WO2020103169A1 - 冷却装置及系统 - Google Patents

冷却装置及系统

Info

Publication number
WO2020103169A1
WO2020103169A1 PCT/CN2018/117561 CN2018117561W WO2020103169A1 WO 2020103169 A1 WO2020103169 A1 WO 2020103169A1 CN 2018117561 W CN2018117561 W CN 2018117561W WO 2020103169 A1 WO2020103169 A1 WO 2020103169A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
cooling device
converter
pipe
cooling
Prior art date
Application number
PCT/CN2018/117561
Other languages
English (en)
French (fr)
Inventor
马连凤
尚锋亮
杨春宇
赵娜
赵节芳
Original Assignee
中车永济电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车永济电机有限公司 filed Critical 中车永济电机有限公司
Publication of WO2020103169A1 publication Critical patent/WO2020103169A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention relates to the technical field of cooling, in particular to a cooling device and system.
  • the locomotive converter is an important component of the locomotive's electric drive system and provides power for the locomotive's traction motor.
  • the rectification and inversion functions of the converter are realized by the insulated gate bipolar transistor (IGBT) of the power device. Frequent turn-on and turn-off of the IGBT will generate a large amount of energy loss, causing the temperature of the IGBT device to rise high. Therefore, a certain cooling method is needed to help the IGBT dissipate heat in order to maintain the normal operation of the converter.
  • IGBT insulated gate bipolar transistor
  • FIG. 1 is a schematic diagram of a water cooling system for a high-power locomotive converter in the prior art
  • FIG. 2 is a perspective schematic diagram of a water cooling device for a high-power locomotive converter in the prior art.
  • the water cooling device for a high-power locomotive converter includes a cooling device inside the cabinet and a cooling device outside the cabinet.
  • the cooling device inside the cabinet includes: pipelines inside the cabinet, water pump, water distributor, water distributor, temperature sensor, pressure sensor, expansion tank and connectors, etc .;
  • the cooling device outside the cabinet includes: pipelines outside the cabinet, shut-off valve , Air release valve, flow meter, etc., the cooling device is connected to the external composite cooling tower (including heat exchanger, fan, etc.) through the cooling pipe outside the cabinet.
  • the water inlet and outlet of the pipeline outside the cabinet are connected with the water outlet and inlet of the cooling tower, so that the cooling liquid flows through the pipeline through the power unit water-cooled substrate in the converter, which has the effect of dissipating heat for the power device.
  • the present invention provides a cooling device and system. Compared with the prior art, a large-volume, high-cost high-power locomotive converter water cooling device is required. This solution increases convenience and reduces cost.
  • the present invention provides a cooling device, including: a cooling device inside the cabinet and a cooling device outside the cabinet;
  • the cooling device in the cabinet includes: a water inlet main line, a water outlet main line, a water pump, and at least one water connecting plate;
  • the outside cooling device includes: a converter inlet pipe and a converter outlet pipe;
  • the water inlet pipe of the converter is connected to the water inlet pipe of the water pump, and a first stop valve is provided between the water inlet pipe of the converter and the water pump, and the water outlet pipe of the water pump is connected to the water inlet main line Is connected at one end, and the other end of the water inlet main line is sealed;
  • One end of the outlet main pipeline is sealed, the other end of the outlet main pipeline is connected to the converter outlet pipe, and a second stop valve is provided between the outlet main pipeline and the converter outlet pipe;
  • Each water connection plate is connected between the water inlet main line and the water outlet main line, and the water in the water inlet main line can flow to the water outlet main line through any water connection plate; each water The connection plate is used to cool the power module provided on it.
  • each water connecting plate is respectively connected to the water inlet main pipeline and the water outlet main pipeline through branch pipes.
  • the cooling device in the cabinet further includes: an expansion water tank;
  • the expansion water tank is located at the highest point of the cooling device; the inlet water main pipe and the outlet water main pipe are respectively connected to the bottom of the expansion water tank through stainless steel pipes.
  • the expansion water tank and the water inlet pipe of the water pump are connected by a rubber pipe.
  • a temperature sensor and a pressure sensor are provided between the water outlet pipe of the water pump and the water inlet main line.
  • outlet pipe of the water pump and the inlet main pipe are connected by a flange
  • the inlet pipe of the converter and the inlet pipe of the water pump are connected by a flange.
  • the cooling device further includes: at least one power module
  • each power module includes a water-cooled substrate and at least one power device, the water-cooled substrate is used to connect with a water connection board, and the at least one power device is disposed on the water-cooled substrate.
  • a liquid injection joint is provided on the water inlet pipe of the water pump.
  • the converter inlet pipe and the converter outlet pipe are bellows, and the converter inlet pipe and the converter outlet pipe are provided on the bottom end side of the cooling device.
  • the present invention provides a cooling system, including: the cooling device, the composite cooling tower, and the monitoring device described in the first aspect;
  • the cooling device is connected to the composite cooling tower to form a cooling circulation circuit
  • the monitoring device is used to determine whether to issue an alarm based on the detection result of the cooling device.
  • the cooling device and system provided by the embodiments of the present invention are connected to the water inlet pipe of the water pump through the inlet pipe of the converter through the flange design of the pipeline, eliminating the transitional connection of the water inlet distributor, and the water outlet pipe and the pipe of the water pump
  • the direct connection of the road flange saves the design of the water distributor, which achieves the performance of the cooling system and at the same time saves the complex structural design of the water distributor and simplifies the complicated structure of the pipeline outside the cabinet.
  • this solution effectively saves space, reduces the weight of the converter and reduces the design cost.
  • the cooling system realizes real-time monitoring and Fault alarm improves the reliability and convenience of the cooling system.
