WO2020103724A1 - 有机电致发光器件、其制备方法及包含其的显示装置 - Google Patents

有机电致发光器件、其制备方法及包含其的显示装置

Info

Publication number
WO2020103724A1
WO2020103724A1 PCT/CN2019/117412 CN2019117412W WO2020103724A1 WO 2020103724 A1 WO2020103724 A1 WO 2020103724A1 CN 2019117412 W CN2019117412 W CN 2019117412W WO 2020103724 A1 WO2020103724 A1 WO 2020103724A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
independently
salt
formula
Prior art date
Application number
PCT/CN2019/117412
Other languages
English (en)
French (fr)
Inventor
张兆超
李崇
Original Assignee
江苏三月光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏三月光电科技有限公司 filed Critical 江苏三月光电科技有限公司
Publication of WO2020103724A1 publication Critical patent/WO2020103724A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/653Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the invention relates to the technical field of optoelectronic devices. More specifically, the present invention relates to an organic electroluminescence device, especially an organic electroluminescence device including an emission layer. The invention also relates to a method for preparing the organic electroluminescent device and a display device including the same.
  • Organic electroluminescent devices are self-emitting devices with wide viewing angles, high contrast, short response time, and good brightness, drive voltage, and response speed characteristics. Organic electroluminescent devices produce full-color images.
  • An organic electroluminescent device includes an anode, a cathode, and an organic layer including an emission layer disposed between the anode and the cathode, where the organic layer is a general term for layers between the cathode and the anode.
  • there may be a hole transport region between the anode and the emission layer and there may be an electron transport region between the emission layer and the cathode.
  • Holes from the anode can migrate to the emission layer through the hole transport region, and electrons from the cathode can migrate to the emission layer through the electron transport region.
  • Carriers for example, holes and electrons
  • the object of the present invention is to provide an organic electroluminescent device, which is provided with a substrate, a first electrode, an organic layer and a second electrode in this order from bottom to top, the organic layer includes an emission layer,
  • the emission layer includes a first body represented by formula (I) and a second body represented by formula (II)
  • n, p, q independently represent 0 or 1;
  • Z represents C-R,
  • R identically or differently represents a hydrogen atom, a protium atom, a deuterium atom, a tritium atom, an F atom, a linear or branched C 1-20 alkyl group, an aromatic or heteroaromatic ring system having 5 to 30 ring atoms, Two or more R groups can be connected to each other to form a ring structure;
  • Ar 1 to Ar 4 independently represent a single bond, an aromatic or heteroaromatic ring system having 5 to 30 ring atoms, wherein Ar 1 and Ar 2 groups may also be connected to each other to form a ring structure;
  • R 1 to R 4 independently of each other represent the structures represented by formula (1), formula (2) and formula (3):
  • the dotted line represents the bond to the rest of the molecule
  • Y 1 are identical or different represent an N atom or CR 10, R 10 are the same or different and each represents a hydrogen atom or a cyano group;
  • R 5 and R 6 independently of each other represent an aromatic or heteroaromatic ring system having 5 to 30 ring atoms
  • Y 2 represents N atom or CR 11 identically or differently
  • R 11 identically or differently represents a hydrogen atom, protium atom, deuterium atom, tritium atom, F atom, cyano group or linear or branched C 1-20 alkyl group, aromatic or heteroaromatic having 5 to 30 ring atoms Family ring system;
  • X 1 represents a single bond, an oxygen atom, a sulfur atom, a linear or branched C 1-10 alkyl substituted alkylene group, an aryl substituted alkylene group, a linear or branched C 1-10 alkyl substituted Imino substituted by imino or aryl;
  • R 9 represents an aromatic or heteroaromatic ring system having 5 to 30 ring atoms
  • R 7 and R 8 independently represent a hydrogen atom, and the structure represented by formula (4) or formula (5):
  • connection site Y 2 represents a carbon atom ;
  • Y 3 represents N atom or CR 11 identically or differently
  • R 11 identically or differently represents a hydrogen atom, protium atom, deuterium atom, tritium atom, F atom, cyano group or linear or branched C 1-20 alkyl group, aromatic or heteroaromatic having 5 to 30 ring atoms Family ring system;
  • X 2 and X 3 independently represent a single bond, an oxygen atom, a sulfur atom, Linear or branched C 1-10 alkyl substituted alkylene, aryl substituted alkylene, linear or branched C 1-10 alkyl substituted imino or aryl substituted imino;
  • R 12 and R 13 independently of each other represent an aromatic or heteroaromatic ring system having 5 to 30 ring atoms
  • a 11 to A 14 independently of each other represent benzene, naphthalene, pyridine, pyrimidine, quinoline, isoquinoline, 2,6-naphthyridine, 1,8-naphthyridine, 1,5-naphthyridine, 1,6-naphthalene Pyridine, 1,7-naphthyridine, 2,7-naphthyridine, quinoxaline, phthalazine, quinazoline and cinnoline;
  • L 11 to L 13 independently of each other represent the following groups optionally substituted: single bond, C 3 -C 10 cycloalkylene, C 1 -C 10 heterocycloalkylene, C 3 -C 10 cycloalkenylene , C 1 -C 10 heterocycloalkenylene, C 6 -C 60 arylene, C 1 -C 60 heteroarylene, divalent non-aromatic condensed polycyclic group and divalent non-aromatic condensed heteropolycyclic base;
  • a 11 to a 13 represent 0, 1, 2, 3, 4 and 5 independently of each other;
  • R 11 and R 12 independently of each other represent -N (Q 1 ) (Q 2 ), -Si (Q 3 ) (Q 4 ) (Q 5 ) and -B (Q 6 ) (Q 7 ), and optionally substituted Of the following groups: C 3 -C 10 cycloalkyl, C 1 -C 10 heterocycloalkyl, C 3 -C 10 cycloalkenyl, C 1 -C 10 heterocycloalkenyl, C 6 -C 60 aryl , C 1 -C 60 heteroaryl, monovalent non-aromatic condensed polycyclic group, monovalent non-aromatic condensed heteropolycyclic group;
  • b 11 and b 12 represent 1, 2, 3 and 4 independently of each other;
  • R 13 to R 18 independently of each other represent hydrogen, deuterium, F, Cl, Br, I, hydroxyl, cyano, nitro, amino, amidino, hydrazino, hydrazone, carboxylic acid or its salt, sulfonic acid or its Salt, phosphoric acid or its salt, and optionally substituted the following groups: C 1 -C 60 alkyl, C 2 -C 60 alkenyl, C 2 -C 60 alkynyl, C 1 -C 60 alkoxy, C 3 -C 10 cycloalkyl, C 1 -C 10 heterocycloalkyl, C 3 -C 10 cycloalkenyl, C 1 -C 10 heterocycloalkenyl, C 6 -C 60 aryl, C 6 -C 60 Aryloxy, C 6 -C 60 arylthio, C 1 -C 60 heteroaryl, monovalent non-aromatic condensed polycyclic group and monovalent non-aromatic condensed heteropoly
  • R 13 and A 11 , R 14 and A 12 , R 15 and A 13 , R 16 and A 14 are connected in the form of a single bond, in a cyclic ring or through a carbon atom, oxygen atom, sulfur atom, nitrogen atom to form 5-7 Element ring form connection;
  • b 13 to b 16 are independently selected from 1, 2, 3 and 4;
  • the substituent is selected from deuterium, F, Cl, Br, I, hydroxyl, cyano, nitro, amino, amidino, hydrazino, hydrazone, carboxylic acid or its salt, sulfonic acid or its salt, phosphoric acid or its Salt, C 1 -C 60 alkyl, C 2 -C 60 alkenyl, C 2 -C 60 alkynyl, C 1 -C 60 alkoxy, C
  • Q 1 to Q 7 , Q 11 to Q 17 , Q 21 to Q 27 and Q 31 to Q 37 independently of each other represent hydrogen, C 1 -C 60 alkyl, C 1 -C 60 alkoxy, C 6 -C 60 aryl group, C 1 -C 60 heteroaryl group, monovalent non-aromatic condensed polycyclic group and monovalent non-aromatic condensed heteropolycyclic group.
  • the object of the present invention is also to provide a method for preparing the above-mentioned organic electroluminescent device, which comprises sequentially laminating a first electrode, an organic layer and a second electrode on a substrate.
  • An object of the present invention is also to provide a display device including the above organic electroluminescent device.
  • the organic electroluminescent device including the above-mentioned emission layer of the present invention has improved efficiency and lifespan. Therefore, the organic electroluminescent device provided by the present invention has good application effects and industrialization prospects.
  • FIG. 1 shows the basic structure of the organic electroluminescent device of the present invention, in which:
  • a layer, region or component when referred to as being "formed on" another layer, region or component, it can be directly or indirectly formed on the other layer or region Area or another component. That is, for example, there may be an intermediate layer, an intermediate region, or an intermediate component between the aforementioned two layers.
  • the words “upper”, “lower”, “top”, and “bottom” used to indicate orientation only mean that The orientation of a specific state does not mean that the related structure can only exist according to the orientation; on the contrary, if the structure can change position, for example upside down, the orientation of the structure changes accordingly.
  • the “bottom” and “lower” sides of the electrode refer to the side of the electrode near the substrate during the preparation process, and the opposite side away from the substrate is the “top” and "upper” side.
  • X includes a first subject
  • X may be interpreted as "X may include a first subject of one type (species) of formula (I) or two different first subjects of two types (species) of formula (I)".
  • organic layer refers to a single layer and / or multiple layers between the first electrode and the second electrode in the organic electroluminescent device.
  • the materials included in the organic layer are not limited to organic materials.
  • the C 1 -C 60 alkyl group used herein refers to a linear or branched aliphatic monovalent hydrocarbon group having 1 to 60 carbon atoms in the main chain.
  • C 2 -C 10 alkyl groups are preferably used, more preferably C 3 -C 6 alkyl groups.
  • Non-limiting examples thereof may include methyl, ethyl, propyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, and hexyl.
  • the C 1 -C 60 alkylene group used herein refers to a divalent group having the same structure as the C 1 -C 60 alkyl group.
  • the C 1 -C 60 alkoxy group used herein refers to a monovalent group represented by -OA101 (wherein A101 is a C 1 -C 60 alkyl group).
  • A101 is a C 1 -C 60 alkyl group.
  • C 2 -C 10 alkoxy is preferably used, more preferably C 3 -C 6 alkoxy.
  • Non-limiting examples thereof may include methoxy, ethoxy, and isopropoxy.
  • C 2 -C 60 alkenyl group used herein refers to the direction at a C 2 -C 60 alkyl the carbon chain one or more positions (e.g., C 2 -C 60 alkyl in the middle or at the end) Hydrocarbon group including at least one carbon-carbon double bond.
  • C 2 -C 10 alkenyl is preferably used, more preferably C 3 -C 6 alkenyl, and particularly preferably C 3 -C 4 alkenyl.
  • Non-limiting examples thereof may include vinyl, propenyl, and butenyl.
  • C 2 -C 60 alkenylene refers to a divalent group having the same structure as C 2 -C 60 alkenyl.
  • C 2 -C 60 alkynyl group used herein refers to the direction at a C 2 -C 60 alkyl the carbon chain one or more positions (e.g., C 2 -C 60 alkyl in the middle or at the end) Hydrocarbon group including at least one carbon-carbon triple bond.
  • C 2 -C 10 alkynyl is preferably used, more preferably C 3 -C 6 alkynyl. Non-limiting examples thereof may include ethynyl and propynyl.
  • C 2 -C 60 alkynylene refers to a divalent group having the same structure as C 2 -C 60 alkynyl.
  • the C 3 -C 10 cycloalkyl group used herein refers to a monovalent monocyclic saturated hydrocarbon group including 3 to 10 carbon atoms as ring-forming atoms.
  • C 4 -C 9 cycloalkyl is preferably used, more preferably C 5 -C 8 cycloalkyl, and particularly preferably C 5 -C 7 cycloalkyl.
  • Non-limiting examples thereof may include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl.
  • C 3 -C 10 cycloalkylene refers to a divalent group having the same structure as C 3 -C 10 cycloalkyl.
  • C 1 -C 10 heterocycloalkyl refers to a ring atom comprising at least one heteroatom selected from N, O, P, and S, and 1 to 10 carbon atoms as ring atoms Monovalent monocyclic group.
  • C 2 -C 8 heterocycloalkyl is preferably used, more preferably C 3 -C 6 heterocycloalkyl, and particularly preferably C 4 -C 5 heterocycloalkyl.
  • Non-limiting examples thereof may include tetrahydrofuranyl and tetrahydrothienyl.
  • C 1 -C 10 heterocycloalkylene refers to a divalent group having the same structure as C 1 -C 10 heterocycloalkyl.
  • C 3 -C 10 cycloalkenyl refers to including 3 to 10 carbon atoms as ring-forming atoms and at least one carbon-carbon double bond in the ring of C 3 -C 10 cycloalkenyl and generally not A monovalent monocyclic group with aromaticity.
  • C 3 -C 8 cycloalkenyl is preferably used, more preferably C 5 -C 7 cycloalkenyl.
  • Non-limiting examples thereof may include cyclopentenyl, cyclohexenyl, and cycloheptenyl.
  • the C 3 -C 10 cycloalkenylene group used herein refers to a divalent group having the same structure as the C 3 -C 10 cycloalkenyl group.
  • C 1 -C 10 heterocycloalkenyl refers to including at least one heteroatom selected from N, O, P, and S in its ring, 1 to 10 carbon atoms as ring-forming atoms, and at least A double bond monovalent monocyclic group.
  • C 3 -C 8 heterocycloalkenyl is preferably used, more preferably C 4 -C 6 heterocycloalkenyl.
  • Non-limiting examples thereof may include 2,3-dihydrofuranyl and 2,3-dihydrothienyl.
  • C 1 -C 10 heterocycloalkenylene refers to a divalent group having the same structure as C 1 -C 10 heterocycloalkenyl.
  • the C 6 -C 60 aryl group used herein refers to a monovalent group including a carbocyclic aromatic system having 6 to 60 carbon atoms as ring-forming atoms
  • the C 6 -C 60 arylene group used herein includes A divalent group of a carbocyclic aromatic system having 6 to 60 carbon atoms as ring atoms.
  • C 5 -C 10 aryl or arylene groups are preferably used, more preferably C 6 -C 8 aryl or arylene groups.
  • Non-limiting examples thereof can include phenyl, naphthyl, anthracenyl, phenanthrenyl, pyrenyl and base.
  • the C 6 -C 60 aryl group and / or C 6 -C 60 arylene group includes two or more rings, these rings may be fused to each other.
  • the C 1 -C 60 heteroaryl group used herein refers to a carbocyclic aromatic system including at least one hetero atom selected from N, O, P, and S as a ring-forming atom and 1 to 60 carbon atoms Of monovalent groups.
  • the C 1 -C 60 heteroarylene group used herein refers to a carbocyclic aromatic system including at least one hetero atom selected from N, O, P, and S as a ring-forming atom and 1 to 60 carbon atoms Of divalent groups.
  • C 4 -C 10 heteroaryl or heteroarylene is preferably used, and C 5 -C 8 heteroaryl or heteroarylene is more preferable.
  • Non-limiting examples thereof may include pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolinyl, and isoquinolinyl.
  • the C 1 -C 60 heteroaryl group and the C 1 -C 60 heteroarylene group include two or more rings, these rings may be fused to each other.
  • the C 6 -C 60 aryloxy group used herein refers to a group represented by -OA102 (where A102 is C 6 -C 60 aryl group), and the C 6 -C 60 arylthio group used herein refers to -SA103 ( Among them, A103 is a group represented by C 6 -C 60 aryl).
  • A103 is a group represented by C 6 -C 60 aryl.
  • C 6 -C 10 aryloxy, and C 6 -C 10 arylthio are used herein.
  • a monovalent non-aromatic condensed polycyclic group (for example, having 8 to 60 carbon atoms, preferably having 10 to 40 carbon atoms, more preferably having 12 to 20 carbon atoms) means having two or more A ring is fused to each other, only a carbon atom as a ring-forming atom and the overall molecular structure does not have aromatic monovalent groups.
  • Non-limiting examples of monovalent non-aromatic condensed polycyclic groups may include fluorenyl groups.
  • the divalent non-aromatic condensed polycyclic group used herein refers to a divalent group having the same structure as the monovalent non-aromatic condensed polycyclic group.
  • a monovalent non-aromatic condensed heteropolycyclic group (for example, having 1 to 60 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 4 to 6 carbon atoms) means having two or more A plurality of rings condensed with each other, a monovalent group having at least one hetero atom selected from N, O, P, and S as a ring-forming atom and a carbon atom, and the entire molecular structure as a whole having no aromaticity.
  • Non-limiting examples of monovalent non-aromatic condensed heteropolycyclic groups may include carbazolyl groups.
  • a divalent non-aromatic condensed heteropolycyclic group refers to a divalent group having the same structure as a monovalent non-aromatic condensed heteropolycyclic group.
  • the expression “Ph” represents phenyl
  • the expression “Me” represents methyl
  • the expression “Et” represents ethyl
  • the expression “ter-Bu” or “But” represents t-butyl.
  • FIG. 1 exemplarily shows the basic structure of the organic electroluminescent device of the present invention.
  • the substrate may be disposed below the first electrode 110 or above the second electrode 190.
  • the substrate may be any substrate commonly used in organic electroluminescent devices.
