JP2023120710A - Fe-Ni-Cr-BASED ALLOY PRODUCT - Google Patents

Fe-Ni-Cr-BASED ALLOY PRODUCT Download PDF

Info

Publication number
JP2023120710A
JP2023120710A JP2022023714A JP2022023714A JP2023120710A JP 2023120710 A JP2023120710 A JP 2023120710A JP 2022023714 A JP2022023714 A JP 2022023714A JP 2022023714 A JP2022023714 A JP 2022023714A JP 2023120710 A JP2023120710 A JP 2023120710A
Authority
JP
Japan
Prior art keywords
mass
less
alloy product
alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022023714A
Other languages
Japanese (ja)
Inventor
恭大 穐山
Yasuhiro Akiyama
晋也 今野
Shinya Konno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2022023714A priority Critical patent/JP2023120710A/en
Priority to PCT/JP2022/045758 priority patent/WO2023157438A1/en
Publication of JP2023120710A publication Critical patent/JP2023120710A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Abstract

To provide an Fe-Ni-Cr-based alloy product which shows creep withstand temperature for 100,000 hours or more, equivalent to or higher than that of a cast austenitic steel product and that of sintered austenitic steel material.SOLUTION: The Fe-Ni-Cr-based alloy product according to the present invention has a chemical composition including: 25-50 mass% of Ni; 12-25 mass% of Cr; 3-6 mass% of Nb; 0.2-1.6 mass% of Ti; 0.5 mass% or less of Zr; 0.001-0.05 mass% of B; 0.001-0.2 mass% of N; and the balance composed of Fe and inevitable impurities, and is a polycrystal in which an average grain diameter of parent phase crystal grains is 10--200 μm. In the parent phase crystal grains, there are formed segregated cells having an average size of 1 μm to 5 μm. In the parent phase crystal grains, TiN phase grains are precipitated with an average inter-grain distance of 1-2 μm.SELECTED DRAWING: Figure 3

Description

本発明は、Fe基合金材料の技術に関し、特にFe-Ni-Cr系合金材料から製造したFe-Ni-Cr系合金製造物に関するものである。 TECHNICAL FIELD The present invention relates to the technology of Fe-based alloy materials, and more particularly to Fe--Ni--Cr based alloy products made from Fe--Ni--Cr based alloy materials.

省エネルギー(例えば、化石燃料の節約)および地球環境保護(例えば、CO2ガスの排出削減)の観点から火力発電プラントの効率向上(例えば、蒸気タービンにおける効率向上)が強く望まれている。蒸気タービンの効率を向上させる有効な手段の一つとして、主蒸気温度の高温化がある。 From the viewpoint of energy saving (for example, fossil fuel saving) and global environment protection (for example, CO 2 gas emission reduction), it is strongly desired to improve the efficiency of thermal power plants (for example, to improve efficiency in steam turbines). One of the effective means for improving the efficiency of steam turbines is to increase the main steam temperature.

主蒸気温度の高温化を可能にするためには、蒸気タービンの高温部材(例えば、タービン動翼、タービン静翼、ロータディスク、ケーシング部材、ボイラー部材)が、主蒸気温度の高温化に耐えかつ要求される機械的特性(例えば、クリープ特性、引張特性)を満たす必要がある。そのため、耐熱合金材料の開発も重要な課題の一つである。 In order to enable the high temperature of the main steam, high temperature components of the steam turbine (for example, turbine rotor blades, turbine stator vanes, rotor discs, casing members, boiler members) must withstand the high temperature of the main steam and Required mechanical properties (eg, creep properties, tensile properties) must be satisfied. Therefore, the development of heat-resistant alloy materials is also one of the important issues.

耐熱合金材料の有力候補としてNi基合金材料がある。ただし、Ni基合金材料は、従来の600℃級蒸気タービンで用いられてきたFe基合金材料に比して材料コストやプロセスコストが高くなる。そのため、耐用温度の高いFe基合金材料の研究開発が行われてきた。 A strong candidate for heat-resistant alloy materials is Ni-based alloy materials. However, Ni-based alloy materials have higher material costs and process costs than Fe-based alloy materials that have been used in conventional 600°C class steam turbines. Therefore, research and development of Fe-based alloy materials with high endurance temperatures have been carried out.

例えば、特許文献1(特開2017-088963)には、優れた強度と鋳造性を両立するオーステナイト鋼およびそれを用いたオーステナイト鋼鋳造品が開示されている。 For example, Patent Document 1 (JP 2017-088963) discloses an austenitic steel that achieves both excellent strength and castability, and an austenitic steel casting using the same.

また、特許文献2(WO 2020/105496 A1)には、Ni基合金と同等以上の強度を有し、かつ酸素の影響を受けにくいオーステナイト鋼焼結材および該オーステナイト鋼焼結材を用いたタービン部材が開示されている。 In addition, Patent Document 2 (WO 2020/105496 A1) describes an austenitic steel sintered material that has strength equal to or higher than that of a Ni-based alloy and is less susceptible to oxygen, and a turbine using the austenitic steel sintered material A member is disclosed.

特開2017-088963号公報JP 2017-088963 A 国際公開第2020/105496号WO2020/105496

近年、複雑形状を有する最終製品をニアネットシェイプで製造する技術として、積層造形法(Additive Manufacturing、AM法)が注目され、耐熱合金部材へ適用する研究開発が活発に行われている。AM法による耐熱合金部材の製造は、複雑形状を有する部材であっても直接的に造形できることから、製造ワークタイムの短縮や製造歩留まりの向上(製造コストの低減)に寄与できる。 In recent years, the additive manufacturing (AM) method has attracted attention as a technology for near-net-shape manufacturing of final products with complex shapes, and research and development has been actively carried out to apply it to heat-resistant alloy members. The manufacturing of heat-resistant alloy members by the AM method can contribute to shortening manufacturing work times and improving manufacturing yields (reducing manufacturing costs) because even members with complex shapes can be directly formed.

特許文献1に記載のオーステナイト鋼鋳造品や特許文献2に記載のオーステナイト鋼焼結材は、Alloy 625やAlloy 718などの析出強化型Ni基合金材料と比べて、同等以上の機械的特性(例えば、高温0.2%耐力、10万時間クリープ耐用温度)を示す。しかしながら、特許文献1では鋳造時に鋳型を用いること、特許文献2では熱間等方圧加圧法(Hot Isostatic Pressing、HIP法)を適用する際に粉末を充填するカプセルが必要であり、複雑な形状を製造する場合、鋳型やHIP用カプセルを用意することが難しい。 The austenitic steel casting described in Patent Document 1 and the austenitic steel sintered material described in Patent Document 2 have mechanical properties equal to or higher than precipitation-strengthened Ni-based alloy materials such as Alloy 625 and Alloy 718 (for example, , high temperature 0.2% proof stress, 100,000 hours creep resistance temperature). However, in Patent Document 1, a mold is used during casting, and in Patent Document 2, a capsule to be filled with powder is required when applying Hot Isostatic Pressing (HIP method), and a complicated shape is required. When manufacturing , it is difficult to prepare a mold and a capsule for HIP.

したがって、本発明の目的は、従来技術のオーステナイト鋼鋳造品やオーステナイト鋼焼結材と同等以上の10万時間クリープ耐用温度を示すFe-Ni-Cr系合金製造物を提供することにある。 Accordingly, an object of the present invention is to provide an Fe--Ni--Cr alloy product exhibiting a 100,000-hour creep endurance temperature equal to or greater than that of conventional austenitic steel castings and austenitic steel sintered materials.