  • FIG. 1 is a schematic diagram of a water cooling system for a high-power locomotive converter in the prior art
  • FIG. 2 is a perspective schematic view of a water cooling device for a high-power locomotive converter in the prior art
  • FIG. 3 is a schematic structural diagram of a cooling device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a cooling system provided by an embodiment of the present invention.
  • the current cooling methods of the converter mainly include natural cooling, forced air cooling, water circulation cooling, etc.
  • water circulation cooling is commonly used in China, that is, the power device is installed on the water-cooled substrate, and then the water-cooled substrate is connected to the heat exchange device through a certain pipeline, and the heat absorbed by the pressure of the water pump The liquid is circulated, and then the heat exchange device is cooled to achieve the purpose of heat exchange, and the temperature of the cooling liquid is reduced, so that the cooled cooling liquid flows through the water-cooled substrate again, and thus circulated.
  • the water cooling device of a high-power locomotive converter includes a cooling device inside the cabinet and a cooling device outside the cabinet.
  • the pipeline design of the cooling device is relatively complicated.
  • the water inlet and outlet of the pipeline outside the cabinet are connected to the water outlet and water inlet of the cooling tower, so that the cooling liquid flows through the pipeline through the power unit water-cooled substrate in the converter, Power device cooling effect.
  • the piping design of this type of cooling device is more complicated and takes up more space.
  • a distributor is used to connect the water pump and the water inlet and outlet pipes, and the cost of the distributor is relatively high.
  • this solution has a simplified design of the structure, the pipeline and the flange are directly connected, eliminating the complicated structural design of the water distributor and simplifying the pipeline outside the cabinet
  • the complicated structure effectively saves space, reduces the weight of the converter and reduces the design cost.
  • FIG. 3 is a schematic structural diagram of a cooling device according to an embodiment of the present invention. As shown in FIG. 1, the cooling device includes: a cooling device inside the cabinet and a cooling device outside the cabinet.
  • the cooling device inside the cabinet and the cooling device outside the cabinet are separated by the converter cabinet and only connected by a pipeline.
  • the cooling device inside the cabinet includes: the water inlet main line 3, the water outlet main line 4, the water pump 1, and at least one water connection plate 16;
  • the outside cabinet cooling device includes: the cabinet outside pipeline 10 and the cut-off valve 9.
  • the pipeline outside the cabinet includes: a converter inlet pipe and a converter outlet pipe, wherein the converter inlet pipe is located in front of the converter outlet pipe.
  • the inlet pipe of the converter is connected to the inlet pipe of the water pump 1, and a first stop valve is provided between the inlet pipe of the converter and the water pump 1, and the outlet pipe of the water pump 1 is connected to one end of the inlet main pipe 3, The other end of the water main pipe 3 is sealed.
  • One end of the outlet pipe 4 is sealed, the other end of the outlet pipe 4 is connected to the converter outlet pipe, and a second stop valve is provided between the outlet pipe and the converter outlet pipe.
  • the front shutoff valve is the first shutoff valve
  • the rear shutoff valve is the second shutoff valve.
  • the shut-off valves are installed on the outside of the cabinet, and the design of the shut-off valve 9 installed on the pipeline 10 outside the cabinet ensures that the converter can be injected separately when the cooling tower is not connected. It is also convenient for connecting the pipeline between the pipeline outside the cabinet and the cooling tower The overall disassembly and maintenance.
  • Each water connection plate 16 is connected between the water inlet main path 3 and the water outlet main path 4, and the coolant in the water inlet main path 3 can flow through any water connection plate 16 and the water-cooled substrate connected thereto.
  • To the water outlet main line 4, and each water connecting plate 16 has two water receiving heads, which can be connected to the water-cooled base plate in the power module, and used for cooling the power device provided thereon.
  • each water connection plate 16 is quick water joints, which have a self-sealing function, and no liquid leakage will occur during the insertion and removal.
  • the power module includes a water-cooled substrate and a power device provided on the water-cooled substrate.
  • the water inlet and outlet on the water-cooled substrate are respectively connected to the two water connectors of the water connection plate to allow the cooling fluid to flow through the water The substrate, and cooling the power device provided on the water-cooled substrate.
  • the number of power devices in each power module may be 1 to multiple.
  • each water connection plate can be provided between the inlet main line 3 and the outlet main line 4, each water connection plate is connected to a power module, and a set of inlet and outlet main lines can be used in multiple Power modules for cooling.
  • one to more branch pipes 4 are provided on the inlet main pipe 3, and one to more branch pipes 14 are also provided on the outlet main pipe. Both ends of each water connecting plate pass through branch pipes The road 14 is connected to the water inlet main road 3 and the water outlet main road 4 respectively.
  • a cooling device and system provided by an embodiment of the present invention include: a cooling device in a cabinet and a cooling device outside the cabinet, wherein the cooling device in the cabinet includes: a water inlet main line, a water outlet main line, a water pump, and at least one water connection plate
  • the cooling device outside the cabinet includes: the water inlet pipe of the converter and the water outlet pipe of the converter.
  • the inlet pipe of the converter is connected to the inlet pipe of the pump through the flange design of the pipeline, eliminating the transitional connection of the inlet water distributor, and the outlet pipe of the pump is directly connected to the pipeline flange, eliminating the design of the outlet distributor .
  • the cooling device in the cabinet further includes: an expansion water tank 5.
  • the expansion water tank 5 is installed at the highest point of the entire pipeline, and has the functions of displaying the coolant level, absorbing liquid capacity changes, and discharging and exhausting.
  • the expansion water tank accommodates the amount of water expansion in the pipeline, which can reduce the fluctuation of the water pressure caused by the expansion of the pipeline.
