문제가 더 발생한 것을 확인할 수 있다.
본 발명의 단순한 변형이나 변경은 이 분야의 통상의 지식을 가진자에 의해서 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.
본 발명은 광학체 및 이를 포함하는 표시장치에 관한 것으로, 보다 상세하게는 광학체의 광손실을 최소화하면서 휘도향상을 극대화 할 수 있는 광학체 및 이를 포함하는 표시장치에 관한 것이다.

Claims (12)

  1. 기재; 및
    상기 기재 내부에 분산되어 포함되는 복수개의 분산체; 를 포함하고,
    상기 복수개의 분산체는 평균종횡비가 0.5 이하이며, 0.3㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 80% 이상인 것을 특징으로 하는 광학체.
  2. 제1항에 있어서,
    상기 복수개의 분산체는 0.01㎛2 초과하고 0.09㎛2 이하의 단면적을 갖는 분산체의 개수가 전체 분산체 중 70% ~ 90%인 것을 특징으로 하는 광학체.
  3. 제1항에 있어서,
    상기 복수개의 분산체는 하기의 수학식 2에 따른 단면적 분산계수가 90% ~ 120%인 것을 특징으로 하는 광학체.
    [수학식 2]
    Figure PCTKR2019015335-appb-I000008
  4. 기재; 및 상기 기재 내부에 분산되어 포함되는 복수개의 분산체;를 포함하고,
    상기 복수개의 분산체는 평균단면적이 1㎛2 이하이고, 하기의 수학식 1에 따른 종횡비 분산계수가 40% 이상인 것을 특징으로 하는 광학체.
    [수학식 1]
    Figure PCTKR2019015335-appb-I000009
  5. 제4항에 있어서,
    상기 복수개의 분산체는 평균종횡비가 0.3 ~ 0.5인 것을 특징으로 하는 광학체.
  6. 제1항 또는 제4항에 있어서,
    상기 광학체는 하기 조건 (1) 및 (2)를 만족하는 것을 특징으로 하는 광학체.
    (1) 분산체의 유리전이온도(Tg) > 기재의 유리전이온도(Tg)
    (2) 분산체 및 기재의 유리전이온도의 차이가 10℃ 이하
  7. 제6항에 있어서,
    상기 기재의 유리전이온도(Tg)는 110 ~ 130℃인 것을 특징으로 하는 광학체.
  8. 제1항 또는 제4항에 있어서,
    상기 광학체의 헤이즈(Haze)는 25% 이하인 것을 특징으로 하는 광학체.
  9. 제1항 또는 제4항에 있어서,
    상기 광학체는 투과축에 평행한 제1 편광은 투과시키고, 소광축에 평행한 제2 편광은 반사시키는 것을 특징으로 하는 광학체.
  10. 제9항에 있어서,
    상기 광학체는 투과축에 평행한 면내 가상의 제1선을 기준으로 측정된 하기의 수학식 3에 따른 휘도 분산계수가 2% 이하인 것을 특징으로 하는 광학체.
    [수학식 3]
    Figure PCTKR2019015335-appb-I000010
  11. 제10항에 있어서,
    상기 제1선과 예각인 사잇각이 ±60°이고, 상기 제1선의 이등분점을 통과하는 면내 가상의 제2선을 기준으로 측정된 휘도 분산계수가 2% 이내인 것을 특징으로 하는 광학체.
  12. 제1항 또는 제4항에 따른 광학체를 포함하는 표시장치.
PCT/KR2019/015335 2018-11-22 2019-11-12 광학체 및 이를 포함하는 표시장치 WO2020105931A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19886144.5A EP3885802A4 (en) 2018-11-22 2019-11-12 OPTICAL BODY AND DISPLAY DEVICE COMPRISING IT
US17/294,999 US20220011630A1 (en) 2018-11-22 2019-11-12 Optical body and display device including same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020180145535A KR102540191B1 (ko) 2018-11-22 2018-11-22 광학체 및 이를 포함하는 표시장치
KR1020180145594A KR20200060085A (ko) 2018-11-22 2018-11-22 광학체 및 이를 포함하는 표시장치
KR10-2018-0145535 2018-11-22
KR1020180145536A KR20200060052A (ko) 2018-11-22 2018-11-22 광학체 및 이를 포함하는 표시장치
KR10-2018-0145536 2018-11-22
KR10-2018-0145594 2018-11-22
KR10-2018-0147451 2018-11-26
KR1020180147451A KR102551104B1 (ko) 2018-11-26 2018-11-26 반사편광필름 및 이를 포함하는 표시장치

Publications (1)

Publication Number Publication Date
WO2020105931A1 true WO2020105931A1 (ko) 2020-05-28

Family

ID=70773297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015335 WO2020105931A1 (ko) 2018-11-22 2019-11-12 광학체 및 이를 포함하는 표시장치

Country Status (4)