(I)本発明の一態様は、Fe-Ni-Cr系合金製造物であって、
25質量%以上50質量%以下のNi(ニッケル)と、
12質量%以上25質量%以下のCr(クロム)と、
3質量%以上6質量%以下のNb(ニオブ)と、
0.2質量%以上1.6質量%以下のTi(チタン)と、
0.5質量%以下のZr(ジルコニウム)と、
0.001質量%以上0.05質量%以下のB(ホウ素)と、
0.001質量%以上0.2質量%以下のN(窒素)とを含み、
残部がFeおよび不可避不純物からなる化学組成を有し、
母相結晶粒の平均粒径が10μm以上200μm以下の多結晶体であり、
前記母相結晶粒の中に、平均サイズが1μm以上5μm以下の偏析セルが形成しており、
前記母相結晶粒の中に、TiN相粒子が1μm以上2μm以下の平均粒子間距離で析出している、
ことを特徴とするFe-Ni-Cr系合金製造物を提供するものである。
(I) One aspect of the present invention is an Fe-Ni-Cr alloy product,
25% by mass or more and 50% by mass or less of Ni (nickel);
12% by mass or more and 25% by mass or less of Cr (chromium),
3% by mass or more and 6% by mass or less of Nb (niobium),
0.2% by mass or more and 1.6% by mass or less of Ti (titanium);
0.5% by mass or less of Zr (zirconium);
0.001% by mass or more and 0.05% by mass or less of B (boron);
0.001% by mass or more and 0.2% by mass or less of N (nitrogen),
having a chemical composition with the balance being Fe and unavoidable impurities,
A polycrystalline body with an average grain size of 10 μm or more and 200 μm or less of the mother phase crystal grains,
Segregation cells having an average size of 1 μm or more and 5 μm or less are formed in the mother phase crystal grains,
TiN phase particles are precipitated at an average interparticle distance of 1 μm or more and 2 μm or less in the mother phase crystal grains,
The present invention provides an Fe-Ni-Cr alloy product characterized by:

本発明は、上記のFe-Ni-Cr系合金製造物(I)において、以下のような改良や変更を加えることができる。
(i)前記母相結晶粒の結晶粒界上にラーベス相(Fe2Nb相)の粒子が析出している。
(ii)前記化学組成が、25質量%以上45質量%以下のNiと、12質量%以上20質量%以下のCrと、3質量%以上5質量%以下のNbと、0.3質量%以上1.3質量%以下のTiと、0.4質量%以下のZrと、0.001質量%以上0.02質量%以下のBと、0.001質量%以上0.1質量%以下のNとを含み、残部がFeおよび不可避不純物からなる。
(iii)前記化学組成が、30質量%以上40質量%以下のNiと、15質量%以上20質量%以下のCrと、3.5質量%以上4.5質量%以下のNbと、0.5質量%以上1.1質量%以下のTiと、0.3質量%以下のZrと、0.001質量%以上0.02質量%以下のBと、0.001質量%以上0.1質量%以下のNとを含み、残部がFeおよび不可避不純物からなる。
According to the present invention, the following improvements and changes can be made in the above Fe-Ni-Cr alloy product (I).
(i) Particles of the Laves phase (Fe 2 Nb phase) are precipitated on the grain boundaries of the parent phase crystal grains.
(ii) the chemical composition is 25% by mass to 45% by mass of Ni, 12% by mass to 20% by mass of Cr, 3% by mass to 5% by mass of Nb, and 0.3% by mass to 1.3% by mass; % or less Ti, 0.4% by mass or less Zr, 0.001% by mass or more and 0.02% by mass or less of B, 0.001% by mass or more and 0.1% by mass or less of N, and the balance consisting of Fe and unavoidable impurities.
(iii) the chemical composition is 30% by mass to 40% by mass of Ni, 15% by mass to 20% by mass of Cr, 3.5% by mass to 4.5% by mass of Nb, and 0.5% by mass to 1.1% by mass; % or less of Ti, 0.3 mass % or less of Zr, 0.001 mass % or more and 0.02 mass % or less of B, 0.001 mass % or more and 0.1 mass % or less of N, and the balance consists of Fe and unavoidable impurities.

(II)本発明の更に他の一態様は、蒸気タービン部材であって、
上記のFe-Ni-Cr系合金製造物からなることを特徴とする蒸気タービン部材を提供するものである。
(II) Yet another aspect of the present invention is a steam turbine member comprising:
The present invention provides a steam turbine member comprising the above Fe-Ni-Cr alloy product.

本発明は、上記の蒸気タービン部材(II)において、以下のような改良や変更を加えることができる。
(iv)前記蒸気タービン部材が、ケーシング部材またはロータディスクである。
The present invention can add the following improvements and changes to the above steam turbine member (II).
(iv) said steam turbine member is a casing member or a rotor disk;

本発明によれば、従来技術のオーステナイト鋼鋳造品やオーステナイト鋼焼結材と同等以上の10万時間クリープ耐用温度を示すFe-Ni-Cr系合金製造物を提供することができる。 According to the present invention, it is possible to provide an Fe--Ni--Cr alloy product exhibiting a 100,000-hour creep endurance temperature equal to or higher than that of conventional austenitic steel castings and austenitic steel sintered materials.

本発明に係るFe-Ni-Cr系合金製造物の製造方法の工程例を示すフロー図である。1 is a flowchart showing an example of steps of a method for manufacturing an Fe--Ni--Cr based alloy product according to the present invention; FIG. 時効処理工程S4で得られるFe-Ni-Cr系合金製造物の微細組織の一例を示す走査型電子顕微鏡(SEM)観察像である。4 is a scanning electron microscope (SEM) observation image showing an example of the microstructure of the Fe—Ni—Cr alloy product obtained in the aging treatment step S4. 時効処理工程S4で得られるFe-Ni-Cr系合金製造物の微細組織の他の一例を示すSEM観察像である。4 is an SEM observation image showing another example of the microstructure of the Fe—Ni—Cr alloy product obtained in the aging treatment step S4. 本発明のFe-Ni-Cr系合金製造物からなるケーシング部材の一例を示す斜視模式図である。1 is a schematic perspective view showing an example of a casing member made of the Fe--Ni--Cr alloy product of the present invention; FIG. 本発明のFe-Ni-Cr系合金製造物からなるロータディスクの一例を示す斜視模式図である。1 is a schematic perspective view showing an example of a rotor disk made of the Fe--Ni--Cr alloy product of the present invention; FIG. 参照例1の焼結体の微細組織の一例を示すSEM観察像である。4 is an SEM observation image showing an example of the microstructure of the sintered body of Reference Example 1. FIG. 700℃での0.2%耐力比(参照例3基準)と負荷400 MPaでの10万時間クリープ耐用温度比(参照例2基準)との関係を示すグラフである。2 is a graph showing the relationship between the 0.2% proof stress ratio at 700° C. (Reference Example 3 standard) and the 100,000-hour creep durability temperature ratio at a load of 400 MPa (Reference Example 2 standard). 700℃での0.2%耐力比(参照例3基準)と負荷200 MPaでの10万時間クリープ耐用温度比(参照例2基準)との関係を示すグラフである。2 is a graph showing the relationship between the 0.2% yield strength ratio at 700° C. (Reference Example 3 standard) and the creep durability temperature ratio for 100,000 hours at a load of 200 MPa (Reference Example 2 standard).

[本発明の基本思想]
本発明では、特許文献2に記載のオーステナイト鋼焼結材の合金組成をベースとし、10万時間クリープ耐用温度を更に向上させる技術、特に母相結晶粒内での析出強化の可能性について鋭意研究を行った。
[Basic idea of the present invention]
In the present invention, based on the alloy composition of the austenitic steel sintered material described in Patent Document 2, the technology to further improve the creep temperature for 100,000 hours, in particular, the possibility of precipitation strengthening within the matrix grains. did

具体的には、N含有率を所定の範囲に制御した合金粉末を作製し、当該合金粉末を用いて積層造形(付加製造とも言う)することにより、特殊な微細組織を有する付加製造体が得られること、そして当該付加製造体に所定の熱処理を施すことにより、母相結晶粒内にTiN粒子を微細分散析出させられることを見出した。本発明は、当該知見に基づいて完成されたものである。 Specifically, by producing an alloy powder in which the N content is controlled within a predetermined range and performing additive manufacturing (additive manufacturing) using the alloy powder, an additive manufacturing body having a special microstructure can be obtained. It was found that TiN particles can be finely dispersed and precipitated in the mother phase crystal grains by subjecting the addition product to a predetermined heat treatment. The present invention has been completed based on this finding.

以下、図面を参照しながら、本発明に係る実施形態を製造手順に沿って説明する。 Hereinafter, an embodiment according to the present invention will be described along the manufacturing procedure with reference to the drawings.