  • the water level of the expansion water tank drops. Road hydration.
  • the expansion tank can also stabilize the pressure in the pipeline and remove the air released by the water during the heating process.
  • the coolant level can be displayed by the ultrasonic level gauge, radar level gauge, electrode level sensor and other equipment of the expansion tank, or the expansion tank using a transparent or translucent tank can be used to directly observe the expansion tank.
  • the liquid level inside reads the liquid level, which is not required in this solution.
  • the main water inlet line 3 and the main water outlet path 4 are connected through the stainless steel pipe 6 and the bottom of the expansion water tank 5, respectively, and the bubbles generated when the cooling liquid circulates in the pipeline can be discharged into the expansion water tank 5, and then pass through the expansion water tank 5.
  • the pressure regulating function is discharged out of the pipeline system.
  • an overflow valve is provided on the top of the expansion water tank 5, and the overflow valve is preset with a pressure value range. When the pressure value exceeds the preset pressure value range, the overflow valve will adjust the pressure in the expansion water tank. When there is too much coolant in the pipeline, it can overflow through the overflow valve of the expansion tank, where the overflow valve is connected to the overflow pipe 11 so that the overflowed coolant is directly discharged outside the cabinet to avoid damage to the electrical components in the cabinet.
  • the overflow pipe 11 may extend out of the converter cabinet through a wall-penetrating terminal, and a sealing joint 12 may be provided on the contact surface of the overflow pipe and the cabinet to ensure that the converter is in a sealed state.
  • the inlet and outlet main pipes are provided with exhaust valves for discharging the gas in the pipeline.
  • the expansion water tank 5 and the water inlet pipe of the water pump 1 are connected by a rubber pipe 15.
  • the connection design of the rubber tube 15 can provide pressure to the water pump 1, adjust the pressure difference between the expansion water tank and the water inlet pipe of the water pump, and maintain the stability of the overall pressure of the pipeline.
  • a temperature sensor 7 and a pressure sensor 8 are provided between the water outlet pipe of the water pump 1 and the water inlet main line 3.
  • a temperature sensor and a pressure sensor installation interface are provided on the water inlet main line 3 for installing the temperature sensor 7 and the pressure sensor 8.
  • the temperature sensor 7 and the pressure sensor 8 can measure the pressure and temperature of the coolant in the pipeline in real time.
  • the cooling device provided by the embodiment of the present invention provides the display of the coolant level, the amount of water expansion in the containing pipeline, and the stabilization of the pipeline through the connection of the expansion water tank to the inlet main pipeline, the outlet main pipeline, and the water pump.
  • the effect of the pressure by setting a temperature sensor and a pressure sensor between the outlet pipe of the pump and the inlet main pipe, real-time monitoring of the temperature and pressure in the pipeline is achieved.
  • outlet pipe of the water pump 1 and the inlet pipe 3 are connected by a flange
  • inlet pipe of the converter and the inlet pipe of the water pump 1 are connected by a flange.
  • the outlet pipe of the water pump 1 is directly connected to the flange of the inlet pipe 3, and the design of the outlet distributor is omitted.
  • the water inlet pipe of the converter is connected to the water inlet of the water pump 1 through the flange design of the pipeline, which eliminates the transitional connection of the water inlet distributor and simplifies the complicated structure of the pipeline outside the cabinet.
  • the cooling device further includes: at least one power module
  • each power module includes a water-cooled substrate and at least one power device.
  • the water-cooled substrate is used to connect with the water connection plate 16 and at least one power device is disposed on the water-cooled substrate.
  • the water connection plate 16 is connected to the water-cooled substrate of the power device.
  • the cooling liquid enters the water-cooled substrate of the power device through the water connection plate, and cools the power device provided on the water-cooled substrate. After absorbing the heat generated by the power device, the cooling liquid reaches the water connection plate 16 through the outlet end of the power device water-cooled substrate.
  • a liquid injection joint is provided on the water inlet pipe of the water pump.
  • a liquid injection connector installation interface is designed on the water inlet pipe 13 of the water pump to install the liquid injection connector 2.
  • the installation interface of the liquid injection connector 2 is directly designed on the water inlet pipeline 3, and the cooling liquid can be injected into the pipeline of the cooling device through the liquid injection connector 2, the design of the structure is simple, and at the same time, the function of the liquid injection of the converter is satisfied Claim.
  • the liquid injection connector 2 can be quickly inserted and removed. When the liquid is not injected, the connector is sealed and will not leak.
  • the converter inlet pipe and the converter outlet pipe are corrugated pipes, and have a stop valve with a connecting flange, the converter inlet pipe and the converter outlet pipe are arranged on the bottom side of the cooling device.
  • the pipeline 10 outside the cabinet is designed with a shut-off valve, which can be injected separately when the converter is not connected to the cooling tower.
  • the pipeline 10 outside the cabinet is two corrugated tubes as short as possible, the length is only the distance between the converter and the cooling tower, and the connection between the converter and the cooling tower is realized, so there is no need to configure an additional converter to the cooling tower.
  • the connecting pipeline between the two parts reduces the accessories of the whole vehicle system and reduces the cost. Avoid the disadvantages of large space, heavy weight and high cost brought by the complex structural design of the pipeline outside the cabinet, and because the design position of the pipeline outside the cabinet is not higher than the pipeline inside the cabinet, the design of the exhaust valve is omitted , Which reduces costs and points of failure.
  • the inlet pipe of the converter is connected to the inlet pipe of the water pump through the flange design of the pipeline, eliminating the transitional connection of the inlet water distributor, and the outlet pipe of the water pump is directly connected to the pipeline flange, saving