  • the substrate may be a glass substrate or a transparent plastic substrate having good mechanical strength, thermal stability, transparency, surface flatness, ease of handling, and water resistance, but is not limited to these.
  • the thickness of the substrate may range from 50 to 700 ⁇ m.
  • the first electrode 110 may be an anode
  • the second electrode 190 may be a cathode.
  • the first electrode 110 may be a cathode
  • the second electrode 190 may be an anode
  • the first electrode 110 may be formed on the substrate by depositing or sputtering the first electrode material.
  • the first electrode material is preferably a material having a high work function so that holes are easily injected into the organic layer.
  • the first electrode material include, but are not limited to, indium tin oxide (ITO), indium zinc oxide (IZO), tin oxide (SnO 2 ), zinc oxide (ZnO), magnesium (Mg), aluminum (Al ), Aluminum-lithium (Al-Li), calcium (Ca), magnesium-indium (Mg-In) and magnesium-silver (Mg-Ag).
  • the first electrode 110 may have a single-layer structure or a multilayer structure including two or more layers.
  • the first electrode 110 may have a three-layer structure of ITO / Ag / ITO, but is not limited thereto.
  • the thickness of the first electrode depends on the material used, and is usually 50-500 nm, preferably 70-300 nm and more preferably 100-200 nm.
  • the organic layer 150 including the emission layer is located on the first electrode 110.
  • the organic layer 150 may further include a hole transport region between the first electrode 110 and the emission layer, and an electron transport region between the emission layer and the second electrode 190.
  • the hole transport region may include, but is not limited to, a hole injection layer (HIL), a hole transport layer (HTL), a buffer layer, and an electron blocking layer (EBL); the electron transport region may include, but is not limited to, a charge control layer And may also include a hole blocking layer (HBL), an electron transport layer (ETL), or an electron injection layer (EIL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • the hole transport region may have a single-layer structure formed of a single material, a single-layer structure formed of multiple different materials, or a multi-layer structure having multiple layers formed of multiple different materials.
  • the hole transporting region includes a hole injection layer
  • methods such as vacuum deposition, spin coating, casting, Langmuir-Budget (LB) method, inkjet printing, laser printing, or laser induced thermal imaging (LITI) can be used
  • LB Langmuir-Budget
  • LITI laser induced thermal imaging
  • the deposition temperature can be about 10 -8 -10 at a deposition temperature of about 100-500 ° C -3 Torr vacuum and peace / Second deposition rate for vacuum deposition.
  • the hole injection layer is formed by spin coating, depending on the compound used to form the hole injection layer and the desired structure of the hole injection layer, it can be applied at a temperature of about 80-200 ° C. at about 2000-5000 rpm Spin coating at a rate.
  • the material of the hole injection layer is generally a material preferably having a high work function, so that holes are easily injected into the organic material layer.
  • Specific examples of the material of the hole injection layer include, but are not limited to, copper phthalocyanine, N, N'-diphenyl-N, N'-bis- [4- (phenyl-m-toluene-amino) -phenyl ] -Biphenyl-4,4'-diamine (DNTPD), 4,4 ', 4 "-tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA), 4,4'4" -Tris (N, N-diphenylamino) triphenylamine (TDATA), 4,4 ', 4 "-tri ⁇ N,-(2-naphthyl) -N-phenylamino ⁇ -triphenylamine (2TNATA) , Poly (3,4-ethylenedioxythiophene) / poly (4-s
  • hole transporting may be formed on the first electrode 110 or the hole injection layer by methods such as vacuum deposition, spin coating, casting, LB method, inkjet printing, laser printing, or LITI Floor.
  • the deposition or coating conditions may be similar to the deposition or coating conditions used to form the hole injection layer.
  • the material of the hole transport layer include, but are not limited to: derivatives based on carbazole, such as N-phenylcarbazole or polyvinylcarbazole; derivatives based on fluorene; derivatives based on triphenylamine, such as N , N'-bis (3-methylphenyl) -N, N'-diphenyl- [1,1-biphenyl] -4,4'-diamine (TPD) and 4,4 ', 4 " -Tris (N-carbazolyl) triphenylamine (TCTA), N, N'-bis (1-naphthyl) -N, N'-diphenylbenzidine (NPB), 4,4'-cyclohexylene Bis [N, N-bis (4-methylphenyl) aniline] (TAPC) and HT23 (the specific structural formula will be shown below). According to the present invention, it is preferred to use HT23 as the hole transport layer material.
  • the hole transport region may include at least one compound selected from the group consisting of, for example, m-MTDATA, TDATA, 2-TNATA, NPB, ⁇ -NPB, TPD, spiro-TPD, spiro-NPB, methylated NPB, TAPC , HMTPD, 4,4 ', 4 ′′ -tris (N-carbazolyl) triphenylamine (TCTA), polyaniline / dodecylbenzenesulfonic acid (Pani / DBSA), poly (3,4-ethylenediene Oxythiophene) / poly (4-styrenesulfonate) (PEDOT / PSS), polyaniline / camphorsulfonic acid (Pani / CSA), (polyaniline) / poly (4-styrenesulfonate) (PANI / PSS), the compound represented by the formula 201 and the compound represented by the formula 202.
  • TCTA N-carbazolyl tripheny
  • L 201 to L 205 are independently of each other as defined in L 11 herein; xa 1 to xa 4 are independently selected from 0, 1, 2 and 3;
  • xa 5 is selected from 1, 2, 3, 4, and 5; and R 201 to R 204 are independently of each other as defined herein for R 11 .
  • the compounds represented by Formula 201 and Formula 202 may independently include the following compounds HT1 to HT25, but are not limited thereto:
  • the thickness of the hole transport region can be in the order of Within the range of, for example, can be In the range.
  • the thickness of the hole injection layer may be about (E.g, or ), For example, can be in the range of about
  • the thickness of the hole transport layer can be in the range of about Within the range of, for example, can be In the range.
  • the hole transport region may also include a charge generating material to improve conductive properties.
  • the charge generating material may be uniformly or non-uniformly dispersed in the hole transport region.
  • the charge generation material may be, for example, p-dopant.
  • the p dopant may include at least one compound selected from the group consisting of quinone derivatives such as tetracyanoquinodimethane (TCNQ) or 2,3,5,6-tetrafluoro-tetracyano-1,4-benzene Quinone dimethane (F4-TCNQ); metal oxides, such as tungsten oxide or molybdenum oxide; or cyano-containing compounds, such as the compounds HT-D1, NDP, and F4-TCNQ shown below
  • the hole transport region may also include a buffer layer, an electron blocking layer, or a combination thereof.
  • the buffer layer can compensate the optical resonance distance according to the wavelength of light emitted from the emission layer, and thus can improve the luminous efficiency of the organic electroluminescent device.
  • the electron blocking layer can prevent electron injection from the electron transport region.
  • the electron blocking layer compound includes the following compounds EB1 to EB7, but is not limited thereto:
  • the thickness of the electron blocking layer of the present invention may be 1-200 nm, preferably 5-150 nm and more preferably 10-100 nm.
  • the present invention may be formed on the first electrode 110 or on the hole transport region by methods such as vacuum deposition, spin coating, casting, LB method, inkjet printing, laser printing, or laser induced thermal imaging Emissive layer.
  • the deposition and coating conditions for the emission layer may be similar to the deposition and coating conditions for forming the hole injection layer.
  • the emission layer may be patterned into a red emission layer, a green emission layer, or a blue emission layer, each corresponding to a sub-pixel.
  • the emission layer may emit white light, and may have a stacked structure of a red emission layer, a green emission layer, and a blue emission layer, or may include a red light emission material, a green light emission material, and a blue light mixed together in a single layer Emissive material.
  • the emission layer may be a white emission layer, and may further include a color conversion layer or a color filter that converts white light into light of a desired color.
  • the emission layer may include host material and guest material.
  • the host material in the emission layer may include a first host represented by formula (I) and a second host represented by formula (II)
  • n, p, q independently represent 0 or 1;
  • Z represents C-R,
  • R identically or differently represents a hydrogen atom, a protium atom, a deuterium atom, a tritium atom, an F atom, a linear or branched C 1-20 alkyl group, an aromatic or heteroaromatic ring system having 5 to 30 ring atoms, Two or more R groups can be connected to each other to form a ring structure;
  • Ar 1 to Ar 4 independently represent a single bond, an aromatic or heteroaromatic ring system having 5 to 30 ring atoms, wherein Ar 1 and Ar 2 groups may also be connected to each other to form a ring structure;
  • R 1 and R 4 independently of each other represent the structures represented by formula (1), formula (2) and formula (3):
  • the dotted line represents the bond to the rest of the molecule
  • Y 1 are identical or different represent an N atom or CR 10, R 10 are the same or different and each represents a hydrogen atom or a cyano group;
  • R 5 and R 6 independently of each other represent an aromatic or heteroaromatic ring system having 5 to 30 ring atoms
  • Y 2 represents N atom or CR 11 identically or differently
  • R 11 identically or differently represents a hydrogen atom, protium atom, deuterium atom, tritium atom, F atom, cyano group or linear or branched C 1-20 alkyl group, aromatic or heteroaromatic having 5 to 30 ring atoms Family ring system;
  • X 1 represents a single bond, an oxygen atom, a sulfur atom, a linear or branched C 1-10 alkyl substituted alkylene group, an aryl substituted alkylene group, a linear or branched C 1-10 alkyl substituted Imino substituted by imino or aryl;
  • R 9 represents an aromatic or heteroaromatic ring system having 5 to 30 ring atoms
  • R 7 and R 8 independently represent a hydrogen atom, and the structure represented by formula (4) or formula (5):
  • connection site Y 2 represents a carbon atom ;
  • Y 3 represents N atom or CR 11 identically or differently
  • R 11 identically or differently represents a hydrogen atom, protium atom, deuterium atom, tritium atom, F atom, cyano group or linear or branched C 1-20 alkyl group, aromatic or heteroaromatic having 5 to 30 ring atoms Family ring system;
  • X 2 and X 3 independently represent a single bond, an oxygen atom, a sulfur atom, Linear or branched C 1-10 alkyl substituted alkylene, aryl substituted alkylene, linear or branched C 1-10 alkyl substituted imino or aryl substituted imino;
  • R 12 and R 13 independently of each other represent an aromatic or heteroaromatic ring system having 5 to 30 ring atoms
  • a 11 to A 14 independently of each other represent benzene, naphthalene, pyridine, pyrimidine, quinoline, isoquinoline, 2,6-naphthyridine, 1,8-naphthyridine, 1,5-naphthyridine, 1,6-naphthalene Pyridine, 1,7-naphthyridine, 2,7-naphthyridine, quinoxaline, phthalazine, quinazoline and cinnoline;
  • L 11 to L 13 independently of each other represent the following groups optionally substituted: single bond, C 3 -C 10 cycloalkylene, C 1 -C 10 heterocycloalkylene, C 3 -C 10 cycloalkenylene , C 1 -C 10 heterocycloalkenylene, C 6 -C 60 arylene, C 1 -C 60 heteroarylene, divalent non-aromatic condensed polycyclic group and divalent non-aromatic condensed heteropolycyclic base;
  • a 11 to a 13 represent 0, 1, 2, 3, 4 and 5 independently of each other;
  • R 11 and R 12 independently of each other represent -N (Q 1 ) (Q 2 ), -Si (Q 3 ) (Q 4 ) (Q 5 ) and -B (Q 6 ) (Q 7 ), and optionally substituted Of the following groups: C 3 -C 10 cycloalkyl, C 1 -C 10 heterocycloalkyl, C 3 -C 10 cycloalkenyl, C 1 -C 10 heterocycloalkenyl, C 6 -C 60 aryl , C 1 -C 60 heteroaryl, monovalent non-aromatic condensed polycyclic group, monovalent non-aromatic condensed heteropolycyclic group;
  • b 11 and b 12 represent 1, 2, 3 and 4 independently of each other;
  • R 13 to R 18 independently of each other represent hydrogen, deuterium, F, Cl, Br, I, hydroxyl, cyano, nitro, amino, amidino, hydrazino, hydrazone, carboxylic acid or its salt, sulfonic acid or its Salt, phosphoric acid or its salt, and optionally substituted the following groups: C 1 -C 60 alkyl, C 2 -C 60 alkenyl, C 2 -C 60 alkynyl, C 1 -C 60 alkoxy, C 3 -C 10 cycloalkyl, C 1 -C 10 heterocycloalkyl, C 3 -C 10 cycloalkenyl, C 1 -C 10 heterocycloalkenyl, C 6 -C 60 aryl, C 6 -C 60 Aryloxy, C 6 -C 60 arylthio, C 1 -C 60 heteroaryl, monovalent non-aromatic condensed polycyclic group and monovalent non-aromatic condensed heteropoly
  • R 13 and A 11 , R 14 and A 12 , R 15 and A 13 , R 16 and A 14 are connected in the form of a single bond, in a cyclic ring or through a carbon atom, oxygen atom, sulfur atom, nitrogen atom to form 5-7 Element ring form connection;
  • b 13 to b 16 are independently selected from 1, 2, 3 and 4;
  • the substituent is selected from deuterium, F, Cl, Br, I, hydroxyl, cyano, nitro, amino, amidino, hydrazino, hydrazone, carboxylic acid or its salt, sulfonic acid or its salt, phosphoric acid or its Salt, C 1 -C 60 alkyl, C 2 -C 60 alkenyl, C 2 -C 60 alkynyl, C 1 -C 60 alkoxy, C
  • Q 1 to Q 7 , Q 11 to Q 17 , Q 21 to Q 27 and Q 31 to Q 37 independently of each other represent hydrogen, C 1 -C 60 alkyl, C 1 -C 60 alkoxy, C 6 -C 60 aryl group, C 1 -C 60 heteroaryl group, monovalent non-aromatic condensed polycyclic group and monovalent non-aromatic condensed heteropolycyclic group.
  • R represents the same or differently a hydrogen atom, deuterium atom, tritium atom, F atom, methyl, ethyl, n-propyl, n-butyl , Phenyl, naphthyl, anthracenyl, pyrenyl, phenanthrenyl, fluorenyl and carbazolyl.
  • Ar 1 to Ar 4 independently of each other represent a single bond, phenyl, naphthyl, fluorenyl, phenanthrenyl, anthracenyl, benzo [9 , 10] phenanthrenyl, pyridyl, pyrazinyl, pyrimidinyl, quinolinyl, isoquinolinyl, carbazolyl, benzoquinolinyl, naphthyridyl, quinoxalinyl, quinazolinyl, phenanthrene Pyridinyl, acridinyl, phenanthrolinyl, phenazinyl, benzimidazolyl, benzofuranyl, benzothienyl, triazolyl, triazinyl, dibenzofuranyl, dibenzothienyl , Imidazopyridyl, imidazopyrimidinyl, pyridobenz
  • a 11 and A 14 independently of each other represent benzene, naphthalene, pyridine, pyrimidine, quinoline, isoquinoline, 2,6-naphthyridine, 1,8-naphthyridine, 1,5-naphthyridine, 1,6-naphthyridine, 1,7-naphthyridine, 2,7-naphthyridine, quinoxaline and quinazoline, A 12 and A 13 are independent of each other The ground is benzene, but they are not limited to this.
  • X 11 may be O, S, C (R 17 ) (R 18 ) or N-[(L 12 ) a12- (R 12 ) b12 ], but they are not limited to this.
  • L 11 to L 13 independently of each other represent the following groups optionally substituted by at least one substituent: phenylene, cyclopentadiene Alkenyl, indenylene, naphthylene, chamomile ring, heptadenylidene, yindenylidene, acenaphthylene, fluorene, spirofluorene, benzofluorene, dibenzoylene Fluorenyl, finalenylene, phenanthrylene, anthracenylene, fluoranthene, benzo [9,10] phenanthrene, pyrenylene, subylene Radicals, Pyridene, Phenylene, Perylene, Pentylene, Hexaphenylene, Pentapentyl, Protonyl, Rhenylene, Olephenylene, Pyrrole Group, thienylene group, furyliden
  • L 11 to L 13 independently of each other represent the following groups optionally substituted by at least one substituent: phenylene, naphthylene, Fluorenylene, pyridinylene, pyrimidinyl, quinolinyl, isoquinolinyl, quinazolinyl, carbazolylene, triazinylene, dibenzofuranyl, and dibenzoylene Thienyl, wherein the substituent is selected from: deuterium, F, Cl, Br, I, hydroxyl, cyano, nitro, amino, amidino, hydrazino, hydrazone, carboxylic acid or its salt, sulfonic acid or its Salt, phosphoric acid or its salt, C 1 -C 20 alkyl, C 1 -C 20 alkoxy, phenyl, biphenyl, naphthyl, fluorenyl, spirofluorenyl, benzofluorine, phenylene, naphthylene, Fluoreny
  • a 11 may be selected from 0, 1 or 2
  • a 12 and a 13 may be independently selected from 0 and 1, preferably, a 13 It can be 0, but not limited to this.
  • R 11 and R 12 may independently of each other represent the following groups optionally substituted by at least one substituent: phenyl, cyclopentadiene Group, indenyl group, naphthyl group, azulenyl group, heptadenyl group, lead-in group, acenaphthyl group, fluorenyl group, spirofluorenyl group, benzofluorenyl group, dibenzofluorenyl group, phenenyl group, phenanthrenyl group, Anthryl, fluoranthene, benzo [9,10] phenanthryl, pyrenyl, Group, naphthyl group, perylene group, perylene group, amyl group, hexaphenyl group, pentacene group, ruby province group, myristyl group, ovalyl group, pyrrolyl group, thienyl group
  • R 11 and R 12 may independently of each other represent the following groups optionally substituted by at least one substituent: phenyl, naphthyl, fluorenyl, Phenanthrenyl, anthracenyl, benzo [9,10] phenanthrenyl, pyridyl, pyrazinyl, pyrimidinyl, quinolinyl, isoquinolinyl, carbazolyl, benzoquinolinyl, naphthyridyl, quin Oxolinyl, quinazolinyl, phenanthridinyl, acridinyl, phenanthrolinyl, phenazinyl, benzimidazolyl, benzofuranyl, benzothienyl, triazolyl, triazinyl, di Benzofuranyl, dibenzothienyl, imidazopyridyl, imidazopyrimidinyl,