[Fe-Ni-Cr系合金製造物の製造方法]
図1は、本発明に係るFe-Ni-Cr系合金製造物の製造方法の工程例を示すフロー図である。図1に示したように、本発明に係るFe-Ni-Cr系合金製造物の製造方法は、概略的に、出発材料となるFe-Ni-Cr系合金粉末を用意する合金粉末用意工程S1と、用意したFe-Ni-Cr系合金粉末を用いて所望形状の付加製造体(AM体)を形成する選択的レーザ溶融工程S2と、形成したAM体に対してTiN粒子を生成・析出させる熱処理を行う溶体化処理工程S3および時効処理工程S4を有する。工程S3および工程S4でそれぞれ得られるAM-溶体化処理物品およびAM-時効処理物品は、本発明に係るFe-Ni-Cr系合金製造物の一形態となる。
[Manufacturing method of Fe-Ni-Cr alloy product]
FIG. 1 is a flow diagram showing an example of steps of a method for manufacturing an Fe--Ni--Cr alloy product according to the present invention. As shown in FIG. 1, the method for producing an Fe--Ni--Cr alloy product according to the present invention generally comprises an alloy powder preparation step S1 for preparing an Fe--Ni--Cr alloy powder as a starting material. Then, a selective laser melting step S2 of forming an additional manufactured body (AM body) of a desired shape using the prepared Fe-Ni-Cr alloy powder, and generating and precipitating TiN particles in the formed AM body. It has a solution treatment step S3 for heat treatment and an aging treatment step S4. The AM-solution treated article and the AM-aged article respectively obtained in steps S3 and S4 are one form of the Fe--Ni--Cr based alloy product according to the present invention.

なお、必要に応じて、工程S4で得られたAM-時効処理物品に対して、表面処理層(例えば、熱遮蔽被覆:TBC)を形成したり表面仕上げをしたりする仕上工程S5を更に行ってもよい。工程S5は、必須の工程ではないが、Fe-Ni-Cr系合金製造物の形状や使用環境を考慮して適宜行えばよい。工程S5を経たAM-時効処理物品も、本発明に係るFe-Ni-Cr系合金製造物の一形態となる。表面処理層の形成が熱処理を伴うものであり、かつ当該熱処理温度が工程S4の温度条件に合致する場合は、工程S4と工程S5とを同時に行うことに相当する。 If necessary, the AM-aged article obtained in step S4 is further subjected to a finishing step S5 for forming a surface treatment layer (for example, thermal barrier coating: TBC) or finishing the surface. may Step S5 is not an essential step, but may be performed as appropriate in consideration of the shape of the Fe--Ni--Cr alloy product and the usage environment. The AM-aged article that has undergone step S5 is also one form of the Fe--Ni--Cr alloy product according to the present invention. If the formation of the surface treatment layer involves heat treatment and the heat treatment temperature matches the temperature conditions of step S4, this corresponds to performing step S4 and step S5 at the same time.

以下、各工程をより詳細に説明する。 Each step will be described in more detail below.

(合金粉末用意工程)
本工程S1は、所定の合金組成を有するFe-Ni-Cr系合金粉末を用意する工程である。該合金組成は、25質量%以上50質量%以下のNiと、12質量%以上25質量%以下のCrと、3質量%以上6質量%以下のNbと、0.2質量%以上1.6質量%以下のTiと、0.5質量%以下のZrと、0.001質量%以上0.05質量%以下のBと、0.001質量%以上0.2質量%以下のNとを含み、残部がFeおよび不可避不純物からなることが好ましい。
(Alloy powder preparation process)
This step S1 is a step of preparing Fe—Ni—Cr alloy powder having a predetermined alloy composition. The alloy composition comprises 25% by mass to 50% by mass of Ni, 12% by mass to 25% by mass of Cr, 3% by mass to 6% by mass of Nb, and 0.2% by mass to 1.6% by mass of It preferably contains Ti, 0.5% by mass or less of Zr, 0.001% by mass or more and 0.05% by mass or less of B, 0.001% by mass or more and 0.2% by mass or less of N, and the balance being Fe and unavoidable impurities.

N含有率を好ましい範囲内に制御することにより、最終的な合金製造物において母相結晶粒内にTiN粒子が微細分散析出する。その結果、合金製造物の良好な機械的特性(高い10万時間クリープ耐用温度)に貢献することができる。 By controlling the N content within a preferred range, TiN particles are finely dispersed and precipitated within the matrix grains in the final alloy product. As a result, it can contribute to good mechanical properties (high 100,000-hour creep endurance temperature) of alloy products.

合金粉末を用意する方法・手法としては、例えば、所望の組成となるように原料を混合・溶解・凝固して母合金塊(マスターインゴット)を作製する母合金塊作製素工程(S1a)と、該母合金塊から合金粉末を形成するアトマイズ素工程(S1b)とを行うことが好ましい。N含有率およびO含有率の制御は、アトマイズ素工程S1bで行うことが好ましい。アトマイズ方法は、基本的に従前の方法・手法を利用できる。例えば、アトマイズガス媒体として不活性ガス(例えば、Ar(アルゴン)ガス、N2ガス)を用いたガスアトマイズ法や遠心力アトマイズ法を好ましく用いることができる。 Methods and techniques for preparing the alloy powder include, for example, a master alloy ingot preparation step (S1a) in which raw materials are mixed, melted, and solidified so as to have a desired composition to prepare a master alloy ingot (master ingot); An atomizing step (S1b) of forming alloy powder from the mother alloy ingot is preferably performed. It is preferable to control the N content and O content in the atomizing step S1b. As for the atomizing method, conventional methods and methods can be used basically. For example, a gas atomization method using an inert gas (eg, Ar (argon) gas, N 2 gas) as an atomization gas medium, or a centrifugal atomization method can be preferably used.

合金粉末の粒径は、次工程の選択的レーザ溶融工程S2におけるハンドリング性や合金粉末床の充填性の観点から、5μm以上100μm以下が好ましく、10μm以上70μm以下がより好ましく、10μm以上50μm以下が更に好ましい。合金粉末の粒径が5μm未満になると、次工程S2において合金粉末の流動性が低下し(合金粉末床の形成性が低下し)、AM体の形状精度が低下する要因となる。一方、合金粉末の粒径が100μm超になると、次工程S2において合金粉末床の局所溶融・急速凝固の制御が難しくなり、合金粉末の溶融が不十分になったりAM体の表面粗さが増加したりする要因となる。 The particle size of the alloy powder is preferably 5 μm or more and 100 μm or less, more preferably 10 μm or more and 70 μm or less, and more preferably 10 μm or more and 50 μm or less, from the viewpoints of handling property and filling property of the alloy powder bed in the next selective laser melting step S2. More preferred. When the particle size of the alloy powder is less than 5 μm, the fluidity of the alloy powder is lowered (the formability of the alloy powder bed is lowered) in the next step S2, which is a factor in lowering the shape accuracy of the AM body. On the other hand, when the grain size of the alloy powder exceeds 100 μm, it becomes difficult to control the local melting and rapid solidification of the alloy powder bed in the next step S2, resulting in insufficient melting of the alloy powder and an increase in the surface roughness of the AM body. It becomes a factor to do.

上記のことから、合金粉末の粒径を5μm以上100μm以下の範囲に分級する合金粉末分級素工程(S1c)を行うことは、好ましい。なお、本発明においては、得られた合金粉末の粒径分布を測定した結果、所望の範囲内にあることを確認した場合も、本素工程S1cを行ったものと見なす。 In view of the above, it is preferable to perform the alloy powder classification step (S1c) for classifying the alloy powder so that the particle size of the alloy powder falls within the range of 5 μm or more and 100 μm or less. In the present invention, when the particle size distribution of the obtained alloy powder is measured and confirmed to be within the desired range, it is considered that the main step S1c has been performed.

つぎに、合金組成について説明する。 Next, the alloy composition will be explained.

N:0.001質量%以上0.2質量%以下
N成分は、TiN相粒子を生成するための必須成分である。母相結晶粒内にTiN相粒子を微細分散析出させることによって、最終的な合金製造物で機械的特性の向上に貢献する。
N: 0.001% by mass or more and 0.2% by mass or less
The N component is an essential component for producing TiN phase particles. By finely dispersing and precipitating TiN phase particles in the matrix grains, the final alloy product contributes to the improvement of mechanical properties.