  • the design of the water distributor has been eliminated, and the complex structure design of the water distributor has been eliminated while ensuring the performance of the cooling system.
  • the liquid injection joint, temperature sensor and pressure sensor interface have been designed on the inlet pipe of the water pump, simplifying the cabinet
  • the structural design of the outer pipeline saves the space of the converter, reduces the weight of the converter, and saves the design cost of the converter.
  • the cooling system 100 includes: the cooling device 101, the composite cooling tower 102, and the monitoring device 103 in the embodiment shown in FIG. 1.
  • the cooling device 101 is connected to the composite cooling tower 102 to form a cooling circulation circuit
  • the monitoring device is electrically connected to the cooling device 101 and the composite cooling tower 102, respectively.
  • the composite cooling tower includes a heat exchanger and a fan
  • the external piping of the cooling device is connected to the interface of the composite cooling tower, specifically, the heat of the composite cooling tower through the inlet pipe of the converter and the outlet pipe of the converter
  • the exchangers are connected to form a cooling circuit.
  • the inlet pipe of the converter and the outlet pipe of the converter may be corrugated hoses.
  • the cooling device directly connects the outside of the globe valve to the cooling tower interface through two corrugated hoses.
  • the length of the bellows can be the distance between the cooling device and the cooling tower. It should be understood here that the bellows should be set as short as possible.
  • the shut-off valve ensures that when the cooling device is not connected to the cooling tower, the converter can be filled with liquid separately, which is also convenient for the overall disassembly and maintenance of the pipeline outside the cabinet. After the cooling liquid cools the power device in the cooling device, it passes through the cooling device.
  • the water outlet pipe of the converter enters the composite cooling tower. After cooling in the composite cooling tower, it enters the cooling device through the water inlet pipe of the converter of the cooling device, forming a cooling circulation circuit.
  • the cooling device 101 of this embodiment includes any technical solution of the embodiment shown in FIG. 1.
  • the cooling device 101 includes an internal cooling device and an external cooling device.
  • the internal cooling device and the external cooling device are separated by a converter cabinet, and are only separated by a pipeline Connected.
  • the cooling device inside the cabinet includes: the water inlet main line, the outlet water main line, the water pump, and at least one water connection plate
  • the outside cooling device includes: the pipeline outside the cabinet and the cut-off valve.
  • the pipeline outside the cabinet includes: a converter inlet pipe and a converter outlet pipe, wherein the converter inlet pipe is located in front of the converter outlet pipe.
  • the inlet pipe of the converter is connected to the inlet pipe of the pump through the flange design of the pipeline, eliminating the transitional connection of the inlet distributor, and the outlet pipe of the pump is directly connected to the pipeline flange,
  • the design of the water distributor is omitted. While ensuring the performance of the cooling system, the complicated structural design of the water distributor is omitted, and the complicated structure of the pipeline outside the cabinet is simplified.
  • the cooling device 101 also includes an expansion water tank, a temperature sensor, and a pressure sensor.
  • the expansion water tank is connected to the water inlet main pipe, the outlet water main pipe, and the water pump to provide a display of the coolant level, the amount of water expansion in the containing pipe, And the role of stabilizing the pressure in the pipeline, and by setting the temperature sensor and the pressure sensor between the outlet pipe of the water pump and the inlet main pipe, real-time monitoring of the temperature and pressure in the pipeline is realized.
  • cooling device 101 also includes other technical solutions of the embodiment shown in FIG. 1, and its implementation principle is similar to the technical effect, and will not be repeated here.
  • the monitoring device 103 is used to obtain the detection result of the cooling device and determine whether the detection result of the cooling device is normal. If the detection result is abnormal, an alarm is issued.
  • a pressure sensor and a temperature sensor are installed in the cooling device, which can detect the pressure and temperature of the cooling liquid in real time.
  • the monitoring device will issue an alarm.
  • the monitoring device 103 is used to obtain the measurement results of the temperature sensor and the pressure sensor in the cooling device, and determine whether the obtained measurement result is normal according to the preset temperature range and pressure range, if the temperature measurement result and / or pressure measurement If the result is abnormal, an alarm message is generated and an alarm is issued to prompt the user to overhaul the system.
  • the monitoring device 103 may control the cooling tower to increase the cooling level of the cooling tower; when the temperature measurement result is less than the minimum value of the preset temperature range, the monitoring device 103 can control the cooling tower to reduce the cooling degree of the cooling tower.
  • the monitoring device 103 may control the converter to perform corresponding protection actions.
  • the cooling device can discharge excess gas or coolant through the overflow valve of the expansion tank;
  • the gas can be sucked through the overflow valve of the expansion tank to supplement the gas pressure in the expansion tank;
  • the measurement result of the liquid level is lower than the preset minimum liquid level, it can be passed manually
  • the filling connector is filled with coolant.
  • a cooling system provided by an embodiment of the present invention includes a cooling device, a composite cooling tower, and a detection device, wherein the cooling device is connected to the composite cooling tower to form a cooling circulation circuit, and the monitoring device is used to detect the cooling device according to the detection result. Determining whether to issue an alarm improves the reliability and convenience of the cooling system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本发明提供的一种冷却装置及系统。该冷却装置包括:柜内冷却装置以及柜外冷却装置,其中,柜内冷却装置包括:进水主管路、出水主管路、水泵、以及至少一个水连接板,柜外冷却装置包括:变流器进水管、变流器出水管。变流器的进水管通过管路的法兰设计连接到水泵的进水口,省去了进水分配器的过渡连接,水泵出水口与管路法兰直接连接,省去了出水分配器的设计。最终,在保证冷却系统性能的同时,省去了水分配器的复杂结构设计,简化了柜外管路的繁杂结构。相较于现有技术中需采用体积较大、成本较高的冷却装置,本方案有效的节省空间、减轻变流器的重量并降低设计成本。

