WO2020103695A1 - 一种检测方法、相关装置及存储介质 - Google Patents

一种检测方法、相关装置及存储介质

Info

Publication number
WO2020103695A1
WO2020103695A1 PCT/CN2019/116112 CN2019116112W WO2020103695A1 WO 2020103695 A1 WO2020103695 A1 WO 2020103695A1 CN 2019116112 W CN2019116112 W CN 2019116112W WO 2020103695 A1 WO2020103695 A1 WO 2020103695A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
laser
focal length
specification information
sample
Prior art date
Application number
PCT/CN2019/116112
Other languages
English (en)
French (fr)
Inventor
骆磊
牟涛涛
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Publication of WO2020103695A1 publication Critical patent/WO2020103695A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation

Definitions

  • the present application relates to the field of detection technology, and in particular, to a detection method, a related device, and a storage medium.
  • the objective of some embodiments of the present application is to provide a detection method, a related device, and a storage medium, so as to enable accurate detection of items to be detected contained in different types of containers.
  • An embodiment of the present application provides a detection method, including the following steps: acquiring the laser focal length of the detection device; acquiring the specification information of the container; adjusting the position of the container according to the laser focal length and the specification information, so that the laser focal length is determined after adjusting the position
  • the laser focus illuminates the object to be inspected through the container.
  • An embodiment of the present application also provides a detection device, including: a first acquisition module, a second acquisition module, and an adjustment module; a first acquisition module, used to acquire the laser focal length of the detection device; a second acquisition module, used For obtaining the specification information of the container; the adjustment module is used to adjust the container's specifications according to the laser focal length and the specification information Position, so that after adjusting the position, the laser focus determined by the laser focal length is irradiated through the container onto the object to be inspected
  • An embodiment of the present application further provides a detection device, including: at least one processor; and, a memory communicatively connected to the at least one processor; wherein the memory stores instructions executable by the at least one processor, instructions Is executed by at least one processor to enable the at least one processor to execute the detection method as described above.
  • Embodiments of the present application also provide a computer-readable storage medium that stores a computer program, and when the computer program is executed by a processor, the detection method described above is implemented.
  • the embodiments of the present application can determine the specific position of the laser focus by acquiring the laser focal length of the detection device, and can obtain the specific parameter information of the container by acquiring the specification information of the container, according to the specifics of the laser focus
  • the position and specific parameter information of different containers can accurately adjust the position of the container, so that the laser focus determined by the laser focal length is irradiated through the container to the object to be tested, so that all the objects to be tested contained in different types of containers Can achieve accurate detection.
  • obtaining the specification information of the container specifically includes: obtaining identification information on the container; obtaining the specification information according to the identification information, where the specification information includes size information of the container and material information of the container.
  • the specification information obtained according to the identification information will be more accurate.
  • obtaining the specification information according to the identification information specifically includes: obtaining the specification information included in the identification information by reading the identification information.
  • the specification information can be directly obtained by reading the identification information, thereby increasing the acquisition speed of the specification information.
  • obtaining the specification information according to the identification information specifically includes: obtaining the code number included in the identification information by reading the identification information; matching the code number with the database to obtain the specification information corresponding to the code number, where , The correspondence between the code number and the specification information is stored in the database.
  • the specification information is obtained indirectly by reading the identification information, which embodies the diversity of the acquisition method of the specification information.
  • the detection device includes a laser lens for generating a laser focus, wherein the laser focal length of the laser lens is a fixed value.
  • the laser focal point is generated by the laser lens. Since the laser focal length of the laser lens is a fixed value, the position of the laser focal point determined by the laser focal length is known to facilitate The position of the light focus enables accurate adjustment of the position of the container.
  • the method further includes: determining the type of the container according to the material information in the specification information, where the type of the container includes a sample bag or a sample bottle.
  • the size information corresponding to the container type can be used to adjust the position of the container according to the determined type of container, thereby making the adjustment process more targeted and improving The accuracy of the container position adjustment.
  • the size information of the container includes: the diameter of the sample bottle and the thickness of the sample bottle; if the type of the container is determined to be a sample bag, the size information of the container includes the unfilled Check the thickness of the sample bag before the sample.
  • the method further includes: when determining that the type of the container is the sample bag, measuring the total thickness of the sample bag after holding the sample to be tested.
  • adjusting the position of the container according to the laser focal length and specification information specifically includes: determining the first distance of the first side of the container from the laser lens according to the laser focal length and specification information, where the first distance is the distance of the container from the laser lens The closest distance; determine the second distance between the second side of the container and the laser lens according to the laser focal length and the specification information, where the second distance is the furthest distance from the laser lens to the container.
  • determining the first distance of the first side of the container from the laser lens according to the laser focal length and the specification information specifically includes: if the type of the container is determined to be a sample bottle, calculating the sample bottle's thickness according to the thickness of the sample bottle and the laser focal length The first distance from the first side to the laser lens; if the container type is determined to be the sample bag, the first distance from the first side of the sample bag to the laser lens is calculated according to the thickness of the sample bag and the laser focal length.
  • determining the second distance between the second side of the container and the laser lens according to the laser focal length and the specification information includes: if it is determined that the type of the container is a sample bottle, then according to the diameter of the sample bottle, the thickness of the sample bottle and the laser Focal length calculates the second distance from the second side of the sample bottle to the laser lens; if the container type is determined to be the sample bag, the second side distance of the sample bag is calculated based on the total thickness of the sample bag, the thickness of the sample bag and the laser focal length Second distance.
  • FIG. 1 is a flowchart of the detection method according to the first embodiment of the present application.
  • FIG. 2 is a schematic diagram of the manner of determining the position of the sample bottle in the first embodiment of the present application
  • FIG. 3 is a schematic diagram of the manner of determining the position of the sample bag in the first embodiment of the present application
  • FIG. 4 is a flowchart of the detection method in the second embodiment of the present application.
  • FIG. 5 is a block schematic diagram of a detection device in a third embodiment of the present application.
