WO2020105496A1 - Austenitic steel sintered material, austenitic steel powder and turbine member - Google Patents

Austenitic steel sintered material, austenitic steel powder and turbine member

Info

Publication number
WO2020105496A1
WO2020105496A1 PCT/JP2019/044163 JP2019044163W WO2020105496A1 WO 2020105496 A1 WO2020105496 A1 WO 2020105496A1 JP 2019044163 W JP2019044163 W JP 2019044163W WO 2020105496 A1 WO2020105496 A1 WO 2020105496A1
Authority
WO
WIPO (PCT)
Prior art keywords
austenitic steel
less
sintered material
turbine
phase
Prior art date
Application number
PCT/JP2019/044163
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 芝山
今野 晋也
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020217002293A priority Critical patent/KR102467393B1/en
Priority to SG11202100355UA priority patent/SG11202100355UA/en
Priority to CN201980050604.8A priority patent/CN112585288A/en
Publication of WO2020105496A1 publication Critical patent/WO2020105496A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • C22C33/0285Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5% with Cr, Co, or Ni having a minimum content higher than 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/006Making ferrous alloys compositions used for making ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to an austenitic steel sintered material, an austenitic steel powder, and a turbine member.
  • Ni-based alloys which have a higher service temperature than ferritic steel, can be candidates as alloys to be applied to high-temperature members.
  • the Ni-based alloy has Al and Ti as precipitation strengthening elements and produces a ⁇ ′ phase that becomes a stable phase at high temperatures, and exhibits excellent strength at high temperatures.
  • turbine valve casings, turbine discs, etc. are generally manufactured by a casting method, but if the casting method does not sufficiently block the air during melting and there are many active elements (Al and Ti). These elements will be oxidized.
  • Patent Document 1 discloses a technique of applying an austenitic steel that has both excellent strength and castability and a cast austenitic steel using the same to a turbine member instead of a Ni-based alloy.
  • Patent Document 1 proposes a composition of austenitic steel in which macro defects in a large cast product are reduced, but the production of a mold used for the cast product is relatively time-consuming. In particular, the process cost increases in the case of a casting mold having a large size and a complicated shape. Therefore, if the member can be obtained by sintering instead of casting, the manufacturability of the turbine member can be further improved.
  • an object of the present invention is to provide an austenitic steel sintered material, an austenitic steel powder, and a turbine member that have a strength equal to or higher than that of a Ni-based alloy and are not easily affected by oxygen.
  • a first aspect of the present invention for solving the above problems is, in mass%, Ni: 25 to 50%, Cr: 12 to 25%, Nb: 3 to 6%, B: 0.001 to 0.05. %, Ti: 1.6% or less, W: 6% or less, Mo: 4.8% or less, Zr: 0.5% or less, with the balance being Fe and inevitable impurities. ..
  • a second mode for solving the above problems is, in mass%, Ni: 30 to 45%, Cr: 12 to 20%, Nb: 3 to 5%, B: 0.001 to 0.02%, Ti. : 0.3 to 1.3%, W: 5.5% or less, Mo: 2% or less, Zr: 0.3% or less, and the balance being Fe and inevitable impurities, which is an austenitic steel sintered material. ..
  • a third mode for solving the above problems is, in mass%, Ni: 30 to 40%, Cr: 15 to 20%, Nb: 3.5 to 4.5%, B: 0.001 to 0. It is an austenitic steel sintered material containing 02%, Ti: 0.5 to 1.1% or less, W: 5.5% or less, Zr: 0.3% or less, and the balance being Fe and inevitable impurities.
  • a fourth mode for solving the above problems is a turbine member using an austenitic steel sintered material.
  • a fifth aspect of the present invention for solving the above problems is, in mass%, Ni: 25 to 50%, Cr: 12 to 25%, Nb: 3 to 6%, B: 0.001 to 0.05. %, Ti: 1.6% or less, W: 6% or less, Mo: 4.8% or less, Zr: 0.5% or less, and the balance is Fe and inevitable impurities.
  • a sixth aspect for solving the above problems is, in mass%, Ni: 30 to 45%, Cr: 12 to 20%, Nb: 3 to 5%, B: 0.001 to 0.02%, Ti. : 0.3 to 1.3%, W: 5.5% or less, Mo: 2% or less, Zr: 0.3% or less, and the balance being Fe and unavoidable impurities.
  • a seventh mode for solving the above problems is, in mass%, Ni: 30 to 40%, Cr: 15 to 20%, Nb: 3.5 to 4.5%, B: 0.001 to 0.
  • This is an austenitic steel powder containing 02%, Ti: 0.5 to 1.1% or less, W: 5.5% or less, Zr: 0.3% or less, and the balance being Fe and inevitable impurities.
  • an austenitic steel sintered material an austenitic steel powder, and a turbine member that have a strength equal to or higher than that of a Ni-based alloy and are not easily affected by oxygen.
  • the schematic diagram which shows an example of the turbine disk to which the austenitic steel sintered material which sintered the austenitic steel powder of this invention is applied.
  • FIG. 1A is a schematic view showing an example of the structure of an austenitic steel sintered material obtained by sintering the austenitic steel powder of the present invention
  • FIG. 1B is an example of the structure of an austenitic steel sintered material obtained by sintering the austenitic steel powder of the present invention
  • 2 is an SEM observation photograph of As shown in FIG. 1A and FIG. 1B, the austenitic steel sintered material of the present invention is precipitated on an austenitic steel powder crystal 1, a grain boundary 2 existing at a boundary between adjacent austenitic steel crystals, and a grain boundary 2. Has a Laves phase 3.
  • the average particle size of the austenitic steel powder crystal 1 is preferably 10 to 300 ⁇ m. If it is less than 10 ⁇ m, the creep strength may become insufficient. If it is larger than 300 ⁇ m, the tensile strength and the fatigue strength may be insufficient. In addition, when the total amount of grain boundaries changes, the grain boundary coverage of the Laves phase changes, and the strength (creep strength, tensile strength, fatigue strength, etc.) may decrease.
  • the above “particle size” can be measured by a plane image when observed by an observation means such as an electron microscope. Further, the “average particle diameter” can be a value obtained by averaging the particle diameters of a predetermined number of austenitic steel powder crystals 1 displayed in an observation photograph at a predetermined magnification.
  • FIG. 2 is a schematic view of an example of the structure of the austenitic steel cast material of Patent Document 1.
  • the austenitic steel cast material has an austenitic steel powder crystal 4, a crystal grain boundary 5 existing at a boundary between adjacent austenitic steel crystals, and a Laves phase 6 precipitated on the crystal grain boundary 5.
  • the cast structure has few crystal grain boundaries, and the crystal grain size and shape are not uniform. Further, the cast structure has a larger microsegregation than the structure of the sintered material.
  • the larger the member is the larger the microsegregation is, and thus the defects due to the microsegregation and the decrease in strength are likely to occur.
  • the sintered material since a uniform structure is formed regardless of the size of the member, micro segregation is less likely to occur.
  • FIG. 3 is a schematic diagram showing an example of the structure of a conventional Ni-based alloy forged material (Alloy 718). As shown in FIG. 3, the Ni-based alloy forged material has a Ni-based alloy crystal 7, an old particle boundary (PPB) 8 existing at the boundary between adjacent Ni-based alloy crystals, and an old particle boundary (PPB) 8 on the old particle boundary (PPB) 8. It has a precipitated delta phase 9.
  • the Ni-based alloy forged material has a Ni-based alloy crystal 7, an old particle boundary (PPB) 8 existing at the boundary between adjacent Ni-based alloy crystals, and an old particle boundary (PPB) 8 on the old particle boundary (PPB) 8. It has a precipitated delta phase 9.
  • composition of the austenitic steel sintered material of the present invention will be described below.
  • “%” means “mass%” unless otherwise specified.
  • Ni nickel: 25-50% Ni is added as an austenite phase stabilizing element. Further, Nb and an intermetallic compound ( ⁇ phase, Ni 3 Nb), which will be described later, are generated and precipitated in the grains to contribute to the intragranular strengthening. From the viewpoint of phase stability, Ni is preferably 25 to 50% (25% to 50%), more preferably 30 to 45%, further preferably 30 to 40%.
  • Cr 12-25%
  • Cr is an element that improves oxidation resistance and steam oxidation resistance. Sufficient oxidation resistance can be obtained by adding 12% or more in consideration of the operating temperature of the steam turbine. On the other hand, if it is added in an amount of more than 25%, intermetallic compounds such as ⁇ phase are precipitated, resulting in deterioration of high temperature ductility and toughness. Considering these balances, the Cr amount is preferably 12 to 25%, more preferably 12 to 20%, and further preferably 15 to 20%.