Country Link
US (1) US20220011630A1 (ko)
EP (1) EP3885802A4 (ko)
TW (1) TWI721662B (ko)
WO (1) WO2020105931A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230048822A (ko) * 2021-10-05 2023-04-12 도레이첨단소재 주식회사 반사편광필름, 이를 포함하는 광원 어셈블리 및 액정표시장치
TWI807616B (zh) * 2022-01-26 2023-07-01 友達光電股份有限公司 畫素陣列基板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865625B1 (ko) * 2001-06-01 2008-10-27 다이셀 가가꾸 고교 가부시끼가이샤 광확산 필름, 이를 이용한 면광원 장치 및 액정 표시 장치
KR20100131423A (ko) * 2008-01-31 2010-12-15 닛토덴코 가부시키가이샤 편광자 보호 필름, 편광판 및 화상 표시 장치
KR20120087416A (ko) 2011-01-28 2012-08-07 안종환 마그네틱 자철분을 이용한 소형 공작물의 고정
KR20120098741A (ko) * 2009-10-24 2012-09-05 쓰리엠 이노베이티브 프로퍼티즈 컴파니 구배 저굴절률 물품 및 방법
KR20160081606A (ko) * 2014-12-31 2016-07-08 도레이케미칼 주식회사 반사편광자 및 이를 포함하는 백라이트 유닛
KR20180111704A (ko) * 2017-03-31 2018-10-11 도레이케미칼 주식회사 반사편광필름, 이를 포함하는 광원 어셈블리 및 액정표시장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006251395A (ja) * 2005-03-10 2006-09-21 Daicel Chem Ind Ltd 異方性散乱シート
CN101772717B (zh) * 2007-08-02 2012-09-19 大赛璐化学工业株式会社 光漫射膜及装有该光漫射膜的装置
WO2010041656A1 (ja) * 2008-10-07 2010-04-15 大日本印刷株式会社 光学シート、面光源装置および透過型表示装置
KR102127018B1 (ko) * 2013-12-31 2020-06-25 도레이첨단소재 주식회사 분산형 반사편광자용 보상층 조성물 및 이를 이용한 분산형 반사편광자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865625B1 (ko) * 2001-06-01 2008-10-27 다이셀 가가꾸 고교 가부시끼가이샤 광확산 필름, 이를 이용한 면광원 장치 및 액정 표시 장치
KR20100131423A (ko) * 2008-01-31 2010-12-15 닛토덴코 가부시키가이샤 편광자 보호 필름, 편광판 및 화상 표시 장치
KR20120098741A (ko) * 2009-10-24 2012-09-05 쓰리엠 이노베이티브 프로퍼티즈 컴파니 구배 저굴절률 물품 및 방법
KR20120087416A (ko) 2011-01-28 2012-08-07 안종환 마그네틱 자철분을 이용한 소형 공작물의 고정
KR20160081606A (ko) * 2014-12-31 2016-07-08 도레이케미칼 주식회사 반사편광자 및 이를 포함하는 백라이트 유닛
KR20180111704A (ko) * 2017-03-31 2018-10-11 도레이케미칼 주식회사 반사편광필름, 이를 포함하는 광원 어셈블리 및 액정표시장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3885802A4

Also Published As

Publication number Publication date
US20220011630A1 (en) 2022-01-13
EP3885802A4 (en) 2022-08-24
TWI721662B (zh) 2021-03-11
TW202019672A (zh) 2020-06-01
EP3885802A1 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
WO2017115957A1 (ko) 복합 반사편광 필름
WO2016208987A1 (ko) 반사편광자 및 이를 포함하는 백라이트 유닛
WO2012108673A2 (ko) 중합체가 분산된 반사 편광자
WO2017209473A1 (ko) 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치
WO2016111466A1 (ko) 광학시트 및 이를 포함하는 광학표시장치
WO2016093449A1 (en) Display device and backlight unit included therein
WO2020105931A1 (ko) 광학체 및 이를 포함하는 표시장치
WO2015102364A1 (ko) 랜덤 분산형 반사 편광자
WO2017039209A1 (ko) 커버 윈도우 기판 및 이를 구비하는 화상표시장치
WO2018221872A1 (ko) 편광판 및 이를 포함하는 액정표시장치
WO2019031786A1 (en) OPTICAL ELEMENT, POLARIZING ELEMENT, AND DISPLAY DEVICE
WO2019083160A1 (ko) 액정 위상차 필름, 이를 포함하는 발광표시장치용 편광판 및 이를 포함하는 발광표시장치
WO2013129882A1 (ko) 도광판 및 백라이트 유닛
WO2021045557A1 (ko) 플렉서블 디스플레이 장치를 위한 폴리에스테르 보호 필름
WO2014204168A1 (ko) 다층 광학 필름, 그 제조방법 및 이를 포함하는 편광판
WO2011028018A2 (ko) 광대역 반사형 액정 필름, 그의 제조 방법과 광대역 반사형 액정 필름을 포함하는 광원 어셈블리 및 액정 표시 장치
WO2016104976A1 (ko) 광학시트, 이를 포함하는 편광판 및 액정표시장치
WO2013100661A1 (ko) 중합체가 분산된 반사형 편광자
EP3625596A1 (en) Optical member, polarization member, and display device
WO2020159138A1 (ko) 시야각 보상필름, 이를 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2023277569A1 (ko) 광학 복합 시트 및 이를 포함하는 표시 장치
WO2023096338A1 (ko) 액정 표시 장치 및 표시 장치
WO2021040312A1 (ko) 편광판 적층체 및 이를 포함하는 디스플레이 장치
WO2015005584A1 (ko) 섬유배향 복합재의 제조방법, 그로부터 제조된 섬유배향 복합재, 상기 섬유배향 복합재로 이루어진 반사편광필름 및 그 제조방법
WO2021040434A1 (ko) 편광판 및 이를 포함하는 광학표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019886144

Country of ref document: EP

Effective date: 20210622