  • FIG. 6 is a block schematic diagram of a detection device in a fourth embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a detection device in a fifth embodiment of the present application.
  • the first embodiment of the present application relates to a detection method, which is applied to a detection device, and the detection device may be any electronic device capable of realizing a substance detection function, such as an optical detection device (spectrometer, etc.).
  • the specific flow of the detection method is shown in Figure 1, and includes the following steps:
  • Step 101 Acquire a laser focal length of a detection device.
  • the detection device in this embodiment includes a laser lens for generating a laser focus, and the laser focal length of the laser lens is a fixed value, and the specific value of the laser focal length is stored in the detection device parameter database, Therefore, after acquiring the detection start instruction, the detection device will obtain the specific value of the laser focal length from the parameter database according to the detection start instruction.
  • the specific value of the laser focal length may be 3 cm.
  • this embodiment is merely an example for illustration, and the specific value of the laser focal length is not limited in this embodiment.
  • Step 102 Obtain container specification information.
  • the specification information is obtained according to the identification information by acquiring the identification information on the container, where the specification information includes the size information of the container and the material information of the container.
  • the identification information may be a Near Field Communication (NFC) label or a bar code.
  • NFC Near Field Communication
  • two methods of obtaining the direct or indirect method may be used:
  • the first direct acquisition method is to obtain the specification information contained in the identification information by reading the identification information.
  • the identification information directly includes the specification information, and the detection device can directly read the identification information.
  • an NFC tag is attached to the container, and the NFC tag contains the specification information "Diameter: 10 mm, Thickness: 3 mm, Material: Quartz".
  • the inspection equipment can directly obtain the specification information by reading the NFC tag on the container. Diameter: 10 mm, thickness: 3 mm, material: quartz ".
  • the second indirect acquisition method is to obtain the code number included in the identification information by reading the identification information; match the code number with the database to obtain the specification information corresponding to the code number, wherein the database stores Correspondence between code number and specification information.
  • the identification information contains a code number
  • the detection device can only obtain the code number contained in the identification information by reading the identification information, and each code number represents a type of container specification information.
  • the detection device By matching the obtained code number with the database, the specification information corresponding to the code number can be obtained indirectly. For example, an NFC tag is attached to the container, and the NFC tag contains the code number "001". The detection device obtains the code number "001" by reading the NFC tag on the container, and stores the code number 001 in the database.
  • the corresponding specification information is "Diameter: 10 mm, Thickness: 3 mm, Material: Quartz", code number 002
  • the corresponding specification information is "Thickness: 0.2 mm, Material: Polyethylene” "001” is matched with the database, and the specification information corresponding to "001" "diameter: 10 mm, thickness: 3 mm, material: quartz” can be obtained indirectly.
  • Step 103 Adjust the position of the container according to the laser focal length and the specification information, so that the laser focus determined by the laser focal length after the position adjustment is irradiated onto the object to be detected through the container.
  • the type of the container may be determined according to the material information in the specification information, where the type of the container includes a sample bag or a sample bottle.
  • the detection device can obtain the container type by matching the material information with the container type matching list, such as If the material information in the specification information is quartz, then the type of container is determined to be a sample bottle, and if the material information in the specification information is polyethylene, then the type of container is determined to be a sample bag.
  • the determination of the type of the container based on the material information is used as an example.
  • the type of the container may be determined in other ways.
  • the detection device includes a camera device, and the image of the container is obtained by imaging. The acquired images are analyzed to determine the type of container.
  • the total thickness of the sample bag after the sample to be tested is measured, and the total thickness of the sample bag can be clamped by the testing device and measured by the measurement device The device is obtained by measurement.
  • the image of the sample bag can also be obtained by the camera device, and the total thickness of the sample bag can be obtained by analyzing the obtained image.
  • the size information of the container includes: the diameter of the sample bottle and the thickness of the sample bottle; if the type of the container is determined to be a sample bag, the size information of the container includes the sample bag before holding the sample to be tested thickness of.
  • a specific method is: determining the first side of the container from the laser lens according to the laser focal length and the specification information A distance, where the first distance is the closest distance of the container to the laser lens; the second distance of the second side of the container from the laser lens is determined according to the laser focal length and specification information, where the second distance is the furthest distance from the container to the laser lens distance.
  • Figure 2 is a schematic diagram of the method for determining the position of the sample bottle. As shown in the figure, the right tangent surface of the sample bottle is used as the first side, and the left tangent surface of the sample bottle is used as the second side.
  • the laser focal length is f
  • the diameter of the sample bottle is d
  • the thickness of the sample bottle is n
  • the first side of the sample bottle is away from the first side of the laser lens
  • the laser focus just passes through the sample bottle, and the laser focus can illuminate the sample to be tested.
  • the second distance from the second side of the sample bottle to the laser lens is: f + dn
  • FIG. 3 is a schematic diagram of a method for determining the position of the sample bag. As shown in the figure, the right side of the sample bag is used as the first side and the left side of the sample bag is used as the second side.
  • the first distance from the surface to the laser lens where the laser focal length is f, the total thickness of the sample bag is D, and the thickness of the sample bag is N, then the first distance from the laser lens on the first side of the sample bag is: fN
  • the laser focus just passes through the sample bag, and the laser focus can be irradiated on the sample to be tested.
  • the second distance between the second side of the sample bag and the laser lens is determined as: f + DN.
  • the detection method provided in this embodiment can determine the specific position of the laser focus by acquiring the laser focal length of the detection device, and can obtain the specific parameter information of the container by acquiring the specification information of the container, according to the laser
  • the specific position of the focus and the specific parameter information of different containers can accurately adjust the position of the container, so that the laser focus determined by the laser focal length is irradiated through the container to the object to be detected, so as to realize the waiting for different types of containers.
  • Detection items can achieve accurate detection
  • the second embodiment of the present application relates to a detection method.
  • This embodiment is further improved on the basis of the first embodiment, and the specific improvements are as follows: after determining the position of the laser focus, adding laser to collect spectral information according to the position of the laser focus, and obtaining detection results based on the spectral information , According to.