  • the Laves phase 6 is mainly precipitated at the grain boundaries 2 as shown in FIG. 2 and contributes to the grain boundary strengthening.
  • the ⁇ phase mainly precipitates in the grains and contributes to strengthening.
  • Sufficient high temperature creep strength can be obtained by adding 3% or more. If it is added in excess of 6%, harmful phases such as ⁇ phase may be likely to precipitate.
  • the amount of Nb is preferably 3 to 6%, more preferably 3 to 5%, even more preferably 3.5 to 4.5%.
  • B (boron): 0.001 to 0.05% B contributes to the precipitation of the Laves phase at the grain boundaries. If B is not added, the Laves phase at the grain boundaries is less likely to precipitate, and the creep strength and creep ductility decrease. The effect of grain boundary precipitation can be obtained by adding 0.001% or more. On the other hand, if the addition amount is too large, the melting point is locally lowered, and there is a concern that, for example, the weldability is deteriorated. Considering this, the amount of B is preferably 0.001 to 0.05%, more preferably 0.001 to 0.02%.
  • Ti titanium
  • Ti is an element that contributes to intragranular precipitation strengthening, such as a ⁇ ′′ phase and a ⁇ phase.
  • creep deformation in the initial stage can be significantly reduced.
  • Ti is preferably 1.6% or less, more preferably 0.3 to 1.3%, and further preferably 0.5 to 1.1%.
  • W (tungsten): 0-6% W contributes not only to solid solution strengthening but also to stabilization of the Laves phase.
  • W By adding W, the precipitation amount of the Laves phase that precipitates at the grain boundaries is increased, and it is possible to contribute to the improvement of fracture strength and ductility in the creep characteristics for a long time. If it exceeds 6%, harmful phases such as ⁇ phase may be likely to precipitate.
  • W is preferably 6% or less, more preferably 5.3 to 6% or less, still more preferably 5.5 to 5.5%.
  • Mo mobdenum
  • Mo mobdenum
  • Mo contributes not only to solid solution strengthening but also to stabilization of the Laves phase.
  • the addition of Mo increases the precipitation amount of the Laves phase that precipitates at the grain boundaries, and can contribute to the breaking strength and ductility in the creep characteristics for a long time. Considering this, Mo is preferably 0 to 4.8%, more preferably 0 to 2% or less.
  • Zr zirconium: 0 to 0.5%
  • addition of Zr contributes to the precipitation of the Laves phase at the grain boundary and also to the precipitation of the ⁇ ′′ phase (Ni 3 Nb). It is particularly effective for a short time or at a low temperature (less than 750 ° C, preferably 700 ° C or less).
  • ⁇ ′′ phase is a metastable phase, it will change to the ⁇ phase by holding it at a high temperature (especially 750 ° C. or higher) for a long time. Therefore, it may not be added. If the amount of addition is too large, the stability of the ⁇ phase is improved and the ⁇ ′′ phase is changed to the ⁇ phase quickly. Also, the weldability deteriorates.
  • Zr is preferably 0 to 0.5%, more preferably 0 to 0.3% or less.
  • the austenitic steel sintered material of the present invention contains Nb and Ti as main strengthening elements and does not contain Al as a strengthening element. For this reason, the strength (creep strength, tensile strength, fatigue strength, etc.) can be improved without being easily affected by oxidation by oxygen and the like.
  • the sintered material has a forged structure, and by controlling the crystal grain size by heat treatment, etc., the strength characteristics can be easily controlled according to the required strength of the product.
  • the sintered material mold is easier to manufacture than the cast material mold, even complex product shapes can be manufactured with good yield.
  • the austenitic steel sintered material of the present invention can be manufactured, for example, by the following steps.
  • a raw material powder or raw material alloy having the above-mentioned composition is made into an alloy powder (austenitic steel powder) having an average particle diameter of 250 ⁇ m or less by using a gas atomizing method or a water atomizing method.
  • the alloy powder obtained in (1) above is sintered by hot isostatic pressing (HIP).
  • the sintering conditions are, for example, sintering temperature: 1100 to 1300 ° C. and isotropic pressure: 50 MPa or more.
  • HIP metal powder injection molding
  • solution heat treatment heat treatment temperature: 1100 to 1300 ° C.
  • aging heat treatment heat treatment temperature: 1000 ° C. or lower
  • FIG. 4 is a schematic diagram showing an example of a turbine valve casing to which the austenitic steel sintered material of the present invention is applied
  • FIG. 5 is a schematic diagram showing an example of a turbine disk to which the austenitic steel sintered material of the present invention is applied. Is. As shown in FIG. 4, the austenitic steel sintered material of the present invention has excellent strength and is therefore suitable for the turbine valve casing 10 and the turbine disk 11.
  • a Ni-based alloy Alloy (INCONEL) 718 (forged material) and as a comparative example 4 an Ni-based alloy Alloy (INCONEL) 625 (cast material) were prepared and evaluated.
  • the compositions of Comparative Example 3 and Comparative Example 4 are also shown in Table 1.
  • "INCONEL” is a registered trademark of Huntington Alloys Corporation.
  • FIG. 6 is a graph showing the 0.2% proof stress ratios of Examples 1 to 3 and Comparative Examples 1 to 4 (based on Comparative Example 4). As shown in FIG. 6, each of the sintered materials of Examples 1 and 3 showed a value higher than that of Comparative Examples 1, 2 and 4, and 0.2% which is equal to or higher than that of the conventional Comparative Example 3 (Alloy 718). The yield strength ratio was shown.
  • FIG. 7 is a graph showing the creep durability temperature ratios of Examples 1 to 3 and Comparative Examples 1 to 4 (based on Comparative Example 3). As shown in FIG. 7, each of the sintered materials of Examples 1 and 2 showed a value higher than that of Comparative Examples 1 to 3, and a 0.2% proof stress ratio equal to or higher than that of the conventional Comparative Example 4 (Alloy 625). showed that.
  • Example 2 the 0.2% proof stress ratio of Example 2 is slightly lower than that of Comparative Examples 2 to 4, but the creep endurance temperature is higher than that of Comparative Examples 2 to 4 and is 0.2%. It can be said that it is superior to the comparative example when comprehensively judging both the yield strength ratio and the creep endurance temperature.
  • Example 3 the creep durability temperature of Example 3 is slightly lower than that of Comparative Example 4, but the 0.2% proof stress ratio is much larger than that of Comparative Example 4, and 0.2%. It can be said that it is superior to the comparative example when comprehensively judging both the yield strength ratio and the creep endurance temperature.
  • FIG. 8 is a graph showing the 0.2% proof stress ratio and the creep life temperature ratio of Example 3 and Comparative Examples 1, 3, and 4.
  • both the 0.2% proof stress ratio and the creep endurance temperature ratio are larger than those in Comparative Example 1.
  • Examples 1 and 3 are larger than Comparative Example 4 (Alloy 625) and achieve the same level as Comparative Example 3 (Alloy 718).
  • Examples 1 and 3 are larger than Comparative Example 3 (Alloy 718).
  • a level equivalent to that of Comparative Example 4 (Alloy 625) is achieved.
  • 0.2% proof stress and creep endurance temperature are in a trade-off relationship, that is, as 0.2% proof endurance increases, creep endurance temperature decreases, and when creep endurance temperature increases, 0.2% endurance decreases. Shows the behavior. Since both Example 1 and Example 3 are located on the upper right of the straight line connecting Comparative Example 3 and Comparative Example 4, both the 0.2% proof stress ratio and the creep endurance temperature are comprehensively judged, It can be said that it is superior to Comparative Examples 3 and 4.
  • an austenitic steel sintered material and a turbine member having strength equal to or higher than that of a Ni-based alloy and less affected by oxygen can be provided.
  • the present invention is not limited to the above-described embodiments, but includes various modifications.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • other configurations can be added / deleted / replaced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

The purpose of the present invention is to provide an austenitic steel sintered material, an austenitic steel powder and a turbine member, which exhibit strength that is at least equivalent to that of a Ni-based alloy and which are unlikely to be affected by oxygen. Provided are an austenitic steel sintered material and an austenitic steel powder which contain, in terms of mass%, 25-50% of Ni, 12-25% of Cr, 3-6% of Nb, 0.001-0.05% of B, 1.6% or less of Ti, 6% or less of W, 4.8% or less of Mo and 0.5% or less of Zr, with the remainder comprising Fe and unavoidable impurities.