  • b 11 and b 12 may be selected from 1 and 2 independently of each other, but it is not limited thereto.
  • R 13 to R 18 may be independently selected from each other
  • R 13 to R 18 may be independently selected from hydrogen, methyl, phenyl, naphthyl and carbazolyl.
  • b 13 to b 16 may be independently selected from 1, 2 or 3 with each other.
  • the first body may be represented by formula (I-1):
  • Ar 3 and Ar 4 , X, Z, R 3 , R 4 , p and q are as defined above in this specification,
  • the second subject can be represented by formula (II-1):
  • a 11 to A 14 , X 11 , L 11 , a 11 , R 11 and b 11 are as defined above in this specification.
  • the first host may be selected from the following compounds, but they are not limited thereto:
  • the above compounds can be synthesized according to methods known to those skilled in the art, for example, as described in Chinese patent applications with application numbers 2016102620883, 201610599615X, 2016102592879, 201610689673.1, 2016102592972, 201610265142X, 2016102648253, 2016102652028, 2018103328302, 2018103312304, 2018105605225, 201810547204.5, 201811160661.5 Methods.
  • the above-mentioned 109A, 113A, 120A, 127A, 128A, 132A, 143A, 147A, 149A, 150A, 151A, 154A, 156A, 159A, 198A, 205A, 206A, 210A, 211A, 216A are preferably used , 247A, 253A, 254A, more preferably one or more of the above 147A, 150A, 154A, 210A, 253A.
  • the second host may be selected from the following compounds, but they are not limited thereto:
  • the above compounds 101B to 259B can be synthesized according to methods known to those skilled in the art, for example, the methods described in the patent applications with application numbers JP3139321B2, KR1020150141047A, US20150236262A1, US20160133853A1, and US20170186969A1.
  • one or more of the above 167B, 170B, 172B, 174B, 180B, 188B, 194B, 198B, 231B, 234B, 236B, 238B, 254B, 258B are preferably used, and the above 188B is more preferably used , 198B, 231B, 234B, 254B one or more.
  • Factors affecting the efficiency and lifetime of an organic electroluminescent device include: i) whether the electrons and holes in the emission layer are balanced; ii) whether the emission regions in the emission layer are widely (or evenly) distributed in the emission layer, and It is not focused on the hole transport layer or the electron transport layer.
  • the emission layer includes the following: (a) the first body and the second body, and (b) when the first body includes the electron transport group, the second body includes the hole transport group, or when the first body When the hole transport group is included, the second host includes an electron transport group, and the organic electroluminescent device may have improved efficiency and increased lifespan.
  • the second body including the hole transport group may have a relatively wide energy gap
  • the first body including the electron transport group may have a relatively narrow energy gap.
  • the second body can control the electron transport characteristics of the first body, which can prevent or reduce the possibility that the emission region in the emission layer will focus on the interface between the hole transport layer and the emission layer. Therefore, the efficiency and lifespan characteristics of the organic electroluminescent device can be improved.
  • organic electroluminescence when the first host includes a group having relatively strong electron transport properties (for example, xanthone) and the second host includes a hole transport group, organic electroluminescence can be improved Device efficiency and life characteristics. If the second host including the hole transport group is present in the organic electroluminescent device in a relatively large amount, the efficiency and lifespan characteristics of the organic electroluminescent device can be further improved.
  • a group having relatively strong electron transport properties for example, xanthone
  • the organic electroluminescence when the first host includes a group having relatively weak electron transport properties (for example, dimethylanthrone) and the second host includes a hole transport group, the organic electroluminescence can be improved Efficiency and life characteristics of light emitting devices. If the second host including the hole transport group is present in the organic electroluminescent device in a relatively small amount, the efficiency and lifespan characteristics of the organic electroluminescent device can be further improved.
  • a group having relatively weak electron transport properties for example, dimethylanthrone
  • the second host including the hole transport group is present in the organic electroluminescent device in a relatively small amount, the efficiency and lifespan characteristics of the organic electroluminescent device can be further improved.
  • the weight ratio of the first body to the second body may be changed according to the electrical characteristics of the first body and the second body.
  • the weight ratio of the first body to the second body may be in the range of about 1:10 to about 10: 1, for example, in the range of about 1: 9 to about 9: 1.
  • the weight ratio of the first body to the second body may be in the range of about 2: 8 to about 8: 2, may be in the range of about 3: 7 to about 7: 3, or may be about 5: 5, But it is not limited to this.
  • the guest material in the emission layer may include phosphorescence or fluorescent materials.
  • Phosphorescent materials include metal complexes such as iridium and platinum.
  • green phosphorescent materials such as Ir (ppy) 3 [fac-tris (2-phenylpyridine) iridium]
  • blue phosphorescent materials such as FIrpic and FIr6, and red phosphorescent materials
  • Btp2Ir acac
  • the guest material of the emission layer used is selected from one of the following EMD-1 to EMD-23, but it is not limited thereto:
  • the amount of the guest material in the emission layer may generally be about 0.01-15, preferably 1-10, more preferably 2-8 parts by weight But it is not limited to this.
  • the thickness of the emissive layer can be about Within the range of, or for example, within about In the range. When the thickness of the emission layer is within any of these ranges, the light emission characteristics of the emission layer can be improved without significantly increasing the driving voltage.
  • the electron transport region may include a hole blocking layer, an electron transport layer (ETL), and an electron injection layer, but it is not limited thereto.
  • ETL electron transport layer
  • the electron transport region may include a hole blocking layer.
  • a hole blocking layer may be included to prevent the triplet excitons or holes from diffusing into the electron transport layer.
  • the hole blocking layer may be formed on the emission layer by methods such as vacuum deposition, spin coating, casting, LB method, inkjet printing, laser printing, or LITI.
  • the deposition conditions or coating conditions may be similar to the deposition conditions or coating conditions used to form the hole injection layer.
  • the hole blocking layer may include at least one selected from BCP and Bphen, but it is not limited thereto.
  • the thickness of the hole blocking layer may be about Within the range of, for example, can be In the range. When the thickness of the hole blocking layer is in any of these ranges, the hole blocking characteristics of the hole blocking layer can be improved without significantly increasing the driving voltage.
  • the electron transport area may also include an electron transport layer.
  • the electron transport layer may be formed on the emission layer or on the charge control layer by methods such as vacuum deposition, spin coating, casting, LB method, inkjet printing, laser printing, or laser induced thermal imaging.
  • the conditions for vacuum deposition and coating of the electron transport layer may be similar to the conditions for vacuum deposition and coating of the hole injection layer.
  • the electron transport layer may include the above BCP and BPhen and the following Alq3, Balq, TAZ, NTAZ, and ET1 to ET9:
  • the thickness of the electron transport layer can be about Within the range of, for example, can be In the range. When the thickness of the electron transport layer is within any of these ranges, the electron transport characteristics of the electron transport layer can be improved without significantly increasing the driving voltage.
  • the electron transport layer may also include metal-containing materials.
  • the metal-containing material may include Li complex.
  • the Li complex may include, for example, the compound ET-D1 (lithium quinolinate, LiQ) or ET-D2:
  • the electron transport layer includes ET1 / LiQ with a mass ratio of 1: 1.
  • the electron transport region may include an electron injection layer that can facilitate electron injection from the second electrode 190.
  • the electron injection layer may be formed on the electron transport layer by methods such as vacuum deposition, spin coating, casting, LB method, inkjet printing, laser printing, or LITI.
  • the conditions for vacuum deposition and coating of the electron injection layer may be similar to the conditions for vacuum deposition and coating of the hole injection layer.
  • the electron injection layer may include, but is not limited to, Yb, LiF, NaCl, CsF, Li 2 O, BaO, and LiQ.
  • the thickness of the electron injection layer can be about Within the range of, for example, can be In the range. When the thickness of the electron injection layer is within any of these ranges, the electron injection characteristics of the electron injection layer can be improved without significantly increasing the driving voltage.
  • the second electrode 190 may be located on the electron transport area.
  • the second electrode 190 may be a cathode (ie, an electron injection electrode).
  • the material used to form the second electrode 190 may be a material having a low work function, such as a metal, alloy, conductive compound, or a mixture thereof.
  • Non-limiting examples of the second electrode 190 may include lithium (Li), ytterbium (Yb), magnesium (Mg), aluminum (Al), calcium (Ca), and aluminum with a mass ratio ranging from 9: 1-1: 9 -Lithium (Al-Li), magnesium-indium (Mg-In) and magnesium-silver (Mg-Ag).
  • the material used to form the second electrode 190 may be ITO or IZO.
  • the thickness of the second electrode depends on the material used, and is usually 5-100 nm, preferably 7-30 nm and more preferably 10-20 nm.
  • a light extraction layer ie CPL layer
  • the refractive index of the CPL coating material should be as high as possible, and the absorption coefficient should be as small as possible.
  • Any material known in the art can be used as the CPL layer material, for example, Alq3.
  • the thickness of the CPL cover layer is usually 5-300 nm, preferably 20-100 nm and more preferably 40-80 nm.
  • the organic electroluminescent device may further include a packaging structure.
  • the packaging structure may be a protective structure that prevents foreign substances such as moisture and oxygen from entering the organic layer of the organic electroluminescent device.
  • the packaging structure may be, for example, a can, such as a glass can or a metal can; or a film covering the entire surface of the organic layer.
  • the invention also relates to a method for preparing an organic electroluminescent device, which comprises sequentially laminating a first electrode, an organic layer and a second electrode on a substrate.
  • methods such as vacuum deposition, spin coating, casting, LB method, inkjet printing, laser printing, or LITI can be used, but are not limited thereto.
  • a vacuum deposition method to form the respective layers, in which a vacuum degree of about 10 -8 -10 -3 Torr and a temperature of about 10 -8 -10 -3 Torr can be used at a deposition temperature of about 100-500 ° C / Second deposition rate for vacuum deposition.
  • the deposition temperature is 200-400 ° C, more preferably 250-300 ° C.
  • the degree of vacuum is 10 -7 -10 -4 Torr, more preferably 10 -6 -10 -5 Torr.
  • the deposition rate is about / Sec, more preferably about /second.
  • each layer described in the present invention can be formed into a single layer and used as a single layer, or mixed with other materials to form a film and used as a single layer, or a single A layered structure between layers of a film, a layered structure between layers formed by mixing, or a layered structure of layers formed separately and a layer formed by mixing.
  • the invention also relates to a display device including an organic electroluminescent device 10, in particular a flat panel display device.
  • the display device may further include at least one thin film transistor.
  • the thin film transistor may include a gate electrode, a source electrode and a drain electrode, a gate insulating layer, and an active layer, wherein one of the source electrode and the drain electrode may be electrically connected to the first electrode 110 of the organic electroluminescence device 10.
  • the active layer may include crystalline silicon, amorphous silicon, an organic semiconductor, or an oxide semiconductor, but it is not limited thereto.
  • HPLC-MS The molecular weight of the material is 526.17, and the measured molecular weight is 526.95.
  • HPLC-MS The molecular weight of the material is 604.22, and the measured molecular weight is 604.86.
  • HPLC-MS The molecular weight of the material is 579.19, and the measured molecular weight is 579.92.
  • HPLC-MS The molecular weight of the material is 638.29, and the measured molecular weight is 639.05.
  • HPLC-MS The molecular weight of the material is 579.19, and the measured molecular weight is 579.88.
  • HPLC-MS The molecular weight of the material is 636.26, and the measured molecular weight is 637.11.
  • HPLC-MS The molecular weight of the material is 727.30, and the measured molecular weight is 728.23.
  • HPLC-MS The molecular weight of the material is 600.26, and the measured molecular weight is 601.05.
  • HPLC-MS The molecular weight of the material is 601.25, and the measured molecular weight is 601.97.
  • HPLC-MS The molecular weight of the material is 639.24, the measured molecular weight is 640.05.
  • the The thickness of the deposited ITO / Ag / ITO glass substrate is cut to a size of 50mm ⁇ 50mm ⁇ 0.4mm.
  • the substrate was sonicated in isopropanol and pure water for 10 minutes, cleaned with ozone for 10 minutes, and then mounted on a vacuum depositor.
  • the compounds ET1 and LiQ were co-deposited on the emission layer in a weight ratio of 100: 100 to form Thickness of the electron transport layer, Yb is deposited on the electron transport layer to form a thickness of about Electron injection layer, and then co-deposit Mg and Ag in a weight ratio of 90:10 on the electron injection layer to form a The thickness of the cathode, and then deposit Alq 3 on the cathode layer to form A thickness of the light extraction layer (ie, CPL cover layer), thereby manufacturing an organic electroluminescence device.
  • An organic electroluminescent device was prepared in the same manner as in Example 1, except that the compounds shown in Table 1 were used to form the emission layers of Examples 2 to 14.
  • Organic electroluminescent devices were prepared in the same manner as in Example 1, except that the compounds shown in Table 1 were used to form the emission layers of Comparative Examples 1 to 11.
  • the driving voltage, current density, brightness, and emission of the organic electroluminescent devices prepared in Examples 1-14 and Comparative Examples 1-11 were evaluated using a CS-2000 spectroradiometer measuring unit (available from KONICA MINOLTA) The color, efficiency and longevity of light.
  • the brightness when the current density is 10 mA / cm 2 is the initial brightness, and the T 95 lifetime is defined as the time it takes for the brightness of the organic electroluminescent device to decay to 95% of its initial brightness.
  • the results are shown in Table 2.
  • Example 1 4.0 135.4 0.26 0.71 376
  • Example 2 4.2 129.5 0.27 0.72 357
  • Example 3 3.9 136.1 0.27 0.71 342
  • Example 4 4.0 130.6 0.26 0.70 325
  • Example 5 3.7 145.2 0.29 0.69 337
  • Example 6 3.8 141.7 0.28 0.70 329
  • Example 7 3.7 144.8 0.27 0.70 341
  • Example 8 3.9 138.3 0.27 0.72 325
  • Example 9 3.9 138.6 0.28 0.71 364
  • Example 10 4.0 131.7 0.29 0.70 371
  • Example 11 3.8 130.5 0.27 0.71 321
  • Example 12 3.7 127.4 0.28 0.70 305
  • Example 13 4.1 137.2 0.28 0.72 324
  • Example 14 4.0 132.1 0.27 0.71 348 Comparative Example 1 3.9 94.2 0.27 0.71 215 Comparative Example 2 3.5 90.3 0.26 0.72 189 Comparative Example 3 6.5 24.9 0.29 0.68 35 Comparative Example 4 6.2 30.8 0.28 0.67 27 Comparative Example 5 3.6 94.6 0.28 0.70 167 Comparative Example 6 3.8 102.7 0.27 0.69 175
  • Comparative Example 7 4.1 105.7 0.28 0.71 198
  • Comparative Example 8 6.9 21.1 0.29 0.68 51 Comparative Example 9 6.3 35.4 0.28 0.69 43
  • Comparative Example 10 3.7 89.9 0.28 0.70 105 Comparative Example 11 4.2 107.6 0.27 0.71 223
  • the organic electroluminescent devices prepared in Examples 1-14 may have an overall Improved characteristics, that is, characteristics with high efficiency and long life.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机电致发光器件,其由下至上依次设置有基板、第一电极、有机层和第二电极,所述有机层包括发射层,其中所述发射层包含由式(I)表示的第一主体和由式(II)表示的第二主体。还公开了一种制备所述有机电致发光器件的方法以及包含其的显示装置。