  • the flow of the detection method in this embodiment is shown in FIG. 4. Specifically, in this embodiment, step 201 to step 204 are included, where steps 201 to 203 are substantially the same as steps 101 to 103 in the first embodiment, and are not described here again.
  • the following mainly introduces the differences, For technical details that are not described in detail in this embodiment, reference may be made to the detection method provided in the first embodiment, and details are not described herein again.
  • step 204 is performed.
  • Step 204 emit laser light to collect spectral information, and obtain a detection result according to the spectral information.
  • the detection device after adjusting the position of the container, the detection device emits laser light, and the laser light is irradiated onto the object to be detected through the container, and the spectral information of the laser light irradiated on the object to be detected is collected .
  • the spectral information acquired at this time includes not only the spectral information of the item to be detected, but also the spectral information of the container, and the spectral information of the container is interference information for the detection process of the substance.
  • the specification information contains the material information of the container, and the spectral information corresponding to the material of the container is stored in the database, by excluding the spectral information of the container from the spectral information collected by the laser, an accurate substance to be detected can be obtained Spectral information.
  • an accurate detection result can be obtained. Since obtaining the detection result by spectral matching is not the focus of this application, it will not be repeated in this application.
  • the detection method provided in this embodiment can determine the specific position of the laser focus by acquiring the laser focal length of the detection device, and can obtain the specific parameter information of the container by acquiring the specification information of the container, according to the laser
  • the specific position of the focus and the specific parameter information of different containers can accurately adjust the position of the container, so that the laser focus determined by the laser focal length is irradiated through the container to the object to be detected, so as to realize the waiting for different types of containers.
  • the detection items can achieve accurate detection. Laser emission is used to collect spectral information, and the interference of the spectral information of the container is eliminated to further improve the accuracy of the detection result.
  • the third embodiment of the present application relates to a detection device, and the specific structure is as shown in FIG. 5.
  • the detection apparatus includes a first acquisition module 301, a second acquisition module 302, and an adjustment module 303
  • the first acquisition module 301 is configured to acquire the laser focal length of the detection device.
  • the second obtaining module 302 is used to obtain the specification information of the container.
  • the adjustment module 303 is used to adjust the position of the container according to the laser focal length and the specification information, so that the laser focus determined by the laser focal length after the position adjustment is irradiated onto the object to be inspected through the container.
  • this embodiment is a device embodiment corresponding to the first embodiment, and this embodiment can be implemented in cooperation with the first embodiment.
  • the relevant technical details mentioned in the first embodiment are still valid in this embodiment, and in order to reduce repetition, they will not be repeated here.
  • the relevant technical details mentioned in this embodiment can also be applied in the first embodiment.
  • the fourth embodiment of the present application relates to a detection device.
  • This embodiment is substantially the same as the third embodiment, and the specific structure is shown in FIG. 6.
  • the main improvement is that: the fourth embodiment adds a detection module 304 to the structure of the detection device in the third embodiment.
  • the first acquisition module 301 is used to acquire the laser focal length of the detection device.
  • the second obtaining module 302 is used to obtain the specification information of the container.
  • the adjustment module 303 is used to adjust the position of the container according to the laser focal length and the specification information, so that the adjustment position The laser focal point determined by the rear laser focal length is irradiated onto the object to be inspected through the container.
  • the detection module 304 is configured to emit laser light to collect spectral information, and obtain a detection result according to the spectral information.
  • this embodiment is a device embodiment corresponding to the second embodiment, and this embodiment can be implemented in cooperation with the second embodiment.
  • the relevant technical details mentioned in the second embodiment are still valid in this embodiment, and in order to reduce repetition, they will not be repeated here.
  • the relevant technical details mentioned in this embodiment can also be applied in the second embodiment.
  • modules involved in this embodiment are all logical modules.
  • a logical unit may be a physical unit or a part of a physical unit, or Combination of multiple physical units.
  • this embodiment does not introduce units that are not closely related to solving the technical problems proposed in this application, but this does not mean that there are no other units in this embodiment.
  • a fifth embodiment of the present application relates to a detection device, as shown in FIG. 7, including at least one processor 501;
  • a memory 502 communicatively connected to at least one processor 501; wherein, the memory 502 stores instructions executable by the at least one processor 501, and the instructions are executed by the at least one processor 501, so that the at least one processor 501 can execute the above The detection method in the embodiment.
  • the processor 501 takes a central processing unit (Central Processing Unit, CPU) as an example, and the memory 502 takes a readable and writable memory (Random Access Memory, RAM) as an example.
  • the processor 501 and the memory 502 may be connected through a bus or in other ways. In FIG. 7, the connection through a bus is used as an example.
  • the memory 502 is a non-volatile computer-readable storage medium, and can be used to store non-volatile software programs, non-volatile computer executable programs, and modules.
  • the program for implementing the detection method in the embodiment of the present application is stored Memory 502.
  • the processor 501 executes various functional applications and data processing of the device by running non-volatile software programs, instructions, and modules stored in the memory 502, that is, implementing the above detection method.
  • the memory 502 may include a storage program area and a storage data area, wherein the storage program area may store an operating system and application programs required by at least one function; the storage data area may store a list of options, and the like.
  • the memory may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 502 may optionally include a memory remotely set relative to the processor 501, and these remote storage
  • the device can be connected to an external device via a network. Examples of the above network include but are not limited to the Internet, intranet, local area network, mobile communication network, and combinations thereof.
  • One or more program modules are stored in the memory 502, and when executed by one or more processors 501, execute the detection method in any of the above method embodiments.
  • the above product can perform the method provided in the embodiments of the present application, and has the corresponding functional modules and beneficial effects of the execution method.
  • the methods provided in the embodiments of the present application please refer to the methods provided in the embodiments of the present application.
  • the sixth embodiment of the present application relates to a computer-readable storage medium, where the computer-readable storage medium stores a computer program, which can be implemented in any method embodiment of the present application when the computer program is executed by a processor Detection method.
  • a storage medium includes several instructions to make a device (It may be a single-chip computer, a chip, etc.) or a processor (processor) performs all or part of the steps of the methods described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, removable hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc., which can store program codes medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种检测方法、相关装置及存储介质。检测方法包括:获取检测设备的激光焦距;获取容器的规格信息;根据激光焦距和规格信息调整容器的位置,使得调整位置后激光焦距确定的激光焦点透过容器照射到待检测物品上。