Description

オーステナイト鋼焼結材、オーステナイト鋼粉末およびタービン部材Austenitic steel sintered material, austenitic steel powder and turbine component
 本発明は、オーステナイト鋼焼結材、オーステナイト鋼粉末およびタービン部材に関する。 The present invention relates to an austenitic steel sintered material, an austenitic steel powder, and a turbine member.
 昨今、石炭火力発電プラントの高効率化を目指して、蒸気温度の高温化が進んでいる。現在運転されている石炭火力発電プラントのうち、蒸気温度620℃級が最も蒸気温度の高い蒸気タービン(USC:Ultra Super Critical(超々臨界圧発電))として運転されているが、CO排出を抑制すべく、今後さらに高温化が進むと考えられる。これまで蒸気タービンの高温部材として9Cr系および12Cr系の耐熱フェライト鋼等が用いられてきたが、蒸気温度の高温化に伴い、これらの適用が難しくなると考えられている。 In recent years, the steam temperature has been increasing to increase the efficiency of coal-fired power plants. Among the coal-fired power plants currently in operation, the steam temperature of 620 ° C class is operating as a steam turbine with the highest steam temperature (USC: Ultra Super Critical), but CO 2 emission is suppressed. Therefore, it is considered that the temperature will further increase in the future. Up to now, 9Cr-based and 12Cr-based heat-resistant ferritic steels have been used as high-temperature members for steam turbines, but it is considered that their application becomes difficult as the steam temperature increases.
 高温部材に適用する合金として、フェライト鋼よりも耐用温度の高いNi基合金が候補となりうる。Ni基合金は、AlやTiを析出強化元素とし、高温で安定相となるγ´相を生成して高温で優れた強度を示す。しかしながら、タービンバルブケーシングやタービンディスク等については、一般的には鋳造法で製造されるが、鋳造法では溶解中の空気との遮断が十分でなく、活性な元素(AlやTi)が多いとこれらの元素が酸化してしまう。 ∙ Ni-based alloys, which have a higher service temperature than ferritic steel, can be candidates as alloys to be applied to high-temperature members. The Ni-based alloy has Al and Ti as precipitation strengthening elements and produces a γ ′ phase that becomes a stable phase at high temperatures, and exhibits excellent strength at high temperatures. However, turbine valve casings, turbine discs, etc. are generally manufactured by a casting method, but if the casting method does not sufficiently block the air during melting and there are many active elements (Al and Ti). These elements will be oxidized.
 Ni基合金に代えて、優れた強度と鋳造性を両立するオーステナイト鋼およびそれを用いたオーステナイト鋼鋳造品をタービン部材に適用する技術が特許文献1に開示されている。 Patent Document 1 discloses a technique of applying an austenitic steel that has both excellent strength and castability and a cast austenitic steel using the same to a turbine member instead of a Ni-based alloy.
特開2017-88963号公報JP, 2017-88963, A
 上述した特許文献1は、大型の鋳造品におけるマクロ欠陥を低減したオーステナイト鋼の組成を提案するものであるが、鋳造品に使用される金型の製造は、比較的手間がかかるものである。特に、大型で複雑な形状を有する鋳造品用の型になると、プロセスコストが増加する。したがって、鋳造ではなく、焼結によって部材を得ることができれば、タービン部材の製造性をさらに高めることができる。 The above-mentioned Patent Document 1 proposes a composition of austenitic steel in which macro defects in a large cast product are reduced, but the production of a mold used for the cast product is relatively time-consuming. In particular, the process cost increases in the case of a casting mold having a large size and a complicated shape. Therefore, if the member can be obtained by sintering instead of casting, the manufacturability of the turbine member can be further improved.
 本発明は、上記事情に鑑み、Ni基合金と同等以上の強度を有し、かつ、酸素の影響を受けにくいオーステナイト鋼焼結材、オーステナイト鋼粉末およびタービン部材を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide an austenitic steel sintered material, an austenitic steel powder, and a turbine member that have a strength equal to or higher than that of a Ni-based alloy and are not easily affected by oxygen.
 上記課題を解決するための本発明の第1の態様は、質量%で、Ni:25~50%、Cr:12~25%、Nb:3~6%、B:0.001~0.05%、Ti:1.6%以下、W:6%以下、Mo:4.8%以下、Zr:0.5%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼焼結材である。 A first aspect of the present invention for solving the above problems is, in mass%, Ni: 25 to 50%, Cr: 12 to 25%, Nb: 3 to 6%, B: 0.001 to 0.05. %, Ti: 1.6% or less, W: 6% or less, Mo: 4.8% or less, Zr: 0.5% or less, with the balance being Fe and inevitable impurities. ..
 上記課題を解決するための第2の態様は、質量%で、Ni:30~45%、Cr:12~20%、Nb:3~5%、B:0.001~0.02%、Ti:0.3~1.3%、W:5.5%以下、Mo:2%以下、Zr:0.3%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼焼結材である。 A second mode for solving the above problems is, in mass%, Ni: 30 to 45%, Cr: 12 to 20%, Nb: 3 to 5%, B: 0.001 to 0.02%, Ti. : 0.3 to 1.3%, W: 5.5% or less, Mo: 2% or less, Zr: 0.3% or less, and the balance being Fe and inevitable impurities, which is an austenitic steel sintered material. ..
 上記課題を解決するための第3の態様は、質量%で、Ni:30~40%、Cr:15~20%、Nb:3.5~4.5%、B:0.001~0.02%、Ti:0.5~1.1%以下、W:5.5%以下、Zr:0.3%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼焼結材である。 A third mode for solving the above problems is, in mass%, Ni: 30 to 40%, Cr: 15 to 20%, Nb: 3.5 to 4.5%, B: 0.001 to 0. It is an austenitic steel sintered material containing 02%, Ti: 0.5 to 1.1% or less, W: 5.5% or less, Zr: 0.3% or less, and the balance being Fe and inevitable impurities.
 上記課題を解決するための第4の態様は、オーステナイト鋼焼結材を用いたタービン部材である。 A fourth mode for solving the above problems is a turbine member using an austenitic steel sintered material.
 上記課題を解決するための本発明の第5の態様は、質量%で、Ni:25~50%、Cr:12~25%、Nb:3~6%、B:0.001~0.05%、Ti:1.6%以下、W:6%以下、Mo:4.8%以下、Zr:0.5%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼粉末である。 A fifth aspect of the present invention for solving the above problems is, in mass%, Ni: 25 to 50%, Cr: 12 to 25%, Nb: 3 to 6%, B: 0.001 to 0.05. %, Ti: 1.6% or less, W: 6% or less, Mo: 4.8% or less, Zr: 0.5% or less, and the balance is Fe and inevitable impurities.
 上記課題を解決するための第6の態様は、質量%で、Ni:30~45%、Cr:12~20%、Nb:3~5%、B:0.001~0.02%、Ti:0.3~1.3%、W:5.5%以下、Mo:2%以下、Zr:0.3%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼粉末である。 A sixth aspect for solving the above problems is, in mass%, Ni: 30 to 45%, Cr: 12 to 20%, Nb: 3 to 5%, B: 0.001 to 0.02%, Ti. : 0.3 to 1.3%, W: 5.5% or less, Mo: 2% or less, Zr: 0.3% or less, and the balance being Fe and unavoidable impurities.
 上記課題を解決するための第7の態様は、質量%で、Ni:30~40%、Cr:15~20%、Nb:3.5~4.5%、B:0.001~0.02%、Ti:0.5~1.1%以下、W:5.5%以下、Zr:0.3%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼粉末である。 A seventh mode for solving the above problems is, in mass%, Ni: 30 to 40%, Cr: 15 to 20%, Nb: 3.5 to 4.5%, B: 0.001 to 0. This is an austenitic steel powder containing 02%, Ti: 0.5 to 1.1% or less, W: 5.5% or less, Zr: 0.3% or less, and the balance being Fe and inevitable impurities.
 本発明のより具体的な構成は、特許請求の範囲に記載される。 A more specific configuration of the present invention is described in the claims.
 本発明によれば、Ni基合金と同等以上の強度を有し、かつ、酸素の影響を受けにくいオーステナイト鋼焼結材、オーステナイト鋼粉末およびタービン部材を提供することができる。 According to the present invention, it is possible to provide an austenitic steel sintered material, an austenitic steel powder, and a turbine member that have a strength equal to or higher than that of a Ni-based alloy and are not easily affected by oxygen.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 The problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明のオーステナイト鋼粉末を焼結したオーステナイト鋼焼結材の組織の一例の模式図Schematic diagram of an example of the structure of the austenitic steel sintered material obtained by sintering the austenitic steel powder of the present invention 本発明のオーステナイト鋼粉末を焼結したオーステナイト鋼焼結材の組織の一例のSEM観察写真SEM observation photograph of an example of the structure of the austenitic steel sintered material obtained by sintering the austenitic steel powder of the present invention 特許文献1のオーステナイト鋼鋳造材の組織の一例の模式図Schematic diagram of an example of the structure of the austenitic steel cast material of Patent Document 1 従来のNi基合金鍛造材の組織の一例の模式図Schematic diagram of an example of the structure of a conventional Ni-based alloy forged material 本発明のオーステナイト鋼粉末を焼結したオーステナイト鋼焼結材が適用されるタービンバルブケーシングの一例を示す模式図The schematic diagram which shows an example of the turbine valve casing to which the austenitic steel sintered material which sintered the austenitic steel powder of this invention is applied. 本発明のオーステナイト鋼粉末を焼結したオーステナイト鋼焼結材が適用されるタービンディスクの一例を示す模式図The schematic diagram which shows an example of the turbine disk to which the austenitic steel sintered material which sintered the austenitic steel powder of this invention is applied. 実施例1~3および比較例1~4の0.2%耐力比(比較例4基準)を示すグラフA graph showing 0.2% proof stress ratios of Examples 1 to 3 and Comparative Examples 1 to 4 (based on Comparative Example 4). 実施例1~3および比較例1~4のクリープ耐用温度比(比較例3基準)を示すグラフA graph showing the creep durability temperature ratios of Examples 1 to 3 and Comparative Examples 1 to 4 (based on Comparative Example 3). 実施例1、3および比較例1、3、4の0.2%耐力比およびリープ耐用温度比を示すグラフThe graph which shows 0.2% yield strength ratio and leap durable temperature ratio of Examples 1, 3 and Comparative Examples 1, 3, 4.