Description

有机电致发光器件、其制备方法及包含其的显示装置 技术领域
本发明涉及光电器件技术领域。更具体而言,本发明涉及一种有机电致发光器件,尤其是包括发射层的有机电致发光器件。本发明还涉及一种制备所述有机电致发光器件的方法以及包含其的显示装置。
背景技术
有机电致发光器件是具有宽视角、高对比度、短响应时间以及良好的亮度、驱动电压和响应速度特性的自发射装置。有机电致发光器件产生全色图像。
有机电致发光器件包括阳极、阴极以及设置在阳极和阴极之间的包括发射层的有机层,其中有机层是在阴极和阳极之间各层的总称。此外,在阳极和发射层之间可以存在空穴传输区域,并且在发射层和阴极之间可以存在电子传输区域。来自阳极的空穴可以通过空穴传输区域向发射层迁移,来自阴极的电子可以通过电子传输区域向发射层迁移。载流子(例如,空穴和电子)在发射层中复合以产生激子。当激子从激发态降至基态时,发射光。
为了提高有机电致发光器件的效率、稳定性和寿命,必须进行器件结构的改进以及新材料的开发,才能满足未来平板显示器的需求。因此,需要不断开发用于有机电致发光器件的性能更优异的材料。
发明内容
本发明的目的是提供一种有机电致发光器件,其由下至上依次设置有基板、第一电极、有机层和第二电极,所述有机层包括发射层,
其中所述发射层包括由式(I)表示的第一主体和由式(II)表示的第二主体
Figure PCTCN2019117412-appb-000001
其中,在式(I)中
X代表单键、氧原子、硫原子或碳原子;i代表0或1;
m、n、p、q彼此独立地代表0或1;Z表示C-R,
R相同或不同地代表氢原子、氕原子、氘原子、氚原子、F原子、直链或支链C 1-20烷基、具有5至30个环原子的芳族或杂芳族环体系,其中两个或更多个R基团可彼此连接形成环结构;
Ar 1至Ar 4彼此独立地代表单键、具有5至30个环原子的芳族或杂芳族环体系,其中Ar 1和Ar 2基团还可彼此连接形成环结构;
R 1至R 4彼此独立地代表由式(1)、式(2)和式(3)表示的结构:
Figure PCTCN2019117412-appb-000002
其中,虚线代表与分子其余部分连接的键;
Y 1相同或不同地代表N原子或C-R 10,R 10相同或不同地代表氢原子或氰基;
R 5和R 6彼此独立地代表具有5至30个环原子的芳族或杂芳族环体系;
Y 2相同或不同地代表N原子或C-R 11
R 11相同或不同地代表氢原子、氕原子、氘原子、氚原子、F原子、氰基或直链或支链C 1-20烷基、具有5至30个环原子的芳族或杂芳族环体系;
X 1代表单键、氧原子、硫原子、直链或支链C 1-10烷基取代的亚烷基、芳基取代的亚烷基、直链或支链C 1-10烷基取代的亚胺基或芳基取代的亚胺基;
R 9代表具有5至30个环原子的芳族或杂芳族环体系;
R 7、R 8彼此独立地代表氢原子,以及由式(4)或式(5)表示的结构:
Figure PCTCN2019117412-appb-000003
其中,
*代表式(4)通过并环方式与式(2)或式(3)相连的连接位点,并且在相连时,只能取相邻的两个位点,且连接位点Y 2代表碳原子;
Y 3相同或不同地代表N原子或C-R 11
R 11相同或不同地代表氢原子、氕原子、氘原子、氚原子、F原子、氰基或直链或支链C 1-20烷基、具有5至30个环原子的芳族或杂芳族环体系;
X 2和X 3彼此独立地代表单键、氧原子、硫原子、
Figure PCTCN2019117412-appb-000004
直链或支链C 1-10烷基取代的亚烷基、芳基取代的亚烷基、直链或支链C 1-10烷基取代的亚胺基或芳基取代的亚胺基;
R 12和R 13彼此独立地代表具有5至30个环原子的芳族或杂芳族环体系;
其中,在式(II)中
A 11至A 14彼此独立地代表苯、萘、吡啶、嘧啶、喹啉、异喹啉、2,6-萘啶、1,8-萘啶、1,5-萘啶、1,6-萘啶、1,7-萘啶、2,7-萘啶、喹喔啉、酞嗪、喹唑啉和噌啉;
X 11代表O、S、C(R 17)(R 18)、Si(R 17)(R 18)、P(R 17)、B(R 17)、P(=O)(R 17)或N-[(L 12) a12-(R 12) b12];
L 11至L 13彼此独立地代表任选取代的下列基团:单键、C 3-C 10亚环烷基、C 1-C 10亚杂环烷基、C 3-C 10亚环烯基、C 1-C 10亚杂环烯基、C 6-C 60亚芳基、C 1-C 60亚杂芳基、二价非芳族缩合多环基和二价非芳族缩合杂多环基;
a 11至a 13彼此独立地代表0、1、2、3、4和5;
R 11和R 12彼此独立地代表-N(Q 1)(Q 2)、-Si(Q 3)(Q 4)(Q 5)和-B(Q 6)(Q 7),以及任选取代的下列基团:C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 1-C 60杂芳基、单价非芳族缩合多环基、单价非芳族缩合杂多环基;
b 11和b 12彼此独立地代表1、2、3和4;
R 13至R 18彼此独立地代表氢、氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐,以及任选取代的下列基团:C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基、C 1-C 60烷氧基、C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基,其中R 17和R 18可以任选地彼此稠合并形成饱和的或不饱和的环;
R 13和A 11、R 14和A 12、R 15和A 13、R 16和A 14以单键形式连接、并环形式连接或通过碳原子、氧原子、硫原子、氮原子形成5-7元环形式连接;
b 13至b 16彼此独立地选自1、2、3和4;
除非另有说明,在所述取代的基团中,所述取代基彼此独立地选自:
氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基和C 1-C 60烷氧基;
被至少一个取代基取代的C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基和C 1-C 60烷氧基,所述取代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基、单价非芳族缩合杂多环基、-N(Q 11)(Q 12)、-Si(Q 13)(Q 14)(Q 15)和-B(Q 16)(Q 17);
C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基;
被至少一个取代基取代的C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基,所述取代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基、C 1-C 60烷氧基、C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基、单价非芳族缩合杂多环基、-N(Q 21)(Q 22)、-Si(Q 23)(Q 24)(Q 25)和-B(Q 26)(Q 27);以及
-N(Q 31)(Q 32)、-Si(Q 33)(Q 34)(Q 35)和-B(Q 36)(Q 37);
其中,Q 1至Q 7、Q 11至Q 17、Q 21至Q 27和Q 31至Q 37彼此独立地代表氢、C 1-C 60烷基、C 1-C 60烷氧基、C 6-C 60芳基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基。
本发明的目的还在于提供一种制备上述有机电致发光器件的方法,包括在基板上相继层压第一电极、有机层和第二电极。
本发明的目的还在于提供一种显示装置,其包括上述有机电致发光器件。
本发明的包含上述发射层的有机电致发光器件具有改进的效率和寿命。因此,本发明所提供的有机电致发光器件具有良好的应用效果及产业化前景。
附图说明
利用附图对本发明作进一步的说明,但附图中的内容不构成对本发明的任何限制。
图1示出本发明的有机电致发光器件的基本结构,其中:
10.有机电致发光器件
190.第二电极
150.有机层
110.第一电极
具体实施方案
下文中将参照附图更详细地描述本发明,但不意欲限制本发明。
在本发明中,如无相反说明,则所有操作均在室温、常压条件实施。
应理解,当层、区域或组件被称作“形成在”另一层、另一区域或另一组件“上”时,该层、区域或组件可以直接或者间接形成在另一层、另一区域或另一组件上。即,例如,前述两层之间可以存在中间层、中间区域或中间组件。
应理解,在描述本发明的电极和有机电致发光器件,以及其他结构体时,所采用的“上”、“下”、“顶”和“底”等表示方位的词,仅表示在某种特定状态的方位,并不意味相关的结构仅只能按所述方位存在;相反,如果结构体可以变换位置,例如倒置,则结构体的方位作相应改变。具体而言,在本发明中,电极的“底”、“下”侧是指电极在制备过程中靠近基板的一侧,而远离基板的相对一侧为“顶”、“上”侧。
应理解,所使用的术语“包括”和/或“包含”说明存在叙述的特征或组件,但不排除存在或添加一个或更多个其他特征或组件。
如本文使用的,“X包括第一主体”可以解释为“X可以包括式(I)的一类(种)第一主体或式(I)的两类(种)不同的第一主体”。
如本文使用的,术语“有机层”是指位于有机电致发光器件中的第一电极和第二电极之间的单层和/或多个层。包括在有机层中的材料不限于有机材料。
本文使用的C 1-C 60烷基是指在主链中具有1至60个碳原子的直链或支链脂族单价烃基团。在本文中,优选使用C 2-C 10烷基,更优选C 3-C 6烷基。其非限制性实例可以包括甲基、乙基、丙基、异丁基、仲丁基、叔丁基、戊基、异戊基和己基。本文使用的C 1-C 60亚烷基指与C 1-C 60烷基具有相同结构的二价基团。
本文使用的C 1-C 60烷氧基是指由-OA101(其中,A101是C 1-C 60烷基)表示的单价基团。在本文中,优选使用C 2-C 10烷氧基,更优选C 3-C 6烷氧基。其非限制性实例可以包括甲氧基、乙氧基和异丙氧基。
本文使用的C 2-C 60烯基是指在沿C 2-C 60烷基的碳链的一个或更多个位置处(例如,在C 2-C 60烷基的中间或端部处)包括至少一个碳-碳双键的烃基。在本文中,优选使用C 2-C 10烯基,更优选C 3-C 6烯基,特别优选C 3-C 4烯基。其非限制性实例可以包括乙烯基、丙烯基和丁烯基。本文使用的C 2-C 60亚烯基指与C 2-C 60烯基具有相同结构的二价基团。
本文使用的C 2-C 60炔基是指在沿C 2-C 60烷基的碳链的一个或更多个位置处(例如,在C 2-C 60烷基的中间或端部处)包括至少一个碳-碳三键的烃基。在本文中,优选使用C 2-C 10炔基,更优选C 3-C 6炔基。其非限制性实例可以包括乙炔基和丙炔基。本文使用的C 2-C 60亚炔基指与C 2-C 60炔基具有相同结构的二价基团。
本文使用的C 3-C 10环烷基是指包括3至10个作为成环原子的碳原子的单价单环饱和烃基。在本文中,优选使用C 4-C 9环烷基,更优选C 5-C 8环烷基,特别优选C 5-C 7环烷基。其非限制性实例可以包括环丙基、环丁基、环戊基、环己基和环庚基。本文使用的C 3-C 10亚环烷基指与C 3-C 10环烷基具有相同结构的二价基团。
本文使用的C 1-C 10杂环烷基是指包括作为成环原子的从N、O、P和S中选择的至少一种杂原子以及1个至10个作为成环原子的碳原子的单价单环基团。在本文中,优选使用C 2-C 8杂环烷基,更优选C 3-C 6杂环烷基,特别优选C 4-C 5杂环烷基。其非限制性实例可以包括四氢呋喃基和四氢噻吩基。本文使用的C 1-C 10亚杂环烷基指与C 1-C 10杂环烷基具有相同结构的二价基团。
本文使用的C 3-C 10环烯基是指在C 3-C 10环烯基的环中包括3个至10个作为成环原子的碳原子和至少一个碳-碳双键并且总体上不具有芳香性的单价单环基团。在本文中,优选使用C 3-C 8环烯基,更优选C 5-C 7环烯基。其非限制性实例可以包括环戊烯基、环己烯基和环庚烯基。本文使用的C 3-C 10亚环烯基指与C 3-C 10环烯基具有相同结构的二价基团。
本文使用的C 1-C 10杂环烯基是指在其环中包括从N、O、P和S中选择的至少一种杂原子、1个至10个作为成环原子的碳原子以及至少一个双键的单价单环基团。在本文中,优选使用C 3-C 8杂环烯基,更优选C 4-C 6杂环烯基。其非限制性实例可以包括2,3-二氢呋喃基和2,3-二氢噻吩基。本文使用的C 1-C 10亚杂环烯基指与C 1-C 10杂环烯基具有相同结构的二价基团。
本文使用的C 6-C 60芳基是指包括具有6个至60个作为成环原子的碳原子的碳环芳族体系的单价基团,本文使用的C 6-C 60亚芳基指包括具有6个至60个作为成环原子的碳原子的碳环芳族体系的二价基团。在本文中,优选使用C 5-C 10芳基或亚芳基,更优选C 6-C 8芳基或亚芳基。其非限制性示例可以包括苯基、萘基、蒽基、菲基、芘基和
Figure PCTCN2019117412-appb-000005
基。当C 6-C 60芳基和/或C 6-C 60亚芳基包括两个或更多个环时,这些环可以彼此稠合。
本文使用的C 1-C 60杂芳基是指包括具有作为成环原子的从N、O、P和S中选择的至少一种杂原子和1个至60个碳原子的碳环芳族体系的单价基团。本文使用的C 1-C 60亚杂芳基指包括具有作为成环原子的从N、O、P和S中选择的至少一种杂原子和1个至60个碳原子的碳环芳族体系的二价基团。在本文中,优选使用C 4-C 10 杂芳基或亚杂芳基,更优选C 5-C 8杂芳基或亚杂芳基。其非限制性实例可以包括吡啶基、嘧啶基、吡嗪基、哒嗪基、三嗪基、喹啉基和异喹啉基。当C 1-C 60杂芳基和C 1-C 60亚杂芳基包括两个或更多个环时,这些环可以彼此稠合。
本文使用的C 6-C 60芳氧基是指由-OA102(其中,A102是C 6-C 60芳基)表示的基团,本文使用的C 6-C 60芳硫基指由-SA103(其中,A103是C 6-C 60芳基)表示的基团。优选地,本文使用C 6-C 10芳氧基,以及C 6-C 10芳硫基。
本文使用的单价非芳族缩合多环基(例如,具有8个至60个碳原子,优选具有10至40个碳原子,更优选具有12至20个碳原子)是指具有两个或更多个彼此稠合的环、仅碳原子作为成环原子且整个分子结构总体上不具有芳香性的单价基团。单价非芳族缩合多环基的非限制性示例可以包括芴基。本文使用的二价非芳族缩合多环基指与单价非芳族缩合多环基具有相同结构的二价基团。
本文使用的单价非芳族缩合杂多环基(例如,具有1个至60个碳原子,优选具有2至10个碳原子,更优选具有4至6个碳原子)是指具有两个或更多个彼此稠合的环、具有作为成环原子的从N、O、P和S中选择的至少一种杂原子以及碳原子、整个分子结构总体上不具有芳香性的单价基团。单价非芳族缩合杂多环基的非限制性示例可以包括咔唑基。本文使用的二价非芳族缩合杂多环基指与单价非芳族缩合杂多环基具有相同结构的二价基团。
如本文使用的,表述“Ph”代表苯基,表述“Me”代表甲基,表述“Et”代表乙基,表述“ter-Bu”或“But”代表叔丁基。
图1示例性示出本发明的有机电致发光器件的基本结构。
参照图1,基板可以设置在第一电极110的下方或第二电极190的上方。基板可为常用于有机电致发光器件的任何基板。例如,基板可以是具有良好的机械强度、热稳定性、透明度、表面平整度、处理便利性和耐水性的玻璃基板或透明塑料基板,但不限于这些。基板的厚度范围可为50-700μm。
第一电极110可为阳极,第二电极190可为阴极。
或者,第一电极110可为阴极,第二电极190可为阳极。
例如,可以在基板上通过沉积或溅射第一电极材料来形成第一电极110。当第一电极110是阳极时,第一电极材料优选为具有高功函数的材料,以便空穴容易注入到有机层。第一电极材料的非限制性实例包括,但不限于,氧化铟锡(ITO)、氧化铟锌(IZO)、氧化锡(SnO 2)、氧化锌(ZnO)、镁(Mg)、铝(Al)、铝-锂(Al-Li)、钙(Ca)、镁-铟(Mg-In)和镁-银(Mg-Ag)。第一电极110可以具有单层结构或者包括两个层或更多层的多层结构。例如,第一电极110可以具有ITO/Ag/ITO的三层结构,但是不限于此。另外,第一电极的厚度取决于所使用的材料,通常为50-500nm,优选为70-300nm且更优选为100-200nm。
包括发射层的有机层150位于第一电极110上。有机层150还可以包括在第一电极110和发射层之间的空穴传输区域,以及在发射层和第二电极190之间的电子传输区域。
空穴传输区域可以包括,但不限于,空穴注入层(HIL)、空穴传输层(HTL)、缓冲层和电子阻挡层(EBL);电子传输区域可以包括,但不限于,电荷控制层,并且还可以包括空穴阻挡层(HBL)、电子传输层(ETL)或电子注入层(EIL)。
空穴传输区域可以具有由单一材料形成的单层结构、由多种不同材料形成的单层结构、或者具有由多种不同材料形成的多个层的多层结构。
当空穴传输区域包括空穴注入层时,可以通过诸如真空沉积、旋涂、浇铸、朗格缪尔-布吉特(LB)法、喷墨印刷、激光印刷或激光诱导热成像(LITI)等方法在第一电极110上形成空穴注入层。
当通过真空沉积形成空穴注入层时,根据用于形成空穴注入层的化合物和期望的空穴注入层的结构,可以在约100-500℃的沉积温度下,以约10 -8-10 -3托的真空度和约
Figure PCTCN2019117412-appb-000006
/秒的沉积速率进行真空沉积。
当通过旋涂形成空穴注入层时,根据用于形成空穴注入层的化合物和期望的空穴注入层的结构,可以在约80-200℃的温度下,以约2000-5000rpm的涂覆速率进行旋涂。
空穴注入层的材料通常是优选具有高功函数的材料,使得空穴容易地注入有机材料层中。空穴注入层的材料的具体实例包括,但不限于,酞菁铜、N,N’-二苯基-N,N’-双-[4-(苯基-间甲苯-氨基)-苯基]-联苯-4,4’-二胺(DNTPD)、4,4’,4”-三(3-甲基苯基苯基氨基)三苯胺(m-MTDATA)、4,4’4”-三(N,N-二苯基氨基)三苯胺(TDATA)、4,4’,4”-三{N,-(2-萘基)-N-苯基氨基}-三苯胺(2TNATA)、聚(3,4-亚乙二氧基噻吩)/聚(4-苯乙烯磺酸酯)(PEDOT/PSS)、聚苯胺/十二烷基苯磺酸(PANI/DBSA)、聚苯胺/樟脑磺酸(PANI/CSA)、(聚苯胺)/聚(4-苯乙烯磺酸酯)(PANI/PSS)或质量比为99:1、优选98:2、更优选97:3的HT23/NDP(下文将示出其具体结构式)。本发明的空穴注入层的厚度可以是5-100nm,优选是5-50nm且更优选是5-20nm。
当空穴传输区域包括空穴传输层时,可以通过诸如真空沉积、旋涂、浇铸、LB法、喷墨印刷、激光印刷或LITI等方法在第一电极110或空穴注入层上形成空穴传输层。当通过真空沉积或旋涂形成空穴传输层时,沉积或涂覆条件可以类似于用于形成空穴注入层的沉积或涂覆条件。
空穴传输层的材料的具体实例包括,但不限于:基于咔唑的衍生物,例如N-苯基咔唑或聚乙烯咔唑;基于芴的衍生物;基于三苯胺的衍生物,例如N,N’-双(3-甲基苯基)-N,N’-二苯基-[1,1-联苯]-4,4’-二胺(TPD)和4,4’,4”-三(N-咔唑基)三苯胺(TCTA)、N,N’-二(1-萘基)-N,N’-二苯基联苯胺(NPB)、4,4’-亚环己基双[N,N-双(4-甲基苯基)苯胺](TAPC)和HT23(下文将示出其具体结构式)。根据本发明,优选使用HT23作为空穴传输层材料。本发明的空穴传输层的厚度可以是5-200nm、优选是10-150nm且更优选是20-120nm。
空穴传输区域可以包括至少一种选自下列的化合物:例如,m-MTDATA、TDATA、2-TNATA、NPB、β-NPB、TPD、螺-TPD、螺-NPB、甲基化的NPB、TAPC、HMTPD、4,4',4″-三(N-咔唑基)三苯胺(TCTA)、聚苯胺/十二烷基苯磺酸(Pani/DBSA)、聚(3,4-乙撑二氧噻吩)/聚(4-苯乙烯磺酸盐)(PEDOT/PSS)、聚苯胺/樟脑磺酸(Pani/CSA)、(聚苯胺)/聚(4-苯乙烯磺酸盐)(PANI/PSS)、由式201表示的化合物和由式202表示的化合物。
Figure PCTCN2019117412-appb-000007
Figure PCTCN2019117412-appb-000008
在式201和式202中,
L 201至L 205彼此独立地如本文中L 11定义的;xa 1至xa 4彼此独立地选自0、1、2和3;
xa 5选自1、2、3、4和5;以及R 201至R 204彼此独立地如本文中R 11定义的。
在具体的实施方案中,由式201和式202表示的化合物可以彼此独立地包括下列的化合物HT1至HT25,但是不限于此:
Figure PCTCN2019117412-appb-000009
Figure PCTCN2019117412-appb-000010
空穴传输区域的厚度可以在约
Figure PCTCN2019117412-appb-000011
的范围内,例如,可以在约
Figure PCTCN2019117412-appb-000012
的范围内。当空穴传输区域包括空穴注入层和空穴传输层时,空穴注入层的厚度可以在约
Figure PCTCN2019117412-appb-000013
(例如,
Figure PCTCN2019117412-appb-000014
Figure PCTCN2019117412-appb-000015