N含有率は、0.001質量%(10 ppm)以上0.2質量%(2000 ppm)以下が好ましい。N含有率が0.001質量%未満になると、TiN相粒子の生成量が不十分になり、機械的特性の向上の作用効果が得られない。ただし、特許文献2とほぼ同じになるだけであり、負の問題は生じない。一方、N含有率が0.2質量%超になると、機械的特性の低下要因になる。N含有率は、0.001質量%以上0.1質量%以下がより好ましい。 The N content is preferably 0.001% by mass (10 ppm) or more and 0.2% by mass (2000 ppm) or less. If the N content is less than 0.001% by mass, the amount of TiN phase particles generated becomes insufficient, and the effect of improving mechanical properties cannot be obtained. However, it is only substantially the same as in Patent Document 2, and no negative problem arises. On the other hand, when the N content exceeds 0.2% by mass, it becomes a factor of deterioration of mechanical properties. The N content is more preferably 0.001% by mass or more and 0.1% by mass or less.

O:0.003質量%以上0.05質量%以下
O成分は、通常は不純物として扱われ、できるだけ低減しようとする成分であるが、本発明においては、母相結晶粒の過度な粗大化を抑制に寄与する成分である。O成分は、母相結晶粒の粒界領域で酸化物皮膜や酸化物粒子を生成すると考えられる。
O: 0.003% by mass or more and 0.05% by mass or less
The O component is usually treated as an impurity and should be reduced as much as possible, but in the present invention, it is a component that contributes to suppressing excessive coarsening of the mother phase crystal grains. The O component is thought to form oxide films and oxide particles in the grain boundary regions of the matrix crystal grains.

O含有率は、0.003質量%以上0.05質量%以下が好ましい。O含有率が0.003質量%未満になると、酸化物皮膜や酸化物粒子の生成量が不十分になり、母相結晶粒の粗大化抑制の作用効果が得られない。ただし、特許文献2とほぼ同じになるだけであり、負の問題は生じない。一方、O含有率が0.05質量%超になると、機械的特性の低下要因になる。 The O content is preferably 0.003% by mass or more and 0.05% by mass or less. If the O content is less than 0.003% by mass, the amount of oxide films and oxide particles produced becomes insufficient, and the effect of suppressing coarsening of the matrix crystal grains cannot be obtained. However, it is only substantially the same as in Patent Document 2, and no negative problem arises. On the other hand, when the O content exceeds 0.05% by mass, it causes deterioration of mechanical properties.

Ti:0.2質量%以上1.6質量%以下
Ti成分は、TiN相粒子を生成するための必須成分である。上述したように、母相結晶粒内にTiN相粒子を微細分散析出させることによって、最終的な合金製造物で機械的特性の向上に貢献する。また、後述する金属間化合物相(δ相:Ni3Nb相)の生成を助長する作用もある。δ相粒子も母相結晶粒内に析出することで、粒内強化に寄与する。
Ti: 0.2% by mass or more and 1.6% by mass or less
A Ti component is an essential component for producing TiN phase particles. As described above, the finely dispersed precipitation of TiN phase particles in the matrix crystal grains contributes to the improvement of the mechanical properties of the final alloy product. It also has the effect of promoting the formation of an intermetallic compound phase (δ phase: Ni 3 Nb phase), which will be described later. The δ-phase particles also precipitate in the matrix grains, thereby contributing to intragranular strengthening.

Ti含有率は、0.2質量%以上1.6質量%以下が好ましい。Ti含有率を0.2質量%以上とすることで、機械的特性の向上に貢献するTiN析出量を確保できる。一方、Ti含有率が1.6質量%超になると、Ti酸化物相が生成・析出し易くなって機械的特性の低下要因になる。Ti含有率は、0.3質量%以上1.3質量%以下がより好ましく、0.5質量%以上1.1質量%以下が更に好ましい。 The Ti content is preferably 0.2% by mass or more and 1.6% by mass or less. By setting the Ti content to 0.2% by mass or more, it is possible to secure a TiN precipitation amount that contributes to the improvement of mechanical properties. On the other hand, when the Ti content exceeds 1.6% by mass, a Ti oxide phase is likely to be generated and precipitated, which causes deterioration of mechanical properties. The Ti content is more preferably 0.3% by mass or more and 1.3% by mass or less, and still more preferably 0.5% by mass or more and 1.1% by mass or less.

Ni:25質量%以上50質量%以下
Ni成分は、母相となるオーステナイト相(γ相)を安定化する成分である。また、δ相を構成する成分でもある。δ相が生成し母相結晶粒内に析出することで、粒内強化に寄与する。γ相安定の観点から、Ni含有率は、25質量%以上50質量%以下が好ましく、25質量%以上45質量%以下がより好ましく、30質量%以上40質量%以下が更に好ましい。
Ni: 25% by mass or more and 50% by mass or less
The Ni component is a component that stabilizes the austenite phase (γ phase) that serves as the parent phase. It is also a component that constitutes the δ phase. The δ phase is generated and precipitates inside the matrix crystal grains, contributing to intragranular strengthening. From the viewpoint of γ-phase stability, the Ni content is preferably 25% by mass or more and 50% by mass or less, more preferably 25% by mass or more and 45% by mass or less, and even more preferably 30% by mass or more and 40% by mass or less.

Cr:12質量%以上25質量%以下
Cr成分は、耐酸化性および耐水蒸気酸化性を向上させる成分である。Cr含有率は、12質量%以上25質量%以下が好ましい。Cr含有率を12質量%以上とすることで、十分な耐酸化性および耐水蒸気酸化性を得ることができる。一方、Cr含有率が25質量%超になると、望まない金属間化合物相(例えばσ相:FeとCrとをベースとする金属間化合物相)が析出し、延性や靱性の低下を招く(いわゆるσ相脆化)。Cr含有率は、12質量%以上20質量%以下がより好ましく、15質量%以上20質量%以下が更に好ましい。
Cr: 12% by mass or more and 25% by mass or less
The Cr component is a component that improves oxidation resistance and steam oxidation resistance. The Cr content is preferably 12% by mass or more and 25% by mass or less. By setting the Cr content to 12% by mass or more, sufficient oxidation resistance and steam oxidation resistance can be obtained. On the other hand, when the Cr content exceeds 25% by mass, undesirable intermetallic compound phases (for example, σ phase: intermetallic compound phase based on Fe and Cr) are precipitated, leading to a decrease in ductility and toughness (so-called σ phase embrittlement). The Cr content is more preferably 12% by mass or more and 20% by mass or less, and even more preferably 15% by mass or more and 20% by mass or less.

Nb:3質量%以上6質量%以下
Nb成分は、δ相およびラーベス相(Fe2Nb相)を生成するための必須成分である。δ相は、前述したように、主に母相結晶粒内に析出して粒内強化に寄与する。ラーベス相は、主に母相結晶粒の粒界上に析出して粒界強化に寄与する。Nb含有率は、3質量%以上6質量%以下が好ましい。Nb含有率を3質量%以上とすることで、クリープ特性の向上に貢献する。一方、Nb含有率が6質量%超になると、δ相およびラーベス相の析出粒子が過剰に粗大化して、それぞれの作用効果が失われる。Nb含有率は、3質量%以上5質量%以下がより好ましく、3.5質量%以上4.5質量%以下が更に好ましい。
Nb: 3% by mass or more and 6% by mass or less
The Nb component is an essential component for producing the δ phase and the Laves phase (Fe 2 Nb phase). As described above, the δ phase mainly precipitates inside the matrix crystal grains and contributes to intragranular strengthening. The Laves phase mainly precipitates on the grain boundaries of the matrix crystal grains and contributes to grain boundary strengthening. The Nb content is preferably 3% by mass or more and 6% by mass or less. The Nb content of 3% by mass or more contributes to the improvement of creep properties. On the other hand, when the Nb content exceeds 6% by mass, the precipitated particles of the δ phase and the Laves phase become excessively coarse, and their effects are lost. The Nb content is more preferably 3% by mass or more and 5% by mass or less, and even more preferably 3.5% by mass or more and 4.5% by mass or less.

Zr:0.5質量%以下
Zr成分は、母相結晶粒の粒界上に析出するラーベス相の生成を助長する成分である。Zr成分は、必須成分ではないため含有させなくてもよいが、含有させる場合、Zr含有率は、0.5質量%以下が好ましく、0.4質量%以下がより好ましく、0.3質量%以下が更に好ましい。
Zr: 0.5% by mass or less
The Zr component is a component that promotes the formation of the Laves phase that precipitates on the grain boundaries of the matrix crystal grains. Since the Zr component is not an essential component, it may not be contained, but if it is contained, the Zr content is preferably 0.5% by mass or less, more preferably 0.4% by mass or less, and even more preferably 0.3% by mass or less.