 以下、図面を用いながら、本発明について詳細に説明する。 The present invention will be described in detail below with reference to the drawings.
 [オーステナイト鋼粉末およびオーステナイト鋼焼結材]
 図1Aは本発明のオーステナイト鋼粉末を焼結したオーステナイト鋼焼結材の組織の一例の模式図であり、図1Bは本発明のオーステナイト鋼粉末を焼結したオーステナイト鋼焼結材の組織の一例のSEM観察写真である。図1Aおよび図1Bに示すように、本発明のオーステナイト鋼焼結材は、オーステナイト鋼粉末結晶1と、隣り合うオーステナイト鋼結晶の境界に存在する結晶粒界2と、結晶粒界2上に析出したラーベス相3を有する。
[Austenitic steel powder and sintered austenitic steel]
FIG. 1A is a schematic view showing an example of the structure of an austenitic steel sintered material obtained by sintering the austenitic steel powder of the present invention, and FIG. 1B is an example of the structure of an austenitic steel sintered material obtained by sintering the austenitic steel powder of the present invention. 2 is an SEM observation photograph of As shown in FIG. 1A and FIG. 1B, the austenitic steel sintered material of the present invention is precipitated on an austenitic steel powder crystal 1, a grain boundary 2 existing at a boundary between adjacent austenitic steel crystals, and a grain boundary 2. Has a Laves phase 3.
 オーステナイト鋼粉末結晶1の平均粒径は、10~300μmが好ましい。10μmよりも小さいと、クリープ強度が十分ではなくなる恐れがある。300μmよりも大きいと、引張強さおよび疲労強度が十分ではなくなる恐れがある。また、粒界の総量が変化することで、ラーベス相の粒界被覆率が変化し、強度(クリープ強度、引張強さおよび疲労強度等)が低下する恐れがある。上記「粒径」は、電子顕微鏡等の観察手段で観察した場合に平面像で測定することができる。また、「平均粒径」は、所定の倍率の観察写真において表示される所定の個数のオーステナイト鋼粉末結晶1の粒径を平均した値とすることができる。 The average particle size of the austenitic steel powder crystal 1 is preferably 10 to 300 μm. If it is less than 10 μm, the creep strength may become insufficient. If it is larger than 300 μm, the tensile strength and the fatigue strength may be insufficient. In addition, when the total amount of grain boundaries changes, the grain boundary coverage of the Laves phase changes, and the strength (creep strength, tensile strength, fatigue strength, etc.) may decrease. The above "particle size" can be measured by a plane image when observed by an observation means such as an electron microscope. Further, the “average particle diameter” can be a value obtained by averaging the particle diameters of a predetermined number of austenitic steel powder crystals 1 displayed in an observation photograph at a predetermined magnification.
 上記本発明のオーステナイト鋼焼結材の組織との比較として、特許文献1の鋳造組織と、従来のNi基合金(Alloy718)の組織についても説明する。図2は特許文献1のオーステナイト鋼鋳造材の組織の一例の模式図である。図2に示すように、オーステナイト鋼鋳造材は、オーステナイト鋼粉末結晶4と、隣り合うオーステナイト鋼結晶の境界に存在する結晶粒界5と、結晶粒界5上に析出したラーベス相6を有する。鋳造組織は、結晶粒界が少なく、結晶の粒径や形状が均質ではない。また、鋳造組織は焼結材の組織よりもミクロ偏析が大きくなる。部材が大きくなればなるほどミクロ偏析が大きくなると考えられ、ミクロ偏析に起因する欠陥の発生や強度の低下が生じやすくなる恐れがある。一方、焼結材は、部材の大きさによらず均質な組織が形成されるため、ミクロ偏析は生じにくくなる。 As a comparison with the structure of the austenitic steel sintered material of the present invention described above, the structure of the casting of Patent Document 1 and the structure of the conventional Ni-based alloy (Alloy 718) will also be described. FIG. 2 is a schematic view of an example of the structure of the austenitic steel cast material of Patent Document 1. As shown in FIG. 2, the austenitic steel cast material has an austenitic steel powder crystal 4, a crystal grain boundary 5 existing at a boundary between adjacent austenitic steel crystals, and a Laves phase 6 precipitated on the crystal grain boundary 5. The cast structure has few crystal grain boundaries, and the crystal grain size and shape are not uniform. Further, the cast structure has a larger microsegregation than the structure of the sintered material. It is considered that the larger the member is, the larger the microsegregation is, and thus the defects due to the microsegregation and the decrease in strength are likely to occur. On the other hand, in the sintered material, since a uniform structure is formed regardless of the size of the member, micro segregation is less likely to occur.
 図3は従来のNi基合金鍛造材(Alloy718)の組織の一例の模式図である。図3に示すように、Ni基合金鍛造材は、Ni基合金結晶7と、隣り合うNi基合金結晶の境界に存在する旧粒子境界(PPB)8と、旧粒子境界(PPB)8上に析出したデルタ相9を有する。 FIG. 3 is a schematic diagram showing an example of the structure of a conventional Ni-based alloy forged material (Alloy 718). As shown in FIG. 3, the Ni-based alloy forged material has a Ni-based alloy crystal 7, an old particle boundary (PPB) 8 existing at the boundary between adjacent Ni-based alloy crystals, and an old particle boundary (PPB) 8 on the old particle boundary (PPB) 8. It has a precipitated delta phase 9.
 図1~図3を比較してわかるように、本発明のオーステナイト鋼焼結材の組織と、従来のオーステナイト鋼鋳造材およびNi基合金の組織は、明確に区別されるものである。 As can be seen by comparing FIGS. 1 to 3, the structure of the austenitic steel sintered material of the present invention and the structures of the conventional austenitic steel cast material and Ni-based alloy are clearly distinguished.
 以下に、本発明のオーステナイト鋼焼結材の組成について説明する。以下の組成の説明において、「%」は、特に断りが無ければ「質量%」を意味するものとする。 The composition of the austenitic steel sintered material of the present invention will be described below. In the following description of the composition, “%” means “mass%” unless otherwise specified.
 Ni(ニッケル):25~50%
 Niはオーステナイト相安定化元素として添加される。また、後述するNbと金属間化合物(δ相、NiNb)を生成し、粒内に析出することで、粒内強化に寄与する。相安定の観点から、Niは25~50%(25%以上50%以下)が好ましく、30~45%がより好ましく、30~40%がさらに好ましい。
Ni (nickel): 25-50%
Ni is added as an austenite phase stabilizing element. Further, Nb and an intermetallic compound (δ phase, Ni 3 Nb), which will be described later, are generated and precipitated in the grains to contribute to the intragranular strengthening. From the viewpoint of phase stability, Ni is preferably 25 to 50% (25% to 50%), more preferably 30 to 45%, further preferably 30 to 40%.
 Cr(クロム):12~25%
 Crは耐酸化性および耐水蒸気酸化性を向上させる元素である。蒸気タービンの運転温度を考慮し、12%以上添加することで十分な耐酸化性を得ることができる。また、25%より多く添加すると、σ相などの金属間化合物が析出し、高温延性や靱性の低下を招く。これらのバランスを考慮すると、Cr量は12~25%が好ましく、12~20%がより好ましく、15~20%がさらに好ましい。
Cr (chrome): 12-25%
Cr is an element that improves oxidation resistance and steam oxidation resistance. Sufficient oxidation resistance can be obtained by adding 12% or more in consideration of the operating temperature of the steam turbine. On the other hand, if it is added in an amount of more than 25%, intermetallic compounds such as σ phase are precipitated, resulting in deterioration of high temperature ductility and toughness. Considering these balances, the Cr amount is preferably 12 to 25%, more preferably 12 to 20%, and further preferably 15 to 20%.
 Nb(ニオブ):3~6%