)的范围内,例如,可以在约
Figure PCTCN2019117412-appb-000016
的范围内,空穴传输层的厚度可以在约
Figure PCTCN2019117412-appb-000017
的范围内,例如,可以在约
Figure PCTCN2019117412-appb-000018
的范围内。当空穴传输区域、空穴注入层和空穴传输层的厚度在上述任意范围内时,可以获得令人满意的空穴传输性质而不显著增大驱动电压。
除了上述材料之外,空穴传输区域还可以包括电荷产生材料,以改善导电性质。电荷产生材料可以均匀地或非均匀地分散在空穴传输区域中。
电荷产生材料可以是例如p掺杂剂。p掺杂剂可以包括至少一种选自下列的化合物:醌衍生物,例如四氰基醌二甲烷(TCNQ)或2,3,5,6-四氟-四氰基-1,4-苯醌二甲烷(F4-TCNQ);金属氧化物,例如氧化钨或氧化钼;或含氰基的化合物,例如下面示出的化合物HT-D1、NDP和F4-TCNQ:
Figure PCTCN2019117412-appb-000019
除了空穴注入层和空穴传输层之外,空穴传输区域还可以包括缓冲层、电子阻挡层,或其结合。缓冲层可以根据从发射层发射的光的波长来补偿光学谐振距离,因此可以改善有机电致发光器件的发光效率。电子阻挡层可以防止电子从电子传输区域注入。在具体的实施方案中,电子阻挡层化合物包括下列的化合物EB1至EB7,但是不限于此:
Figure PCTCN2019117412-appb-000020
本发明的电子阻挡层的厚度可为1-200nm、优选为5-150nm且更优选为10-100nm。
在本发明的一个实施方案中,可以通过诸如真空沉积、旋涂、浇铸、LB法、喷墨印刷、激光印刷或激光诱导热成像等方法在第一电极110上或在空穴传输区域上形成发射层。当通过真空沉积或旋涂形成发射层时,用于发射层的沉积和涂覆条件可以类似于用于形成空穴注入层的沉积和涂覆条件。
当有机电致发光器件10是全色有机电致发光器件时,可以将发射层图案化为均与子像素对应的红色发射层、绿色发射层或蓝色发射层。任选地,发射层可以发射白光,并且可以具有红色发射层、绿色发射层 和蓝色发射层的堆叠结构,或者可以包括一起混合在单层中的红光发射材料、绿光发射材料和蓝光发射材料。任选地,发射层可以是白色发射层,并且还可以包括将白光转换成期望的颜色的光的色转换层或滤色器。
发射层可以包括主体材料和客体材料。
在本发明的一个实施方案中,发射层中的主体材料可以包括由式(I)表示的第一主体和由式(II)表示的第二主体
Figure PCTCN2019117412-appb-000021
其中,在式(I)中
X代表单键、O、S或C;i代表0或1;
m、n、p、q彼此独立地代表0或1;Z表示C-R,
R相同或不同地代表氢原子、氕原子、氘原子、氚原子、F原子、直链或支链C 1-20烷基、具有5至30个环原子的芳族或杂芳族环体系,其中两个或更多个R基团可彼此连接形成环结构;
Ar 1至Ar 4彼此独立地代表单键、具有5至30个环原子的芳族或杂芳族环体系,其中Ar 1和Ar 2基团还可彼此连接形成环结构;
R 1和R 4彼此独立地代表由式(1)、式(2)和式(3)表示的结构:
Figure PCTCN2019117412-appb-000022
其中,虚线代表与分子其余部分连接的键;
Y 1相同或不同地代表N原子或C-R 10,R 10相同或不同地代表氢原子或氰基;
R 5和R 6彼此独立地代表具有5至30个环原子的芳族或杂芳族环体系;
Y 2相同或不同地代表N原子或C-R 11
R 11相同或不同地代表氢原子、氕原子、氘原子、氚原子、F原子、氰基或直链或支链C 1-20烷基、具有5至30个环原子的芳族或杂芳族环体系;
X 1代表单键、氧原子、硫原子、直链或支链C 1-10烷基取代的亚烷基、芳基取代的亚烷基、直链或支链C 1-10烷基取代的亚胺基或芳基取代的亚胺基;
R 9代表具有5至30个环原子的芳族或杂芳族环体系;
R 7、R 8彼此独立地代表氢原子,以及由式(4)或式(5)表示的结构:
Figure PCTCN2019117412-appb-000023
其中,
*代表式(4)通过并环方式与式(2)或式(3)相连的连接位点,并且在相连时,只能取相邻的两个位点,且连接位点Y 2代表碳原子;
Y 3相同或不同地代表N原子或C-R 11
R 11相同或不同地代表氢原子、氕原子、氘原子、氚原子、F原子、氰基或直链或支链C 1-20烷基、具有5至30个环原子的芳族或杂芳族环体系;
X 2和X 3彼此独立地代表单键、氧原子、硫原子、
Figure PCTCN2019117412-appb-000024
直链或支链C 1-10烷基取代的亚烷基、芳基取代的亚烷基、直链或支链C 1-10烷基取代的亚胺基或芳基取代的亚胺基;
R 12和R 13彼此独立地代表具有5至30个环原子的芳族或杂芳族环体系;
其中,在式(II)中
A 11至A 14彼此独立地代表苯、萘、吡啶、嘧啶、喹啉、异喹啉、2,6-萘啶、1,8-萘啶、1,5-萘啶、1,6-萘啶、1,7-萘啶、2,7-萘啶、喹喔啉、酞嗪、喹唑啉和噌啉;
X 11代表O、S、C(R 17)(R 18)、Si(R 17)(R 18)、P(R 17)、B(R 17)、P(=O)(R 17)或N-[(L 12) a12-(R 12) b12];
L 11至L 13彼此独立地代表任选取代的下列基团:单键、C 3-C 10亚环烷基、C 1-C 10亚杂环烷基、C 3-C 10亚环烯基、C 1-C 10亚杂环烯基、C 6-C 60亚芳基、C 1-C 60亚杂芳基、二价非芳族缩合多环基和二价非芳族缩合杂多环基;
a 11至a 13彼此独立地代表0、1、2、3、4和5;
R 11和R 12彼此独立地代表-N(Q 1)(Q 2)、-Si(Q 3)(Q 4)(Q 5)和-B(Q 6)(Q 7),以及任选取代的下列基团:C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 1-C 60杂芳基、单价非芳族缩合多环基、单价非芳族缩合杂多环基;
b 11和b 12彼此独立地代表1、2、3和4;
R 13至R 18彼此独立地代表氢、氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐,以及任选取代的下列基团:C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基、C 1-C 60烷氧基、C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基,其中R 17和R 18可以任选地彼此稠合并形成饱和的或不饱和的环;
R 13和A 11、R 14和A 12、R 15和A 13、R 16和A 14以单键形式连接、并环形式连接或通过碳原子、氧原子、硫原子、氮原子形成5-7元环形式连接;
b 13至b 16彼此独立地选自1、2、3和4;
其中在所述取代的基团中,所述取代基彼此独立地选自:
氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基和C 1-C 60烷氧基;
被至少一个取代基取代的C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基和C 1-C 60烷氧基,所述取代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基、单价非芳族缩合杂多环基、-N(Q 11)(Q 12)、-Si(Q 13)(Q 14)(Q 15)和-B(Q 16)(Q 17);
C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基;
被至少一个取代基取代的C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基,所述取代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基、C 1-C 60烷氧基、C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10 环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基、单价非芳族缩合杂多环基、-N(Q 21)(Q 22)、-Si(Q 23)(Q 24)(Q 25)和-B(Q 26)(Q 27);以及
-N(Q 31)(Q 32)、-Si(Q 33)(Q 34)(Q 35)和-B(Q 36)(Q 37);
其中,Q 1至Q 7、Q 11至Q 17、Q 21至Q 27和Q 31至Q 37彼此独立地代表氢、C 1-C 60烷基、C 1-C 60烷氧基、C 6-C 60芳基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基。
在本发明的一个优选的实施方案中,其中在式(I)中,R相同或不同地代表氢原子、氘原子、氚原子、F原子、甲基、乙基、正丙基、正丁基、苯基、萘基、蒽基、芘基、菲基、芴基和咔唑基。
在本发明的一个优选的实施方案中,其中在式(I)中,Ar 1至Ar 4彼此独立地代表单键、苯基、萘基、芴基、菲基、蒽基、苯并[9,10]菲基、吡啶基、吡嗪基、嘧啶基、喹啉基、异喹啉基、咔唑基、苯并喹啉基、萘啶基、喹喔啉基、喹唑啉基、菲啶基、吖啶基、菲咯啉基、吩嗪基、苯并咪唑基、苯并呋喃基、苯并噻吩基、三唑基、三嗪基、二苯并呋喃基、二苯并噻吩基、咪唑并吡啶基、咪唑并嘧啶基、吡啶并苯并呋喃基、嘧啶并苯并呋喃基、吡啶并苯并噻吩基、嘧啶并苯并噻吩基、噻蒽基、吩噁噻基、二苯并二氧芑基。
在本发明的一个优选的实施方案中,其中在式(II)中,A 11和A 14彼此独立地代表苯、萘、吡啶、嘧啶、喹啉、异喹啉、2,6-萘啶、1,8-萘啶、1,5-萘啶、1,6-萘啶、1,7-萘啶、2,7-萘啶、喹喔啉和喹唑啉,A 12和A 13彼此独立地为苯,但是它们不限于此。
在本发明的一个优选的实施方案中,其中在式(II)中,X 11可以为O、S、C(R 17)(R 18)或N-[(L 12) a12-(R 12) b12],但是它们不限于此。
在本发明的一个优选的实施方案中,其中在式(II)中,L 11至L 13彼此独立地代表任选被至少一个取代基取代的下列基团:亚苯基、亚并环戊二烯基、亚茚基、亚萘基、亚甘菊环基、亚庚搭烯基、亚引达省基、亚苊基、亚芴基、亚螺芴基、亚苯并芴基、亚二苯并芴基、亚非那烯基、亚菲基、亚蒽基、亚荧蒽基、亚苯并[9,10]菲基、亚芘基、亚
Figure PCTCN2019117412-appb-000025
基、亚并四苯基、亚苉基、亚苝基、亚戊芬基、亚并六苯基、亚并五苯基、亚玉红省基、亚蔻基、亚卵苯基、亚吡咯基、亚噻吩基、亚呋喃基、亚咪唑基、亚吡唑基、亚噻唑基、亚异噻唑基、亚噁唑基、亚异噁唑基、亚吡啶基、亚吡嗪基、亚嘧啶基、亚哒嗪基、亚异吲哚基、亚吲哚基、亚吲唑基、亚嘌呤基、亚喹啉基、亚异喹啉基、亚苯并喹啉基、亚呔嗪基、亚萘啶基、亚喹喔啉基、亚喹唑啉基、亚噌啉基、亚咔唑基、亚菲啶基、亚吖啶基、亚菲咯啉基、亚吩嗪基、亚苯并咪唑基、亚苯并呋喃基、亚苯并噻吩基、亚异苯并噻唑基、亚苯并噁唑基、亚异苯并噁唑基、亚三唑基、亚四唑基、亚噁二唑基、亚三嗪基、亚二苯并呋喃基、亚二苯并噻吩基、亚苯并咔唑基和亚二苯并咔唑基,其中所述取代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 20烷基、C 1-C 20烷氧基、环戊基、环己基、环庚基、环戊烯基、环己烯基、苯基、联苯基、并环戊二烯基、茚基、萘基、甘菊环基、庚搭烯基、引达省基、苊基、芴基、螺芴基、苯并芴基、二苯并芴基、非那烯基、菲基、蒽基、荧蒽基、苯并[9,10]菲基、芘基、
Figure PCTCN2019117412-appb-000026
基、并四苯基、苉基、苝基、戊芬基、并六苯基、五苯基、玉红省基、蔻基、卵苯基、吡咯基、噻吩基、呋喃基、咪唑基、吡唑基、噻唑基、异噻唑基、噁唑基、异噁唑基、吡啶基、吡嗪基、嘧啶基、哒嗪基、异吲哚基、吲哚基、吲唑基、嘌呤基、喹啉基、异喹啉基、苯并喹啉基、酞嗪基、萘啶基、喹喔啉基、喹唑啉基、噌啉基、咔唑基、菲啶基、吖啶基、菲咯啉基、吩嗪基、苯并咪唑基、苯并呋喃基、苯并噻吩基、异苯并噻唑基、苯并噁唑基、异苯并噁唑基、三唑基、四唑基、噁二唑基、三嗪基、二苯并呋喃基、二苯并噻吩基、苯并咔唑基、二苯并咔唑基、噻二唑基和咪唑并吡啶基。
在本发明的一个更优选的实施方案中,其中在式(II)中,L 11至L 13彼此独立地代表任选被至少一个取代基取代的下列基团:亚苯基、亚萘基、亚芴基、亚吡啶基、亚嘧啶基、亚喹啉基、亚异喹啉基、亚喹唑啉基、亚咔唑基、亚三嗪基、亚二苯并呋喃基和亚二苯并噻吩基,其中所述取代基选自:氘、F、Cl、Br、I、 羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 20烷基、C 1-C 20烷氧基、苯基、联苯基、萘基、芴基、螺芴基、苯并芴基、二苯并芴基、菲基、蒽基、芘基、
Figure PCTCN2019117412-appb-000027
基、吡啶基、吡嗪基、嘧啶基、哒嗪基、喹啉基、异喹啉基、喹喔啉基、喹唑啉基、咔唑基和三嗪基。
在本发明的一个优选的实施方案中,其中在式(II)中,a 11可以选自0、1或2,a 12、a 13可以彼此独立地选自0和1,优选地,a 13可以是0,但不限于此。
在本发明的一个优选的实施方案中,其中在式(II)中,R 11和R 12可以彼此独立地代表任选被至少一个取代基取代的下列基团:苯基、并环戊二烯基、茚基、萘基、甘菊环基、庚搭烯基、引达省基、苊基、芴基、螺芴基、苯并芴基、二苯并芴基、非那烯基、菲基、蒽基、荧蒽基、苯并[9,10]菲基、芘基、
Figure PCTCN2019117412-appb-000028
基、并四苯基、苉基、苝基、戊芬基、并六苯基、并五苯基、玉红省基、蔻基、卵苯基、吡咯基、噻吩基、呋喃基、咪唑基、吡唑基、噻唑基、异噻唑基、噁唑基、异噁唑基、吡啶基、吡嗪基、嘧啶基、哒嗪基、异吲哚基、吲哚基、吲唑基、嘌呤基、喹啉基、异喹啉基、咔唑基、苯并喹啉基、酞嗪基、萘啶基、喹喔啉基、喹唑啉基、噌啉基、菲啶基、吖啶基、菲咯啉基、吩嗪基、苯并咪唑基、苯并呋喃基、苯并噻吩基、苯并噻唑基、异苯并噻唑基、苯并噁唑基、异苯并噁唑基、三唑基、四唑基、噁二唑基、三嗪基、二苯并呋喃基、二苯并噻吩基、二苯并噻咯基、苯并咔唑基、二苯并咔唑基、咪唑并吡啶基、咪唑并嘧啶基、吡啶并苯并呋喃基、嘧啶并苯并呋喃基、吡啶并苯并噻吩基、嘧啶并苯并噻吩基、噻蒽基、吩噁噻基、二苯并二氧芑基和-N(Q 1)(Q 2),其中所述取代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 20烷基、C 1-C 20烷氧基、苯基、联苯基、并环戊二烯基、茚基、萘基、甘菊环基、庚搭烯基、引达省基、苊基、芴基、螺芴基、苯并芴基、二苯并芴基、非那烯基、菲基、蒽基、荧蒽基、苯并[9,10]菲基、芘基、
Figure PCTCN2019117412-appb-000029
基、并四苯基、苉基、苝基、戊芬基、并六苯基、并五苯基、玉红省基、蔻基、卵苯基、吡咯基、噻吩基、呋喃基、咪唑基、吡唑基、噻唑基、异噻唑基、噁唑基、异噁唑基、吡啶基、吡嗪基、嘧啶基、哒嗪基、异吲哚基、吲哚基、吲唑基、嘌呤基、喹啉基、异喹啉基、咔唑基、苯并喹啉基、酞嗪基、萘啶基、喹喔啉基、喹唑啉基、噌啉基、咔唑基、菲啶基、吖啶基、菲咯啉基、吩嗪基、苯并咪唑基、苯并呋喃基、苯并噻吩基、苯并噻唑基、异苯并噻唑基、苯并噁唑基、异苯并噁唑基、三唑基、四唑基、噁二唑基、三嗪基、二苯并呋喃基、二苯并噻吩基、苯并咔唑基、二苯并咔唑基和-Si(Q 33)(Q 34)(Q 35),其中,Q 1、Q 2和Q 33至Q 35可以均独立地选自C 1-C 60烷基、C 6-C 60芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基,但是它们不限于此。
在本发明的一个优选的实施方案中,在式(II)中,R 11和R 12可以彼此独立地代表任选被至少一个取代基取代的下列基团:苯基、萘基、芴基、菲基、蒽基、苯并[9,10]菲基、吡啶基、吡嗪基、嘧啶基、喹啉基、异喹啉基、咔唑基、苯并喹啉基、萘啶基、喹喔啉基、喹唑啉基、菲啶基、吖啶基、菲咯啉基、吩嗪基、苯并咪唑基、苯并呋喃基、苯并噻吩基、三唑基、三嗪基、二苯并呋喃基、二苯并噻吩基、咪唑并吡啶基、咪唑并嘧啶基、吡啶并苯并呋喃基、嘧啶并苯并呋喃基、吡啶并苯并噻吩基、嘧啶并苯并噻吩基、噻蒽基、吩噁噻基、二苯并二氧芑基和-N(Q 1)(Q 2),其中所述取代基选自:氘、F、Cl、Br、I、氰基、硝基、C 1-C 20烷基、苯基、联苯基、萘基、芴基、咔唑基、二苯并呋喃基、二苯并噻吩基和-Si(Q 33)(Q 34)(Q 35),其中,Q 1、Q 2和Q 33至Q 35可以彼此独立地选自甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、苯基、联苯基、萘基和芴基,但是它们不限于此。
在本发明的一个优选的实施方案中,其中在式(II)中,b 11和b 12可以彼此独立地选自1和2,但是其不限于此。
在本发明的一个优选的实施方案中,其中在式(II)中,R 13至R 18可以彼此独立地选自
氢、甲基、乙基、正丙基、正丁基、苯基、萘基、蒽基、芘基、菲基、芴基和咔唑基;以及
被至少一个取代基取代的苯基、萘基、蒽基、芘基、菲基、芴基和咔唑基,所述取代基选自:氘、F、 Cl、Br、I、氰基、硝基、甲基、苯基和萘基。
在本发明的一个优选的实施方案中,其中在式(II)中,R 13至R 18可以彼此独立地选自氢、甲基、苯基、萘基和咔唑基。
在本发明的一个优选的实施方案中,其中在式(II)中,b 13至b 16可以彼此独立地选自1、2或3。
在本发明的一个优选的实施方案中,第一主体可以由式(I-1)表示:
Figure PCTCN2019117412-appb-000030
其中,
Ar 3和Ar 4、X、Z、R 3、R 4、p和q如本说明书中以上定义的,
第二主体可以由式(II-1)表示:
Figure PCTCN2019117412-appb-000031
其中,
A 11至A 14、X 11、L 11、a 11、R 11和b 11如本说明书中以上定义的。
在本发明的一个实施方案中,第一主体可以选自下列化合物,但是它们不限于此:
Figure PCTCN2019117412-appb-000032
Figure PCTCN2019117412-appb-000033
Figure PCTCN2019117412-appb-000034
Figure PCTCN2019117412-appb-000035
上述化合物可以根据本领域技术人员已知的方法合成,例如记载于申请号为2016102620883、201610599615X、2016102592879、201610689673.1、2016102592972、201610265142X、2016102648253、2016102652028、2018103328302、2018103312304、2018105605225、201810547204.5、201811160661.5的中国专利申请中的方法。
作为本发明的第一主体,优选使用上述109A、113A、120A、127A、128A、132A、143A、147A、149A、150A、151A、154A、156A、159A、198A、205A、206A、210A、211A、216A、247A、253A、254A的一种或多种,更优选使用上述147A、150A、154A、210A、253A的一种或多种。
在本发明的一个实施方案中,第二主体可以选自下列化合物,但是它们不限于此:
Figure PCTCN2019117412-appb-000036
Figure PCTCN2019117412-appb-000037
Figure PCTCN2019117412-appb-000038
Figure PCTCN2019117412-appb-000039
Figure PCTCN2019117412-appb-000040
上述化合物101B至259B可以根据本领域技术人员已知的方法合成,例如记载于申请号为JP3139321B2、KR1020150141047A、US20150236262A1、US20160133853A1、US20170186969A1的专利申请中的方法。
作为本发明的第二主体,优选使用上述167B、170B、172B、174B、180B、188B、194B、198B、231B、234B、236B、238B、254B、258B的一种或多种,更优选使用上述188B、198B、231B、234B、254B的一种或多种。
影响有机电致发光器件的效率和寿命的因素包括:i)发射层中的电子和空穴是否平衡;ii)发射层中的发射区域是否广泛地(或均匀地)分布在发射层中,而不是侧重于空穴传输层或电子传输层。
当仅将一类(种)材料用作发射层中的主体时,不是所有的以上列出的条件(或因素)都可以满足。然而,如果满足下述内容,则所有的以上列出的条件(或因素)都可以满足:a)将至少两类(种)不同的材料用作主体,以及b)所述至少两类(种)不同的材料的取代基的特性彼此不同。
因此,当发射层包括下述时:(a)第一主体和第二主体,以及(b)当第一主体包括电子传输基团时第二主体包括空穴传输基团,或者当第一主体包括空穴传输基团时第二主体包括电子传输基团,有机电致发光器件可以具有改善的效率和增加的寿命。