Description

一种检测方法、 相关装置及存储介质
[0001] 本申请引用于 2018年 11月 21日递交的名称为“一种检测方法、 相关装置及存储 介质”的第 2018113906794号中国专利申请, 其通过引用被全部并入本申请。 技术领域
[0002] 本申请涉及检测技术领域, 特别涉及一种检测方法、 相关装置及存储介质。
背景技术
[0003] 目前的光学检测设备在对待检测物品进行检测时, 一般需要将激光焦点照射到 待检测物品上, 并根据待检测物品产生的散射光谱判定待检测物品的种类。 一 般情况下, 待检测物品都会采用容器来盛放, 如用样品袋盛放粉末或固体, 用 试剂瓶盛放液体或粉末。
[0004] 发明人发现现有技术中至少存在如下问题: 5见有技术的检测设备在进行检测时 , 一般只能支持固定直径的样品瓶或并不太厚的样品袋, 而对于其它尺寸的样 品瓶或其它厚度的样品袋所盛放的待检测物品, 检测设备可能并不支持, 因此 5见有技术中检测设备的检测方式适用性和灵活性都会受到限制。
发明概述
技术问题
问题的解决方案
技术解决方案
[0005] 本申请部分实施例的目的在于提供一种检测方法、 相关装置及存储介质, 使得 能够对不同类型的容器所盛放的待检测物品进行准确的检测。
[0006] 本申请实施例提供了一种检测方法, 包括以下步骤: 获取检测设备的激光焦距 ; 获取容器的规格信息; 根据激光焦距和规格信息调整容器的位置, 使得调整 位置后激光焦距确定的激光焦点透过容器照射到待检测物品上。
[0007] 本申请实施例还提供了一种检测装置, 包括: 第一获取模块、 第二获取模块和 调整模块; 第一获取模块, 用于获取检测设备的激光焦距; 第二获取模块, 用 于获取容器的规格信息; 调整模块, 用于根据激光焦距和规格信息调整容器的 位置, 使得调整位置后激光焦距确定的激光焦点透过容器照射到待检测物品上
[0008] 本申请实施例还提供了一种检测设备, 包括: 至少一个处理器; 以及, 与至少 一个处理器通信连接的存储器; 其中, 存储器存储有可被至少一个处理器执行 的指令, 指令被至少一个处理器执行, 以使至少一个处理器能够执行如上所述 的检测方法。
[0009] 本申请实施例还提供了一种计算机可读存储介质, 存储有计算机程序, 计算机 程序被处理器执行时实现如上所述的检测方法。
[0010] 本申请实施例相对于现有技术而言, 通过获取检测设备的激光焦距可以确定激 光焦点的具体位置, 并通过获取容器的规格信息可以获取容器的具体参数信息 , 根据激光焦点的具体位置以及不同容器的具体参数信息, 可以将容器进行位 置的准确调整, 使激光焦距确定的激光焦点透过容器照射到待检测物品上, 从 而实现针对不同类型的容器所盛放的待检测物品都能够实现准确检测。
[0011] 例如, 获取容器的规格信息, 具体包括: 获取容器上的标识信息; 根据标识信 息获取规格信息, 其中, 规格信息包括容器的尺寸信息和容器的材质信息。 该 实现中, 通过获取容器上的标识信息, 根据标识信息所获取的规格信息会更加 准确。
[0012] 例如, 根据标识信息获取规格信息, 具体包括: 通过读取标识信息, 获得标识 信息中所包含的规格信息。 该实现中, 通过读取标识信息可以直接获取规格信 息, 从而提高了规格信息的获取速度。
[0013] 例如, 根据标识信息获取规格信息, 具体包括: 通过读取标识信息, 获得标识 信息中所包含的代码编号; 将代码编号与数据库进行匹配, 获得与代码编号所 对应的规格信息, 其中, 数据库中保存了代码编号与规格信息的对应关系。 该 实现中, 通过读取标识信息间接获取规格信息, 体现了规格信息获取方式的多 样性。
[0014] 例如, 检测设备包括用于产生激光焦点的激光镜头, 其中, 激光镜头的激光焦 距为固定值。 该实现中, 通过激光镜头产生激光焦点, 由于激光镜头的激光焦 距是固定值, 因此由激光焦距所确定的激光焦点的位置就是已知的便于根据激 光焦点的位置实现对容器位置的准确调整。
[0015] 例如, 获取容器的规格信息之后, 还包括: 根据规格信息中的材质信息确定容 器的类型, 其中, 容器的类型包括样品袋或样品瓶。 该实现中, 在获取容器的 规格信息之后, 通过确定容器的类型, 可以根据所确定的容器的类型采用与容 器类型所对应的尺寸信息调整容器的位置, 从而使调整过程更具有针对性, 提 高了容器位置调整的精确度。
[0016] 例如, 若确定容器的类型为样品瓶, 则容器的尺寸信息包括: 样品瓶的直径和 样品瓶的厚度; 若确定容器的类型为样品袋, 则容器的尺寸信息包括未盛放待 检测样品前样品袋的厚度。
[0017] 例如, 根据规格信息中的材质信息确定容器的类型之后, 还包括: 在确定容器 的类型为样品袋时, 测量盛放待检测样品后的样品袋的总厚度。
[0018] 例如, 根据激光焦距和规格信息调整容器的位置, 具体包括: 根据激光焦距和 规格信息确定容器的第一侧面距离激光镜头的第一距离, 其中, 第一距离为容 器距离激光镜头的最近距离; 根据激光焦距和规格信息确定容器的第二侧面距 离激光镜头的第二距离, 其中, 第二距离为容器距离激光镜头的最远距离。
[0019] 例如, 根据激光焦距和规格信息确定容器的第一侧面距离激光镜头的第一距离 , 具体包括: 若确定容器的类型为样品瓶, 则根据样品瓶的厚度和激光焦距计 算样品瓶的第一侧面距离激光镜头的第一距离; 若确定容器的类型为样品袋, 则根据样品袋的厚度和激光焦距计算样品袋的第一侧面距离激光镜头的第一距 离。
[0020] 例如, 根据激光焦距和规格信息确定容器的第二侧面距离激光镜头的第二距离 , 具体包括: 若确定容器的类型为样品瓶, 则根据样品瓶的直径、 样品瓶的厚 度和激光焦距计算样品瓶的第二侧面距离激光镜头的第二距离; 若确定容器的 类型为样品袋, 则根据样品袋的总厚度、 样品袋的厚度和激光焦距计算样品袋 的第二侧面距离激光镜头的第二距离。
发明的有益效果
对附图的简要说明
附图说明 [0021] 一个或多个实施例通过与之对应的附图中的图片进行示例性说明, 这些示例性 说明并不构成对实施例的限定, 附图中具有相同参考数字标号的元件表示为类 似的元件, 除非有特别申明, 附图中的图不构成比例限制。
[0022] 图 1是根据本申请第一实施例中检测方法的流程图;
[0023] 图 2是本申请第一实施例中样品瓶的位置确定方式示意图;
[0024] 图 3是本申请第一实施例中样品袋的位置确定方式示意图;
[0025] 图 4是本申请第二实施例中检测方法的流程图;
[0026] 图 5是本申请第三实施例中检测装置的方框示意图;
[0027] 图 6是本申请第四实施例中检测装置的方框示意图;
[0028] 图 7是本申请第五实施例中检测设备的结构示意图。
发明实施例
本发明的实施方式
[0029] 为了使本申请的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例 , 对本申请部分实施例进行进一步详细说明。 应当理解, 此处所描述的具体实 施例仅仅用以解释本申请, 并不用于限定本申请。