 Nbは、ラーベス相(FeNb)及びδ相(NiNb)の安定化のために添加される。ラーベス相6は、図2に示すように主に粒界2に析出し、粒界強化に寄与する。δ相は主に粒内に析出し、強化に寄与する。3%以上添加することで、十分な高温クリープ強度を得ることができる。6%より多く添加すると、δ相等の有害相が析出しやすくなる可能性がある。より十分な強度を得るためには、Nb量は3~6%が好ましく、3~5%がより好ましく、3.5~4.5%がさらに好ましい。
Nb (niobium): 3-6%
Nb is added for stabilizing the Laves phase (Fe 2 Nb) and the δ phase (Ni 3 Nb). The Laves phase 6 is mainly precipitated at the grain boundaries 2 as shown in FIG. 2 and contributes to the grain boundary strengthening. The δ phase mainly precipitates in the grains and contributes to strengthening. Sufficient high temperature creep strength can be obtained by adding 3% or more. If it is added in excess of 6%, harmful phases such as δ phase may be likely to precipitate. In order to obtain more sufficient strength, the amount of Nb is preferably 3 to 6%, more preferably 3 to 5%, even more preferably 3.5 to 4.5%.
 B(ホウ素):0.001~0.05%
 Bは粒界におけるラーベス相の析出に寄与する。Bが添加されない場合、粒界のラーベス相が析出しにくくなり、クリープ強度やクリープ延性が低下する。0.001%以上の添加で粒界析出の効果が得られる。一方、添加量が多すぎると、局所的に融点が下がり、例えば溶接性の低下が懸念される。このことを考慮すると、B量は0.001~0.05%が好ましく、0.001~0.02%がより好ましい。
B (boron): 0.001 to 0.05%
B contributes to the precipitation of the Laves phase at the grain boundaries. If B is not added, the Laves phase at the grain boundaries is less likely to precipitate, and the creep strength and creep ductility decrease. The effect of grain boundary precipitation can be obtained by adding 0.001% or more. On the other hand, if the addition amount is too large, the melting point is locally lowered, and there is a concern that, for example, the weldability is deteriorated. Considering this, the amount of B is preferably 0.001 to 0.05%, more preferably 0.001 to 0.02%.
 Ti(チタン):0~1.6%
 Tiは、γ´´相やδ相といった、粒内析出強化に寄与する元素である。適度に添加することで、初期におけるクリープ変形を大幅に下げることができる。しかし、過剰に添加しすぎると、製造中の酸化の影響を受け、機械的特性に悪影響を及ぼす。このことを考慮すると、Tiは1.6%以下が好ましく、0.3~1.3%がより好ましく、0.5~1.1%がさらに好ましい。
Ti (titanium): 0 to 1.6%
Ti is an element that contributes to intragranular precipitation strengthening, such as a γ ″ phase and a δ phase. With proper addition, creep deformation in the initial stage can be significantly reduced. However, if added excessively, it is affected by oxidation during production, which adversely affects the mechanical properties. Considering this, Ti is preferably 1.6% or less, more preferably 0.3 to 1.3%, and further preferably 0.5 to 1.1%.
 W(タングステン):0~6%
 Wは固溶強化の他に、ラーベス相の安定化に寄与する。Wの添加により、粒界に析出するラーベス相の析出量が増量し、長時間におけるクリープ特性において、破断強度や延性の向上に寄与できる。6%を超えると、δ相等の有害相が析出しやすくなる可能性がある。このことを考慮すると、Wは6%以下が好ましく、5.3~6%以下がより好ましく、5.5~5.5%がさらに好ましい。
W (tungsten): 0-6%
W contributes not only to solid solution strengthening but also to stabilization of the Laves phase. By adding W, the precipitation amount of the Laves phase that precipitates at the grain boundaries is increased, and it is possible to contribute to the improvement of fracture strength and ductility in the creep characteristics for a long time. If it exceeds 6%, harmful phases such as δ phase may be likely to precipitate. Considering this, W is preferably 6% or less, more preferably 5.3 to 6% or less, still more preferably 5.5 to 5.5%.
 Mo(モリブデン):0~4.8%
 Moは固溶強化の他に、ラーベス相の安定化に寄与する。Moの添加により、粒界に析出するラーベス相の析出量が増量し、長時間におけるクリープ特性において、破断強度や延性に寄与できる。このことを考慮すると、Moは0~4.8%が好ましく、0~2%以下がより好ましい。
Mo (molybdenum): 0 to 4.8%
Mo contributes not only to solid solution strengthening but also to stabilization of the Laves phase. The addition of Mo increases the precipitation amount of the Laves phase that precipitates at the grain boundaries, and can contribute to the breaking strength and ductility in the creep characteristics for a long time. Considering this, Mo is preferably 0 to 4.8%, more preferably 0 to 2% or less.
 Zr(ジルコニウム):0~0.5%
 Zrの添加はBと同様、粒界のラーベス相の析出に寄与するほか、γ´´相(NiNb)の析出に寄与する。短時間もしくは低温(750℃未満、望ましくは700℃以下)では特に効果的である。しかし、γ´´相は準安定相であるため、長時間高温(特に750℃以上)で保持することでδ相に変化してしまう。したがって、添加しなくてもよい。添加量が多すぎると、δ相の安定性が向上し、γ´´相がδ相に早く変化してしまう。また、溶接性が悪化する。このことを考慮すると、Zrは0~0.5%が好ましく、0~0.3%以下がより好ましい。
Zr (zirconium): 0 to 0.5%
Like B, addition of Zr contributes to the precipitation of the Laves phase at the grain boundary and also to the precipitation of the γ ″ phase (Ni 3 Nb). It is particularly effective for a short time or at a low temperature (less than 750 ° C, preferably 700 ° C or less). However, since the γ ″ phase is a metastable phase, it will change to the δ phase by holding it at a high temperature (especially 750 ° C. or higher) for a long time. Therefore, it may not be added. If the amount of addition is too large, the stability of the δ phase is improved and the γ ″ phase is changed to the δ phase quickly. Also, the weldability deteriorates. Considering this, Zr is preferably 0 to 0.5%, more preferably 0 to 0.3% or less.
 本発明のオーステナイト鋼焼結材は、上述した通り、NbおよびTiを主な強化元素として含み、Alを強化元素として含まない。このため、酸素による酸化等の影響を受けにくく、強度(クリープ強度、引張強さ、疲労強度等)を向上することができる。 As described above, the austenitic steel sintered material of the present invention contains Nb and Ti as main strengthening elements and does not contain Al as a strengthening element. For this reason, the strength (creep strength, tensile strength, fatigue strength, etc.) can be improved without being easily affected by oxidation by oxygen and the like.
 また、焼結材は鍛造組織であり、熱処理等で結晶粒径を制御することで、製品の要求強度に合わせて強度特性を容易に制御することができる。 Also, the sintered material has a forged structure, and by controlling the crystal grain size by heat treatment, etc., the strength characteristics can be easily controlled according to the required strength of the product.
 さらに、焼結材の型は鋳造材の鋳型よりも製造が容易なため、複雑な製品形状でも歩留まり良く製造することができる。 Furthermore, since the sintered material mold is easier to manufacture than the cast material mold, even complex product shapes can be manufactured with good yield.
 [オーステナイト鋼焼結材の製造方法]
 次に、本発明のオーステナイト鋼焼結材の製造方法を説明する。本発明のオーステナイト鋼焼結材は、例えば以下の工程によって製造することができる。
(1)上述した組成を有する原料粉末または原料合金をガスアトマイズ法や水アトマイズ法を用いて平均粒径250μm以下の合金粉末(オーステナイト鋼粉末)とする。
(2)上記(1)で得られた合金粉末を、熱間等方圧加圧法(HIP)によって焼結する。焼結条件は、例えば焼結温度:1100~1300℃、等方圧:50MPa以上とする。
[Method for producing austenitic steel sintered material]
Next, a method for manufacturing the austenitic steel sintered material of the present invention will be described. The austenitic steel sintered material of the present invention can be manufactured, for example, by the following steps.
(1) A raw material powder or raw material alloy having the above-mentioned composition is made into an alloy powder (austenitic steel powder) having an average particle diameter of 250 μm or less by using a gas atomizing method or a water atomizing method.
(2) The alloy powder obtained in (1) above is sintered by hot isostatic pressing (HIP). The sintering conditions are, for example, sintering temperature: 1100 to 1300 ° C. and isotropic pressure: 50 MPa or more.
 焼結は、HIPに代えて、異方圧力下でのホットプレスや、金属粉末射出成型法(MIM)を用いても良い。また、焼結後に溶体化熱処理(熱処理温度:1100~1300℃)、時効熱処理(熱処理温度:1000℃以下)を施しても良い。 For sintering, hot pressing under anisotropic pressure or metal powder injection molding (MIM) may be used instead of HIP. After the sintering, solution heat treatment (heat treatment temperature: 1100 to 1300 ° C.) and aging heat treatment (heat treatment temperature: 1000 ° C. or lower) may be performed.
 [オーステナイト鋼焼結材を用いたタービン部材]
 図4は本発明のオーステナイト鋼焼結材が適用されるタービンバルブケーシングの一例を示す模式図であり、図5は本発明のオーステナイト鋼焼結材が適用されるタービンディスクの一例を示す模式図である。図4に示すように、本発明のオーステナイト鋼焼結材は、優れた強度を有するため、タービンバルブケーシング10やタービンディスク11に好適である。
[Turbine member using sintered austenitic steel]