在本发明的一个实施方案中,包括空穴传输基团的第二主体可以具有相对宽的能隙,包括电子传输基团的第一主体可以具有相对窄的能隙。在这种情况下,第二主体可以控制第一主体的电子传输特性,可以防止或减少发射层中的发射区域向空穴传输层和发射层之间的界面侧重的可能性。因此,可以改善有机电致发光器件的效率和寿命特性。
在本发明的一个实施方案中,当第一主体包括具有相对强的电子传输性质的基团(例如,氧杂蒽酮)并且第二主体包括空穴传输基团时,可以改善有机电致发光器件的效率和寿命特性。如果包括空穴传输基团的第二主体以相对大的量存在于有机电致发光器件中,则可以进一步改善有机电致发光器件的效率和寿命特性。
在本发明的一个实施方案中,当第一主体包括具有相对弱的电子传输性质的基团(例如,二甲基蒽酮)并且第二主体包括空穴传输基团时,可以改善有机电致发光器件的效率和寿命特性。如果包括空穴传输基团的第二主体以相对小的量存在于有机电致发光器件中,则可以进一步改善有机电致发光器件的效率和寿命特性。
第一主体与第二主体的重量比可以根据第一主体和第二主体的电特性而改变。在本发明的一个实施方案中,第一主体与第二主体的重量比可以在约1:10至约10:1的范围内,例如,在约1:9至约9:1的范围内。例如,第一主体与第二主体的重量比可以在约2:8至约8:2的范围内,可以在约3:7至约7:3的范围内,或可以为约5:5,但是其不限于此。
此外,为了改进荧光或磷光特性,发射层中的客体材料可以包括磷光或荧光材料。磷光材料包括铱、铂等的金属络合物等磷光材料。例如,可以使用Ir(ppy)3[fac-三(2-苯基吡啶)铱]等绿色磷光材料,FIrpic、 FIr6等蓝色磷光材料和Btp2Ir(acac)等红色磷光材料。对于荧光材料,可使用本领域中通常使用的那些。在本发明的一个优选实施方案中,所使用的发射层的客体材料选自下述EMD-1至EMD-23之一,但是其不限于此:
Figure PCTCN2019117412-appb-000041
基于100重量份的主体材料(即,第一主体和第二主体的总重量),发射层中的客体材料的量通常可以 在约0.01-15、优选1-10、更优选2-8重量份的范围内,但是其不限于此。
发射层的厚度可以在约
Figure PCTCN2019117412-appb-000042
的范围内,或者例如,在约
Figure PCTCN2019117412-appb-000043
的范围内。当发射层的厚度在这些范围的任意范围内时,可以改善发射层的发光特性而不显著增大驱动电压。
在本发明中,电子传输区域可以包括空穴阻挡层、电子传输层(ETL)、电子注入层,但是其不限于此。
电子传输区域可以包括空穴阻挡层。当在发射层中包括磷光材料时,可以包括空穴阻挡层,以阻止三线态激子或空穴扩散到电子传输层中。
当电子传输区域包括空穴阻挡层时,可以通过诸如真空沉积、旋涂、浇铸、LB法、喷墨印刷、激光印刷或LITI等方法在发射层上形成空穴阻挡层。当通过真空沉积或旋涂形成空穴阻挡层时,沉积条件或涂覆条件可以类似于用于形成空穴注入层的沉积条件或涂覆条件。
例如,空穴阻挡层可以包括从BCP和Bphen中选择的至少一个,但是其不限于此。
Figure PCTCN2019117412-appb-000044
空穴阻挡层的厚度可以在约
Figure PCTCN2019117412-appb-000045
的范围内,例如,可以在约
Figure PCTCN2019117412-appb-000046
的范围内。当空穴阻挡层的厚度在这些范围中的任意范围时,可以改善空穴阻挡层的空穴阻挡特性而不显著增大驱动电压。
电子传输区域还可以包括电子传输层。可以通过诸如真空沉积、旋涂、浇铸、LB法、喷墨印刷、激光印刷或激光诱导热成像等方法在发射层上或在电荷控制层上形成电子传输层。当通过真空沉积或旋涂形成电子传输层时,用于电子传输层的真空沉积和涂覆的条件可以类似于用于空穴注入层的真空沉积和涂覆的条件。
电子传输层可以包括上述BCP和BPhen以及下述Alq3、Balq、TAZ、NTAZ和ET1至ET9:
Figure PCTCN2019117412-appb-000047
电子传输层的厚度可以在约
Figure PCTCN2019117412-appb-000048
的范围内,例如,可以在约
Figure PCTCN2019117412-appb-000049
的范围内。当电子传输层 的厚度在这些范围中的任意范围内时,可以改善电子传输层的电子传输特性而不显著增大驱动电压。
另外,除了上述材料之外,电子传输层还可以包括含金属的材料。
含金属的材料可以包括Li配合物。Li配合物可以包括例如化合物ET-D1(羟基喹啉锂,LiQ)或ET-D2:
Figure PCTCN2019117412-appb-000050
特别优选电子传输层包括质量比为1:1的ET1/LiQ。
电子传输区域可以包括可促进电子从第二电极190注入的电子注入层。
可以通过诸如真空沉积、旋涂、浇铸、LB法、喷墨印刷、激光印刷或LITI等方法在电子传输层上形成电子注入层。当通过真空沉积或旋涂形成电子注入层时,用于电子注入层的真空沉积和涂覆的条件可以类似于用于空穴注入层的真空沉积和涂覆的条件。
电子注入层可以包括,但不限于,Yb、LiF、NaCl、CsF、Li 2O、BaO和LiQ。
电子注入层的厚度可以在约
Figure PCTCN2019117412-appb-000051
的范围内,例如,可以在约
Figure PCTCN2019117412-appb-000052
的范围内。当电子注入层的厚度在这些范围中的任意范围内时,可以改善电子注入层的电子注入特性而不显著增大驱动电压。
第二电极190可以位于电子传输区域上。第二电极190可以是阴极(即,电子注入电极)。当第二电极190是阴极时,用于形成第二电极190的材料可以是具有低逸出功的材料,诸如金属、合金、导电化合物或它们的混合物。第二电极190的非限制性示例可以包括锂(Li)、镱(Yb)、镁(Mg)、铝(Al)、钙(Ca),以及质量比范围为9:1-1:9的铝-锂(Al-Li)、镁-铟(Mg-In)和镁-银(Mg-Ag)。在本发明的一个实施方案中,用于形成第二电极190的材料可以是ITO或IZO。第二电极的厚度取决于所使用的材料,通常为5-100nm,优选为7-30nm且更优选为10-20nm。
为了提高有机电致发光器件的出光效率,还可在器件的阴极上增加一层光取出层(即CPL层)。根据光学吸收、折射原理,CPL覆盖层材料的折射率应越高越好,且吸光系数应越小越好。可使用本领域公知的任何材料作为CPL层材料,例如Alq3。CPL覆盖层的厚度通常为5-300nm,优选为20-100nm且更优选为40-80nm。
有机电致发光器件还可包括封装结构。所述封装结构可为防止外界物质例如湿气和氧气进入有机电致发光器件的有机层的保护结构。所述封装结构可为例如罐,如玻璃罐或金属罐;或覆盖有机层整个表面的薄膜。
本发明还涉及一种制备有机电致发光器件的方法,其包括在基板上相继层压第一电极、有机层和第二电极。关于此点,可使用真空沉积、旋涂、浇铸、LB法、喷墨印刷、激光印刷或LITI等方法,但不限于此。在本发明中,优选使用真空沉积法来形成所述各个层,其中可以在约100-500℃的沉积温度下,以约10 -8-10 -3托的真空度和约
Figure PCTCN2019117412-appb-000053
/秒的沉积速率进行真空沉积。优选地,所述沉积温度为200-400℃,更优选250-300℃。所述真空度为10 -7-10 -4托,更优选10 -6-10 -5托。所述沉积速率为约
Figure PCTCN2019117412-appb-000054
/秒,更优选为约
Figure PCTCN2019117412-appb-000055
/秒。
另外,需要说明的是,本发明所述的用于形成各个层的材料均可以单独成膜而作为单层使用,也可以与其他材料混合后成膜而作为单层使用,还可以为单独成膜的层之间的层叠结构、混合后成膜的层之间的层叠结构或者单独成膜的层与混合后成膜的层的层叠结构。
本发明还涉及一种包括有机电致发光器件10的显示装置,特别是平板显示装置。所述显示装置还可以包括至少一个薄膜晶体管。薄膜晶体管可以包括栅电极、源电极和漏电极、栅极绝缘层以及活性层,其中 源电极和漏电极中的一个可以电连接到有机电致发光器件10的第一电极110。活性层可以包括晶体硅、非晶硅、有机半导体或氧化物半导体,但是其不限于此。
本文中已经公开了示例性的实施方案,虽然其中使用了特定的术语,但是这些术语仅用于且仅解释为一般和描述性含义,而并非出于限制的目的。在一些情况下,如随着本申请的递交而对本领域普通技术人员所显而易见的,除非具体地表示,否则结合特定实施方案描述的特征、特性和/或元件可单独地使用或者与结合其他实施方案描述的特征、特性和/或元件组合使用。相应地,本领域技术人员将理解,在不背离本发明的精神和范围的前提下,可在形式和细节方面作出多种变化。
以下实施例旨在更好地解释本发明,但本发明的范围不限于此。
实施例
除非另有说明,在以下实施例和对比例中所使用的各种材料均是市售可得的,或可通过本领域技术人员已知的方法获得。
I.制备第一主体材料
1.化合物147A的合成
Figure PCTCN2019117412-appb-000056
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol 2-溴氧杂蒽酮(原料A1)、0.015mol原料B1、0.03mol叔丁醇钠、1×10 -4mol三(二亚苄基丙酮)二钯Pd 2(dba) 3、1×10 -4mol三叔丁基膦P(t-Bu) 3和150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度97.56%,收率45.65%。
HPLC-MS:材料分子量为526.17,实测分子量526.95。
2.化合物150A的合成
Figure PCTCN2019117412-appb-000057
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol 3-溴氧杂蒽酮(原料A2)、0.015mol原料B2,用180ml甲苯和90ml乙醇的混合溶剂溶解,然后加入0.03molNa 2CO 3水溶液(2M),然后加入0.0001mol四(三苯基膦)钯Pd(PPh 3) 4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度99.40%,收率56.04%。
HPLC-MS:材料分子量为604.22,实测分子量604.86。
3.化合物154A的合成
Figure PCTCN2019117412-appb-000058
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol 3-溴氧杂蒽酮(原料A2)、0.015mol原料B3,用180ml甲苯和90ml乙醇的混合溶剂溶解,然后加入0.03mol Na 2CO 3水溶液(2M),然后加入 0.0001mol四(三苯基膦)钯Pd(PPh 3) 4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度98.85%,收率53.78%。
HPLC-MS:材料分子量为579.19,实测分子量579.92。
4.化合物210A的合成
Figure PCTCN2019117412-appb-000059
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol原料A3、0.015mol原料B1、0.03mol叔丁醇钠、1×10 -4mol三(二亚苄基丙酮)二钯Pd 2(dba) 3、1×10 -4mol三叔丁基膦P(t-Bu) 3和150ml甲苯,加热回流24小时,取样点板,反应完全,自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,纯度98.73%,收率47.38%。
HPLC-MS:材料分子量为638.29,实测分子量639.05。
5.化合物253A的合成
Figure PCTCN2019117412-appb-000060
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol 3-溴氧杂蒽酮(原料A2)、0.015mol原料B4,用180ml甲苯和90ml乙醇的混合溶剂溶解,然后加入0.03molNa 2CO 3水溶液(2M),然后加入0.0001mol四(三苯基膦)钯Pd(PPh 3) 4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度99.13%,收率51.65%。
HPLC-MS:材料分子量为579.19,实测分子量579.88。
II.制备第二主体材料
1.化合物188B的合成
Figure PCTCN2019117412-appb-000061
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol原料C1、0.015mol原料D1,用180ml甲苯和90ml乙醇的混合溶剂溶解,然后加入0.03mol Na 2CO 3水溶液(2M),然后加入0.0001mol四(三苯基膦)钯Pd(PPh 3) 4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度99.45%,收率67.83%。
HPLC-MS:材料分子量为636.26,实测分子量637.11。
2.化合物198B的合成
Figure PCTCN2019117412-appb-000062
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol原料C1、0.015mol原料D2,用180ml甲苯和90ml乙醇的混合溶剂溶解,然后加入0.03mol Na 2CO 3水溶液(2M),然后加入0.0001mol四(三苯基膦)钯Pd(PPh 3) 4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度98.71%,收率63.24%。
HPLC-MS:材料分子量为727.30,实测分子量728.23。
3.化合物231B的合成
Figure PCTCN2019117412-appb-000063
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol原料C2、0.015mol原料D3,用180ml甲苯和90ml乙醇的混合溶剂溶解,然后加入0.03mol Na 2CO 3水溶液(2M),然后加入0.0001mol四(三苯基膦)钯Pd(PPh 3) 4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度99.57%,收率71.68%。
HPLC-MS:材料分子量为600.26,实测分子量601.05。
4.化合物234B的合成
Figure PCTCN2019117412-appb-000064
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol原料C2、0.015mol原料D4,用180ml甲苯和90ml乙醇的混合溶剂溶解,然后加入0.03molNa 2CO 3水溶液(2M),然后加入0.0001mol四(三苯基膦)钯Pd(PPh 3) 4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱,得到目标产物,HPLC纯度98.66%,收率63.54%。
HPLC-MS:材料分子量为601.25,实测分子量601.97。
5.化合物254B的合成
Figure PCTCN2019117412-appb-000065
在500ml的四口瓶中,在通入氮气的气氛下,加入0.01mol原料C3、0.015mol原料D3,用180ml甲苯和90ml乙醇的混合溶剂溶解,然后加入0.03mol Na 2CO 3水溶液(2M),然后加入0.0001mol四(三苯基膦)钯Pd(PPh 3) 4,加热回流10-24小时,取样点板,反应完全。自然冷却,过滤,滤液旋蒸,过硅胶柱, 得到目标产物,HPLC纯度98.52%,收率48.37%。
HPLC-MS:材料分子量为639.24,实测分子量640.05。
III.制备有机电致发光器件
在以下制备过程中所涉及到的材料的结构式如下:
Figure PCTCN2019117412-appb-000066
实施例1
作为阳极,将分别以
Figure PCTCN2019117412-appb-000067
的厚度沉积ITO/Ag/ITO的玻璃基板切割成50mm×50mm×0.4mm的尺寸。将基板分别在异丙醇和纯水中各超声处理10分钟、用臭氧清洗10分钟、然后安装在真空沉积器上。
在阳极上沉积化合物HT23和NDP,HT23和NDP的质量比为97:3,以形成厚度为
Figure PCTCN2019117412-appb-000068
的空穴注入层,在空穴注入层上沉积化合物HT23以形成厚度为
Figure PCTCN2019117412-appb-000069
的空穴传输层,在空穴传输层上沉积化合物EB4以形成厚度为
Figure PCTCN2019117412-appb-000070
的电子阻挡层,然后在电子阻挡层上以50:50:8的重量比共沉积化合物147A(第一主体)、化合物188B(第二主体)和化合物EMD-13(客体材料),以形成厚度为
Figure PCTCN2019117412-appb-000071
的发射层。
随后,在发射层上以100:100的重量比共沉积化合物ET1和LiQ,以形成具有
Figure PCTCN2019117412-appb-000072
的厚度的电子传输层,在电子传输层上沉积Yb以形成厚度约为
Figure PCTCN2019117412-appb-000073
的电子注入层,然后在电子注入层上以90:10的重量比共沉积Mg和Ag,以形成具有
Figure PCTCN2019117412-appb-000074
的厚度的阴极,然后在阴极层上沉积Alq 3,以形成具有
Figure PCTCN2019117412-appb-000075
厚度的光取出层(即,CPL覆盖层),由此制造有机电致发光器件。
实施例2至实施例14
按照与实施例1相同的方法制备有机电致发光器件,不同之处在于以表1所示的化合物形成实施例2至实施例14的发射层。
对比实施例1至对比实施例11
按照与实施例1相同的方法制备有机电致发光器件,不同之处在于以表1所示的化合物形成对比实施例1至对比实施例11的发射层。
表1
Figure PCTCN2019117412-appb-000076
Figure PCTCN2019117412-appb-000077
测试实施例
使用CS-2000分光辐射亮度计测量单元(购自KONICA MINOLTA制造)评估在实施例1-14以及对比实施例1-11中制备的有机电致发光器件的驱动电压、电流密度、亮度、发射的光的颜色、效率和寿命。当电流密度为10mA/cm 2时的亮度为初始亮度,将T 95寿命定义为有机电致发光器件的亮度衰减到其初始亮度的95%时消耗的时间。结果在表2中示出。
表2
实施例编号 驱动电压(V) 效率(cd/A) CIE_x CIE_y T 95(小时)
实施例1 4.0 135.4 0.26 0.71 376
实施例2 4.2 129.5 0.27 0.72 357
实施例3 3.9 136.1 0.27 0.71 342
实施例4 4.0 130.6 0.26 0.70 325
实施例5 3.7 145.2 0.29 0.69 337
实施例6 3.8 141.7 0.28 0.70 329
实施例7 3.7 144.8 0.27 0.70 341
实施例8 3.9 138.3 0.27 0.72 325
实施例9 3.9 138.6 0.28 0.71 364
实施例10 4.0 131.7 0.29 0.70 371
实施例11 3.8 130.5 0.27 0.71 321
实施例12 3.7 127.4 0.28 0.70 305
实施例13 4.1 137.2 0.28 0.72 324
实施例14 4.0 132.1 0.27 0.71 348
对比实施例1 3.9 94.2 0.27 0.71 215
对比实施例2 3.5 90.3 0.26 0.72 189
对比实施例3 6.5 24.9 0.29 0.68 35
对比实施例4 6.2 30.8 0.28 0.67 27
对比实施例5 3.6 94.6 0.28 0.70 167
对比实施例6 3.8 102.7 0.27 0.69 175
对比实施例7 4.1 105.7 0.28 0.71 198
对比实施例8 6.9 21.1 0.29 0.68 51
对比实施例9 6.3 35.4 0.28 0.69 43
对比实施例10 3.7 89.9 0.28 0.70 105
对比实施例11 4.2 107.6 0.27 0.71 223
如表2中示出的结果所示出的,与在对比实施例1-11中制备的有机电致发光器件相比,在实施例1-14中制备的有机电致发光器件可以具有总体上改善的特性,即具有高效率和长寿命的特性。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制。本领域技术人员在不偏离本发明技术方案的宗旨和范围的情况下,对本发明的技术方案进行的修改或者等同替代,均应涵盖在本发明的权利要求范围当中。