B:0.001質量%以上0.05質量%以下
B成分は、母相結晶粒の粒界割れの抑制に効果のある成分であると共に、母相結晶粒の粒界上に析出するラーベス相の生成を助長する成分でもある。B含有率は、0.001質量%以上0.05質量%以下が好ましい。B含有率を0.001質量%以上とすることでそれらの作用効果が得られる。一方、B含有率が0.05質量%超になると、局所的に融点の低下が起こり易くクリープ特性が劣化する。B含有率は、0.001質量%以上0.02質量%以下がより好ましい。
B: 0.001% by mass or more and 0.05% by mass or less
The B component is a component that is effective in suppressing intergranular cracking of the mother phase crystal grains, and is also a component that promotes the formation of the Laves phase that precipitates on the grain boundaries of the mother phase crystal grains. The B content is preferably 0.001% by mass or more and 0.05% by mass or less. By setting the B content to 0.001% by mass or more, those effects can be obtained. On the other hand, if the B content exceeds 0.05% by mass, the melting point tends to decrease locally, deteriorating the creep properties. The B content is more preferably 0.001% by mass or more and 0.02% by mass or less.

(選択的レーザ溶融工程)
選択的レーザ溶融工程S2は、用意したFe-Ni-Cr系合金粉末を用いて選択的レーザ溶融(SLM)法により所望形状のAM体を形成する工程である。具体的には、Fe-Ni-Cr系合金粉末を敷き詰めて所定厚さの合金粉末床を用意する合金粉末床用意素工程(S2a)と、合金粉末床の所定の領域にレーザ光を照射して該領域のFe-Ni-Cr系合金粉末を局所溶融・急速凝固させるレーザ溶融凝固素工程(S2b)と、を繰り返してAM体を形成する工程である。
(Selective laser melting process)
The selective laser melting step S2 is a step of forming an AM body having a desired shape by a selective laser melting (SLM) method using the prepared Fe--Ni--Cr alloy powder. Specifically, an alloy powder bed preparatory step (S2a) in which an alloy powder bed of a predetermined thickness is prepared by spreading Fe-Ni-Cr alloy powder, and a laser beam is irradiated to a predetermined area of the alloy powder bed. and a laser melting and solidification step (S2b) for locally melting and rapidly solidifying the Fe--Ni--Cr alloy powder in the region, and repeating to form an AM body.

本工程S2においては、最終的なFe-Ni-Cr系合金製造物で望ましい微細組織を得るために、合金粉末床の局所溶融・急速凝固を制御してAM体の微細組織を制御する。 In this step S2, local melting and rapid solidification of the alloy powder bed are controlled to control the microstructure of the AM body in order to obtain the desired microstructure in the final Fe--Ni--Cr alloy product.

レーザ光の出力P(単位:W)およびレーザ光の走査速度S(単位:mm/s)は、基本的にレーザ装置の構成に依存するが、例えば「10 ≦P≦ 1000」および「10 ≦S≦ 7000」の範囲内で選定すればよい。P/S(単位:W・s/mm=J/mm)は局所入熱量に相当し、局所入熱量の制御は冷却速度の制御に相当する。
The laser light output P (unit: W) and the laser light scanning speed S (unit: mm/s) basically depend on the configuration of the laser device. S ≤ 7000”. P/S (unit: W·s/mm=J/mm) corresponds to local heat input, and control of local heat input corresponds to control of cooling rate.

(溶体化処理工程)
溶体化処理工程S3は、形成したFe-Ni-Cr系合金AM体の母相結晶粒の中にTiN相粒子を微細分散析出させる熱処理工程である。溶体化処理の温度は、1000℃以上1300℃以下が好ましい。溶体化処理における保持時間に特段の限定はなく、被熱処理体の体積/熱容量や温度を考慮して適宜設定すればよい。溶体化処理後の冷却方法にも特段の限定はなく、水冷、油冷、空冷、炉冷のいずれでも構わない。
(Solution treatment process)
The solution treatment step S3 is a heat treatment step for finely dispersing and precipitating TiN phase particles in the mother phase crystal grains of the formed Fe—Ni—Cr alloy AM body. The temperature of the solution treatment is preferably 1000°C or higher and 1300°C or lower. The holding time in the solution treatment is not particularly limited, and may be appropriately set in consideration of the volume/heat capacity and temperature of the object to be heat treated. There is no particular limitation on the cooling method after the solution treatment, and any of water cooling, oil cooling, air cooling, and furnace cooling may be used.

溶体化処理を施すことにより、偏析セルの境界領域に偏析していた成分が境界上で(境界に沿って)拡散・化合してTiN相粒子を形成し始め、母相結晶粒の全体(結晶粒内および結晶粒界上)に微細に分布した状態になる。 By applying the solution heat treatment, the components segregated in the boundary region of the segregation cells begin to diffuse and combine on the boundary (along the boundary) to form TiN phase particles, and the entire matrix grain (crystal finely distributed within grains and on grain boundaries).

TiN相粒子の生成・析出と同時に母相結晶粒の再結晶が生じるが、含有O成分に起因する酸化物皮膜や酸化物粒子によって母相結晶粒の過度の粗大化が抑制される。また、母相結晶粒の再結晶によって、SLM工程S2の急速凝固の際に生じる可能性のあるAM体の残留内部ひずみを緩和することができ、合金製造物の使用時における望まない変形を防止することができる。工程S3で得られるAM-溶体化処理物品は、本発明に係るFe-Ni-Cr系合金製造物の一形態となる。 Recrystallization of the matrix phase grains occurs simultaneously with the generation and precipitation of the TiN phase particles, but excessive coarsening of the matrix phase grains is suppressed by oxide films and oxide particles resulting from the contained O component. Also, the recrystallization of the matrix grains can relieve the residual internal strain of the AM body that may occur during the rapid solidification of the SLM step S2, preventing unwanted deformation in service of the alloy product. can do. The AM-solution treated article obtained in step S3 is one form of the Fe--Ni--Cr based alloy product according to the present invention.

(時効処理工程)
時効処理工程S4は、溶体化処理物品に対して時効処理を施す工程である。時効処理条件としては、600℃以上1000℃以下の温度範囲が好ましい。時効処理における保持時間に特段の限定はなく、被熱処理体の体積/熱容量や温度を考慮して適宜設定すればよい。時効処理後の冷却方法にも特段の限定はなく、水冷、油冷、空冷、炉冷のいずれでも構わない。
(Aging treatment process)
The aging treatment step S4 is a step of subjecting the solution-treated article to aging treatment. As the aging treatment conditions, a temperature range of 600°C or higher and 1000°C or lower is preferable. The holding time in the aging treatment is not particularly limited, and may be appropriately set in consideration of the volume/heat capacity and temperature of the object to be heat treated. There is no particular limitation on the cooling method after the aging treatment, and any of water cooling, oil cooling, air cooling, and furnace cooling may be used.

図2は、時効処理工程S4で得られるFe-Ni-Cr系合金製造物の微細組織の一例を示す走査型電子顕微鏡(SEM)観察像である。当該観察試料は、Fe-Ni-Cr系合金製造物の断面を研磨した後、王水エッチングしたものである。 FIG. 2 is a scanning electron microscope (SEM) observation image showing an example of the microstructure of the Fe—Ni—Cr alloy product obtained in the aging treatment step S4. The observation sample was obtained by polishing the cross section of the Fe--Ni--Cr alloy product and then etching it with aqua regia.

Fe-Ni-Cr系合金製造物は、母相結晶粒の中に、平均サイズが1μm以上5μm以下の偏析セルが形成している。なお、偏析セルのサイズとは、基本的に長径と短径との平均と定義するが、長径と短径とのアスペクト比が3以上の場合は、短径の2倍を採用するものとする。 In the Fe—Ni—Cr alloy product, segregation cells having an average size of 1 μm or more and 5 μm or less are formed in the mother phase crystal grains. The size of the segregation cell is basically defined as the average of the major axis and the minor axis, but if the aspect ratio between the major axis and the minor axis is 3 or more, the size of the segregation cell is twice the minor axis. .