FIG. 4 is a schematic diagram showing an example of a turbine valve casing to which the austenitic steel sintered material of the present invention is applied, and FIG. 5 is a schematic diagram showing an example of a turbine disk to which the austenitic steel sintered material of the present invention is applied. Is. As shown in FIG. 4, the austenitic steel sintered material of the present invention has excellent strength and is therefore suitable for the turbine valve casing 10 and the turbine disk 11.
 以下、実施例に基づいて、本発明についてより詳細に説明する。 Hereinafter, the present invention will be described in more detail based on examples.
 [オーステナイト鋼焼結材の作製および評価]
 実施例1~3および比較例1~2の焼結材を作製し、評価を行った。実施例1~3および比較例1~2の組成を、後述する表1に示す。表1に示す組成を有するマスターインゴットまたは原料を準備し、ガスアトマイズ法によって粒径250μm以下の合金粉末を作製した。得られた合金粉末を、HIP(焼結温度:1160℃、等方圧:100MPa)によって焼結し、実施例1~3および比較例1~2の焼結材を作製した。比較例1はCr量が本発明の範囲外であり、比較例2はNi量が本発明の範囲外の組成を有している。
[Production and evaluation of austenitic steel sintered material]
The sintered materials of Examples 1 to 3 and Comparative Examples 1 and 2 were produced and evaluated. The compositions of Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1 below. A master ingot or raw material having the composition shown in Table 1 was prepared, and an alloy powder having a particle size of 250 μm or less was produced by a gas atomizing method. The obtained alloy powder was sintered by HIP (sintering temperature: 1160 ° C., isotropic pressure: 100 MPa) to prepare sintered materials of Examples 1 to 3 and Comparative Examples 1 and 2. Comparative Example 1 has a Cr content outside the range of the present invention, and Comparative Example 2 has a Ni content outside the range of the present invention.
 比較例3としてNi基合金であるAlloy(INCONEL)718(鍛造材)と、比較例4としてNi基合金であるAlloy(INCONEL)625(鋳造材)も準備し、評価を行った。比較例3および比較例4の組成も表1に併記する。「INCONEL」は、ハンティントンアロイズコーポレイションの登録商標である。 As a comparative example 3, a Ni-based alloy Alloy (INCONEL) 718 (forged material) and as a comparative example 4 an Ni-based alloy Alloy (INCONEL) 625 (cast material) were prepared and evaluated. The compositions of Comparative Example 3 and Comparative Example 4 are also shown in Table 1. "INCONEL" is a registered trademark of Huntington Alloys Corporation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~3および比較例1~4について、0.2%耐力およびクリープ耐用温度を評価した。0.2%耐力はJIS G 0567に基づき、クリープ試験はJIS Z 22761に基づき試験を行った。 0.2% proof stress and creep life temperature were evaluated for Examples 1 to 3 and Comparative Examples 1 to 4. The 0.2% proof stress is based on JIS G 0567, and the creep test is based on JIS Z 22761.
 図6は実施例1~3および比較例1~4の0.2%耐力比(比較例4基準)を示すグラフである。図6に示すように、実施例1および3のいずれもの焼結材も、比較例1、2および4よりも高い値を示し、従来の比較例3(Alloy718)と同等以上の0.2%耐力比を示した。 FIG. 6 is a graph showing the 0.2% proof stress ratios of Examples 1 to 3 and Comparative Examples 1 to 4 (based on Comparative Example 4). As shown in FIG. 6, each of the sintered materials of Examples 1 and 3 showed a value higher than that of Comparative Examples 1, 2 and 4, and 0.2% which is equal to or higher than that of the conventional Comparative Example 3 (Alloy 718). The yield strength ratio was shown.
 図7は実施例1~3および比較例1~4のクリープ耐用温度比(比較例3基準)を示すグラフである。図7に示すように、実施例1~2のいずれもの焼結材も、比較例1~3よりも高い値を示し、従来の比較例4(Alloy625)と同等以上の0.2%耐力比を示した。 FIG. 7 is a graph showing the creep durability temperature ratios of Examples 1 to 3 and Comparative Examples 1 to 4 (based on Comparative Example 3). As shown in FIG. 7, each of the sintered materials of Examples 1 and 2 showed a value higher than that of Comparative Examples 1 to 3, and a 0.2% proof stress ratio equal to or higher than that of the conventional Comparative Example 4 (Alloy 625). showed that.
 図6および図7より、実施例2は、0.2%耐力比は比較例2~4よりもやや低いが、クリープ耐用温度は比較例2~4よりも大きくなっており、0.2%耐力比およびクリープ耐用温度の両方を総合して判断すると、比較例よりも優れていると言える。 6 and 7, the 0.2% proof stress ratio of Example 2 is slightly lower than that of Comparative Examples 2 to 4, but the creep endurance temperature is higher than that of Comparative Examples 2 to 4 and is 0.2%. It can be said that it is superior to the comparative example when comprehensively judging both the yield strength ratio and the creep endurance temperature.
 また、図6および図7より、実施例3は、クリープ耐用温度は比較例4よりもやや低いが、0.2%耐力比は比較例4よりもはるかに大きくなっており、0.2%耐力比およびクリープ耐用温度の両方を総合して判断すると、比較例よりも優れていると言える。 6 and 7, the creep durability temperature of Example 3 is slightly lower than that of Comparative Example 4, but the 0.2% proof stress ratio is much larger than that of Comparative Example 4, and 0.2%. It can be said that it is superior to the comparative example when comprehensively judging both the yield strength ratio and the creep endurance temperature.
 図8は実施例3および比較例1、3、4の0.2%耐力比およびクリープ耐用温度比を示すグラフである。図8に示すように、実施例1および3は、0.2%耐力比およびクリープ耐用温度比のいずれも比較例1よりも大きい値を示している。また、0.2%耐力比に関して、実施例1および3は、比較例4(Alloy625)より大きく、比較例3(Alloy718)と同等のレベルを達成している。さらに、クリープ耐用温度比に関して、実施例1および3は比較例3(Alloy718)よりも大きい。特に、実施例1に関しては、比較例4(Alloy625)と同等のレベルを達成している。 FIG. 8 is a graph showing the 0.2% proof stress ratio and the creep life temperature ratio of Example 3 and Comparative Examples 1, 3, and 4. As shown in FIG. 8, in Examples 1 and 3, both the 0.2% proof stress ratio and the creep endurance temperature ratio are larger than those in Comparative Example 1. Further, regarding the 0.2% proof stress ratio, Examples 1 and 3 are larger than Comparative Example 4 (Alloy 625) and achieve the same level as Comparative Example 3 (Alloy 718). Further, regarding the creep life temperature ratio, Examples 1 and 3 are larger than Comparative Example 3 (Alloy 718). Particularly, with regard to Example 1, a level equivalent to that of Comparative Example 4 (Alloy 625) is achieved.
 一般的に0.2%耐力とクリープ耐用温度はトレードオフの関係、すなわち、0.2%耐力が高くなるとクリープ耐用温度は低くなり、クリープ耐用温度が高くなると、0.2%耐力は低くなるという挙動を示す。実施例1および実施例3は、いずれも、比較例3および比較例4を結ぶ直線よりも右上に位置することから、0.2%耐力比およびクリープ耐用温度の両方を総合して判断すると、比較例3および比較例4よりも優れていると言える。 Generally, 0.2% proof stress and creep endurance temperature are in a trade-off relationship, that is, as 0.2% proof endurance increases, creep endurance temperature decreases, and when creep endurance temperature increases, 0.2% endurance decreases. Shows the behavior. Since both Example 1 and Example 3 are located on the upper right of the straight line connecting Comparative Example 3 and Comparative Example 4, both the 0.2% proof stress ratio and the creep endurance temperature are comprehensively judged, It can be said that it is superior to Comparative Examples 3 and 4.
 以上、説明したように、本発明によれば、Ni基合金と同等以上の強度を有し、かつ、酸素の影響を受けにくいオーステナイト鋼焼結材およびタービン部材を提供できることが示された。 As described above, according to the present invention, it has been shown that an austenitic steel sintered material and a turbine member having strength equal to or higher than that of a Ni-based alloy and less affected by oxygen can be provided.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiments, but includes various modifications. For example, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, with respect to a part of the configuration of each embodiment, other configurations can be added / deleted / replaced.
 1,4…オーステナイト鋼粉末結晶、2,5…結晶粒界、3,6…ラーベス相、7…Ni基合金結晶、8…旧粒子境界(PPB)、9…デルタ相、10…、タービンバルブケーシング、11…タービンディスク。 1, 4 ... Austenitic steel powder crystal, 2, 5 ... Grain boundary, 3, 6 ... Laves phase, 7 ... Ni-based alloy crystal, 8 ... Old particle boundary (PPB), 9 ... Delta phase, 10 ... Turbine valve Casing, 11 ... Turbine disc.