[0030] 本申请第一实施例涉及一种检测方法, 该检测方法应用于检测设备, 该检测设 备可以是任意一种能够实现物质检测功能的电子设备, 如光学检测设备 (光谱 仪等) 。 该检测方法的具体流程如图 1所示, 包括以下步骤:
[0031] 步骤 101, 获取检测设备的激光焦距。
[0032] 具体的说, 本实施例中的检测设备包括用于产生激光焦点的激光镜头, 并且激 光镜头的激光焦距为固定值, 而激光焦距的具体数值是保存在检测设备参数数 据库中的, 因此, 检测设备在获取到检测开启指令后, 会根据检测开启指令从 参数数据库中获取激光焦距的具体数值。 例如, 在实际应用中激光焦距的具体 数值可以为 3cm, 当然, 本实施例中仅是举例进行说明, 本实施例中并不限定激 光焦距的具体数值。
[0033] 其中, 在激光焦距已知的情况下, 就可以由激光焦距确定出激光焦点的位置, 因为在本申请实施例中, 激光焦距的固定不变的, 所以激光焦点的位置是已知 , 并且是固定不变的。 [0034] 步骤 102, 获取容器的规格信息。
[0035] 具体的说, 通过获取容器上的标识信息, 根据标识信息获取规格信息, 其中, 规格信息包括容器的尺寸信息和容器的材质信息。 在实际应用中, 标识信息可 以为近距离无线通讯技 (Near Field Communication, NFC) 标签或条形码。 本实 施例中在根据标识信息获取规格信息时, 可以采用直接或间接两种获取方式:
[0036] 第一种直接获取方式, 通过读取标识信息, 获得标识信息中包含的规格信息, 本实施例中, 标识信息中直接包含了规格信息, 检测设备通过直接读取标识信 息, 就可以获取标识信息中的规格信息。 例如, 在容器上粘贴有 NFC标签, NFC 标签中包含了规格信息“直径: 10毫米、 厚度: 3毫米、 材质: 石英”, 检测设备 通过读取容器上的 NFC标签, 可以直接获得规格信息“直径: 10毫米、 厚度: 3毫 米、 材质: 石英”。
[0037] 第二种间接获取方式, 通过读取标识信息, 获得标识信息中所包含的代码编号 ; 将代码编号与数据库进行匹配, 获得与代码编号所对应的规格信息, 其中, 数据库中保存了代码编号与规格信息的对应关系。 本实施例中, 标识信息中所 包含的是代码编号, 检测设备通过读取标识信息只能获得标识信息中所包含的 代码编号, 而每一种代码编号代表着一种容器规格信息, 检测设备通过将获得 的代码编号与数据库进行匹配, 可以间接获得该代码编号所对应的规格信息。 例如, 在容器上粘贴有 NFC标签, NFC标签中包含了代码编号“001”, 检测设备 通过读取容器上的 NFC标签, 获得该代码编号“001”, 而在数据库中保存了代码 编号 001所对应的规格信息为“直径: 10毫米、 厚度: 3毫米、 材质: 石英”, 代码 编号为 002所对应的规格信息为“厚度: 0.2毫米、 材质: 聚乙烯”, 检测设备通过 将代码编号“001”与数据库进行匹配, 可以间接获得与“001”所对应的规格信息“ 直径: 10毫米、 厚度: 3毫米、 材质: 石英”。
[0038] 步骤 103 , 根据激光焦距和规格信息调整容器的位置, 使得调整位置后激光焦 距确定的激光焦点透过容器照射到待检测物品上。
[0039] 其中, 在本实施例中, 在获取容器的规格信息之后, 可以根据规格信息中的材 质信息确定容器的类型, 其中, 容器的类型包括样品袋或样品瓶。 例如, 检测 设备通过将材质信息与容器类型匹配列表进行匹配, 可以获得容器的类型, 如 果规格信息中的材质信息为石英, 则确定容器的类型为样品瓶, 如果规格信息 中的材质信息为聚乙烯, 则确定容器的类型为样品袋。 本实施例中是以根据材 质信息确定容器的类型为例进行的说明, 当然, 还可以采用其它的方式确定容 器的类型, 例如, 检测设备中包括摄像装置, 通过摄像获取容器的图像, 通过 对获取的图像进行分析确定容器的类型。
[0040] 需要说明的是, 在确定容器的类型为样品袋时, 测量盛放待检测样品后的样品 袋的总厚度, 对于样品袋的总厚度可以通过检测设备夹住样品袋, 并通过测量 设备通过测量获得, 当然, 也可以通过摄像装置获取样品袋的图像, 并通过对 获取的图像进行分析获得样品袋的总厚度。 若确定容器的类型为样品瓶, 则容 器的尺寸信息包括: 样品瓶的直径和样品瓶的厚度; 若确定容器的类型为样品 袋, 则容器的尺寸信息包括未盛放待检测样品前样品袋的厚度。
[0041] 具体的说, 在本实施例中, 在根据激光焦距和规格信息调整容器的位置时, 具 体采用的方式是: 根据激光焦距和规格信息确定容器的的第一侧面距离激光镜 头的第一距离, 其中, 第一距离为容器距离激光镜头的最近距离; 根据激光焦 距和规格信息确定容器的第二侧面距离激光镜头的第二距离, 其中, 第二距离 为容器距离激光镜头的最远距离。
[0042] 在一个具体实施例中, 以容器类型为样品瓶为例, 具体说明样品瓶的第一侧面 距离激光镜头的第一距离和第二侧面距离激光镜头的第二距离的确定方式。 如 图 2所示为样品瓶的位置确定方式示意图, 如图所示以样品瓶的右侧切线面作为 第一侧面, 以样品瓶的左侧切线面作为第二侧面为例进行说明。 确定样品瓶的 第一侧面距离激光镜头的第一距离, 其中, 激光焦距为 f, 样品瓶的直径为 d, 样 品瓶的厚度为 n, 则在样品瓶的第一侧面距离激光镜头的第一距离为: f-n时, 激 光焦点恰好刚穿过样品瓶, 激光焦点可以照射到待检测样品上, 此时, 确定样 品瓶的第二侧面距离激光镜头的第二距离为: f+d-n
[0043] 在另一个具体实施例中, 以容器类型为样品袋为例, 具体说明样品袋的第一侧 面距离激光镜头的第一距离和第二侧面距离激光镜头的第二距离的确定方式。 如图 3所示为样品袋的位置确定方式示意图, 如图所示以样品袋的右侧面作为第 一侧面, 以样品袋的左侧面作为第二侧面为例进行说明。 确定样品袋的第一侧 面距离激光镜头的第一距离, 其中, 激光焦距为 f, 样品袋的总厚度为 D, 样品 袋的厚度为 N, 则在样品袋的第一侧面距离激光镜头的第一距离为: f-N时, 激 光焦点恰好刚穿过样品袋, 激光焦点可以照射到待检测样品上, 此时, 确定样 品袋的第二侧面距离激光镜头的第二距离为: f+D-N。
[0044] 与现有技术相比, 本实施例提供的检测方法, 通过获取检测设备的激光焦距可 以确定激光焦点的具体位置, 并通过获取容器的规格信息可以获取容器的具体 参数信息, 根据激光焦点的具体位置以及不同容器的具体参数信息, 可以将容 器进行位置的准确调整, 使激光焦距确定的激光焦点透过容器照射到待检测物 品上, 从而实现针对不同类型的容器所盛放的待检测物品都能够实现准确检测
[0045] 本申请的第二实施例涉及一种检测方法。 本实施例在第一实施例的基础上做了 进一步改进, 具体改进之处为: 在确定激光焦点的位置之后, 增加了根据激光 焦点的位置发射激光收集光谱信息, 并根据光谱信息获得检测结果, 根据。 本 实施例中的检测方法的流程如图 4所示。 具体的说, 在本实施例中, 包括步骤 20 1至步骤 204, 其中步骤 201至 203与第一实施例中的步骤 101至 103大致相同, 此 处不再赘述, 下面主要介绍不同之处, 未在本实施例中详尽描述的技术细节, 可参见第一实施例所提供的检测方法, 此处不再赘述。