Description

冷却装置及系统 技术领域
本发明涉及冷却技术领域,尤其涉及一种冷却装置及系统。
背景技术
机车变流器是机车电传动系统的重要部件,为机车牵引电机提供电源。变流器的整流和逆变功能通过功率器件绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)来实现,IGBT的频繁导通和关断会产生大量的能量损耗,使IGBT器件的温度升高。因此需要通过一定的冷却方式帮助IGBT散热,以便维持变流器的正常工作。
图1为现有技术中一种用于大功率机车变流器的水冷却系统的示意图,图2为现有技术中一种用于大功率机车变流器的水冷却装置的立体示意图。如图1和图2所示,该用于大功率机车变流器的水冷却装置,包括柜内冷却装置和柜外冷却装置。其中,柜内冷却装置包括:柜内管路、水泵、进水分配器、出水分配器、温度传感器、压力传感器、膨胀水箱以及连接件等;柜外冷却装置包括:柜外管路、截止阀、放气阀、流量计等,冷却装置通过柜外冷却管路和外部复合冷却塔(包括热交换器、风机等)相连。通过柜外管路的进出水口与冷却塔的出水口和进水口进行连接,使冷却液通过管路流经变流器内的功率单元水冷基板,起到给功率器件散热的效果。
然而,这种冷却装置管路设计较复杂,占用空间较大,并且,水泵与进出水管路之间采用分配器进行连接,分配器的成本较高。
发明内容
本发明提供一种冷却装置及系统,相较于现有技术中需采用体积较大、成本较高的大功率机车变流器水冷却装置,本方案增加了便利性,且降低了成本。
第一方面,本发明提供一种冷却装置,包括:柜内冷却装置以及柜外冷却装置;
所述柜内冷却装置包括:进水主管路、出水主管路、水泵、以及至 少一个水连接板;所述柜外冷却装置包括:变流器进水管、变流器出水管;
所述变流器进水管与所述水泵的进水管连接,且所述变流器进水管与所述水泵之间设置有第一截止阀,所述水泵的出水管与所述进水主管路的一端连接,所述进水主管路的另一端密封;
所述出水主管路的一端密封,所述出水主管路的另一端与所述变流器出水管连接,且所述出水主管路与所述变流器出水管之间设置有第二截止阀;
每个水连接板连接在所述进水主管路和所述出水主管路之间,且所述进水主管路中的水可以通过任一水连接板流至所述出水主管路;每个水连接板用于对设置在其上的功率模块进行冷却。
在一种具体的实现方式中,每个水连接板的两端通过分支管路分别于所述进水主管路和所述出水主管路连接。
在一种具体的实现方式中,所述柜内冷却装置还包括:膨胀水箱;
所述膨胀水箱位于所述冷却装置的最高处;所述进水主管路和出水主管路分别通过不锈钢管与所述膨胀水箱的底部连接。
在一种具体的实现方式中,所述膨胀水箱与所述水泵的进水管通过橡胶管连接。
在一种具体的实现方式中,在所述水泵的出水管和所述进水主管路之间设置有温度传感器和压力传感器。
在一种具体的实现方式中,所述水泵的出水管和所述进水主管路之间通过法兰连接;
所述变流器进水管与所述水泵的进水管之间通过法兰连接。
在一种具体的实现方式中,所述冷却装置还包括:至少一个功率模块;
其中,每个功率模块包括水冷基板和至少一个功率器件,所述水冷基板用于与水连接板连接,所述至少一个功率器件设置在水冷基板上。
在一种具体的实现方式中,所述水泵的进水管上设置注液接头。
进一步地,所述变流器进水管以及所述变流器出水管为波纹管,所述变流器进水管以及所述变流器出水管设置在所述冷却装置的底端侧 面。
第二方面,本发明提供一种冷却系统,包括:第一方面所述的冷却装置、复合冷却塔以及监控装置;
所述冷却装置与所述复合却塔连接,形成冷却循环回路;
所述监控装置用于根据所述冷却装置的检测结果,确定是否发出告警。
本发明实施例提供的一种冷却装置及系统,通过变流器的进水管通过管路的法兰设计连接到水泵的进水管,省去了进水分配器的过渡连接,水泵出水管与管路法兰直接连接,省去了出水分配器的设计,实现了在保证冷却系统性能的同时,省去了水分配器的复杂结构设计,简化了柜外管路的繁杂结构。相较于现有技术中需采用体积较大、成本较高的冷却装置,本方案有效的节省空间、减轻变流器的重量并降低设计成本,同时,冷却系统通过监控装置实现了实时监控及故障告警,提高了冷却系统的可靠性以及便利性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1为现有技术中一种用于大功率机车变流器的水冷却系统的示意图;
图2为现有技术中一种用于大功率机车变流器的水冷却装置的立体示意图;
图3为本发明实施例提供的一种冷却装置的结构示意图;
图4为本发明实施例提供的一种冷却系统示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述, 显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
目前变流器的冷却方式主要有自然冷却、强迫风冷、水循环冷却等。对于机车变流器的冷却,国内通常采用水循环冷却方式,即将功率器件安装于水冷基板上,再将水冷基板通过一定的管路与换热装置进行连接,通过水泵的压力将吸收了热量的冷却液进行循环,再通过对换热装置的冷却达到一个热交换的目的,降低冷却液的温度,使冷却后的冷却液再次流过水冷基板,如此循环。
现有技术中,大功率机车变流器的水冷却装置,包括柜内冷却装置和柜外冷却装置。该冷却装置管路设计较复杂,通过柜外管路的进出水口与冷却塔的出水口和进水口进行连接,使冷却液通过管路流经变流器内的功率单元水冷基板,起到给功率器件散热的效果。然而,该种冷却装置管路设计较复杂,占用空间较大。并且水泵与进出水管路之间采用分配器进行连接,分配器的成本较高。
为克服现有技术的问题,本方案在保证冷却系统性能的同时,进行了结构的简化设计,管路与法兰直接相连,省去了水分配器的复杂结构设计,简化了柜外管路的繁杂结构,有效的节省空间、减轻变流器的重量并降低设计成本。
下面通过几个具体实施例对该方案进行详细说明。
图3为本发明实施例提供的一种冷却装置的结构示意图,如图1所示,冷却装置包括:柜内冷却装置以及柜外冷却装置。
在一种具体的实现方式中,柜内冷却装置和柜外冷却装置由变流器柜体隔开,仅通过管路相连。
其中,柜内冷却装置包括:进水主管路3、出水主管路4、水泵1、以及至少一个水连接板16;柜外冷却装置包括:柜外管路10和截止阀9。
柜外管路包括:变流器进水管,以及变流器出水管,其中,变流器进水管位于变流器出水管前方。
进一步地,变流器进水管与水泵1的进水管连接,且变流器进水管与水泵1之间设置有第一截止阀,水泵1的出水管与进水主管路3的一端连接, 进水主管路3的另一端密封。
出水主管路4的一端密封,出水主管路4的另一端与变流器出水管连接,且出水主管路与变流器出水管之间设置有第二截止阀。