Claims (12)

  1.  質量%で、Ni:25~50%、Cr:12~25%、Nb:3~6%、B:0.001~0.05%、Ti:1.6%以下、W:6%以下、Mo:4.8%以下、Zr:0.5%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼焼結材。 In mass%, Ni: 25 to 50%, Cr: 12 to 25%, Nb: 3 to 6%, B: 0.001 to 0.05%, Ti: 1.6% or less, W: 6% or less, An austenitic steel sintered material containing Mo: 4.8% or less and Zr: 0.5% or less, with the balance being Fe and inevitable impurities.
  2.  質量%で、Ni:30~45%、Cr:12~20%、Nb:3~5%、B:0.001~0.02%、Ti:0.3~1.3%、W:5.5%以下、Mo:2%以下、Zr:0.3%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼焼結材。 % By mass, Ni: 30 to 45%, Cr: 12 to 20%, Nb: 3 to 5%, B: 0.001 to 0.02%, Ti: 0.3 to 1.3%, W: 5 An austenitic steel sintered material containing 0.5% or less, Mo: 2% or less, Zr: 0.3% or less, and the balance being Fe and inevitable impurities.
  3.  質量%で、Ni:30~40%、Cr:15~20%、Nb:3.5~4.5%、B:0.001~0.02%、Ti:0.5~1.1%以下、W:5.5%以下、Zr:0.3%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼焼結材。 Mass%: Ni: 30-40%, Cr: 15-20%, Nb: 3.5-4.5%, B: 0.001-0.02%, Ti: 0.5-1.1% Hereinafter, an austenitic steel sintered material containing W: 5.5% or less and Zr: 0.3% or less, with the balance being Fe and inevitable impurities.
  4.  前記オーステナイト鋼焼結材の平均粒径が10~300μmである請求項1から3のいずれか1項に記載のオーステナイト鋼焼結材。 The sintered austenitic steel material according to any one of claims 1 to 3, wherein the average particle diameter of the austenitic steel sintered material is 10 to 300 µm.
  5.  前記オーステナイト鋼焼結材の結晶粒界にラーベス相が析出している請求項1から3のいずれか1項に記載のオーステナイト鋼焼結材。 The sintered austenitic steel material according to any one of claims 1 to 3, wherein a Laves phase is precipitated at a crystal grain boundary of the sintered austenitic steel material.
  6.  前記ラーベス相がFeNbからなる請求項5に記載のオーステナイト鋼焼結材。 The austenitic steel sintered material according to claim 5, wherein the Laves phase is made of Fe 2 Nb.
  7.  請求項1から3のいずれか1項に記載のオーステナイト鋼焼結材を用いたタービン部材。 A turbine member using the austenitic steel sintered material according to any one of claims 1 to 3.
  8.  前記タービン部材が、タービンバルブケーシングまたはタービンディスクである請求項7に記載のタービン部材。 The turbine member according to claim 7, wherein the turbine member is a turbine valve casing or a turbine disk.
  9.  質量%で、Ni:25~50%、Cr:12~25%、Nb:3~6%、B:0.001~0.05%、Ti:1.6%以下、W:6%以下、Mo:4.8%以下、Zr:0.5%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼粉末。 In mass%, Ni: 25 to 50%, Cr: 12 to 25%, Nb: 3 to 6%, B: 0.001 to 0.05%, Ti: 1.6% or less, W: 6% or less, An austenitic steel powder containing Mo: 4.8% or less and Zr: 0.5% or less, with the balance being Fe and inevitable impurities.
  10.  質量%で、Ni:30~45%、Cr:12~20%、Nb:3~5%、B:0.001~0.02%、Ti:0.3~1.3%、W:5.5%以下、Mo:2%以下、Zr:0.3%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼粉末。 % By mass, Ni: 30 to 45%, Cr: 12 to 20%, Nb: 3 to 5%, B: 0.001 to 0.02%, Ti: 0.3 to 1.3%, W: 5 An austenitic steel powder containing 0.5% or less, Mo: 2% or less, Zr: 0.3% or less, and the balance being Fe and inevitable impurities.
  11.  質量%で、Ni:30~40%、Cr:15~20%、Nb:3.5~4.5%、B:0.001~0.02%、Ti:0.5~1.1%以下、W:5.5%以下、Zr:0.3%以下を含み、残部がFeおよび不可避の不純物からなるオーステナイト鋼粉末。 Mass%: Ni: 30-40%, Cr: 15-20%, Nb: 3.5-4.5%, B: 0.001-0.02%, Ti: 0.5-1.1% Hereinafter, an austenitic steel powder containing W: 5.5% or less and Zr: 0.3% or less, with the balance being Fe and inevitable impurities.
  12.  前記オーステナイト鋼粉末の平均粒径が250μm以下である請求項9から11のいずれか1項に記載のオーステナイト鋼粉末。 The austenitic steel powder according to any one of claims 9 to 11, wherein the austenitic steel powder has an average particle size of 250 µm or less.
PCT/JP2019/044163 2018-11-19 2019-11-11 Austenitic steel sintered material, austenitic steel powder and turbine member WO2020105496A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217002293A KR102467393B1 (en) 2018-11-19 2019-11-11 Austenitic steel sinter, austenitic steel powder and turbine member
SG11202100355UA SG11202100355UA (en) 2018-11-19 2019-11-11 Sintered materials of austenite steel powder and turbine members
CN201980050604.8A CN112585288A (en) 2018-11-19 2019-11-11 Austenitic steel sintered material, austenitic steel powder and turbine component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018216639A JP7112317B2 (en) 2018-11-19 2018-11-19 Austenitic steel sintered materials and turbine components
JP2018-216639 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020105496A1 true WO2020105496A1 (en) 2020-05-28