[0046] 步骤 201至步骤 203之后, 执行步骤 204。
[0047] 步骤 204, 发射激光收集光谱信息, 并根据光谱信息获得检测结果。
[0048] 具体的说, 在本实施例中, 在调整完容器的位置之后, 检测设备发射激光, 激 光恰好透过容器照射到待检测物品上, 并收集激光照射到待检测物品上的光谱 信息。 但此时所获取的光谱信息不仅包括待检测物品的光谱信息, 同时还包括 容器的光谱信息, 而容器的光谱信息对物质的检测过程来说是干扰信息。 因为 规格信息中包含容器的材质信息, 而在数据库中是保存了容器的材质所对应的 光谱信息, 通过从激光所收集的光谱信息中排除掉容器的光谱信息, 就可以获 得准确的待检测物质的光谱信息。 通过将准确的待检测物质的光谱信息与已知 物质的光谱进行匹配, 可以获得准确的检测结果, 由于通过光谱匹配获得检测 结果并不是本申请的重点, 所以本申请中不再进行赘述。 [0049] 与现有技术相比, 本实施例提供的检测方法, 通过获取检测设备的激光焦距可 以确定激光焦点的具体位置, 并通过获取容器的规格信息可以获取容器的具体 参数信息, 根据激光焦点的具体位置以及不同容器的具体参数信息, 可以将容 器进行位置的准确调整, 使激光焦距确定的激光焦点透过容器照射到待检测物 品上, 从而实现针对不同类型的容器所盛放的待检测物品都能够实现准确检测 。 发射激光收集光谱信息, 并将收集的光谱信息排除掉容器光谱信息的干扰, 可以进一步提高检测结果的准确度。
[0050] 上面各种方法的步骤划分, 只是为了描述清楚, 实现时可以合并为一个步骤或 者对某些步骤进行拆分, 分解为多个步骤, 只要包括相同的逻辑关系, 都在本 专利的保护范围内; 对算法中或者流程中添加无关紧要的修改或者引入无关紧 要的设计, 但不改变其算法和流程的核心设计都在该专利的保护范围内。
[0051] 本申请第三实施例涉及一种检测装置, 具体结构如如图 5所示。
[0052] 如图 5所示, 检测装置包括第一获取模块 301、 第二获取模块 302和调整模块 303
[0053] 第一获取模块 301, 用于获取检测设备的激光焦距。
[0054] 第二获取模块 302, 用于获取容器的规格信息。
[0055] 调整模块 303, 用于根据激光焦距和规格信息调整容器的位置, 使得调整位置 后激光焦距确定的激光焦点透过容器照射到待检测物品上。
[0056] 不难发现, 本实施例为与第一实施例相对应的装置实施例, 本实施例可与第一 实施例互相配合实施。 第一实施例中提到的相关技术细节在本实施例中依然有 效, 为了减少重复, 这里不再赘述。 相应地, 本实施例中提到的相关技术细节 也可应用在第一实施例中。
[0057] 本申请第四实施例涉及一种检测装置。 该实施例与第三实施例大致相同, 具体 结构如图 6所示。 其中, 主要改进之处在于: 第四实施例在第三实施例中检测装 置结构的基础上增加了检测模块 304。
[0058] 其中, 第一获取模块 301, 用于获取检测设备的激光焦距。
[0059] 第二获取模块 302, 用于获取容器的规格信息。
[0060] 调整模块 303, 用于根据激光焦距和规格信息调整容器的位置, 使得调整位置 后激光焦距确定的激光焦点透过容器照射到待检测物品上。
[0061] 检测模块 304, 用于发射激光收集光谱信息, 并根据光谱信息获得检测结果。
[0062] 不难发现, 本实施例为与第二实施例相对应的装置实施例, 本实施例可与第二 实施例互相配合实施。 第二实施例中提到的相关技术细节在本实施例中依然有 效, 为了减少重复, 这里不再赘述。 相应地, 本实施例中提到的相关技术细节 也可应用在第二实施例中。
[0063] 值得一提的是, 本实施例中所涉及到的各模块均为逻辑模块, 在实际应用中, 一个逻辑单元可以是一个物理单元, 也可以是一个物理单元的一部分, 还可以 以多个物理单元的组合实现。 此外, 为了突出本申请的创新部分, 本实施例中 并没有将与解决本申请所提出的技术问题关系不太密切的单元引入, 但这并不 表明本实施例中不存在其它的单元。
[0064] 本申请第五实施例涉及一种检测设备, 如图 7所示, 包括至少一个处理器 501 ;
以及, 与至少一个处理器 501通信连接的存储器 502; 其中, 存储器 502存储有可 被至少一个处理器 501执行的指令, 指令被至少一个处理器 501执行, 以使至少 一个处理器 501能够执行上述实施例中的检测方法。
[0065] 本实施例中, 处理器 501以中央处理器 (Central Processing Unit, CPU) 为例, 存储器 502以可读写存储器 (Random Access Memory, RAM) 为例。 处理器 501 、 存储器 502可以通过总线或者其他方式连接, 图 7中以通过总线连接为例。 存 储器 502作为一种非易失性计算机可读存储介质, 可用于存储非易失性软件程序 、 非易失性计算机可执行程序以及模块, 如本申请实施例中实现检测方法的程 序就存储于存储器 502中。 处理器 501通过运行存储在存储器 502中的非易失性软 件程序、 指令以及模块, 从而执行设备的各种功能应用以及数据处理, 即实现 上述检测方法。
[0066] 存储器 502可以包括存储程序区和存储数据区, 其中, 存储程序区可存储操作 系统、 至少一个功能所需要的应用程序; 存储数据区可存储选项列表等。 此外 , 存储器可以包括高速随机存取存储器, 还可以包括非易失性存储器, 例如至 少一个磁盘存储器件、 闪存器件、 或其他非易失性固态存储器件。 在一些实施 例中, 存储器 502可选包括相对于处理器 501远程设置的存储器, 这些远程存储 器可以通过网络连接至外接设备。 上述网络的实例包括但不限于互联网、 企业 内部网、 局域网、 移动通信网及其组合。
[0067] 一个或者多个程序模块存储在存储器 502中, 当被一个或者多个处理器 501执行 时, 执行上述任意方法实施例中的检测方法。
[0068] 上述产品可执行本申请实施例所提供的方法, 具备执行方法相应的功能模块和 有益效果, 未在本实施例中详尽描述的技术细节, 可参见本申请实施例所提供 的方法。
[0069] 本申请的第六实施例涉及一种计算机可读存储介质, 该计算机可读存储介质中 存储有计算机程序, 该计算机程序被处理器执行时能够实现本申请任意方法实 施例中涉及的检测方法。
[0070] 本领域技术人员可以理解, 实现上述实施例方法中的全部或部分步骤是可以通 过程序来指令相关的硬件来完成, 该程序存储在一个存储介质中, 包括若干指 令用以使得一个设备 (可以是单片机, 芯片等) 或处理器 (processor) 执行本申 请各个实施例所述方法的全部或部分步骤。 而前述的存储介质包括: U盘、 移动 硬盘、 只读存储器 (ROM, Read-Only Memory) 、 随机存取存储器 (RAM, Ra ndom Access Memory) 、 磁碟或者光盘等各种可以存储程序代码的介质。
[0071] 本领域的普通技术人员可以理解, 上述各实施例是实现本申请的具体实施例, 而在实际应用中, 可以在形式上和细节上对其作各种改变, 而不偏离本申请的 精神和范围。