具体的,截止阀9中,前方的截止阀为第一截止阀,后方的截止阀为第二截止阀。截止阀均安装在柜体外侧,柜外管路10安装截止阀9的设计,保证了变流器未连接冷却塔时可以单独注液,也便于柜外管路与冷却塔之间连接管路的整体拆卸和维护。
每个水连接板16均连接在进水主管路3和出水主管路4之间,且进水主管路3中的冷却液可以通过任一水连接板16,及与之相连的水冷基板,流至出水主管路4,并且,每个水连接板16上有两个接水头,该水接头可与功率模块中的水冷基板相连,用于对设置在其上的功率器件进行冷却。
具体的,每个水连接板16上的两个水接头为快速水接头,具有自密封功能,插拔过程不会漏液。
在一种具体的实现方式中,功率模块包括水冷基板和设置在水冷基板上的功率器件,该水冷基板上的进出水口分别与水连接板的两个水接头连接,以使冷却液流过水冷基板,并对设置在水冷基板上的功率器件进行冷却。
可选的,每个功率模块中的功率器件的数量可以是1至多个。
可选的,在进水主管路3和出水主管路4之间可以设置多个水连接板,每个水连接板连接一个功率模块,可以实现使用一组进水主管路与出水主管路对多个功率模块进行冷却。
在一种具体的实现方式中,进水主管路3上设置有1至多个分支管路4,出水主管路上也设置有1至多个分支管路14,每个水连接板的两端通过分支管路14分别与进水主管路3和出水主管路4连接。
本发明实施例提供的一种冷却装置以及系统,包括:柜内冷却装置以及柜外冷却装置,其中,柜内冷却装置包括:进水主管路、出水主管路、水泵、以及至少一个水连接板,柜外冷却装置包括:变流器进水管、变流器出水管。变流器的进水管通过管路的法兰设计连接到水泵的进水管,省去了进水分配器的过渡连接,水泵出水管与管路法兰直接连接,省去了出水分配器的设计。最终,在保证冷却系统性能的同时,省去了水分配器的复杂结构设计,简化了柜外管路的繁杂结构。相较于现有技术中需采用体积较大、成本较高的冷 却装置,本方案有效的节省空间、减轻变流器的重量并降低设计成本。
下面采用几个具体的实施例,对图1所示方法实施例的技术方案进行详细说明。
在一种具体的实现方式中,柜内冷却装置还包括:膨胀水箱5。膨胀水箱5安装在整个管路的最高点,具有显示冷却液水位、吸收液体容量的变化和排压、排气的功能。由膨胀水箱容纳管路内的水膨胀量,可减小管路因水的膨胀而造成的水压波动,当管路由于某种原因漏水或管路内降温时,膨胀水箱水位下降,为管路补水。膨胀水箱还可以起到稳定管路内的压力和排除水在加热过程中所释放出来的空气。
具体的,冷却液水位可以通过膨胀水箱的超声波液位仪、雷达液位仪、电极式液位传感器等设备进行液位显示,也可以通过使用透明或者半透明箱体的膨胀水箱直接观察膨胀水箱内的液面高度读取液位,本方案对此不做要求。
进水主管路3和出水主管路4分别通过不锈钢管6和膨胀水箱5的底部进行连接,可以将冷却液在管路中循环时产生的气泡排出到膨胀水箱5中,再通过膨胀水箱5的调压功能排出管路系统外。
进一步地,膨胀水箱5的顶部设置有溢水阀,溢水阀预先设置有压力值的范围,当压力值超出预设压力值的范围时,则溢水阀将对膨胀水箱内的压力进行调节。当管路内冷却液过多时,可以通过膨胀水箱的溢水阀溢出,其中,溢水阀与溢水管11连接,使溢出的冷却液直接排出柜外,避免柜内电气部件的损坏。
可选的,在溢水管11可以通过一个穿墙端子伸出变流器柜体外,溢水管与柜体接触面可以设置密封接头12,保证变流器处于密封的状态。
可选的,进水主管路与出水主管路上均设置有排气阀,用于排出管道内的气体。
在一种具体的实现方式中,膨胀水箱5与水泵1的进水管通过橡胶管15连接。通过橡胶管15的连接设计,可以给水泵1提供压力,调节膨胀水箱与水泵进水管处的压力差,维持管路整体压力的稳定。
在一种具体的实现方式中,在水泵1的出水管和进水主管路3之间设置有温度传感器7和压力传感器8。
具体的,在进水主管路3上设置有温度传感器和压力传感器安装接口,用来安装温度传感器7和压力传感器8。温度传感器7和压力传感器8可对管路中的冷却液的压力和温度进行实时测量。
本发明实施例提供的一种冷却装置,通过膨胀水箱与进水主管路、出水主管路,以及水泵的连接,提供了显示冷却液水位、容纳管路内的水膨胀量、以及稳定管路内的压力的作用;通过在水泵的出水管和进水主管路之间设置温度传感器和压力传感器,实现了对管路内的温度和压力的实时监测。
在一种具体的实现方式中,水泵1的出水管和进水主管路3之间通过法兰连接;
进一步地,变流器进水管与水泵1的进水管之间通过法兰连接。
具体的,水泵1出水管和进水主管路3法兰直接连接,省去了出水分配器的设计。变流器的进水管通过管路的法兰设计连接到水泵1的进水口,省去了进水分配器的过渡连接,简化了柜外管路的繁杂结构。
在一种具体的实现方式中,冷却装置还包括:至少一个功率模块;
其中,每个功率模块包括水冷基板和至少一个功率器件,水冷基板用于与水连接板16连接,至少一个功率器件设置在水冷基板上。
具体的,水连接板16与功率器件的水冷基板相连。冷却液通过水连接板进入功率器件的水冷基板,对设置在水冷基板上的功率器件进行冷却。将功率器件产生的热量吸收后,冷却液通过功率器件水冷基板的出水端到达水连接板16。
在一种具体的实现方式中,水泵的进水管上设置有注液接头。
具体的,水泵的进水管13上设计有注液接头安装接口,用来安装注液接头2。将注液接头2安装接口直接设计在进水管路3上,可以通过注液接头2将冷却液注入到冷却装置的管路中,该设计的结构简单,同时满足了变流器注液的功能要求。其中,注液接头2可快速插拔,不注液时,接头是密封的,不会漏液。
进一步地,变流器进水管以及变流器出水管为波纹管,并且带有连接法兰的截至阀,变流器进水管以及变流器出水管设置在冷却装置的底端侧面。
具体的,柜外管路10设计有截止阀,在变流器未连接冷却塔时可以进行单独注液。柜外管路10为两根尽可能短的波纹管,长度仅为变流器与冷却塔 的间距,实现了变流器与冷却塔的连接,故而,不需要额外配置变流器到冷却塔之间的连接管路,减少了整车系统配件,降低成本。避免了柜外管路的复杂结构设计带来的占用空间大、重量大及成本高的缺点,而且,由于柜外管路设计位置没有高出柜内管路,省去了排气阀的设计,降低了成本、减少了故障点。
本发明实施例,通过变流器的进水管通过管路的法兰设计连接到水泵的进水管,省去了进水分配器的过渡连接,水泵的出水管与管路法兰直接连接,省去了出水分配器的设计,实现了在保证冷却系统性能的同时,省去了水分配器的复杂结构设计,在水泵的进水管上设计了注液接头、温度传感器和压力传感器接口,简化了柜外管路的结构设计,节省了变流器空间、减轻了变流器重量、节约了变流器的设计成本。
图4为本发明实施例提供的一种冷却系统示意图。如图2所示,冷却系统100包括:图1所示实施例中的冷却装置101、复合冷却塔102以及监控装置103。