Claims (10)

  1. 一种有机电致发光器件,其由下至上依次设置有基板、第一电极、有机层和第二电极,所述有机层包括发射层,
    其中所述发射层包含由式(I)表示的第一主体和由式(II)表示的第二主体
    Figure PCTCN2019117412-appb-100001
    其中,在式(I)中
    X代表单键、氧原子、硫原子或碳原子;
    i代表0或1;
    m、n、p、q彼此独立地代表0或1;
    Z表示C-R,
    R相同或不同地代表氢原子、氕原子、氘原子、氚原子、F原子、直链或支链C 1-20烷基、具有5至30个环原子的芳族或杂芳族环体系,其中两个或更多个R基团可彼此连接形成环结构;
    Ar 1至Ar 4彼此独立地代表单键、具有5至30个环原子的芳族或杂芳族环体系,其中Ar 1和Ar 2基团还可彼此连接形成环结构;
    R 1至R 4彼此独立地代表由式(1)、式(2)和式(3)表示的结构:
    Figure PCTCN2019117412-appb-100002
    其中,虚线代表与分子其余部分连接的键;
    Y 1相同或不同地代表N原子或C-R 10
    R 10相同或不同地代表氢原子或氰基;
    R 5和R 6彼此独立地代表具有5至30个环原子的芳族或杂芳族环体系;
    Y 2相同或不同地代表N原子或C-R 11
    R 11相同或不同地代表氢原子、氕原子、氘原子、氚原子、F原子、氰基或直链或支链C 1-20烷基、具有5至30个环原子的芳族或杂芳族环体系;
    X 1代表单键、氧原子、硫原子、直链或支链C 1-10烷基取代的亚烷基、芳基取代的亚烷基、直链或支链C 1-10烷基取代的亚胺基或芳基取代的亚胺基;
    R 9代表具有5至30个环原子的芳族或杂芳族环体系;
    R 7、R 8彼此独立地代表氢原子,以及由式(4)或式(5)表示的结构:
    Figure PCTCN2019117412-appb-100003
    其中,
    *代表式(4)通过并环方式与式(2)或式(3)相连的连接位点,并且在相连时,只能取相邻的两个位点,且连接位点Y 2代表碳原子;
    Y 3相同或不同地代表N原子或C-R 11
    R 11相同或不同地代表氢原子、氕原子、氘原子、氚原子、F原子、氰基或直链或支链C 1-20烷基、具有5至30个环原子的芳族或杂芳族环体系;
    X 2和X 3彼此独立地代表单键、氧原子、硫原子、
    Figure PCTCN2019117412-appb-100004
    直链或支链C 1-10烷基取代的亚烷基、芳基取代的亚烷基、直链或支链C 1-10烷基取代的亚胺基或芳基取代的亚胺基;
    R 12和R 13彼此独立地代表具有5至30个环原子的芳族或杂芳族环体系;
    其中,在式(II)中
    A 11至A 14彼此独立地代表苯、萘、吡啶、嘧啶、喹啉、异喹啉、2,6-萘啶、1,8-萘啶、1,5-萘啶、1,6-萘啶、1,7-萘啶、2,7-萘啶、喹喔啉、酞嗪、喹唑啉和噌啉;
    X 11代表O、S、C(R 17)(R 18)、Si(R 17)(R 18)、P(R 17)、B(R 17)、P(=O)(R 17)或N-[(L 12) a12-(R 12) b12];
    L 11至L 13彼此独立地代表任选取代的下列基团:单键、C 3-C 10亚环烷基、C 1-C 10亚杂环烷基、C 3-C 10亚环烯基、C 1-C 10亚杂环烯基、C 6-C 60亚芳基、C 1-C 60亚杂芳基、二价非芳族缩合多环基和二价非芳族缩合杂多环基;
    a 11至a 13彼此独立地代表0、1、2、3、4和5;
    R 11和R 12彼此独立地代表-N(Q 1)(Q 2)、-Si(Q 3)(Q 4)(Q 5)和-B(Q 6)(Q 7),以及任选取代的下列基团:C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 1-C 60杂芳基、单价非芳族缩合多环基、单价非芳族缩合杂多环基;
    b 11和b 12彼此独立地代表1、2、3和4;
    R 13至R 18彼此独立地代表氢、氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐,以及任选取代的下列基团:C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基、C 1-C 60烷氧基、C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基,其中R 17和R 18可以任选地彼此稠合并形成饱和的或不饱和的环;
    R 13和A 11、R 14和A 12、R 15和A 13、R 16和A 14以单键形式连接、并环形式连接或通过碳原子、氧原子、硫原子、氮原子形成5-7元环形式连接;
    b 13至b 16彼此独立地选自1、2、3和4;
    其中在所述取代的基团中,所述取代基彼此独立地选自:
    氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基和C 1-C 60烷氧基;
    被至少一个取代基取代的C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基和C 1-C 60烷氧基,所述取代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基、单价非芳族缩合杂多环基、-N(Q 11)(Q 12)、-Si(Q 13)(Q 14)(Q 15)和-B(Q 16)(Q 17);
    C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基;
    被至少一个取代基取代的C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基,所述取 代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 60烷基、C 2-C 60烯基、C 2-C 60炔基、C 1-C 60烷氧基、C 3-C 10环烷基、C 1-C 10杂环烷基、C 3-C 10环烯基、C 1-C 10杂环烯基、C 6-C 60芳基、C 6-C 60芳氧基、C 6-C 60芳硫基、C 1-C 60杂芳基、单价非芳族缩合多环基、单价非芳族缩合杂多环基、-N(Q 21)(Q 22)、-Si(Q 23)(Q 24)(Q 25)和-B(Q 26)(Q 27);以及
    -N(Q 31)(Q 32)、-Si(Q 33)(Q 34)(Q 35)和-B(Q 36)(Q 37);
    其中,Q 1至Q 7、Q 11至Q 17、Q 21至Q 27和Q 31至Q 37彼此独立地代表氢、C 1-C 60烷基、C 1-C 60烷氧基、C 6-C 60芳基、C 1-C 60杂芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基。
  2. 根据权利要求1所述的有机电致发光器件,其特征在于,
    在式(I)中,
    R相同或不同地代表氢原子、氘原子、氚原子、F原子、甲基、乙基、丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、苯基、萘基、蒽基、芘基、菲基、芴基和咔唑基;
    Ar 1至Ar 4彼此独立地代表单键、苯基、萘基、芴基、菲基、蒽基、苯并[9,10]菲基、吡啶基、吡嗪基、嘧啶基、喹啉基、异喹啉基、咔唑基、苯并喹啉基、萘啶基、喹喔啉基、喹唑啉基、菲啶基、吖啶基、菲咯啉基、吩嗪基、苯并咪唑基、苯并呋喃基、苯并噻吩基、三唑基、三嗪基、二苯并呋喃基、二苯并噻吩基、咪唑并吡啶基、咪唑并嘧啶基、吡啶并苯并呋喃基、嘧啶并苯并呋喃基、吡啶并苯并噻吩基、嘧啶并苯并噻吩基、噻蒽基、吩噁噻基、二苯并二氧芑基;
    在式(II)中,
    A 11和A 14彼此独立地代表苯、萘、吡啶、嘧啶、喹啉、异喹啉、2,6-萘啶、1,8-萘啶、1,5-萘啶、1,6-萘啶、1,7-萘啶、2,7-萘啶、喹喔啉和喹唑啉,A 12和A 13彼此独立地为苯;
    X 11可以为O、S、C(R 17)(R 18)或N-[(L 12) a12-(R 12) b12];
    L 11至L 13彼此独立地代表任选被至少一个取代基取代的下列基团:亚苯基、亚并环戊二烯基、亚茚基、亚萘基、亚甘菊环基、亚庚搭烯基、亚引达省基、亚苊基、亚芴基、亚螺芴基、亚苯并芴基、亚二苯并芴基、亚非那烯基、亚菲基、亚蒽基、亚荧蒽基、亚苯并[9,10]菲基、亚芘基、亚
    Figure PCTCN2019117412-appb-100005
    基、亚并四苯基、亚苉基、亚苝基、亚戊芬基、亚并六苯基、亚并五苯基、亚玉红省基、亚蔻基、亚卵苯基、亚吡咯基、亚噻吩基、亚呋喃基、亚咪唑基、亚吡唑基、亚噻唑基、亚异噻唑基、亚噁唑基、亚异噁唑基、亚吡啶基、亚吡嗪基、亚嘧啶基、亚哒嗪基、亚异吲哚基、亚吲哚基、亚吲唑基、亚嘌呤基、亚喹啉基、亚异喹啉基、亚苯并喹啉基、亚呔嗪基、亚萘啶基、亚喹喔啉基、亚喹唑啉基、亚噌啉基、亚咔唑基、亚菲啶基、亚吖啶基、亚菲咯啉基、亚吩嗪基、亚苯并咪唑基、亚苯并呋喃基、亚苯并噻吩基、亚异苯并噻唑基、亚苯并噁唑基、亚异苯并噁唑基、亚三唑基、亚四唑基、亚噁二唑基、亚三嗪基、亚二苯并呋喃基、亚二苯并噻吩基、亚苯并咔唑基和亚二苯并咔唑基,其中所述取代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 20烷基、C 1-C 20烷氧基、环戊基、环己基、环庚基、环戊烯基、环己烯基、苯基、联苯基、并环戊二烯基、茚基、萘基、甘菊环基、庚搭烯基、引达省基、苊基、芴基、螺芴基、苯并芴基、二苯并芴基、非那烯基、菲基、蒽基、荧蒽基、苯并[9,10]菲基、芘基、
    Figure PCTCN2019117412-appb-100006
    基、并四苯基、苉基、苝基、戊芬基、并六苯基、五苯基、玉红省基、蔻基、卵苯基、吡咯基、噻吩基、呋喃基、咪唑基、吡唑基、噻唑基、异噻唑基、噁唑基、异噁唑基、吡啶基、吡嗪基、嘧啶基、哒嗪基、异吲哚基、吲哚基、吲唑基、嘌呤基、喹啉基、异喹啉基、苯并喹啉基、酞嗪基、萘啶基、喹喔啉基、喹唑啉基、噌啉基、咔唑基、菲啶基、吖啶基、菲咯啉基、吩嗪基、苯并咪唑基、苯并呋喃基、苯并噻吩基、异苯并噻唑基、苯并噁唑基、异苯并噁唑基、三唑基、四唑基、噁二唑基、三嗪基、二苯并呋喃基、二苯并噻吩基、苯并咔唑基、二苯并咔唑基、噻二唑基和咪唑并吡啶基;
    a 11可以选自0、1或2;
    a 12、a 13可以彼此独立地选自0和1;
    R 11和R 12可以彼此独立地代表任选被至少一个取代基取代的下列基团:苯基、并环戊二烯基、茚基、萘基、甘菊环基、庚搭烯基、引达省基、苊基、芴基、螺芴基、苯并芴基、二苯并芴基、非那烯基、菲基、蒽基、荧蒽基、苯并[9,10]菲基、芘基、
    Figure PCTCN2019117412-appb-100007
    基、并四苯基、苉基、苝基、戊芬基、并六苯基、并五苯基、玉红省基、蔻基、卵苯基、吡咯基、噻吩基、呋喃基、咪唑基、吡唑基、噻唑基、异噻唑基、噁唑基、异噁唑基、吡啶基、吡嗪基、嘧啶基、哒嗪基、异吲哚基、吲哚基、吲唑基、嘌呤基、喹啉基、异喹啉基、咔唑基、苯并喹啉基、酞嗪基、萘啶基、喹喔啉基、喹唑啉基、噌啉基、菲啶基、吖啶基、菲咯啉基、吩嗪基、苯并咪唑基、苯并呋喃基、苯并噻吩基、苯并噻唑基、异苯并噻唑基、苯并噁唑基、异苯并噁唑基、三唑基、四唑基、噁二唑基、三嗪基、二苯并呋喃基、二苯并噻吩基、二苯并噻咯基、苯并咔唑基、二苯并咔唑基、咪唑并吡啶基、咪唑并嘧啶基、吡啶并苯并呋喃基、嘧啶并苯并呋喃基、吡啶并苯并噻吩基、嘧啶并苯并噻吩基、噻蒽基、吩噁噻基、二苯并二氧芑基和-N(Q 1)(Q 2),其中所述取代基选自:氘、F、Cl、Br、I、羟基、氰基、硝基、氨基、脒基、肼基、腙基、羧酸或其盐、磺酸或其盐、磷酸或其盐、C 1-C 20烷基、C 1-C 20烷氧基、苯基、联苯基、并环戊二烯基、茚基、萘基、甘菊环基、庚搭烯基、引达省基、苊基、芴基、螺芴基、苯并芴基、二苯并芴基、非那烯基、菲基、蒽基、荧蒽基、苯并[9,10]菲基、芘基、
    Figure PCTCN2019117412-appb-100008
    基、并四苯基、苉基、苝基、戊芬基、并六苯基、并五苯基、玉红省基、蔻基、卵苯基、吡咯基、噻吩基、呋喃基、咪唑基、吡唑基、噻唑基、异噻唑基、噁唑基、异噁唑基、吡啶基、吡嗪基、嘧啶基、哒嗪基、异吲哚基、吲哚基、吲唑基、嘌呤基、喹啉基、异喹啉基、咔唑基、苯并喹啉基、酞嗪基、萘啶基、喹喔啉基、喹唑啉基、噌啉基、咔唑基、菲啶基、吖啶基、菲咯啉基、吩嗪基、苯并咪唑基、苯并呋喃基、苯并噻吩基、苯并噻唑基、异苯并噻唑基、苯并噁唑基、异苯并噁唑基、三唑基、四唑基、噁二唑基、三嗪基、二苯并呋喃基、二苯并噻吩基、苯并咔唑基、二苯并咔唑基和-Si(Q 33)(Q 34)(Q 35),其中,Q 1、Q 2和Q 33至Q 35可以均独立地选自C 1-C 60烷基、C 6-C 60芳基、单价非芳族缩合多环基和单价非芳族缩合杂多环基;
    b 11和b 12可以彼此独立地选自1和2;
    R 13至R 18可以彼此独立地选自
    氢、甲基、乙基、正丙基、正丁基、苯基、萘基、蒽基、芘基、菲基、芴基和咔唑基;以及
    被至少一个取代基取代的苯基、萘基、蒽基、芘基、菲基、芴基和咔唑基,所述取代基选自:氘、F、Cl、Br、I、氰基、硝基、甲基、苯基和萘基;
    b 13至b 16可以彼此独立地选自1、2或3。
  3. 根据权利要求1所述的有机电致发光器件,其特征在于,第一主体由式(I-1)表示:
    Figure PCTCN2019117412-appb-100009
    其中,
    Ar 3和Ar 4、X、Z、R 3、R 4、p和q如权利要求1或2所定义的;
    第二主体由式(II-1)表示:
    Figure PCTCN2019117412-appb-100010
    其中,
    A 11至A 14、X 11、L 11、a 11、R 11和b 11如权利要求1或2所定义的。
  4. 根据权利要求1所述的有机电致发光器件,其特征在于,第一主体选自以下化合物中的至少一种:
    Figure PCTCN2019117412-appb-100011
    Figure PCTCN2019117412-appb-100012
    Figure PCTCN2019117412-appb-100013
    第二主体选自以下化合物中的至少一种:
    Figure PCTCN2019117412-appb-100014
    Figure PCTCN2019117412-appb-100015
    Figure PCTCN2019117412-appb-100016
    Figure PCTCN2019117412-appb-100017
    Figure PCTCN2019117412-appb-100018
  5. 根据权利要求1所述的有机电致发光器件,其特征在于,第一主体与第二主体的重量比可以在约1:10至约10:1的范围内,例如,在约1:9至约9:1的范围内,优选在约2:8至约8:2的范围内,可以在约3:7至约7:3的范围内,或可以为约5:5。
  6. 根据权利要求1所述的有机电致发光器件,其特征在于,所述发射层还包括荧光或磷光客体材料。
  7. 根据权利要求6所述的有机电致发光器件,其特征在于,所述荧光或磷光客体材料的量通常可以在约0.01-15、优选1-10、更优选2-8重量份的范围内,基于100重量份的第一主体和第二主体计。
  8. 根据权利要求1所述的有机电致发光器件,其特征在于,有机层可以包括在第一电极和发射层之间的空穴传输区域,以及在发射层和第二电极之间的电子传输区域,
    其中所述空穴传输区域由下至上依次包括空穴注入层、空穴传输层、缓冲层和电子阻挡层中的一种或更多种的组合;所述电子传输区域由下至上依次包括空穴阻挡层、电子传输层和电子注入层中的一种或更多种的组合。
  9. 一种制备权利要求1-8中任一项所述的有机电致发光器件的方法,包括在基板上相继层压第一电极、有机层和第二电极,
    优选地,所述层压通过真空沉积的方式在100-500℃的沉积温度下,以10 -8-10 -3托的真空度和
    Figure PCTCN2019117412-appb-100019
    秒的沉积速率进行。
  10. 一种显示装置,其包括如权利要求1-8中任一项所述的有机电致发光器件。
PCT/CN2019/117412 2018-11-20 2019-11-12 有机电致发光器件、其制备方法及包含其的显示装置 WO2020103724A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811384974.9 2018-11-20
CN201811384974.9A CN111200067B (zh) 2018-11-20 2018-11-20 有机电致发光器件、其制备方法及包含其的显示装置