また、母相結晶粒の粒界上にFe2Nb相(ラーベス相)の粒子が析出している。母相結晶粒のサイズは、最終的な合金製造物の機械的特性の観点から、平均粒径10μm以上200μm以下に制御されることが好ましい。 In addition, particles of the Fe 2 Nb phase (Laves phase) are precipitated on the grain boundaries of the matrix crystal grains. From the viewpoint of the mechanical properties of the final alloy product, the size of the parent phase crystal grains is preferably controlled to an average grain size of 10 μm or more and 200 μm or less.

本発明では、合金構成成分の一部が細胞壁のような境界領域に偏析して細胞状の微細組織を形成しているものを偏析セルと称する。偏析セルの境界領域と内部とでエッチング速度が異なっていることから(均等にエッチングされていないことから)、合金構成成分に何かしらの偏析があることは明らかである。 In the present invention, a segregation cell refers to a cell in which a part of the alloy constituents is segregated in a boundary region such as a cell wall to form a cell-like fine structure. It is evident that there is some segregation in the alloy constituents, as the etch rate is different between the boundary region and the interior of the segregation cell (not evenly etched).

走査透過型電子顕微鏡-エネルギー分散型X線分析装置(STEM-EDX)を用いて偏析セルの組成分布を調査したところ、Fe-Ni-Cr系合金の構成成分の一部(少なくともTi成分およびN成分)が偏析セルの境界領域(微小セルの外周領域、細胞壁のような領域)に偏析していることを確認した。 A scanning transmission electron microscope-energy dispersive X-ray spectrometer (STEM-EDX) was used to investigate the composition distribution of the segregation cells. component) segregated in the boundary region of the segregation cells (peripheral region of microcells, region such as cell wall).

図3は、時効処理工程S4で得られるFe-Ni-Cr系合金製造物の微細組織の他の一例を示すSEM観察像である。当該観察試料は、Fe-Ni-Cr系合金製造物の断面を研磨した後、シュウ酸エッチングを行ったものである。 FIG. 3 is an SEM observation image showing another example of the microstructure of the Fe—Ni—Cr alloy product obtained in the aging treatment step S4. The observation sample was obtained by polishing the cross section of the Fe--Ni--Cr alloy product and then subjecting it to oxalic acid etching.

図3に示したように、当該微細組織は、平均粒径10μm以上200μm以下の母相結晶粒の中にTiN相粒子が1μm以上2μm以下の平均粒子間距離で析出している。また、粒界上にラーベス相粒子が析出していることが確認される。なお、シュウ酸エッチングは、王水エッチングに比して腐食性/酸化性が低いため母相結晶粒内の偏析セルの確認は困難となるが、母相結晶粒界や析出粒子の確認には適したエッチングである。 As shown in FIG. 3, in the microstructure, TiN phase particles are precipitated at an average interparticle distance of 1 μm or more and 2 μm or less in mother phase crystal grains of an average grain size of 10 μm or more and 200 μm or less. It is also confirmed that Laves phase grains are precipitated on the grain boundaries. Oxalic acid etching is less corrosive/oxidizing than aqua regia etching, making it difficult to confirm segregation cells within the matrix grains. suitable etching.

(仕上工程)
前述したように、仕上工程S5は、工程S4を経たAM-時効処理物品に対して、表面処理層を形成したり表面仕上げをしたりする工程である。本工程S5は必須の工程ではないが、Fe-Ni-Cr系合金製造物の用途・使用環境に応じて適宜行えばよい。表面処理層の形成や表面仕上げに特段の限定はなく、従前の方法を適宜利用できる。本工程S5を経たAM-時効処理物品も、本発明に係るFe-Ni-Cr系合金製造物の一形態となる。
(Finishing process)
As described above, the finishing step S5 is a step of forming a surface treatment layer or finishing the surface of the AM-aged article that has undergone the step S4. This step S5 is not an essential step, but may be performed as appropriate according to the application and usage environment of the Fe--Ni--Cr alloy product. Formation of the surface treatment layer and surface finishing are not particularly limited, and conventional methods can be used as appropriate. The AM-aged article that has undergone this step S5 is also one form of the Fe--Ni--Cr alloy product according to the present invention.

[Fe-Ni-Cr系合金製造物からなる蒸気タービン部材]
図4は、本発明のFe-Ni-Cr系合金製造物からなるケーシング部材の一例を示す斜視模式図であり、図5は、本発明のFe-Ni-Cr系合金製造物からなるロータディスクの一例を示す斜視模式図である。本発明のFe-Ni-Cr系合金製造物は、従来のオーステナイト鋼焼結材と同等以上の10万時間クリープ耐用温度を示すことから、蒸気タービン部材としてケーシング部材10(図4参照)やロータディスク11(図5参照)に好適である。
[Steam turbine member made of Fe-Ni-Cr alloy product]
FIG. 4 is a schematic perspective view showing an example of a casing member made of the Fe--Ni--Cr alloy product of the present invention, and FIG. 5 is a rotor disk made of the Fe--Ni--Cr alloy product of the present invention. It is a perspective schematic diagram showing an example of. The Fe-Ni-Cr-based alloy product of the present invention exhibits a 100,000-hour creep endurance temperature equal to or higher than that of a conventional austenitic steel sintered material. Suitable for disk 11 (see FIG. 5).

以下、実験例により本発明をさらに具体的に説明する。なお、本発明はこれらの実験例に限定されるものではない。 Hereinafter, the present invention will be described more specifically by way of experimental examples. The present invention is not limited to these experimental examples.

[実験1]
(実施例1~2および参照例1~3の作製)
後述する表1に示す化学組成を有するFe-Ni-Cr系合金粉末(実施例1、2および参照例1)を用意した(合金粉末用意工程S1)。具体的には、原料を混合した後、真空高周波誘導溶解法により溶解・鋳造して母合金塊(質量:約2 kg)を作製する母合金塊作製素工程S1aを行った。次に、該母合金塊を再溶解して、ガスアトマイズ法により合金粉末を形成するアトマイズ素工程S1bを行った。
[Experiment 1]
(Preparation of Examples 1-2 and Reference Examples 1-3)
Fe—Ni—Cr alloy powders (Examples 1 and 2 and Reference Example 1) having chemical compositions shown in Table 1, which will be described later, were prepared (alloy powder preparation step S1). Specifically, after mixing the raw materials, a master alloy ingot producing step S1a was performed in which the raw materials were melted and cast by a vacuum high-frequency induction melting method to produce a master alloy ingot (mass: about 2 kg). Next, an atomizing step S1b was performed in which the master alloy ingot was melted again to form an alloy powder by a gas atomizing method.

実施例1では、アトマイズ素工程S1bをN2ガス雰囲気中で行った。実施例2および参照例1では、アトマイズ素工程S1bをAr(アルゴン)雰囲気中で行った。得られた各合金粉末に対して、合金粉末の粒径を制御するための合金粉末分級素工程S1cを行って粉末粒径を15~45μmの範囲に分級した。 In Example 1, the atomizing step S1b was performed in an N 2 gas atmosphere. In Example 2 and Reference Example 1, the atomizing step S1b was performed in an Ar (argon) atmosphere. The alloy powder classifying step S1c for controlling the particle size of the alloy powder was performed on each of the obtained alloy powders to classify the powder particle size in the range of 15 to 45 μm.

実施例1および実施例2の合金粉末を用いてSLM法によりAM体を形成した(選択的レーザ溶融工程S2)。SLM条件は、レーザ光の出力Pを95 W、合金粉末床の厚さhを25μmとし、レーザ光の走査速度Sを600 mm/sとした。得られたAM体に対して1160℃で溶体化処理を施した(溶体化処理工程S3)。次に、溶体化処理物品に対して、900℃で時効処理を施し(時効処理工程S4)、実施例1および実施例2のFe-Ni-Cr系合金製造物の試料を作製した。 Using the alloy powders of Examples 1 and 2, AM bodies were formed by the SLM method (selective laser melting step S2). The SLM conditions were a laser light output P of 95 W, an alloy powder bed thickness h of 25 μm, and a laser light scanning speed S of 600 mm/s. The obtained AM body was subjected to solution treatment at 1160° C. (solution treatment step S3). Next, the solution-treated articles were subjected to aging treatment at 900° C. (aging treatment step S4), and samples of Fe—Ni—Cr alloy products of Examples 1 and 2 were produced.