在一种具体的实现方式中,冷却装置101与复合冷却塔102连接,形成冷却循环回路,监控装置分别与冷却装置101和复合冷却塔102电性连接。
其中,复合冷却塔包括热交换器和风机,冷却装置的柜外管路与复合冷却塔的接口连接,具体的,通过变流器的进水管和变流器的出水管与复合冷却塔的热交换器连接,形成冷却循环回路。
可选的,变流器的进水管和变流器的出水管可以是波纹软管。
具体的,冷却装置通过两根波纹软管直接将截止阀外侧与冷却塔接口相连,波纹管长度可以是冷却装置与冷却塔的间距,此处应理解,波纹管应设置的尽量短。截止阀保证了在冷却装置未连接冷却塔时,变流器可以单独注液,也便于柜外管路的整体拆卸和维护,冷却液在冷却装置内对功率器件进行冷却后,通过冷却装置的变流器出水管进入复合冷却塔,在复合冷却塔内进行冷却后,通过冷却装置的变流器进水管进入冷却装置,形成冷却循环回路。
本实施例的冷却装置101,包括图1所示实施例的任一技术方案。
如上所述,在一种具体的实现方式中,该冷却装置101包括柜内冷却装 置和柜外冷却装置,柜内冷却装置和柜外冷却装置由变流器柜体隔开,仅通过管路相连。
其中,柜内冷却装置包括:进水主管路、出水主管路、水泵、以及至少一个水连接板,柜外冷却装置包括:柜外管路和截止阀。
柜外管路包括:变流器进水管,以及变流器出水管,其中,变流器进水管位于变流器出水管前方。
在上述方案中,应理解,变流器的进水管通过管路的法兰设计连接到水泵的进水管,省去了进水分配器的过渡连接,水泵出水管与管路法兰直接连接,省去了出水分配器的设计。在保证冷却系统性能的同时,省去了水分配器的复杂结构设计,并简化了柜外管路的繁杂结构。
在冷却装置101中还包括膨胀水箱、温度传感器以及压力传感器,通过膨胀水箱与进水主管路、出水主管路,以及水泵的连接,提供了显示冷却液水位、容纳管路内的水膨胀量、以及稳定管路内的压力的作用,并通过在水泵的出水管和进水主管路之间设置温度传感器和压力传感器,实现了对管路内的温度和压力的实时监测。
此外,冷却装置101还包括图1所示实施例的其他技术方案,其实现原理与技术效果类似,此处不再赘述。
其中,监控装置103用于获取冷却装置的检测结果,并判断冷却装置的检测结果是否正常,若检测结果不正常,则发出告警。
在一种具体的实现方式中,冷却装置中安装有压力传感器、以及温度传感器,可对冷却液的压力和温度进行实时检测。当冷却系统中的管路内的压力和/或温度异常时,监控装置将发出告警。
其中,监控装置103用于获取冷却装置中温度传感器、压力传感器的测量结果,根据预设的温度范围和压力范围,判断获取到的测量结果是否正常,若温度的测量结果和/或压力的测量结果不正常,则生成告警信息,并发出告警,提示用户对系统进行检修。
可选的,在温度的测量结果大于预设温度范围的最大值时,监控装置103可以控制冷却塔提高冷却塔的冷却程度;在温度的测量结果小于预设温度范围的最小值时,监控装置103可以控制冷却塔降低冷却塔的冷却程度。
可选的,在压力的测量结果超出预设压力范围时,监控装置103可以控制变流器进行相应的保护动作。
可选的,在液位的测量结果高于预设的最大液位时,即管道内冷却液过多时,冷却装置可通过膨胀水箱的溢水阀排出多余的气体或冷却液;在液位较低时,即管道内冷却液过少时,可通过膨胀水箱的溢水阀吸入气体,补充膨胀水箱内的气体压力;在液位的测量结果低于预设的最小液位时,可采用人工的方式通过注液接头补充冷却液。
本发明实施例提供的一种冷却系统,包括冷却装置、复合冷却塔以及检测装置,其中,冷却装置与复合却塔连接,形成冷却循环回路,监控装置用于根据所述冷却装置的检测结果,确定是否发出告警,提高了冷却系统的可靠性以及便利性。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种冷却装置,其特征在于,包括:柜内冷却装置以及柜外冷却装置;
    所述柜内冷却装置包括:进水主管路、出水主管路、水泵、以及至少一个水连接板;所述柜外冷却装置包括:变流器进水管、变流器出水管;
    所述变流器进水管与所述水泵的进水管连接,且所述变流器进水管与所述水泵之间设置有第一截止阀,所述水泵的出水管与所述进水主管路的一端连接,所述进水主管路的另一端密封;
    所述出水主管路的一端密封,所述出水主管路的另一端与所述变流器出水管连接,且所述出水主管路与所述变流器出水管之间设置有第二截止阀;
    每个水连接板连接在所述进水主管路和所述出水主管路之间,且所述进水主管路中的水可以通过任一水连接板流至所述出水主管路;每个水连接板用于对设置在其上的功率模块进行冷却。
  2. 根据权利要求1所述的冷却装置,其特征在于,每个水连接板的两端通过分支管路分别于所述进水主管路和所述出水主管路连接。
  3. 根据权利要求1所述的冷却装置,其特征在于,所述柜内冷却装置还包括:膨胀水箱;
    所述膨胀水箱位于所述冷却装置的最高处;所述进水主管路和出水主管路分别通过不锈钢管与所述膨胀水箱的底部连接。
  4. 根据权利要求3所述的冷却装置,其特征在于,所述膨胀水箱与所述水泵的进水管通过橡胶管连接。
  5. 根据权利要求1所述的冷却装置,其特征在于,在所述水泵的出水管和所述进水主管路之间设置有温度传感器和压力传感器。
  6. 根据权利要求1所述的冷却装置,其特征在于,所述水泵的出水管和所述进水主管路之间通过法兰连接;
    所述变流器进水管与所述水泵的进水管之间通过法兰连接。
  7. 根据权利要求1所述的冷却装置,其特征在于,所述冷却装置还包括:至少一个功率模块;
    其中,每个功率模块包括水冷基板和至少一个功率器件,所述水冷基板用于与水连接板连接,所述至少一个功率器件设置在水冷基板上。
  8. 根据权利要求1所述的装置,其特征在于,所述水泵的进水管上设置注液接头。
  9. 根据权利要求1至8任一项所述的装置,其特征在于,所述变流器进水管以及所述变流器出水管为波纹管,所述变流器进水管以及所述变流器出水管设置在所述冷却装置的底端侧面。
  10. 一种冷却系统,其特征在于,包括:权利要求1-9任一项所述的冷却装置、复合冷却塔以及监控装置;
    所述冷却装置与所述复合却塔连接,形成冷却循环回路;
    所述监控装置用于根据所述冷却装置的检测结果,确定是否发出告警。
PCT/CN2018/117561 2018-11-19 2018-11-27 冷却装置及系统 WO2020103169A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811377351.9 2018-11-19
CN201811377351.9A CN111200920B (zh) 2018-11-19 2018-11-19 冷却装置及系统