Family

ID=68583124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044163 WO2020105496A1 (en) 2018-11-19 2019-11-11 Austenitic steel sintered material, austenitic steel powder and turbine member

Country Status (7)

Country Link
US (1) US20200157664A1 (en)
EP (1) EP3653322A1 (en)
JP (1) JP7112317B2 (en)
KR (1) KR102467393B1 (en)
CN (1) CN112585288A (en)
SG (1) SG11202100355UA (en)
WO (1) WO2020105496A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023120710A (en) * 2022-02-18 2023-08-30 三菱重工業株式会社 Fe-Ni-Cr-BASED ALLOY PRODUCT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877536A (en) * 1981-10-30 1983-05-10 Daido Steel Co Ltd Regenerating method for scrap metallic powder
JPS58130258A (en) * 1982-01-26 1983-08-03 Mitsubishi Metal Corp Sintered fe alloy with superior wear and corrosion resistance
JPS61223106A (en) * 1985-03-29 1986-10-03 Sumitomo Metal Ind Ltd Production of high alloy clad product
JPH09263874A (en) * 1996-03-28 1997-10-07 Sanyo Special Steel Co Ltd Iron-and nickel-base heat resistant alloy excellent in strength at high temperature

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512080A (en) * 1992-11-27 1996-04-30 Toyota Jidosha Kabushiki Kaisha Fe-based alloy powder adapted for sintering, Fe-based sintered alloy having wear resistance, and process for producing the same
JP6688598B2 (en) * 2015-11-11 2020-04-28 三菱日立パワーシステムズ株式会社 Austenitic steel and cast austenitic steel using the same
CN105543747B (en) * 2015-12-21 2017-11-21 西北工业大学 A kind of preparation method for the increasing material manufacturing nickel base superalloy for remaining with Laves phases
US20180057920A1 (en) * 2016-08-31 2018-03-01 General Electric Company Grain refinement in in706 using laves phase precipitation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877536A (en) * 1981-10-30 1983-05-10 Daido Steel Co Ltd Regenerating method for scrap metallic powder
JPS58130258A (en) * 1982-01-26 1983-08-03 Mitsubishi Metal Corp Sintered fe alloy with superior wear and corrosion resistance
JPS61223106A (en) * 1985-03-29 1986-10-03 Sumitomo Metal Ind Ltd Production of high alloy clad product
JPH09263874A (en) * 1996-03-28 1997-10-07 Sanyo Special Steel Co Ltd Iron-and nickel-base heat resistant alloy excellent in strength at high temperature

Also Published As

Publication number Publication date
JP2020084229A (en) 2020-06-04
KR20210024083A (en) 2021-03-04
JP7112317B2 (en) 2022-08-03
SG11202100355UA (en) 2021-06-29
CN112585288A (en) 2021-03-30
EP3653322A1 (en) 2020-05-20
US20200157664A1 (en) 2020-05-21
KR102467393B1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP6839401B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
JP3814662B2 (en) Ni-based single crystal superalloy
EP2128283B1 (en) Nickel-base casting superalloy and cast component for steam turbine using the same
EP2479302B1 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
EP2537608B1 (en) Ni-based alloy for casting used for steam turbine and casting component of steam turbine
US8961646B2 (en) Nickel alloy
JP2018131667A (en) Ni-BASED ALLOY, GAS TURBINE MATERIAL, AND METHOD FOR PRODUCING Ni-BASED ALLOY HAVING EXCELLENT CREEP PROPERTY
KR20120053645A (en) Polycrystal ni base superalloy with good mechanical properties at high temperature
WO2020105496A1 (en) Austenitic steel sintered material, austenitic steel powder and turbine member
JP4906611B2 (en) Ni-based alloy
JPWO2019045001A1 (en) Alloy plate and gasket
WO2020179207A1 (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for manufacturing cobalt-based alloy sintered body
JP4635065B2 (en) Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP6176665B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JP6688598B2 (en) Austenitic steel and cast austenitic steel using the same
JP2024500556A (en) High strength, thermally stable nickel-based alloy
JP2015108177A (en) Nickel-based alloy
JP2013209721A (en) Ni-BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP2021134419A (en) Ni-BASED HEAT RESISTANT ALLOY
JP2012117379A (en) CASTING Ni GROUP ALLOY FOR STEAM TURBINE AND CAST COMPONENT FOR THE STEAM TURBINE
WO2016142963A1 (en) Austenitic heat-resistant steel and turbine component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217002293

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887990

Country of ref document: EP

Kind code of ref document: A1