一方、参照例1の合金粉末を用いて、特許文献2の記載に沿って熱間等方圧プレス(温度:1160℃、圧力:100 MPa)を行って、参照例1の焼結体の試料を作製した。 On the other hand, using the alloy powder of Reference Example 1, hot isostatic pressing (temperature: 1160 ° C., pressure: 100 MPa) was performed according to the description of Patent Document 2 to obtain a sintered body sample of Reference Example 1. was made.

また、従来の析出強化型Ni基合金材料の例として、市販のAlloy 718(鍛造材)およびAlloy 625(鋳造材)を用意し、実施例1および実施例2と比較した。Alloy 718およびAlloy 625の化学組成を表1に併記する。 As examples of conventional precipitation-strengthened Ni-based alloy materials, commercially available Alloy 718 (forged material) and Alloy 625 (cast material) were prepared and compared with Example 1 and Example 2. The chemical compositions of Alloy 718 and Alloy 625 are listed in Table 1 together.

Figure 2023120710000002
Figure 2023120710000002

[実験2]
(微細組織観察)
実施例1のFe-Ni-Cr系合金製造物の試料、および参照例1の焼結体の試料から、それぞれ微細組織観察用の試験片を採取し、SEMによる断面組織観察を行った。図2および図3は、実施例1のFe-Ni-Cr系合金製造物のSEM観察像であり、図6は、参照例1の焼結体の微細組織の一例を示すSEM観察像である。参照例1の試料は、焼結体の断面を研磨した後、シュウ酸エッチングを行ったものである。
[Experiment 2]
(Microstructure observation)
From the sample of the Fe--Ni--Cr based alloy product of Example 1 and the sample of the sintered body of Reference Example 1, test pieces for microstructure observation were taken, and cross-sectional structure observation was performed by SEM. 2 and 3 are SEM observation images of the Fe—Ni—Cr alloy product of Example 1, and FIG. 6 is an SEM observation image showing an example of the microstructure of the sintered body of Reference Example 1. . The sample of Reference Example 1 was subjected to oxalic acid etching after the cross section of the sintered body was polished.

図2、図3および図6を比較すると、凝固体である実施例1(図2~3)と固相焼結体である参照例1(図6)とは、母相結晶粒内でのTiN相粒子の分散析出の有無の点で全く異なっていることが確認される。参照例1の固相焼結体では、ラーベス相粒子が母相結晶粒界に沿って連なるように(数珠つなぎ状に)析出しているが、母相結晶粒内でのTiN相粒子の分散析出は認められない。なお、図6には示していないが、TiN粒子は母相結晶粒界で析出していることが確認された。 Comparing FIGS. 2, 3, and 6, Example 1 (FIGS. 2-3), which is a solidified body, and Reference Example 1 (FIG. 6), which is a solid phase sintered body, are different in the matrix crystal grains. It is confirmed that there is a complete difference in the presence or absence of dispersed precipitation of TiN phase particles. In the solid-phase sintered body of Reference Example 1, the Laves phase particles are precipitated so as to be linked (in a string of beads) along the grain boundaries of the mother phase, but the TiN phase particles are dispersed within the mother phase crystal grains. No precipitation is observed. Although not shown in FIG. 6, it was confirmed that TiN particles were precipitated at grain boundaries of the parent phase.

これに対し、実施例1の凝固体では、母相結晶粒の粒界上に析出しているラーベス相粒子の数量が相対的に低くなっている代わりに、母相結晶粒内でTiN相粒子の微細分散析出が認められる。すなわち、実施例1と参照例1とは、製造方法の差異から、微細組織に大きな差異があることが確認された。なお、実施例2においても、実施例1と同様の微細組織となることが確認された。 On the other hand, in the solidified body of Example 1, the number of Laves phase particles precipitated on the grain boundaries of the mother phase crystal grains is relatively low, but TiN phase particles within the mother phase crystal grains finely dispersed precipitation is observed. That is, it was confirmed that Example 1 and Reference Example 1 had a large difference in microstructure due to the difference in the manufacturing method. Also in Example 2, it was confirmed that the same microstructure as in Example 1 was obtained.

[実験3]
(機械的特性の測定)
実験1で作製した実施例1および参照例1~3の試料に対して、0.2%耐力および10万時間クリープ耐用温度の測定を行った。0.2%耐力の測定はJIS G 0567に基づいて行い、クリープ試験はJIS Z 22761に基づいて行った。
[Experiment 3]
(Measurement of mechanical properties)
For the samples of Example 1 and Reference Examples 1 to 3 prepared in Experiment 1, 0.2% proof stress and 100,000 hour creep endurance temperature were measured. The 0.2% yield strength was measured according to JIS G 0567, and the creep test was performed according to JIS Z 22761.

図7Aは、参照例3を基準とした700℃での0.2%耐力比(MPa/MPa)と参照例2を基準とした負荷400 MPaでの10万時間クリープ耐用温度比(℃/℃)との関係を示すグラフであり、図7Bは、参照例3を基準とした700℃での0.2%耐力比(MPa/MPa)と参照例2を基準とした負荷200 MPaでの10万時間クリープ耐用温度比(℃/℃)との関係を示すグラフである。 Fig. 7A shows the 0.2% yield strength ratio (MPa/MPa) at 700°C based on Reference Example 3 and the creep resistance temperature ratio (°C/°C) for 100,000 hours at a load of 400 MPa based on Reference Example 2. FIG. 7B shows the 0.2% yield strength ratio (MPa/MPa) at 700°C based on Reference Example 3 and the creep durability for 100,000 hours at a load of 200 MPa based on Reference Example 2. It is a graph which shows the relationship with a temperature ratio (°C/°C).

なお、一般的に、0.2%耐力とクリープ耐用温度とはトレードオフの関係にある(0.2%耐力が高くなるとクリープ耐用温度は低くなり、クリープ耐用温度が高くなると0.2%耐力は低くなるという挙動を示す)と言われている。すなわち、図7Aおよび図7Bにおいて、グラフの右上方向はクリープ耐用温度、0.2%耐力がともに大きいものであり、より望ましい機械的特性となる。 In general, there is a trade-off relationship between the 0.2% yield strength and the creep temperature. shown). That is, in FIGS. 7A and 7B, both the creep endurance temperature and the 0.2% proof stress are large in the upper right direction of the graphs, and the mechanical properties are more desirable.

図7A、図7Bに示したように、本発明の実施例1は、700℃での0.2%耐力が参照例3よりも高く参照例1~2と同等レベルにあり、10万時間クリープ耐用温度が参照例1~3のいずれよりも高くなっている。言い換えると、本発明の実施例1は、参照例1~3よりもグラフの右上方向(少なくとも右方向)にあると言え、機械的特性が大きいと言える。 As shown in FIGS. 7A and 7B, in Example 1 of the present invention, the 0.2% yield strength at 700° C. is higher than that of Reference Example 3 and is at the same level as Reference Examples 1 and 2, and the 100,000-hour creep endurance temperature is higher than any of Reference Examples 1-3. In other words, it can be said that Example 1 of the present invention is located in the upper right direction (at least in the right direction) of the graph than Reference Examples 1 to 3, and it can be said that the mechanical properties are large.

上述した実施形態や実験例は、本発明の理解を助けるために説明したものであり、本発明は、記載した具体的な構成のみに限定されるものではない。例えば、実施形態の構成の一部を当業者の技術常識の構成に置き換えることが可能であり、また、実施形態の構成に当業者の技術常識の構成を加えることも可能である。すなわち、本発明は、本明細書の実施形態や実験例の構成の一部について、発明の技術的思想を逸脱しない範囲で、削除・他の構成に置換・他の構成の追加をすることが可能である。 The above-described embodiments and experimental examples are described to aid understanding of the present invention, and the present invention is not limited only to the specific configurations described. For example, it is possible to replace part of the configuration of the embodiment with a configuration of common technical knowledge of a person skilled in the art, and it is also possible to add a configuration of common general technical knowledge of a person skilled in the art to the configuration of the embodiment. That is, in the present invention, part of the configurations of the embodiments and experimental examples of the present specification can be deleted, replaced with other configurations, or added with other configurations without departing from the technical idea of the invention. It is possible.

10…ケーシング部材、11…ロータディスク。 10... Casing member, 11... Rotor disk.