Claims

权利要求书
[权利要求 1] 一种检测方法, 应用于检测设备, 包括:
获取所述检测设备的激光焦距;
获取容器的规格信息;
根据所述激光焦距和所述规格信息调整所述容器的位置, 使得调整位 置后所述激光焦距确定的激光焦点透过所述容器照射到待检测物品上
[权利要求 2] 如权利要求 1所述的检测方法, 其中, 所述获取容器的规格信息, 具 体包括:
获取所述容器上的标识信息;
根据所述标识信息获取所述规格信息, 其中, 所述规格信息包括所述 容器的尺寸信息和所述容器的材质信息。
[权利要求 3] 如权利要求 2所述的检测方法, 其中, 所述根据所述标识信息获取所 述规格信息, 具体包括:
通过读取所述标识信息, 获得所述标识信息中所包含的规格信息。
[权利要求 4] 如权利要求 2所述的检测方法, 其中, 所述根据所述标识信息获取所 述规格信息, 具体包括:
通过读取所述标识信息, 获得所述标识信息中所包含的代码编号; 将所述代码编号与数据库进行匹配, 获得与所述代码编号所对应的规 格信息, 其中, 所述数据库中保存了代码编号与规格信息的对应关系
[权利要求 5] 如权利要求 2至 4中任一项所述的检测方法, 其中, 所述检测设备包括 用于产生所述激光焦点的激光镜头, 其中, 所述激光镜头的所述激光 焦距为固定值。
[权利要求 6] 如权利要求 5所述的检测方法, 其中, 所述获取所述容器的规格信息 之后, 还包括:
根据所述规格信息中的所述材质信息确定所述容器的类型, 其中, 所 述容器的类型包括样品袋或样品瓶。
[权利要求 7] 如权利要求 6所述的检测方法, 其中, 若确定所述容器的类型为所述 样品瓶, 则所述容器的尺寸信息包括: 所述样品瓶的直径和所述样品 瓶的厚度;
若确定所述容器的类型为所述样品袋, 则所述容器的尺寸信息包括未 盛放所述待检测样品前所述样品袋的厚度。
[权利要求 8] 如权利要求 7所述的检测方法, 其中, 所述根据所述规格信息中的所 述材质信息确定所述容器的类型之后, 还包括: 在确定所述容器的类型为样品袋时, 测量盛放所述待检测样品后的所 述样品袋的总厚度。
[权利要求 9] 如权利要求 8所述的检测方法, 其中, 所述根据所述激光焦距和所述 规格信息调整所述容器的位置, 具体包括:
根据所述激光焦距和所述规格信息确定所述容器的第一侧面距离所述 激光镜头的第一距离, 其中, 所述第一距离为所述容器距离所述激光 镜头的最近距离;
根据所述激光焦距和所述规格信息确定所述容器的第二侧面距离所述 激光镜头的第二距离, 其中, 所述第二距离为所述容器距离所述激光 镜头的最远距离。
[权利要求 10] 如权利要求 9所述的检测方法, 其中, 所述根据所述激光焦距和所述 规格信息确定所述容器的第一侧面距离所述激光镜头的第一距离, 具 体包括:
若确定所述容器的类型为样品瓶, 则根据所述样品瓶的厚度和所述激 光焦距计算所述样品瓶的第一侧面距离所述激光镜头的第一距离; 若确定所述容器的类型为样品袋, 则根据所述样品袋的厚度和所述激 光焦距计算所述样品袋的第一侧面距离所述激光镜头的第一距离。
[权利要求 11] 如权利要求 9所述的检测方法, 其中, 所述根据所述激光焦距和所述 规格信息确定所述容器的第二侧面距离所述激光镜头的第二距离, 具 体包括:
若确定所述容器的类型为样品瓶, 则根据所述样品瓶的直径、 所述样 品瓶的厚度和所述激光焦距计算所述样品瓶的第二侧面距离所述激光 镜头的第二距离;
若确定所述容器的类型为样品袋, 则根据所述样品袋的总厚度、 所述 样品袋的厚度和所述激光焦距计算所述样品袋的第二侧面距离所述激 光镜头的第二距离。
[权利要求 12] 一种检测装置, 包括: 第一获取模块、 第二获取模块和调整模块; 所述第一获取模块, 用于获取所述检测设备的激光焦距;
所述第二获取模块, 用于获取容器的规格信息; 所述调整模块, 用于根据所述激光焦距和所述规格信息调整所述容器 的位置, 使得调整位置后所述激光焦距确定的激光焦点透过所述容器 照射到待检测物品上。
[权利要求 13] 一种检测设备, 包括:
至少一个处理器; 以及, 与所述至少一个处理器通信连接的存储器; 其中, 所述存储器存储有可被所述至少一个处理器执行的指令, 所述指令被 所述至少一个处理器执行, 以使所述至少一个处理器能够执行如权利 要求 1至 11任一项所述的检测方法。
[权利要求 14] 一种计算机可读存储介质, 存储有计算机程序, 所述计算机程序被处 理器执行时实现权利要求 1至 11任一项所述的检测方法。
PCT/CN2019/116112 2018-11-21 2019-11-06 一种检测方法、相关装置及存储介质 WO2020103695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811390679.4A CN109580494B (zh) 2018-11-21 2018-11-21 一种检测方法、相关装置及存储介质
CN201811390679.4 2018-11-21