Publications (1)

Publication Number Publication Date
WO2020103724A1 true WO2020103724A1 (zh) 2020-05-28

Family

ID=70746498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117412 WO2020103724A1 (zh) 2018-11-20 2019-11-12 有机电致发光器件、其制备方法及包含其的显示装置

Country Status (2)

Country Link
CN (1) CN111200067B (zh)
WO (1) WO2020103724A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871540A (zh) * 2020-06-30 2021-12-31 江苏三月科技股份有限公司 一种有机电致发光器件及其应用
CN114335361A (zh) * 2020-09-30 2022-04-12 江苏三月科技股份有限公司 一种组合物及包含其的有机电致发光器件
CN114516804A (zh) * 2020-11-18 2022-05-20 江苏三月科技股份有限公司 一种二胺衍生物及使用该衍生物的有机电致发光器件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122299B (zh) * 2020-06-29 2023-12-29 江苏三月科技股份有限公司 一种有机电致发光器件
CN114068825B (zh) * 2020-07-29 2023-09-29 江苏三月科技股份有限公司 具有多空穴传输通道材料的有机电致发光器件及显示装置
CN114249713B (zh) * 2020-09-22 2024-05-03 江苏三月科技股份有限公司 一种含有氧杂蒽酮或硫杂蒽酮结构的有机化合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870248A (zh) * 2010-04-26 2013-01-09 佳能株式会社 有机发光器件
CN104761547A (zh) * 2015-03-26 2015-07-08 深圳市华星光电技术有限公司 噻吨酮-芳香胺化合物及应用该化合物的有机发光器件
CN105340101A (zh) * 2013-07-03 2016-02-17 国立大学法人九州大学 发光材料、延迟萤光体、有机发光元件及化合物
CN106684252A (zh) * 2016-12-16 2017-05-17 江苏三月光电科技有限公司 一种双主体结构的有机发光器件
CN107245079A (zh) * 2016-12-30 2017-10-13 江苏三月光电科技有限公司 一种氮杂氧杂蒽酮类化合物及其在oled器件上的应用
CN108336235A (zh) * 2017-01-20 2018-07-27 江苏三月光电科技有限公司 一种双主体材料的有机电致发光器件
CN108336236A (zh) * 2017-01-20 2018-07-27 江苏三月光电科技有限公司 一种双主体结构的有机电致发光器件

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107068910B (zh) * 2016-04-25 2019-07-19 中节能万润股份有限公司 一种含氧杂蒽酮类化合物的有机电致发光器件及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102870248A (zh) * 2010-04-26 2013-01-09 佳能株式会社 有机发光器件
CN105340101A (zh) * 2013-07-03 2016-02-17 国立大学法人九州大学 发光材料、延迟萤光体、有机发光元件及化合物
CN104761547A (zh) * 2015-03-26 2015-07-08 深圳市华星光电技术有限公司 噻吨酮-芳香胺化合物及应用该化合物的有机发光器件
CN106684252A (zh) * 2016-12-16 2017-05-17 江苏三月光电科技有限公司 一种双主体结构的有机发光器件
CN107245079A (zh) * 2016-12-30 2017-10-13 江苏三月光电科技有限公司 一种氮杂氧杂蒽酮类化合物及其在oled器件上的应用
CN108336235A (zh) * 2017-01-20 2018-07-27 江苏三月光电科技有限公司 一种双主体材料的有机电致发光器件
CN108336236A (zh) * 2017-01-20 2018-07-27 江苏三月光电科技有限公司 一种双主体结构的有机电致发光器件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871540A (zh) * 2020-06-30 2021-12-31 江苏三月科技股份有限公司 一种有机电致发光器件及其应用
CN113871540B (zh) * 2020-06-30 2024-04-19 江苏三月科技股份有限公司 一种有机电致发光器件及其应用
CN114335361A (zh) * 2020-09-30 2022-04-12 江苏三月科技股份有限公司 一种组合物及包含其的有机电致发光器件
CN114335361B (zh) * 2020-09-30 2024-03-22 江苏三月科技股份有限公司 一种组合物及包含其的有机电致发光器件
CN114516804A (zh) * 2020-11-18 2022-05-20 江苏三月科技股份有限公司 一种二胺衍生物及使用该衍生物的有机电致发光器件

Also Published As

Publication number Publication date
CN111200067A (zh) 2020-05-26
CN111200067B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2020103724A1 (zh) 有机电致发光器件、其制备方法及包含其的显示装置
KR102615638B1 (ko) 유기 발광 소자
KR20150142822A (ko) 유기 발광 소자
KR20150132795A (ko) 유기 발광 소자
KR20150126755A (ko) 유기 발광 소자
KR20160055557A (ko) 화합물 및 이를 포함하는 유기 발광 소자
KR102343146B1 (ko) 유기금속 화합물 및 이를 포함한 유기 발광 소자
KR102167041B1 (ko) 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
KR20150084562A (ko) 축합환 화합물을 포함한 유기 발광 소자
KR20160031651A (ko) 유기 발광 소자용 화합물 및 이를 포함하는 유기 발광 소자
KR102134843B1 (ko) 카바졸계 화합물 및 이를 포함한 유기 발광 소자
KR20170016155A (ko) 유기금속 화합물 및 이를 포함한 유기 발광 소자
KR20160054115A (ko) 유기 발광 소자
KR20170007648A (ko) 유기 발광 소자
KR20150106043A (ko) 화합물 및 이를 포함한 유기 발광 소자
KR20160066671A (ko) 축합환 화합물 및 이를 포함한 유기 발광 소자
CN110818716A (zh) 稠合环状化合物及包含所述稠合环状化合物的有机发光装置
CN106083809B (zh) 化合物、包括该化合物的有机发光器件和显示装置
KR20160110656A (ko) 화합물 및 이를 포함하는 유기 발광 소자
KR102632618B1 (ko) 유기 발광 소자
CN110615776B (zh) 二胺化合物和包含所述二胺化合物的有机发光装置
KR102230190B1 (ko) 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102124046B1 (ko) 유기 발광 소자
KR20160086482A (ko) 화합물 및 이를 포함하는 유기 발광 소자
KR20160072343A (ko) 축합환 화합물 및 이를 포함한 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19887103

Country of ref document: EP

Kind code of ref document: A1