Claims (6)

Fe-Ni-Cr系合金製造物であって、
25質量%以上50質量%以下のNiと、
12質量%以上25質量%以下のCrと、
3質量%以上6質量%以下のNbと、
0.2質量%以上1.6質量%以下のTiと、
0.5質量%以下のZrと、
0.001質量%以上0.05質量%以下のBと、
0.001質量%以上0.2質量%以下のNとを含み、
残部がFeおよび不可避不純物からなる化学組成を有し、
母相結晶粒の平均粒径が10μm以上200μm以下の多結晶体であり、
前記母相結晶粒の中に、平均サイズが1μm以上5μm以下の偏析セルが形成しており、
前記母相結晶粒の中に、TiN相粒子が1μm以上2μm以下の平均粒子間距離で析出している、
ことを特徴とするFe-Ni-Cr系合金製造物。
An Fe-Ni-Cr alloy product,
25% by mass or more and 50% by mass or less of Ni;
12% by mass or more and 25% by mass or less of Cr;
3% by mass or more and 6% by mass or less of Nb;
0.2% by mass or more and 1.6% by mass or less of Ti;
0.5% by mass or less of Zr;
0.001% by mass or more and 0.05% by mass or less of B;
0.001% by mass or more and 0.2% by mass or less of N,
having a chemical composition with the balance being Fe and unavoidable impurities,
A polycrystalline body with an average grain size of 10 μm or more and 200 μm or less of the mother phase crystal grains,
Segregation cells having an average size of 1 μm or more and 5 μm or less are formed in the mother phase crystal grains,
TiN phase particles are precipitated at an average interparticle distance of 1 μm or more and 2 μm or less in the mother phase crystal grains,
An Fe-Ni-Cr alloy product characterized by:
請求項1に記載のFe-Ni-Cr系合金製造物において、
前記母相結晶粒の結晶粒界上にラーベス相の粒子が析出していることを特徴とするFe-Ni-Cr系合金製造物。
In the Fe-Ni-Cr alloy product according to claim 1,
An Fe—Ni—Cr alloy product, characterized in that Laves phase grains are precipitated on the grain boundaries of the parent phase grains.
請求項1又は請求項2に記載のFe-Ni-Cr系合金製造物において、
前記化学組成が、
25質量%以上45質量%以下のNiと、
12質量%以上20質量%以下のCrと、
3質量%以上5質量%以下のNbと、
0.3質量%以上1.3質量%以下のTiと、
0.4質量%以下のZrと、
0.001質量%以上0.02質量%以下のBと、
0.001質量%以上0.1質量%以下のN
とを含み、
残部がFeおよび不可避不純物からなることを特徴とするFe-Ni-Cr系合金製造物。
In the Fe-Ni-Cr alloy product according to claim 1 or claim 2,
The chemical composition is
25% by mass or more and 45% by mass or less of Ni;
12% by mass or more and 20% by mass or less of Cr;
3% by mass or more and 5% by mass or less of Nb;
0.3% by mass or more and 1.3% by mass or less of Ti;
0.4% by mass or less of Zr;
0.001% by mass or more and 0.02% by mass or less of B;
0.001% by mass or more and 0.1% by mass or less of N
and
An Fe--Ni--Cr alloy product characterized in that the balance consists of Fe and unavoidable impurities.
請求項1又は請求項2に記載のFe-Ni-Cr系合金製造物において、
前記化学組成が、
30質量%以上40質量%以下のNiと、
15質量%以上20質量%以下のCrと、
3.5質量%以上4.5質量%以下のNbと、
0.5質量%以上1.1質量%以下のTiと、
0.3質量%以下のZrと、
0.001質量%以上0.02質量%以下のBと、
0.001質量%以上0.1質量%以下のNとを含み、
残部がFeおよび不可避不純物からなることを特徴とするFe-Ni-Cr系合金製造物。
In the Fe-Ni-Cr alloy product according to claim 1 or claim 2,
The chemical composition is
30% by mass or more and 40% by mass or less of Ni;
15% by mass or more and 20% by mass or less of Cr;
3.5% by mass or more and 4.5% by mass or less of Nb;
0.5% by mass or more and 1.1% by mass or less of Ti;
0.3% by mass or less of Zr;
0.001% by mass or more and 0.02% by mass or less of B;
0.001% by mass or more and 0.1% by mass or less of N,
An Fe--Ni--Cr alloy product characterized in that the balance consists of Fe and unavoidable impurities.
蒸気タービン部材であって、
請求項1乃至請求項4のいずれか一項に記載のFe-Ni-Cr系合金製造物からなることを特徴とする蒸気タービン部材。
A steam turbine component,
A steam turbine member comprising the Fe-Ni-Cr alloy product according to any one of claims 1 to 4.
請求項5に記載の蒸気タービン部材において、
前記蒸気タービン部材が、ケーシング部材またはロータディスクであることを特徴とする蒸気タービン部材。
A steam turbine component according to claim 5, wherein
A steam turbine member, wherein the steam turbine member is a casing member or a rotor disk.
JP2022023714A 2022-02-18 2022-02-18 Fe-Ni-Cr-BASED ALLOY PRODUCT Pending JP2023120710A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022023714A JP2023120710A (en) 2022-02-18 2022-02-18 Fe-Ni-Cr-BASED ALLOY PRODUCT
PCT/JP2022/045758 WO2023157438A1 (en) 2022-02-18 2022-12-13 Fe-Ni-Cr BASED ALLOY PRODUCT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022023714A JP2023120710A (en) 2022-02-18 2022-02-18 Fe-Ni-Cr-BASED ALLOY PRODUCT

Publications (1)

Publication Number Publication Date
JP2023120710A true JP2023120710A (en) 2023-08-30

Family

ID=87577941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022023714A Pending JP2023120710A (en) 2022-02-18 2022-02-18 Fe-Ni-Cr-BASED ALLOY PRODUCT

Country Status (2)

Country Link
JP (1) JP2023120710A (en)
WO (1) WO2023157438A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4504736B2 (en) * 2004-05-11 2010-07-14 大同特殊鋼株式会社 Austenitic cast steel product and manufacturing method thereof
JP6509290B2 (en) * 2017-09-08 2019-05-08 三菱日立パワーシステムズ株式会社 Cobalt-based alloy laminate shaped body, cobalt-based alloy product, and method for producing them
JP7112317B2 (en) * 2018-11-19 2022-08-03 三菱重工業株式会社 Austenitic steel sintered materials and turbine components
DE102020116865A1 (en) * 2019-07-05 2021-01-07 Vdm Metals International Gmbh Nickel-based alloy for powders and a process for producing a powder

Also Published As

Publication number Publication date
WO2023157438A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
EP3611282B1 (en) Cobalt based alloy powder
CN109385589B (en) Method for producing Ni-based alloy member
JP6713071B2 (en) Method for manufacturing cobalt-based alloy laminated body
EP3725902B1 (en) Cobalt-based alloy product and method for producing same
EP3733886B1 (en) Cobalt-based alloy product, method for manufacturing said product, and cobalt-based alloy article
WO2020121367A1 (en) Cobalt-based alloy laminate molded body, cobalt-based alloy product, and manufacturing method of these
WO2020179081A1 (en) Cobalt-based alloy product
KR20160033096A (en) Method for Manufacturing a Titanium-Aluminum Alloy Part
WO2020179084A1 (en) Cobalt-based alloy product and cobalt-based alloy article
TW202140810A (en) Cobalt-based alloy product
JP6826235B2 (en) Ni-based alloy softened powder and method for producing the softened powder
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JP7450639B2 (en) Low stacking fault energy superalloys, structural members and their uses
JP5645054B2 (en) Nickel-base heat-resistant superalloys and heat-resistant superalloy components containing annealing twins
JP2018162522A (en) OXIDE-PARTICLE DISPERSION STRENGTHENED Ni-GROUP SUPERALLOY
KR102435878B1 (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
WO2023157438A1 (en) Fe-Ni-Cr BASED ALLOY PRODUCT
JP7223877B2 (en) Cobalt-based alloy materials and cobalt-based alloy products
RU2771192C9 (en) Cobalt-based alloy powder, cobalt-based alloy sintered body, and method for producing cobalt-based alloy sintered body
EP4353855A1 (en) Tial alloy, tial alloy powder, tial alloy component, and method for producing same
JP2023105829A (en) Cobalt-based alloy material and cobalt-based alloy product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226