Publications (1)

Publication Number Publication Date
WO2020103695A1 true WO2020103695A1 (zh) 2020-05-28

Family

ID=65923238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/116112 WO2020103695A1 (zh) 2018-11-21 2019-11-06 一种检测方法、相关装置及存储介质

Country Status (2)

Country Link
CN (1) CN109580494B (zh)
WO (1) WO2020103695A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580494B (zh) * 2018-11-21 2021-09-28 深圳达闼科技控股有限公司 一种检测方法、相关装置及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071991A1 (en) * 1999-05-25 2000-11-30 Biometric Imaging, Inc. Apparatus and method for optical detection in a limited depth of field
US20120107950A1 (en) * 2010-11-03 2012-05-03 Manian Bala S Measurement system for fluorescent detection, and method therefor
CN103028452A (zh) * 2011-09-29 2013-04-10 霍夫曼-拉罗奇有限公司 对包含几何学管数据的样品管的操作
CN103674839A (zh) * 2013-11-12 2014-03-26 清华大学 一种基于光斑检测的可视化样品定位操作系统及方法
CN203949871U (zh) * 2014-07-08 2014-11-19 厦门大学 一种便携式拉曼光谱仪
CN106226282A (zh) * 2016-06-24 2016-12-14 北京华泰诺安探测技术有限公司 一种使用激光拉曼光谱仪进行采样的装置及方法
CN107820567A (zh) * 2017-08-03 2018-03-20 深圳前海达闼云端智能科技有限公司 拉曼检测方法、装置以及存储介质
CN108780033A (zh) * 2018-04-13 2018-11-09 深圳达闼科技控股有限公司 一种控制探头的方法、检测设备及控制探头的装置
CN109580494A (zh) * 2018-11-21 2019-04-05 深圳达闼科技控股有限公司 一种检测方法、相关装置及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498645B1 (en) * 2000-11-05 2002-12-24 Julius Z. Knapp Inspection of liquid injectable products for contaminating particles
CN104020149A (zh) * 2013-06-07 2014-09-03 广西科学院 一种疏枝刺柳珊瑚激光拉曼光谱的建立方法
CN104422680A (zh) * 2013-09-02 2015-03-18 中国科学院大连化学物理研究所 一种拉曼信号采集装置
CN103630524B (zh) * 2013-10-10 2016-06-08 杨建夫 智能型自动化的化学物质定性和定量的检测装置
CN104749155B (zh) * 2013-12-27 2018-01-16 同方威视技术股份有限公司 用于检测容装体中的样品的拉曼光谱检测方法
CN105606586B (zh) * 2015-12-23 2018-03-09 东南大学 高稳定性的表面增强拉曼光谱的液相检测装置及检测方法
CN106404744B (zh) * 2016-11-01 2020-07-31 北京华泰诺安技术有限公司 一种便携式指向性拉曼光谱采集系统及采集方法
CN108401441A (zh) * 2018-01-17 2018-08-14 深圳达闼科技控股有限公司 对待检测物质进行拉曼检测的方法和终端
CN108713137B (zh) * 2018-04-26 2020-04-03 深圳达闼科技控股有限公司 一种物质检测方法、检测终端及计算机可读存储介质
CN108827936B (zh) * 2018-06-15 2024-03-08 何坚 一种血液培养报阳检测装置与方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000071991A1 (en) * 1999-05-25 2000-11-30 Biometric Imaging, Inc. Apparatus and method for optical detection in a limited depth of field
US20120107950A1 (en) * 2010-11-03 2012-05-03 Manian Bala S Measurement system for fluorescent detection, and method therefor
CN103028452A (zh) * 2011-09-29 2013-04-10 霍夫曼-拉罗奇有限公司 对包含几何学管数据的样品管的操作
CN103674839A (zh) * 2013-11-12 2014-03-26 清华大学 一种基于光斑检测的可视化样品定位操作系统及方法
CN203949871U (zh) * 2014-07-08 2014-11-19 厦门大学 一种便携式拉曼光谱仪
CN106226282A (zh) * 2016-06-24 2016-12-14 北京华泰诺安探测技术有限公司 一种使用激光拉曼光谱仪进行采样的装置及方法
CN107820567A (zh) * 2017-08-03 2018-03-20 深圳前海达闼云端智能科技有限公司 拉曼检测方法、装置以及存储介质
CN108780033A (zh) * 2018-04-13 2018-11-09 深圳达闼科技控股有限公司 一种控制探头的方法、检测设备及控制探头的装置
CN109580494A (zh) * 2018-11-21 2019-04-05 深圳达闼科技控股有限公司 一种检测方法、相关装置及存储介质

Also Published As

Publication number Publication date
CN109580494A (zh) 2019-04-05
CN109580494B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
US9756324B1 (en) System and method for color calibrating an image
CN109791043B (zh) 用于透明主体的光学检查的方法和装置
JP5330317B2 (ja) 生体試料の分析方法および分析装置
EP3171160A1 (en) Apparatus and method for detecting microbes or bacteria
JP4365380B2 (ja) Fret検出方法および装置
US10345098B2 (en) Measurement method and measurement device
WO2015096788A1 (zh) 用于检测容装体中的样品的拉曼光谱检测方法
JP2017508132A5 (zh)
JP2014525583A5 (zh)
WO2008036533A2 (en) Focal plane tracking for optical microtomography
JP2009162759A (ja) 光学的距離測定法により得られた液滴曲面半径に基づく接触角測定法および装置
JP2019211247A (ja) コンクリート評価制御装置、コンクリート評価制御プログラム
JP2012529290A (ja) 卵の重量決定方法および装置
JP2010133934A5 (zh)
EP2600308A3 (en) Information processing apparatus, information processing method, program and computer-readable storage medium
WO2020103694A1 (zh) 一种检测方法、相关装置及存储介质
WO2020103695A1 (zh) 一种检测方法、相关装置及存储介质
CN107014844B (zh) 动态管理多个数据处理单元的xrf/xrd系统
KR20170022712A (ko) 수질측정키트의 이미지 처리 기법을 이용한 양식장 자동화 수질분석 및 원격 감시시스템
JP2016090476A (ja) 異物検出方法
WO2019196113A1 (zh) 一种控制探头的方法、检测设备及控制探头的装置
US9869631B2 (en) Analysis device and method of determining mounted state of cartridge of the analysis device
US9945848B2 (en) Reagent calibration system and method
Yoshida et al. 3D measurement of a moving target using multiple slits with a random-dot pattern
WO2005017506A1 (ja) 特定高分子結晶の検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/09/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19886814

Country of ref document: EP

Kind code of ref document: A1