Publications (1)

Publication Number Publication Date
WO2020103169A1 true WO2020103169A1 (zh) 2020-05-28

Family

ID=70746070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117561 WO2020103169A1 (zh) 2018-11-19 2018-11-27 冷却装置及系统

Country Status (2)

Country Link
CN (1) CN111200920B (zh)
WO (1) WO2020103169A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555553A (zh) * 2020-06-03 2020-08-18 湖南联诚轨道装备有限公司 一种轨道交通永磁牵引电机冷却装置
CN111935948A (zh) * 2020-07-07 2020-11-13 合肥弘恩机电科技有限公司 一种用于粮食储藏安全管理的智能综合控制柜
CN112510550A (zh) * 2020-12-16 2021-03-16 安徽伟合电子科技有限公司 一种定点冷却的活动式电气柜
CN112888245A (zh) * 2020-12-31 2021-06-01 中国人民解放军海军工程大学 一种低噪音密闭水冷散热式高压有源动态无功补偿装置
CN113573545A (zh) * 2021-06-25 2021-10-29 华为技术有限公司 制冷系统及数据中心

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112016159B (zh) * 2020-07-28 2024-03-26 西安中车永电电气有限公司 机车冷却系统虚拟环路与cfd仿真耦合分析方法
CN113009423A (zh) * 2021-01-22 2021-06-22 重庆秦嵩科技有限公司 一种便携式雷达及其使用方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361392A (zh) * 2011-10-25 2012-02-22 南车资阳机车有限公司 内燃机车变流器冷却系统
CN103138536A (zh) * 2011-11-29 2013-06-05 永济新时速电机电器有限责任公司 变流器冷却装置
CN203457037U (zh) * 2013-09-25 2014-02-26 南车株洲电力机车研究所有限公司 一种大功率变流器水冷装置
CN103855916A (zh) * 2012-12-03 2014-06-11 永济新时速电机电器有限责任公司 变流器冷却管路和冷却装置
EP2995869A1 (en) * 2014-09-15 2016-03-16 Adwatec Oy Arrangement and method for cooling liquid-cooled electronics
CN207053380U (zh) * 2017-08-21 2018-02-27 中车永济电机有限公司 一种新型水冷管路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202309479U (zh) * 2011-10-13 2012-07-04 广东明阳龙源电力电子有限公司 一种风电变流器水冷装置
CN204649396U (zh) * 2015-04-13 2015-09-16 特变电工新疆新能源股份有限公司 一种换流阀单元水冷测试平台的配水系统
CN207157205U (zh) * 2017-09-04 2018-03-30 中车永济电机有限公司 动力集中型电力机车新型水冷系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361392A (zh) * 2011-10-25 2012-02-22 南车资阳机车有限公司 内燃机车变流器冷却系统
CN103138536A (zh) * 2011-11-29 2013-06-05 永济新时速电机电器有限责任公司 变流器冷却装置
CN103855916A (zh) * 2012-12-03 2014-06-11 永济新时速电机电器有限责任公司 变流器冷却管路和冷却装置
CN203457037U (zh) * 2013-09-25 2014-02-26 南车株洲电力机车研究所有限公司 一种大功率变流器水冷装置
EP2995869A1 (en) * 2014-09-15 2016-03-16 Adwatec Oy Arrangement and method for cooling liquid-cooled electronics
CN207053380U (zh) * 2017-08-21 2018-02-27 中车永济电机有限公司 一种新型水冷管路

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555553A (zh) * 2020-06-03 2020-08-18 湖南联诚轨道装备有限公司 一种轨道交通永磁牵引电机冷却装置
CN111935948A (zh) * 2020-07-07 2020-11-13 合肥弘恩机电科技有限公司 一种用于粮食储藏安全管理的智能综合控制柜
CN111935948B (zh) * 2020-07-07 2023-03-28 合肥弘恩机电科技有限公司 一种用于粮食储藏安全管理的智能综合控制柜
CN112510550A (zh) * 2020-12-16 2021-03-16 安徽伟合电子科技有限公司 一种定点冷却的活动式电气柜
CN112510550B (zh) * 2020-12-16 2022-12-06 国网湖北省电力有限公司襄阳供电公司 一种定点冷却的活动式电气柜
CN112888245A (zh) * 2020-12-31 2021-06-01 中国人民解放军海军工程大学 一种低噪音密闭水冷散热式高压有源动态无功补偿装置
CN112888245B (zh) * 2020-12-31 2022-10-18 中国人民解放军海军工程大学 一种低噪音密闭水冷散热式高压有源动态无功补偿装置
CN113573545A (zh) * 2021-06-25 2021-10-29 华为技术有限公司 制冷系统及数据中心
CN113573545B (zh) * 2021-06-25 2024-03-26 华为数字能源技术有限公司 制冷系统及数据中心

Also Published As

Publication number Publication date
CN111200920A (zh) 2020-05-26
CN111200920B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2020103169A1 (zh) 冷却装置及系统
CN103138536B (zh) 变流器冷却装置
CN207157205U (zh) 动力集中型电力机车新型水冷系统
CN207053380U (zh) 一种新型水冷管路
CN209159450U (zh) 一种自动补液的液冷充电桩
CN103179845B (zh) 安全水循环系统
CN111585287B (zh) 一种基于热管的高压动态无功补偿装置的散热系统
CN215220910U (zh) 一种快拆式的液冷蓄电池箱
US20140124188A1 (en) Liquid cooling system and method for preventing leakage thereof
CN204771234U (zh) 一种感应焊机的冷却系统
CN203167500U (zh) 安全水循环系统
CN107249289A (zh) 一种服务器机柜的冷却系统
CN109210811A (zh) 两种温度两种介质液冷装置
CN207039434U (zh) 一种风电变流器的冷却装置以及风电变流器
CN104923998B (zh) 一种感应焊机的冷却系统及方法
CN202080092U (zh) 新能源客车冷却系统
CN210572630U (zh) 一种发电机实验平台测试系统
CN216525561U (zh) 一种可对水冷管路检测的露点仪水冷装置
CN215991728U (zh) 换热装置
CN109066007A (zh) 一种基于热管的大规模电池模组集成箱冷却系统
CN218042194U (zh) 一种电压控制保护器散热结构
CN220594640U (zh) 一种纯电动汽车冷却系统简易过滤装置
CN217845561U (zh) 聚酰胺汽车散热器水室试漏装置
CN210652661U (zh) 一种电动重卡冷却系统的布置结构
CN220401560U (zh) 一种用于电驱混凝土湿喷台车的电驱散热设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18940868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18940868

Country of ref document: EP

Kind code of ref document: A1